
Information and Computation 204 (2006) 469–502

www.elsevier.com/locate/ic

A modular approach to defining and characterising
notions of simulation

Corina Cîrstea*

School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK

Received 24 July 2004; revised 14 April 2005
Available online 19 January 2006

Abstract

We propose a modular approach to defining notions of simulation, and modal logics which character-
ise them. We use coalgebras to model state-based systems, relators to define notions of simulation for such
systems, and inductive techniques to define the syntax and semantics of modal logics for coalgebras.We show
that the expressiveness of an inductively defined logic for coalgebras w.r.t. a notion of simulation follows from
anexpressivity condition involvingone step in thedefinitionof the logic, and the relator inducing that notionof
simulation.Moreover, we show that notions of simulation and associated characterising logics for increasing-
ly complex system types can be derived by lifting the operations used to combine system types, to a relational
level as well as to a logical level.We use these results to obtain Baltag’s logic for coalgebraic simulation, as well
as notions of simulation and associated logics for a large class of non-deterministic and probabilistic systems.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Coalgebra; Simulation; Modal logic; Probabilistic system

1. Introduction

Simulations have long been used in the semantics of computational systems, to formalise refine-
ment relationships between such systems. The choice of a notion of simulation depends on which

∗ Fax: +44 23 8059 3045.
E-mail address: cc2@ecs.soton.ac.uk.
URL: http://www.ecs.soton.ac.uk/ c̃c2.

0890-5401/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2005.04.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82244582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

470 Corina Cîrstea / Information and Computation 204 (2006) 469–502

aspects of the system behaviour are of interest in a particular context. For example, in the semantics
of non-deterministic, sequential processes, notions such as standard, complete or ready simulation
are used to compare the ability/inability of processes to perform certain/any computations (see [29]
for an overview). Similarly, in the semantics of probabilistic processes, various notions of proba-
bilistic simulation are used to compare the probabilities with which processes are able to ensure
certain outcomes as a result of computations (see [9,18]). In each of these cases, logical characterisa-
tions of simulation, using various modal logics, have also been proposed (again, see [29,9,18]). Such
logics offer useful insights into the kinds of properties which are preserved by particular notions of
simulation, and at the same time provide a basis for more expressive temporal logics used in formal
verification [24,10,19,12].
What is missing from existing approaches are compositional techniques for deriving notions

of simulation, and logics which characterise them, for a large class of system types. The sys-
tem types of interest are often combinations of simple system types—this is, for instance, the
case for the probabilistic automata of [27,26] (see also [18]), or for the alternating probabilistic
systems of [11], where a combination of non-deterministic and probabilistic features is present.
In such cases, the task of defining suitable notions of simulation, and logics which characterise
them, becomes increasingly challenging. A framework which allows the automatic derivation
of such definitions, together with proofs of expressiveness, would therefore prove valuable in
the treatment of complex system types. The present paper develops such a framework, using
coalgebras as a general setting.
Coalgebras have, in recent years, been shown to provide suitable abstract models for a large

class of state-based systems, which includes non-deterministic systems, probabilistic systems, and
various kinds of automata [25]. The emphasis in suchmodelling is on the observations which can be
performed on a system in one step. The coalgebraic notion of bisimulation then formalises the indis-
tinguishability of system states by experiments involving a series of one-step observations. Notions
of simulation between systems modelled as coalgebras have also been studied, initially as a tool for
proving refinements between recursively defined programs [28,14], and later with the aim to provide
a coalgebraic theory of simulations [1,17]. Logics which characterise simulation have been proposed
in [1], generalising earlier work on logics which characterise bisimulation [22]. Additional proper-
ties of coalgebraic simulations, including their relationship to final coalgebras, were subsequently
studied in [17].
This paper further develops the coalgebraic theory of simulations, by providing a modular

approach to defining notions of simulation and modal logics which characterise them. This
approach lifts the operations used to combine coalgebraic types to a relational level as well as
to a logical level, thereby allowing notions of simulation and characterising logics for combi-
nations of coalgebraic types to be derived from notions of simulation and characterising log-
ics for the types being combined. The structure of coalgebraic types is thus reflected both in
the notions of simulation defined, and in the modal operators employed by the corresponding
logics.
A similar approach to defining logics for coalgebras was taken in [5] (see also [4]), where log-

ics capturing bisimulation were investigated from a compositional perspective. Specifically, it was
shown in [5] that the expressiveness w.r.t. bisimulation of an inductively defined logic for coalgebras
follows from an expressivity condition involving one step in the definition of the logic. In the case
of logics capturing simulation, the situation is more complex, since, unlike bisimulation, simulation

Corina Cîrstea / Information and Computation 204 (2006) 469–502 471

is not uniquely determined by the underlying coalgebraic type. Thus, in order to derive characteris-
ing logics for simulation, these logics must be tailored to particular notions of simulation, and the
expressivity condition of [5] has to be generalised accordingly. Also, a method for deriving notions
of simulation for combinations of coalgebraic types from notions of simulation for the types being
combined needs to be developed.
The structure of the paper is as follows:

Section 2 contains some prerequisites for subsequent sections, including basic facts about rela-
tions, coalgebras, and coalgebraic simulation.
Section 3 provides an alternative characterisation of monotonic relators (the
concept underlying the definition of coalgebraic simulation [28]), and uses it to obtain a coalge-
braic characterisation of simulation on unlabelled probabilistic transition systems.
Section 4 develops a modular approach for defining simulation relations between coalgebras.
Various operations on coalgebraic types, including functor composition, product, coproduct,
and exponentiation are shown to induce corresponding operations onmonotonic relators, there-
by yielding notions of simulation for increasingly complex coalgebraic types. The notions of
standard/ready simulation on labelled transition systems [29], simulation on probabilistic tran-
sition systems [9], and strong simulation on probabilistic automata [27] are all shown to arise in
this way.
Section 5 discusses an inductive method for defining logics which characterise simulation, much
in the spirit of [5]. Language constructors and associated semantics are used to capture one step
in the definition of a logic for coalgebras. Moreover, an expressivity condition involving (a) a
language constructor and an associated semantics, and (b) amonotonic relator, is used to ensure
the expressiveness of the induced logic w.r.t. the induced notion of simulation. This method can
be applied to derive Baltag’s logic for coalgebraic simulation [1], as well as a logic capturing
simulation on unlabelled probabilistic transition systems.
Section 6 develops a modular approach to defining expressive logics for simulation. The
previously considered operations on coalgebraic types are shown to induce corresponding
operations on language constructors and their associated semantics, with the above-men-
tioned expressivity condition being preserved by these operations. This allows the modular
derivation of logics which characterise standard/ready simulation on labelled transition sys-
tems, simulation on probabilistic transition systems, and strong (probabilistic) simulation
on probabilistic automata. The resulting logics are similar (as regards their syntax, seman-
tics, and expressiveness) to the logics known to characterise these notions of simulation (as
described, e.g., in [29,9,18]).
Section 7 concludes with a summary of the results obtained.

This paper is an extended version of [6]. It differs from [6] in the treatment of language
constructors and their associated semantics: these were regarded as a single concept in [6], but
are here separated to allow for a clearer distinction between syntax and semantics. (This al-
ternative formulation was first proposed in [7].) Compared to [6], the present paper also pro-
vides additional examples, including a more comprehensive treatment of notions of simula-
tion for labelled transition systems, and a treatment of notions of simulation for probabilistic
automata.

472 Corina Cîrstea / Information and Computation 204 (2006) 469–502

2. Preliminaries

Here, we fix the notation for subsequent sections, recall some basic facts about relations and
coalgebras, and summarise the coalgebraic approach to defining simulation.

2.1. Relations

We letSet denote the category of sets and functions, and write X1 × X2 (X1 + X2) for the cartesian
product (disjoint union) of X1 and X2, and �i : X1 × X2 → Xi (�i : Xi → X1 + X2), with i = 1, 2, for
the canonical projections (injections). We also let 1 = {∗} denote a one-element set (final object in
Set). Finally, we write XA for the set of functions A→ X .
We letRel denote the category having, as objects, binary relationsR ⊆ A× B, and as arrows from

R ⊆ A× B to S ⊆ C × D, pairs of functions (f , g) with f : A→ C and g : B→ D being such that
(f × g)(R) ⊆ S . We note that this is not the only way of defining a category of relations between
sets. Another possibility is to consider the category having sets as objects, and relations R ⊆ A× B
as arrows from A to B. This is, for instance, the approach taken in [1]. Our definition of Rel
follows [17].
Given a relation R ⊆ A× B, we write �R1 and �R2 for �1 ◦ � : R→ A and �2 ◦ � : R→ B, respec-

tively, where � : R ↪→ A× B is the inclusion map. Also, we write R
op
for the converse of a relation

R, and Grf ⊆ A× B for the relation defining the graph of a function f : A→ B. The composition
of two relations R ⊆ A× B and S ⊆ B× C is denoted S ◦ R ⊆ A× C .
If U : Rel → Set× Set denotes the functor taking relations to their underlying sets, then U de-

fines a fibration (see [3,15] for a definition of fibrations). For, given functions f : A→ C , g : B→ D

and a relation S ⊆ C × D, letting a R b iff f(a) S g(b) makes (f , g) : (R ⊆ A× B)→ (S ⊆ C × D) a
cartesian map. (Equivalently, R can be defined as Gr(g)

op ◦ S ◦ Gr(f).) The cartesian maps of U
are thus the relation-reflecting maps.We also note that our particular definition ofRel results in the
uniqueness of cartesian maps over (f , g) : A× B→ C × Dwith codomain S ⊆ C × D, for any such
(f , g) and S . Consequently, there is only one reindexing functor (see [15] for a definition), denoted
(f , g)∗, for each (f , g) : A× B→ C × D, and only one cleavage (again, see [15] for a definition) for
the fibration U.
We now let Preord denote the category of preorders and monotonic maps. Then, Preord is

(isomorphic to) a sub-category of Rel. Moreover, if V : Preord → Set takes preorders to their un-
derlying sets, then V also defines a fibration. The cartesian maps of V are the (pre)order-reflecting
maps. The following also holds:

Proposition 1. Rel and Preord are complete categories.

Limits in Rel and Preord are constructed from limits in Set and limits in certain fibres of U and
V, respectively.

2.2. Coalgebras

The coalgebraic approach to modelling systems involves the use of an endofunctor to specify
the type of information which can be observed about a system in one step. Particular models of the
system are then formalised as coalgebras.

Corina Cîrstea / Information and Computation 204 (2006) 469–502 473

Definition 2 (Coalgebra, coalgebra morphism). Let T : C → C be an endofunctor. A T-coalgebra is
a pair (C , �) with C a C-object (the carrier of the coalgebra) and � : C → TC a C-arrow (the coal-
gebra map). Also, a T-coalgebra morphism from (C , �) to (D, �) is a C-arrow f : C → D such that
Tf ◦ � = � ◦ f . The category of T-coalgebras and T-coalgebra morphisms is denoted Coalg(T).

In what follows, we will consider (coalgebras of) endofunctors on the categories Set, Rel, and
Preord. Coalgebras over Set will be used to model state-based systems, whereas coalgebras over
Rel and Preord will be used to define simulation relations between systems modelled in this way.
For convenience, wewill restrict attention to standard (that is, inclusion preserving) endofunctors

on Set. A similar assumption is made in [28] when defining simulation relations. The results in this
paper could also be formulated for arbitrary endofunctors on Set, but this would involve defining
relations as monomorphic spans, which, in turn, would complicate our exposition. The assumption
regarding standard endofunctors will be implicit in all the endofunctors T : Set → Set considered
in this paper, and true of all concrete such endofunctors.

Example 3. Let A be a set, and let Pω : Set → Set denote the finite powerset functor, taking a set
to the set of its finite subsets. Then, any (Pω)A-coalgebra (S , �) defines an (image-finite) A-labelled
transition system, with set of states S and transition relation given by s

a �� t iff t ∈ �(s)(a), for
s, t ∈ S and a ∈ A. Moreover, any image-finite, A-labelled transition system can be modelled in this
way.

Example 4. Image-finite, A-labelled probabilistic transition systems1 can be modelled as coalgebras
of the functor (1+Dω)

A : Set → Set, where Dω : Set → Set is the finite probability distribution
functor, defined by

DωX = {� : X → [0, 1] | supp(�)finite,
∑
x∈X

�(x) = 1 } for X ∈ |Set|

with supp(�) = { x ∈ X |�(x) /= 0 }, for � : X → [0, 1], and

(Dωf)(�)(y) = �[f−1({y})] for f : X → Y , � ∈ DωX , and y ∈ Y

with �[Z] =∑x∈Z �(x), for � : X → [0, 1] and Z ⊆ X .
The coalgebraic approach to modelling systems provides a canonical notion of observational

equivalence between system states, in the form of bisimilarity.

Definition 5 (Bisimulation, bisimilarity). Let T : Set → Set be an endofunctor. A T-bisimulation
between T-coalgebras (C , �) and (D, �) is a relation R ⊆ C × D carrying a T-coalgebra structure
� : R→ TR which makes �R1 : R→ C and �R2 : R→ D T-coalgebra morphisms. The largest T-bi-
simulation between (C , �) and (D, �), given by the union of all bisimulations between (C , �) and
(D, �), is called T-bisimilarity and is denoted �.

1 These are similar to transition systems, except that transitions also carry probability values p ∈ [0, 1], with ∑
s
a,p−→ t

p ∈

{0, 1} for each s ∈ S and a ∈ A.

474 Corina Cîrstea / Information and Computation 204 (2006) 469–502

Example 6. (Pω)A-bisimulation coincides with Park–Milner bisimulation, as defined in [23,21].

Example 7.A notion of bisimulation equivalence for probabilistic transition systems was defined in
[20].Moreover, it was shown in [8] that this notion is essentially the same as (1+Dω)

A-bisimulation.
The following characterisation of 1+Dω-bisimulation was also given in [8]: a relation R ⊆ C × D is
a 1+Dω-bisimulation between (C , �) and (D, �) iff c R d implies �(c)[X] = �(d)[Y]2 for any X ⊆ C
and Y ⊆ D such that (�R1)

−1(X) = (�R2)−1(Y).
Of particular interest in the coalgebraic modelling of systems are final T-coalgebras, that is, final

objects in the category Coalg(T). The elements of a final T-coalgebra provide abstract descriptions
of all observable behaviours w.r.t. T. A general method for constructing the final coalgebra of an
endofunctor is via its final sequence.

Definition 8 (Final sequence). For an endofunctor T : C → C on a complete category, the final se-
quence of T is an ordinal-indexed sequence (Z") of C-objects, together with a family (p"# : Z"→
Z#)#�" of C-arrows, subject to the following conditions:

• Z0 = 1,
• p"0 : Z"→ 1 is the unique such map,
• Z"+1 = TZ",
• p"+1#+1 = Tp"# for # � ",
• p"" = 1Z" ,

• p"� = p#� ◦ p"# for � � # � ",

• if " is a limit ordinal, the cone Z", (p"#)#<" for (p#�)��#<" is limiting.

The final sequence of T is uniquely defined by these conditions.
For an ordinal ", the "-element of the final sequence of T describes the abstract T-behaviours

observable in " steps. Elements of arbitrary T-coalgebras can be mapped to such partial observable
behaviours by using " unfoldings of the coalgebra structure, as illustrated next.

Remark 9.Given a T-coalgebra (C , �), one can define a cone (�" : C → Z") over the final sequence
of T as follows:

• �0 : C → 1 is the unique such map;
• �" = T�# ◦ � , if " = # + 1;
• �" is the unique C-arrow satisfying p"# ◦ �" = �# for each # < ", if " is a limit ordinal.

Moreover, T-coalgebra morphisms f : (C , �)→ (D, �) define morphisms of cones f : (�" : C →
Z")→ (�" : D→ Z"); that is, �" ◦ f = �" for any ".
Under some mild constraints on C and T, the final sequence of T stabilises, yielding a final

T-coalgebra.

2 By convention, �(c)[X] = 0 if �(c) ∈ �1(1).

Corina Cîrstea / Information and Computation 204 (2006) 469–502 475

Proposition 10 (see [31]). If T : C → C is an accessible endofunctor3 on a locally presentable cat-
egory,4 and if T preserves monics, then the final sequence of T stabilises at some " (that is, p"+1" :
Z"+1 → Z" is an isomorphism), and moreover, Z" is the carrier of a final T-coalgebra.

In the case of ω-accessible endofunctors on Set, the cardinal " of Proposition 10 does not exceed
ω + ω.
Proposition 11 (see [31]). If T : Set → Set is ω-accessible, the map pω+ω+1ω+ω : Zω+ω+1 → Zω+ω is an
isomorphism, whereas the maps pω+n+1ω+n : Zω+n+1 → Zω+n with n = 0, 1, . . . are all injective.

2.3. Simulations

Notions of simulation between coalgebras have been studied in [28,14,1,17]. A summary of these
approaches is given in the following. To this end, we fix an endofunctor T : Set → Set.
The concept which lies at the heart of defining coalgebraic simulation is that of a relator. A

(T�)relator [28] is a mapping from relations to relations, taking relations on A× B to relations on
TA× TB. A monotonic (T�)relator [28] is required to satisfy some additional constraints, including
preservation of inclusions between relations with the same carrier, and preservation of relational
composition. These constraints result in the following equivalent definition of monotonic relators.

Definition 12 (Monotonic relator). Let T : Set → Set. A monotonic T-relator is an endofunctor
& : Rel → Rel additionally satisfying:

(i) U ◦ & = (T × T) ◦ U;
(ii) =TA⊆ &(=A);
(iii) &(S ◦ R) = &(S) ◦ &(R) for any R ⊆ A× B and S ⊆ B× C .

For any T-relator & : Rel → Rel, the transposed relator &∼ : Rel → Rel takes a relation R ⊆
A× B to the relation (&(Rop))op ⊆ TA× TB.
Any monotonic T-relator induces a notion of simulation between T-coalgebras. The following is

a reformulation of the definition of simulation given in [28] (see also [17]).

Definition 13 (Simulation, similarity). Let & : Rel → Rel be a monotonic T-relator. A �-simulation
between T-coalgebras (C , �) and (D, �) is a &-coalgebra of the form (R, (� , �)). The largest &-simu-
lation between (C , �) and (D, �) is called �-similarity and is denoted�. If c ∈ C , d ∈ D are such that
c�d , we say that c simulates d .
A &-simulation between (C , �) and (D, �) is thus given by a relation R ⊆ C × D such that c R d

implies �(c)&(R)�(d) for any c ∈ C and d ∈ D.
A generic example of a relator is the minimal relator induced by T [28], denoted &T : Rel → Rel,

and defined by

&T(R) = 〈T�R1 ,T�R2 〉(TR) ⊆ TA× TB for R ⊆ A× B.

3 Given a regular cardinal ', an endofunctor is '-accessible if it preserves '-filtered colimits.
4 Each of the categories Set, Rel, and Preord are locally ω-presentable.

476 Corina Cîrstea / Information and Computation 204 (2006) 469–502

Wenote in passing that theminimal relator induced by an endofunctor corresponds to the notion
of relation lifting of an endofunctor [13,16], used in defining coalgebraic bisimulation for so-called
polynomial endofunctors.
The minimal relator induced by T is monotonic if and only if T preserves weak pullbacks. This

observation is an immediate consequence of the results in [28, Section 2.2]. Irrespective of the pres-
ervation of weak pullbacks by T, the minimal relator &T is contained in any monotonic relator &;
that is,&T(R) ⊆ &(R) for any relation R. Moreover, anymonotonic relator& can be defined in terms
of its action on equality relations and of &T

&(R) = &(=B) ◦ &T(R) ◦ &(=A) for any R ⊆ A× B. (1)

(See, e.g., [28, Theorem 2.1.4] for a proof.)
The notion of simulation induced by the minimal T-relator coincides with T-bisimulation.

Proposition 14. Let T : Set → Set be a weak pullback preserving endofunctor. Then, the &T-simula-
tions are exactly the T-bisimulations.

Proof (Sketch). Let (C , �) and (D, �) be T-coalgebras, and let R ⊆ C × D. The existence of a T-co-
algebra � : R→ TR making the projections �R1 : R→ C and �R2 : R→ D T-coalgebra morphisms
is equivalent to R ⊆ C × D being such that �(c)〈T�R1 ,T�R2 〉(TR)�(d) whenever c R d , for c ∈ C and
d ∈ D. �
Also, since &T(R) ⊆ &(R) for any relation R, any T-bisimulation (or equivalently, &T-simulation)

is also a &-simulation, for any monotonic relator &.

Example 15. The minimal Pω-relator &Pω : Rel → Rel takes a relation R ⊆ A× B to the relation
&Pω(R) ⊆ PωA× PωB defined by

X &Pω(R) Y iff (∀ x ∈ X . ∃ y ∈ Y . x R y and ∀ y ∈ Y . ∃ x ∈ X . x R y)
for X ∈ PωA and Y ∈ PωB. Another Pω-relator &⊇ : Rel → Rel can be defined by

X &⊇(R) Y iff ∀ y ∈ Y . ∃ x ∈ X . x R y.
Both &Pω and &⊇ are monotonic relators. Moreover, &⊇(R) =⊇B ◦&Pω(R)◦ ⊇A, where ⊇A and⊇B are the containment relations on PωA and PωB, respectively. Finally, the transposed relator

&⊆ = (&⊇)∼ is given by

X &⊆(R) Y iff ∀ x ∈ X . ∃ y ∈ Y . x R y.
By Proposition 14,&Pω -simulations are the same asPω-bisimulations. Also, a relation R ⊆ C × D

is a &⊇-simulation between Pω-coalgebras (C , �) and (D, �) if, whenever c R d and d ′ ∈ �(d), there
exists c′ ∈ �(c) such that c′ R d ′.
It is shown in [28] that monotonic relators are in one-to-one correspondence with so-called

monotonic extensions of T.

Corina Cîrstea / Information and Computation 204 (2006) 469–502 477

Definition 16 (Extension). Let T : Set → Set. An extension of T is a functor� : Set → Preord such
that:

(i)V◦�= T;
(ii) if A ⊆ B then u �A v iff u �B v, for any u, v ∈ TA5 .

Any extension of T induces a T-relator &� : Rel → Rel, defined by:

&�(R) =�B ◦&T(R) ◦ �A for R ⊆ A× B.

(Functoriality of &� follows from the functoriality of � and &T.)

Definition 17 (Monotonic extension). An extension � of T is monotonic if the following holds for
any f : A→ C , g : B→ C , u ∈ TA, and v ∈ TB:

(Tf)(u) �C (Tg)(v)⇒ u (&�{ (a, b) ∈ A× B | f(a) = g(b) }) v.

Remark 18. By the functoriality of &�, the converse implication in Definition 17 always holds.

The above definition ensures that monotonic extensions induce monotonic relators, and more-
over, that any monotonic relator & arises from a unique monotonic extension �&, defined by:

�&,A= &(=A) for A ∈ |Set|. (2)

Finally, we note that any monotonic relator & restricts to an endofunctor on Preord (itself de-
noted &). (See [28, Theorem 2.2.4] for a proof.)

Example 19. The functor ⊇ : Set → Preord taking a set A to the containment relation ⊇A on PωA
defines a monotonic extension of Pω. The corresponding monotonic relator is &⊇, as defined in
Example 15.

A notion of weak monotonic relator was defined in [1], based on ideas from [28]. This notion is
similar to that of a monotonic relator, only in [1] a different category of relations, having sets as
objects and relations as arrows, is considered. In this setting, the notion of relator does not depend
on an endofunctor T : Set → Set. Instead, the fact that Set is a sub-category of the above-men-
tioned category of relations can be used to define what it means for a weak monotonic relator to
extend an endofunctor T. A notion of simulation induced by a weak monotonic relator extending
an endofunctor T can then be defined for T-coalgebras. This notion is essentially the same as that of
Definition 13. However, the fact that different categories of relations are used in the two definitions
makes it impossible to directly transfer results between the two approaches.
In [17], functors � : Set → Preord satisfying V◦�= T were taken as primitive, and lax rela-

tion lifting functors Rel�(T) : Rel → Rel, defined similarly to the relators &�, were used to de-
fine notions of simulation. Only the first condition in Definition 16 was required of the functors

5 The assumption that T is standard gives TA ⊆ TB whenever A ⊆ B.

478 Corina Cîrstea / Information and Computation 204 (2006) 469–502

� : Set → Preord. As a result, the induced lax relation lifting functors were not necessarily mono-
tonic relators.However, after restricting attention tomonotonic extensions, the notionof simulation
defined in [17] was the same as that of [28]. Moreover, several properties of &-similarity were proved
in [17], in the presence of this restriction.

Proposition 20 (see [17]).
The following hold for a monotonic relator & : Rel → Rel :

(i) &-similarity on a T-coalgebra (C , �) is a preorder on C;
(ii) given T-coalgebra morphisms f : (A,")→ (B,#) and g : (C , �)→ (D, �), a� c iff f(a)� g(c),

for a ∈ A and c ∈ C;
(iii) &-similarity on the final T-coalgebra is the final &-coalgebra.

Remark 21.By takingf andg in (ii) ofProposition20 tobe theuniquemorphisms !" : (A,")→ (Z , +)
and !� : (C , �)→ (Z , +) into the final T-coalgebra, we obtain that &-similarity between (A,") and
(C , �) is the domain of the cartesian map (!", !�) induced by the &-similarity relation on the final
T-coalgebra. This observation, together with (iii) of Proposition 20, will later allow us to define
logics which characterise &-similarity.

We conclude this section by noting that any &-relator also induces a notion of simulation equiv-
alence, defined as &-similarity in both directions.

Definition 22 (Simulation equivalence). Let & : Rel → Rel be a monotonic T-relator, and let (C , �)
and (D, �) be T-coalgebras. Two states c ∈ C and d ∈ D are &-simulation equivalent (written c ∼& d)
if c�&d and d�&c.

As already noted in [17],&-simulation equivalence is generallyweaker thanT-bisimulation. To see
this, it suffices to consider the Pω-relator &⊇ of Example 15. In this case, &⊇-simulation equivalence
is the standard two-way simulation relation on unlabelled transition systems, which is known to be
weaker than bisimulation (see, e.g., [29]).

3. Monotonic relators revisited

In this section,wefirst give an alternative characterisationofmonotonic relators, and thenuse this
characterisation to define a notion of simulation for probabilistic transition systems. The alternative
characterisation has a more categorical flavour than the original definition (Definition 12), as it re-
places the preservation of relational composition by the preservation of a property of arrows inRel.

Lemma 23.
Let & : Rel → Rel be a monotonic relator. Then, the following hold:

(i) &Gr(f) =�&,C ◦Gr(Tf)
(ii) &(Gr(g)

op
) = Gr(Tg)

op ◦ �&,C .

Proof (Sketch). The statements follow by taking g = 1C and f = 1C , respectively, in Definition 17
(see also Remark 18). �

Corina Cîrstea / Information and Computation 204 (2006) 469–502 479

Proposition 24.
Let T : Set → Set, and let & : Rel → Rel be such that:

(i) U ◦ & = (T × T) ◦ U;
(ii)=TA⊆ &(=A).

Then, & is a monotonic relator if and only if & preserves cartesian maps.

Proof.
Any monotonic relator & is uniquely determined by its induced monotonic extension �& , de-

fined by (2) of Section 2.3. It therefore suffices to prove that, in the presence of (i) and (ii) above, the
condition in the definition of monotonic extensions (Definition 17) is equivalent to the preservation
by & of cartesian maps.
We begin by noting that the previously mentioned condition is equivalent to & preserving carte-

sian maps of the form (f , g) : (R ⊆ A× B)→ (=C ⊆ C × C) (see also Remark 18). Thus, one half
of the previously mentioned equivalence follows immediately. To prove the other half, assume that
& is a monotonic relator, and let (f , g) : (R ⊆ A× B)→ (S ⊆ C × D) be a cartesian map. Thus,
R = Gr(g)

op ◦ S ◦ Gr(f). The fact that (Tf ,Tg) : (&R ⊆ TA× TB)→ (&S ⊆ TC × TD) is itself a
cartesian map, i.e., &R = Gr(Tg)

op ◦ &S ◦ Gr(Tf), now follows from:

&R =
&(Gr(g)

op
) ◦ &S ◦ &(Gr(f)) = (Lemma 23)

Gr(Tg)
op ◦ �&,D ◦&S ◦ �&,C ◦Gr(Tf) = (1)

Gr(Tg)
op ◦ �&,D ◦ �&,D ◦&TS ◦ �&,C ◦ �&,C ◦Gr(Tf) =

Gr(Tg)
op ◦ �&,D ◦&TS ◦ �&,C ◦Gr(Tf) = (1)

Gr(Tg)
op ◦ &S ◦ Gr(Tf).

The first of the above equalities uses the preservation of relational composition by &, whereas
the fourth equality exploits the fact that�&,C and�&,D are preorders. Hence, & preserves cartesian
maps. This concludes our proof. �
We note that the standard approach to proving preservation of cartesian maps involves the

use of reindexing functors, and amounts to proving an isomorphism between &((f , g)∗S) and
(Tf ,Tg)∗(&S) in the fibre over TA× TB, for any (f , g) : A× B→ C × D and any S ⊆ C × D.
As already mentioned in Section 2.1, our definition of Rel results in all reindexing functors be-
ing uniquely defined. In particular, we have(f , g)∗S = Gr(g)

op ◦ S ◦ Gr(f), and (Tf , Tg)∗(&S) =
Gr(Tg)

op ◦ &S ◦ Gr(Tf). The sequence of equalities in the proof of Proposition 24 thus shows that
&((f , g)∗S) = (Tf ,Tg)∗(&S).
Throughout this paper, preservation of cartesian maps by various endofunctors on Rel will be

proved directly, i.e., without reference to the reindexing functors. We believe such proofs to be
shorter and more insightful in the context of this paper.
As a result of Proposition 24, monotonic relators can alternatively be defined as functors satis-

fying (i) and (ii) of Proposition 24, and preserving cartesian maps. We will make extensive use of
this observation in what follows.

480 Corina Cîrstea / Information and Computation 204 (2006) 469–502

We also note that condition (i) of Proposition 24 together with the requirement that & preserves
cartesian maps amount to & defining a fibred functor over T × T, or to (&,T × T) defining a mor-
phism between fibrations (see [15] for a definition). We thus obtain yet another characterisation of
monotonic relators, namely as fibred functors over T × T, additionally satisfying (ii) of Proposition
24. Finally, a fully categorical characterisation of monotonic relators can be given by replacing
condition (ii) of Proposition 24 by the requirement that & restricts to an endofunctor on Preord.
However, for the purpose of this paper, the characterisation provided by Proposition 24 is the most
useful one.

Remark 25. The proof of Proposition 24 also gives:

&(Gr(g)
op
) ◦ &S = Gr(Tg)

op ◦ &S &S ◦ &(Gr(f)) = &S ◦ Gr(Tf)

for any f : A→ C , g : B→ D and S ⊆ C × D.
Since all the relators considered in the following are monotonic, from now on we will simply use

the term (T�)relator to refer to a monotonic (T�)relator.
The remainder of this section is dedicated to defining a monotonic relator, and hence a notion

of simulation, for unlabelled probabilistic transition systems. We have seen in Example 4 that such
systems can be modelled as coalgebras of the endofunctor 1+Dω. However, for the purpose of
defining simulation relations, it will prove more convenient to work with a slightly more gener-
al type of coalgebras. Specifically, we will consider the finite sub-probability distribution functor
Sω : Set → Set, defined by

SωX = {� : X → [0, 1] | supp(�) finite ,
∑
x∈X �(x) � 1 } for X ∈ |Set|

(Sωf)(�)(y) = �[f−1({y})] for f : X → Y ,� ∈ SωX , and y ∈ Y.

The coalgebraic type Sω is a generalisation of the coalgebraic type 1+Dω, in a sensemade precise
below.

Remark 26.Any 1+Dω-coalgebra can be regarded as an Sω-coalgebra. To see this, let - : 1+Dω ⇒
Sω be the natural transformation given by:

-X (�1(∗))(x) = 0 for x ∈ X

-X (�2(�)) = � for � ∈ DωX

with X ∈ |Set|. Then, - induces a functor U- : Coalg(1+Dω)→ Coalg(Sω), which takes a 1+Dω-
coalgebra (C , �) to the Sω-coalgebra (C , -C ◦ �).
The use ofSω-coalgebras inmodelling unlabelled probabilistic transition systems allows a unified

treatment of terminating states (i.e., states for which no transition is possible) and non-terminating
ones.
An Sω-relator can now be defined by relaxing the conditions in the characterisation of 1+Dω-

bisimulation (see Example 7).

Corina Cîrstea / Information and Computation 204 (2006) 469–502 481

Definition 27 (Relator for probabilistic simulation). The Sω-relator &P : Rel → Rel takes a relation
R ⊆ A× B to the relation &PR ⊆ SωA× SωB defined by

� (&PR) / iff �[X] � /[Y] for any X ⊆ A and Y ⊆ B s.t. (�R1)
−1(X) ⊇ (�R2)−1(Y)

with � ∈ SωA and / ∈ SωB.
For &P to be well-defined, we must prove that, if (f , g) : (R ⊆ A× B)→ (S ⊆ C × D) is an ar-

row in Rel, then so is (Sωf ,Sωg) : &PR→ &PS . To see this, let � ∈ SωA, / ∈ SωB be such that
� (&PR) /, and let U ⊆ C , V ⊆ D be such that (�S1)

−1(U) ⊇ (�S2)−1(V). An easy calculation shows
that (�R1)

−1(f−1(U)) ⊇ (�R2)−1(g−1(V)). This, together with � (&PR) / gives �[f−1(U)] � /[g−1(V)],
that is, (Sωf)(�)[U] � (Sωg)(/)[V]. Thus, (Sωf)(�) (&P S) (Sωg)(/).
Proposition 28. &P is a relator.

Proof. The first two requirements in the definition of a relator (see (i) and (ii) of Proposition 24)
are immediately verified. To see that &P preserves cartesian maps, let (f , g) : (R ⊆ A× B)→ (S ⊆
C × D) be a relation-reflectingmap, let� ∈ SωA, / ∈ SωB be such that (Sωf)(�) (&P S) (Sωg)(/), and
letX ⊆ A, Y ⊆ B be such that (�R1)−1(X) ⊇ (�R2)−1(Y). Also, letU = { c ∈ C | c = f(a) implies a ∈ X }
and V = g(Y). Then, X ⊇ f−1(U), g−1(V) ⊇ Y , and (�S1)−1(U) ⊇ (�S2)−1(V). The fact that (Sωf)(�)
(&P S) (Sωg)(/) now gives (Sωf)(�)[U] � (Sωg)(/)[V], and hence�[X] � �[f−1(U)] � /[g−1(V)] �
/[Y]. We have thus proved that � (&PR) /. �
Next, we characterise the restriction of &P to Preord.

Proposition 29. Let R be a preorder on A, and let �, / ∈ SωA. Then:
� (&PR) / iff �[Y] � /[Y] for any Rop

-closed Y ⊆ A, (3)

where Y ⊆ A is called Rop
-closed if y ∈ Y and aRy imply a ∈ Y.

Proof.We begin by noting that, if X , Y ⊆ A, then (�R1)−1(X) ⊇ (�R2)−1(Y) translates to X ⊇ Y , where
Y = { a ∈ A | ∃ y ∈ Y . a R y }. Also, the reflexivity and transitivity ofRop

give Y ⊇ Y and Y Rop
-closed.

First, let Y ⊆ A be an Rop
-closed set. Then, (�R1)

−1(Y) ⊇ (�R2)−1(Y) (as Y ⊇ Y), and hence, by the defi-
nition of &P , �[Y] � /[Y]. Next, let X , Y ⊆ A be such that X ⊇ Y . Then, since Y is R

op
-closed, it

follows by (3) that�[Y] � /[Y]. We also have�[X] � �[Y] (as X ⊇ Y) and /[Y] � /[Y] (as Y ⊇ Y).
Hence, �[X] � /[Y]. �
We now investigate the notion of simulation induced by &P (see Definition 13). For simplicity,

we consider &P -simulation on a single Sω-coalgebra (C , �). In this case, a relation R ⊆ C × C is a
&P -simulation if, whenever c R d andX ⊆ C isR

op
-closed, we have �(c)[X] � �(d)[X]. The condition

that X is R
op
-closed amounts to X being closed under the simulation R, that is, if x ∈ X and y sim-

ulates x via R, then also y ∈ X . The condition �(c)[X] � �(d)[X] requires that a one-step transition
from c is at least as likely to result in a state in X as a one-step transition from d is, whenever X is
closed under simulation.
The restriction of &P to Preord satisfies the hypotheses of Proposition 10. (This will later allow

us to construct a final &P -coalgebra using the final sequence of &P .)

482 Corina Cîrstea / Information and Computation 204 (2006) 469–502

Proposition 30. &P : Preord → Preord preserves monics and is ω-accessible.

Proof (Sketch). The key observation for proving ω-accessibility is that, for �, / ∈ SωA, we have

� (&PR) / iff ��Z(&P (R�Z×Z)) /�Z ,

where Z = supp(�) ∪ supp(/), and ��Z , /�Z ∈ Sω(A ∩ Z). �
Remark 31.A notion of simulation for probabilistic transition systems has also been defined in [9],
namely as a preorder R on the set S of states of a probabilistic transition system, such that s R t
implies 5a(s,X) � 5a(t,X) for any R-closed X ⊆ S (with 5a(s,X) giving the probability of reaching a
state in X via an a-labelled transition from s). It then follows by the previous characterisation of
&P : Preord → Preord that R is a simulation preorder according to [9] (in the unlabelled case) if
and only if R

op
is a &P -simulation preorder.

4. Compositionality of simulations

In this section, we show that various operations on coalgebraic types induce corresponding
operations on relators, thereby allowing the compositional derivation of notions of simulation
for increasingly complex coalgebraic types. As a result, we obtain various notions of simulation
for labelled transition systems, probabilistic transition systems, and probabilistic automata.
We begin by recalling the definition of products and coproducts in Rel. If Ri ⊆ Xi × Yi with

i = 1, 2, then the relations R1×R2 ⊆ (X1 × X2)× (Y1 × Y2) and R1+R2 ⊆ (X1 + X2)× (Y1 + Y2) are
defined by:

(x1, x2) (R1×R2) (y1, y2) iff x1 R1 y1 and x2 R2 y2,

�i(xi) (R1+R2) �j(yj) iff i = j and xi Ri yi

with xi ∈ Xi and yi ∈ Yi, for i = 1, 2. Similarly to products, one can define, for each relation R1 ⊆
X1 × Y1, a relation (R1)A ⊆ (X1)A × (Y1)A by

f (R1)
A g iff f(a) R1 g(a) for all a ∈ A

with f ∈ (X1)A and g ∈ (Y1)A.
The above operations on relations can be used to derive (T1 × T2)-, (T1 + T2)- and (T1)

A-relators
from T1- and T2-relators.

Definition 32 (Operations on relators). Let &1 and &2 be T1- and T2-relators, respectively. Define
&1 ⊕ &2 , &1 ⊗ &2 , (&1)A : Rel → Rel by:

• R ⊆ X× Y � &1⊕&2 �� &1(R)+ &2(R) ⊆ (T1+T2)X× (T1+T2)Y ,

• R ⊆ X× Y � &1⊗&2 �� &1(R)× &2(R) ⊆ (T1×T2)X× (T1×T2)Y ,

Corina Cîrstea / Information and Computation 204 (2006) 469–502 483

• R ⊆ X× Y � (&1)
A

�� &1(R)
A ⊆ (T1X)

A× (T1Y)
A .

We note in passing that similar operations on relations were used in [13] (see also [16]) to induc-
tively define the notion of relation lifting of a polynomial endofunctor.
In addition, relators can be combined using functor composition.

Proposition 33. &1 ◦ &2 , &1 ⊕ &2 , &1 ⊗ &2 , (&1)A are T1 ◦ T2-,T1 + T2-, T1 × T2-, and (T1)
A-relators,

respectively.

Proof (Sketch). Some easy calculations show that all the conditions in the definition of monotonic
relators (Definition 12) hold for &1 ◦ &2 , &1 ⊕ &2 , &1 ⊗ &2, and (&1)A. �
This allows us to derive relators (and hence notions of simulation) for combinations of

coalgebraic types, from relators for the types being combined. In particular, we can derive no-
tions of simulation for T-coalgebras, with the endofunctor T being generated by the following
syntax:

T ::= A | Id |Pω |Sω |T1 ◦ T2 |T1 + T2 |T1 × T2 |TA

(Here, A : Set → Set denotes the constant functor X "→ A, while Id : Set → Set denotes the iden-
tity functor.) For T = A or T = Id, the minimal relators provide obvious choices of relators to be
used. For T = Pω, the relator &⊇ of Example 46, inducing the standard notion of simulation on un-
labelled transition systems, is the obvious choice. Finally, forT = Sω, the relator&P fromDefinition
27 can be used.

Example 34. Recall from Example 3 that (Pω)A-coalgebras are essentially image-finite, A-labelled
transition systems. Now let &⊇ : Rel → Rel be as in Example 15. A relation R ⊆ C × D is a (&⊇)A-
simulation between (Pω)A-coalgebras (C , �) and (D, �) if, whenever c R d and d

a �� d ′ with d ′ ∈ D,
then c

a �� c′ , with c′ ∈ C being such that c′ R d ′. Thus, (&⊇)A-simulation coincides with standard
simulation on A-labelled transition systems.

Two other notions of simulation, namely complete and ready simulation are used in the seman-
tics of sequential processes (see e.g. [29]). Each of these can be derived using a suitable choice of
relator. However, while the notion of ready simulation can be derived compositionally, the notion
of complete simulation can not. This is illustrated below.

Example 35. Let &R⊇ : Rel → Rel be the Pω-relator defined by

X &R⊇(R) Y iff X &⊇(R) Y and (Y = ∅ ⇒ X = ∅)

for X ∈ PωC and Y ∈ PωD. Then, a relation R ⊆ C × D is a (&R⊇)A-simulation between (Pω)A-coal-
gebras (C , �) and (D, �) if, whenever c R d , the following hold for each a ∈ A:

• if d a �� d ′ , then c
a �� c′ for some c′ ∈ C such that c′ R d ′;

• c a �� · implies d
a �� ·

484 Corina Cîrstea / Information and Computation 204 (2006) 469–502

where c a �� · stands for the existence of an a-labelled transition from c. Thus, (&R⊇)A-simulation
between (Pω)A-coalgebras coincides with ready simulation between the associated labelled transi-
tion systems (as defined e.g. in [29]).

Example 36. Let &C⊇ : Rel → Rel be the (Pω)A-relator defined by

f &C⊇(R) g iff f (&⊇)A(R) g and

(⋃
a∈A

g(a) = ∅ ⇒
⋃
a∈A

f(a) = ∅
)

for f ∈ (PωC)A and g ∈ (PωD)A. Then, a relation R ⊆ C × D is a &C⊇-simulation between (Pω)A-
coalgebras (C , �) and (D, �) if, whenever c R d , the following hold:

• for each a ∈ A, if d a �� d ′ , then c
a �� c′ for some c′ ∈ C such that c′ R d ′;

• c �� · implies d �� ·

where c �� · stands for the existence of a transition from c. Thus, &C⊇-simulation between (Pω)A-
coalgebras coincides with complete simulation between the associated labelled transition systems
(as defined e.g. in [29]).

In the case of probabilistic systems, we can also recover familiar notions of simulation, as illus-
trated in the following.

Example 37. Let &P : Rel → Rel be as in Definition 27, and recall that A-labelled, probabilistic
transition systems can be modelled as (Sω)A-coalgebras. Then, a relation R ⊆ C × C is a (&P)A-
simulation on an (Sω)A-coalgebra (C , �) if, whenever c R d , a ∈ A and X ⊆ C is R

op
-closed, we have

�(c)(a)[X] � �(d)(a)[X] (or, using the notation in Remark 31, 5a(c,X) � 5a(d ,X)). Thus, (&P)A-sim-
ulation coincides with standard simulation on A-labelled probabilistic transition systems, as defined
e.g. in [9].

Example 38. The simple probabilistic automata of [27,26] can be modelled as coalgebras of the func-
tor T = (Pω ◦Dω)

A. Here, we consider the slightly more general case of (Pω ◦ Sω)A-coalgebras, and
derive a notion of simulation for such coalgebras by combining the Pω-relator &⊇ and the Sω-rela-
tor &P . Specifically, we consider the (Pω ◦ Sω)A-relator (&⊇ ◦ &P)A. Then, a relation R ⊆ C × D is a
(&⊇ ◦ &P)A-simulation between (Pω ◦ Sω)A-coalgebras (C , �) and (D, �) iff c R d implies

∀ a ∈ A . ∀ / ∈ �(d)(a) . ∃� ∈ �(c)(a) . (�[X] � /[Y] whenever (�R1)
−1(X) ⊇ (�R2)−1(Y))

In Section 6, we will derive a characterising logic for the notion of simulation obtained in Example
38, and will use that logic to compare our notion of simulation with the notion of strong simulation
defined in [27] (see also [18]).

5. Expressive logics for simulation

We now describe an inductive method for defining logics which characterise simulation. Follow-
ing [5,7], we use a notion of language constructor and an associated notion of semantics (w.r.t. an
endofunctor T) to formalise one step in the definition of a logic for T-coalgebras. The syntax and

Corina Cîrstea / Information and Computation 204 (2006) 469–502 485

semantics of the induced logic are then obtained by successive applications of the language con-
structor and of the associated semantics, respectively.We subsequently show that the expressiveness
of the resulting logic w.r.t. a given notion of simulation follows from an expressivity condition in-
volving the semantics of the language constructor, and the monotonic relator inducing that notion
of simulation. Finally, we apply our results to derive Baltag’s logic for coalgebraic simulation, as
well as an expressive logic for simulation on unlabelled probabilistic transition systems.
We fix an endofunctor T : Set → Set and a T-relator & : Rel → Rel, and let � = �& denote

the similarity relation induced by &. We are interested in logics for T-coalgebras which characterise
&-similarity.

Definition 39 (Logic for coalgebras). A logic for T-coalgebras is a pair (L, |=), with L a set (of for-
mulae) and |= = (|=�) a |Coalg(T)|-indexed family of satisfaction relations |=� ⊆ C × L for each
� : C → TC , such that f(c) |=� ϕ iff c |=� ϕ, for any f : (C , �)→ (D, �), c ∈ C and ϕ ∈ L.
Definition 40 (Logic which characterises similarity). Let (L, |=) denote a logic for T-coalgebras.
Given T-coalgebras (C , �) and (D, �), we say that c ∈ C logically simulates d ∈ D (and write c �L
d) if c |=� ϕ whenever d |=� ϕ, for any ϕ ∈ L. The logic (L, |=) characterises &-similarity if, for
any T-coalgebras (C , �) and (D, �), the logical simulation relation �L⊆ C × D coincides with the
&-similarity relation � ⊆ C × D.
It is worth noting that, if one was interested in characterising equivalence relations between the

states of coalgebras (including &-simulation equivalence, or T-bisimulation), a different notion of
characterising logic would be used—one would first define logical equivalence between the states
of coalgebras as logical simulation in both directions, and subsequently require that logical equiv-
alence coincides with the given notion of (simulation) equivalence. Such an approach was used in
[5] to define characterising logics for T-bisimulation. We also note that, under the above definition,
any logic which characterises &-simulation also characterises &-simulation equivalence.
Now assume that T admits a final coalgebra (F , +), and recall from Remark 21 that, if c and d are

as in Definition 40, then c�d iff !�(c)� !�(d). Also, Definition 39 gives c |=� ϕ iff !�(c) |=+ ϕ (and
similarly for d), and hence c �L d iff !�(c) �L !�(d). Thus, in order to define a logic for T-coalgebras
which characterises &-similarity, it suffices to define a set L of formulae together with an interpre-
tation of these formulae over the carrier F of the final T-coalgebra, such that the logical simulation
relation induced by this interpretation coincides with the &-similarity relation on (F , +). Now, by
(iii) of Proposition 20, &-similarity on (F , +) is the final &-coalgebra. Also, by Proposition 10, this
coalgebra can be approximated using the final sequence of &. We can therefore use induction over
the final sequence of & to define the set of formulae L and their interpretation over F .

Proposition 41. The final sequence of & belongs to Preord.

Proof (Sketch). The statement follows by transfinite induction. Proposition 1 is used in the case of
limit ordinals. �
As a result, the final sequence of & coincides with the final sequence of the restriction of & to

Preord. This justifies the following definition.

Definition 42 (Relation sequence). The relation sequence induced by � is the final sequence of & :
Preord → Preord.

486 Corina Cîrstea / Information and Computation 204 (2006) 469–502

We can immediately infer the following:

Proposition 43. The Set-sequence underlying the relation sequence induced by & is the final sequence
of T.

Proof (Sketch). The statement follows from & being a T-relator, together with the observation that
limits in Preord are computed from limits in Set. �
Thus, the relation sequence induced by & can be written (�"), (p

"
: �" → �#)#�", where

�" ⊆ Z" × Z" for each ", and where (Z"), (p"# : Z"→ Z#)#�" is the final sequence of T (see Defini-
tion 8).
Now assume that the relation sequence induced by& stabilises at ". In this case, the final sequence

of T stabilises at, or before ". Moreover, by (iii) of Proposition 20, the "-element of the relation
sequence induced by & gives &-similarity on the final T-coalgebra. In the following, we will use
induction along the final sequence of & to define a language whose formulae, when interpreted over
Z", characterise the relation �". The basic machinery for such inductive definitions is developed
in Section 5.1. The induced logic for coalgebras is defined in Section 5.2, where a characterisability
result for &-simulation is also formulated. Sections 5.3 and 5.4 instantiate this result to derive logics
which characterise specific notions of simulation.

5.1. Language constructors and their semantics

Since our aim is to characterise simulation relations, the languages we are about to define only use
conjunctions and (non-empty) disjunctions as logical connectives – adding negation would make it
impossible to characterise preorder relations which are not equivalence relations. We therefore use
a subset9B ⊆ {tt,∧,∨,

∧
,
∨} to indicate the logical connectives employed by a particular language

(where we write ∧ and ∨ for binary conjunction and disjunction, respectively, and
∧

and
∨

for
their infinitary versions).

Definition 44 (Language constructor, and induced language). A language constructor is an accessible
endofunctor S : Alg(9B)→ Alg(9B). The language L(S) induced by S is the initial algebra of S.

Remark 45. If S is an inclusion-preserving, ω-accessible endofunctor, then the language L(S) is
given by

⋃
n Ln(S), where the 9B-algebras Ln(S) are defined inductively by:

• L0(S) is the initial 9B-algebra,
• Ln+1(S) = S(Ln(S)) for n ∈ ω.

We also note that language constructors which are not ω-accessible will generally give rise to
infinitary languages.

Example 46. Let 9B = {tt,∧}, and let S⊇ : Alg(9B)→ Alg(9B) denote the language constructor
taking a 9B-algebra L to the free 9B-algebra over the set {♦ϕ |ϕ ∈ L }. The language L(S⊇) can
alternatively be generated using the following syntax:

ϕ ::= tt |ϕ ∧ | ♦ϕ.

Corina Cîrstea / Information and Computation 204 (2006) 469–502 487

To define an associated semantics for a language constructor, we introduce the notion of
interpretation. To this end,we note that for a setX , its power setPX canbe endowedwith9B-algebra
structure by interpreting tt, ∨ (or

∨
) and ∧ (or

∧
) as X , union and intersection, respectively.

Definition 47 (Interpretation). An interpretation of a 9B-algebra L over a set X is a 9B-algebra
morphism d : L→ PX . A map between interpretations d : L→ PX and d ′ : L′ → PX ′ is a pair
(l, f)with l : L→ L′ a9B-algebra morphism and f : X ′ → X a function, such that P̂f ◦ d = d ′ ◦ l
(where P̂ : Set → Set denotes the contravariant powerset functor). The category whose objects are
interpretations of9B-algebras, and whose arrows are maps between such interpretations is denoted
IntB.

Remark 48. Any interpretation d : L→ PX induces a logical map s : X → PL, defined by s(x) =
{ϕ ∈ L | x ∈ d(ϕ) } for x ∈ X . With this notation, the condition defining a map between d : L→ PX
and d ′ : L′ → PX ′ becomes s ◦ f = P̂l ◦ s′ (where s : X → PL and s′ : X ′ → PL′ are the logical
maps induced by d and d ′, respectively).

We let L : IntB → Alg(9B) and E : IntB → Set
op
denote the functors taking interpretations d :

L→ PX to L and X , respectively, and maps (l, f) between interpretations d : L→ PX and d ′ :
L′ → PX ′ to l : L→ L′ and f : X ′ → X , respectively. The following result was proved in [5] for
a slightly less general notion of interpretation. The result and its proof generalise to the present
setting.

Proposition 49. IntB is cocomplete, and E preserves colimits.

Colimits in IntB are constructed from limits in Set and colimits in certain comma categories of
IntB. For instance, an initial object in IntB is given by the interpretation d0 : L0 → P1, with L0 an
initial 9B-algebra and d0 the unique 9B-morphism arising from the initiality of L0.
The following result can also be proved in a similar way.

Proposition 50. L preserves colimits.

We now return to defining a semantics for a language constructor. We have seen that a language
constructor S induces a language L(S). Our aim is to interpret this language over T-coalgebras.
The following notion constitutes an intermediary step in this direction.

Definition 51 (Semantics for language constructor). Let T : Set → Set be an endofunctor, and let
S : Alg(9B)→ Alg(9B) be a language constructor. A T-semantics forS is a functorS : IntB → IntB
such that L ◦ S = S ◦ L and E ◦ S = T

op ◦ E:

Alg(9B)
S �� Alg(9B)

IntB

L
��

E
��

S �� IntB

L
��

E
��

Set
op

T
op

�� Set
op

488 Corina Cîrstea / Information and Computation 204 (2006) 469–502

Thus, a T-semantics for S takes an interpretation d : L→ PX to an interpretation d ′ : SL→
PTX , and a map (l, f) of interpretations to (Sl,Tf). In particular, we note that the action of a
T-semantics on maps between interpretations is uniquely determined by the actions of S and T on
arrows in Alg(9B) and Set, respectively.

Example 52 (Pω-semantics forS⊇).LetS⊇ : Alg(9B)→ Alg(9B) be as in Example 46. APω-seman-
tics for S⊇ is given by the functor S⊇ : IntB → IntB taking d : L→ PX to d ′ : S⊇(L)→ P(PωX),
with d ′(♦ϕ) = { Y ∈ PωX | Y ∩ d(ϕ) /= ∅ }. (The requirement that d ′ defines a9B-algebramorphism
uniquely determines the action of d ′ on formulae containing logical connectives.)

Variations of the notions of language constructor and associated semantics (Definitions 44 and
51) have also been considered in [5,7]. There, we were interested in the ability of interpretations
d : L→ PX to characterise elements of X using formulae in L. Here, our aim is to characterise
certain preorders on X .

Definition 53 (Expressiveness of interpretation). Let d : L→ PX be an interpretation. If x, y ∈ X ,
we write y �L x if y ∈ d(ϕ) whenever x ∈ d(ϕ), with ϕ ∈ L. Then, d is called adequate for a preorder
R ⊆ X × X if R ⊆�L, and expressive for R if, in addition, R ⊇�L.

Thus, adequacy of an interpretation d : L→ PX for a preorder R amounts to the logical map
s : X → PL induced by d (see Remark 48) defining a map s : (R ⊆ X × X)→ (⊇ ⊆ PL× PL) in
Preord, whereas expressiveness of d for R amounts to s being cartesian (or order-reflecting).
The following condition involving the T-semantics of a language constructor and a monotonic

T-relator & will later be used to ensure that a sequence of interpretations over the elements of the
final sequence of T are expressive w.r.t. the corresponding relations in the final sequence of &.

Definition54 (Preservationof expressiveness).Let& : Rel → RelbeaT-relator, and letS : Alg(9B)→
Alg(9B) be a language constructor. A T-semantics S for S preserves expressiveness w.r.t. & if
it maps an interpretation d : L→ PX which is expressive for R ⊆ X × X to an interpretation
d ′ : SL→ PTX which is expressive for &R ⊆ TX × TX .

Example 55. ThePω-semantics S⊇ for S⊇ defined in Example 52 preserves expressiveness w.r.t. &⊇.
To see this, let d : L→ PX be expressive for R ⊆ X × X , and let Y ,Z ∈ PωX . It follows easily that
Y (&⊇R) Z implies Y �S⊇L Z . Now assume that Y (&⊇R) Z does not hold. To show that Y)�S⊇L Z ,
we need to define a formula < ∈ S⊇L such that Z ∈ S⊇(d)(<) but Y)∈ S⊇(d)(<). First, the fact that
Y (&⊇R) Z does not hold gives z ∈ Z such that y R z does not hold for any y ∈ Y . The expressiveness
of d for R then gives, for each y ∈ Y , some ϕy ∈ L such that z ∈ d(ϕy) but y)∈ d(ϕy). Then, < can
be taken to be ♦(∧

y∈Y
ϕy). (Since Y ∈ PωX , the conjunction defining < is finite.)

5.2. Induced logics for simulation

We will derive a logic for T-coalgebras from an interpretation d : L→ PF , with F the carrier
of a final T-coalgebra. The choice of d will depend on the particular notion of simulation we aim
to characterise, i.e., on the choice of &. Specifically, d will be defined as the "-element of the initial
sequence of a T-semantics S for a language constructor S, with S and S being chosen so as to yield
expressive interpretations for the relations in the final sequence of &, and with the ordinal " being

Corina Cîrstea / Information and Computation 204 (2006) 469–502 489

chosen so that the final sequence of T stabilises at or before " (and hence Z" is the carrier of a final
T-coalgebra).

Remark 56. For any ordinal ", an interpretation d : L→ PZ" induces a logic (L, |=) for T-coalge-
bras, with c |=� ϕ iff �"(c) ∈ d(ϕ), for any T-coalgebra (C , �), c ∈ C and ϕ ∈ L (where �" : C → Z"
is as in Remark 9). The fact that coalgebra morphisms f : (C , �)→ (D, �) define morphisms of
cones f : (�")→ (�") ensures the correctness of this definition.

The following property of the initial sequence of S will prove useful in what follows.

Proposition 57. Let S : Alg(9B)→ Alg(9B) be a language constructor, and let S : IntB → IntB be a
T-semantics for S. The Alg(9B)- and Set-sequences underlying the initial sequence ofS are the initial
sequence of S and the final sequence of T, respectively.

Proof (Sketch). Immediate from Definition 51 and (the dual of) Definition 8. �
Thus, if (L"), (�"# : L# → L")#�" denotes the initial sequence of S and (Z"), (p"# : Z"→ Z#)#�"

denotes the final sequence of T, then the elements of the initial sequence of S are interpretations
of the form d" : L"→ PZ", while the arrows defining this initial sequence are of the form (�"#, p

"
) :

d# → d", with # � ". For an ordinal ", we write s" : Z"→ PL" for the logical map induced by
d".
The next result concerns the expressiveness of the interpretations d" w.r.t. the relations �" ⊆

Z" × Z" in the relation sequence induced by &.
Theorem 58. Let S : Alg(9B)→ Alg(9B) be a language constructor, and let S : IntB → IntB be a
T-semantics for S. If S preserves expressiveness w.r.t. &, then d" : L"→ PZ" is expressive for �" ⊆
Z" × Z", for any ordinal ".
Proof. The proof is by transfinite induction on ". For " = 0, the expressiveness of d0 : L0 → P1
for �0 = =1 follows immediately. For " = # + 1, the expressiveness of d" for �" follows from the
expressiveness of d# for �# together with the preservation of expressiveness by S. Finally, let " be
a limit ordinal, and assume that d# is expressive for �#, for any # < ".
To show that d" is adequate for�", let x, y ∈ Z" be such that y�"x. Then, for# < ", p"# (y)�#p

"
(x)

(as p"# : (Z",�")→ (Z#,�#) defines a map in Preord), and hence s#(p"# (y)) ⊇ s#(p"# (x)) (using the
adequacy of d# for �#). Now let ϕ ∈ s"(x). Since the cocone (�"#)#<" is colimiting (see Proposition
57), it follows that ϕ is either of the form �"#() with # < " and ∈ L#, or a boolean combination
of formulae of this form (The standard construction of colimits in categories of algebras, namely
as quotients of the free algebras over the colimits in the underlying category, is used here.) We
can therefore use induction on ϕ to prove that ϕ ∈ s"(y). Moreover, only the cases ϕ =∧i ϕi and
ϕ =∨i ϕi need to be considered in the induction step, since binary conjunctions and disjunctions
are already covered by the base case.

1. If ϕ = �"#() with # < " and ∈ L#, then ∈ (P̂�"#)(s"(x))=s#(p"# (x)), and hence ∈ s#(p"# (y))
= (P̂�"#)(s"(y)). (Remark 48 is also used here.) This now gives ϕ = �"#() ∈ s"(y).

2. If ϕ =∧i ϕi ∈ s"(x), then ϕi ∈ s"(x) for each i ∈ I (using the fact that d" : L"→ PZ" preserves
the 9B-structure). Hence, by the induction hypothesis, ϕi ∈ s"(y) for each i ∈ I . This, in turn,
gives ϕ =∧i ϕi ∈ s"(y). The case when ϕ =

∨
i ϕi is treated similarly.

490 Corina Cîrstea / Information and Computation 204 (2006) 469–502

Hence, s"(y) ⊇ s"(x). This concludes the proof of adequacy of d" for �".
To show that d" is expressive for �", let x, y ∈ Z" be such that s"(y) ⊇ s"(x). Then, for # < ",

Remark 48 gives s#(p"# (y)) ⊇ s#(p"# (x)), while the expressiveness of d# for �# gives p
"
(y)�#p

"
(x).

The fact that the cone (p"#)#<" is limiting finally gives y�"x. This concludes our proof. �
The previous result, together with (iii) of Proposition 20 justify the following definition.

Definition 59 (Logic induced byS and &). Let & : Rel → Rel be such that its final sequence stabilises
at ". The logic induced by S and & is the logic induced by the interpretation d" : L"→ PZ", as
defined in Remark 56.

The next result allows us to derive logics which characterise &-similarity from T-semantics which
preserve expressiveness w.r.t. &.

Corollary 60. Let S : Alg(9B)→ Alg(9B),S : IntB → IntB and & : Rel → Rel be as in Theorem 58,
and assume that S preserves expressiveness w.r.t. &. If the final sequence of & stabilises (at "), then
the logic induced by S and & characterises �.

Proof. Let (C , �) and (D, �) be T-coalgebras, and let c ∈ C and d ∈ D. Then:
c�d iff !�(c)� !�(d) iff !�(c)�" !�(d) iff !�(c) �L" !�(d) iff c �L" d

The above equivalences follow from Remark 21, (iii) of Proposition 20, Theorem 58 and Defini-
tion 39, respectively. �
In particular, if & preserves monics and is accessible, then by Proposition 10, the final sequence

of & stabilises, and therefore Corollary 60 can be applied.
We conclude this section with some results concerning the final sequence of a T-relator &, in case

the hypotheses of Theorem 58 are satisfied.

Proposition 61. Let S : Alg(9B)→ Alg(9B),S : IntB → IntB and & : Rel → Rel be as in Theorem
58, and assume that S preserves expressiveness w.r.t. &. If the final sequence of T stabilises at ", and
the initial sequence of S stabilises at, or before, ", then the final sequence of & also stabilises at ".

Proof. By Proposition 57, the Alg(9B)- and Set-sequences underlying the initial sequence of S are
the initial sequence of S and the final sequence of T, respectively. Moreover, the additional con-
straints on T and S together with the definition of arrows in IntB ensure that the initial sequence of
S also stabilises at ".
On the other hand, by Theorem 58,�L" and�L"+1 characterise�" and�"+1, respectively. Hence,

for x, y ∈ Z"+1, the following holds:
x�"+1y iff x �L"+1 y iff p"+1" (x) �L" p

"+1
" (y) iff p"+1" (x)�"p"+1" (y)

with the second equivalence following from the fact that (�"+1" , p"+1") defines an isomorphism in
IntB. As a result, p"+1" : �"+1 → �" is an isomorphism in Rel6 , and hence the final sequence of &
stabilises at ". �

6 Note that, since the final sequence of T stabilises at ", p"+1" is an isomorphism in Set.

Corina Cîrstea / Information and Computation 204 (2006) 469–502 491

Thus, Proposition 61 allows us to make statements about the degree of accessibility of a T-relator
&, by exhibiting a language constructor S, and a T-semantics for S which preserves expressiveness
w.r.t. &. This, in turn, allows us to apply Corollary 60.
Now assume that T is ω-accessible. Then, by Proposition 11, the final sequence of T stabilises at

(or before) ω + ω. Moreover, the maps pω+n+1ω+n with n = 0, 1, . . . are all injective. Combining this
observation with Proposition 61 yields the following result.

Corollary 62. Let T : Set → Set be an ω-accessible endofunctor, let S : Alg(9B)→ Alg(9B),S :
IntB → IntB and & : Rel → Rel be as in Proposition 61, and assume that S is ω-accessible and that S

preserves expressiveness w.r.t. &. Then:

(i)The final sequence of & stabilises at (or before) ω + ω.
(ii)The maps pω+n+1ω+n : �ω+n+1 → �ω+n+1 with n = 0, 1, . . . are order-reflecting.

Proof.The fact thatS isω-accessible results in its initial sequence stabilising atω. The first statement
now follows from Propositions 11 and 61. The second statement follows by an argument similar to
the one in the proof of Proposition 61. �
Thus, under the hypotheses of Corollary 62, the last ω-steps in the final sequence of & are deter-

mined by the corresponding steps in the final sequence of T. The induced logic for coalgebras is also
not influenced by these steps—the first ω-steps completely define the interpretations of formulae
over T-coalgebras.
Proposition 61 (or Corollary 62) can be applied to the Pω-relator &⊇ of Example 15.

Example 63. Let &⊇, S⊇, and S⊇ be as in Examples 15, 46, and 52, respectively. The initial sequence
of S⊇ stabilises at ω, while the final sequence of Pω stabilises at ω + ω; hence, by (the proof of)
Proposition 61, the initial sequence of S⊇ and final sequence of & also stabilise at ω + ω. Moreover,
the last ω-steps in the initial sequence of S⊇ do not affect the semantics of the logic induced by S⊇
and &⊇. As a result, the induced logic coincides with a fragment of standard modal logic. Its syntax
is given by:

ϕ ::= tt | ♦ϕ |ϕ ∧ ,
whereas its (coalgebraic) semantics is defined by

c |=� ♦ϕ iff ∃ d ∈ �(c) . d |= ϕ
(and the usual clauses for tt and ∧).
The next two subsections apply the results of this section in order to derive logics which charac-

terise other specific notions of simulation.

5.3. Baltag’s logic for coalgebraic simulation

Here, we define a language constructor and associated semantics which mirror the construction
of Baltag’s logic for &-simulation [1], and prove that the given semantics preserves expressiveness

492 Corina Cîrstea / Information and Computation 204 (2006) 469–502

w.r.t. the relator&.We thus obtain an alternative definition of the logic in [1], as well as an alternative
(inductive) proof of its expressiveness.
Throughout this section, 9B = {

∧} , T : Set → Set denotes an inclusion-preserving endofunc-
tor, and & : Rel → Rel denotes a T-relator. Also, we identify interpretations d : L→ PX with rela-
tions |= ⊆ X × L subject to the additional constraint that x |=∧? iff x |= ϕ for all ϕ ∈ ?, for any
? ∈ PL – any interpretation d : L→ PX determines such a relation, with x |= ϕ iff x ∈ d(ϕ), and
conversely, any relation |= ⊆ X × L subject to the previous constraint determines an interpretation
d : L→ PX , with d(ϕ) = {x ∈ X | x |= ϕ}.
As mentioned earlier, a different category of relations, and a different, but equivalent notion of

monotonic relator were considered in [1]. Nonetheless, the logics proposed in [1] can also be derived
using the approach in Section 5.2.
The logics in [1] are parameterised by a monotonic relator &. Their syntax only depends on the

endofunctor T, but their semantics depends on the relator &.

Definition 64 (see [1]). The language LT is defined inductively by

ϕ ::=
∧
? |�@ ? ⊆ LT , @ ∈ T?.

The coalgebraic semantics of LT is defined inductively by:

c |=�
∧
? iff c |=� ϕ for all ϕ ∈ ?,

c |=� �@ iff �(c) (&|=)@
for each T-coalgebra (C , �) and each c ∈ C .
Note that, in the above definition, we have identified the span defined by &|= with the relation it

induces on TC × TLT (in the second clause defining the semantics of LT).

Remark 65. The logic defined in [1] also contains infinitary disjunctions (with the standard interpre-
tation), and a modal operator♦ (interpreted via the transposed relator &∼). Since neither infinitary
disjunctions nor the ♦ operator are needed to characterise &-simulation, in Definition 64 we have
only considered a fragment of the logic in [1].

The definition of LT can be captured using the following language constructor and associated
T-semantics.

Definition 66 (ST and S&). The language constructor ST : Alg(9B)→ Alg(9B) takes a 9B-algebra
L to the free9B-algebra over TL. The T-semantics S& : IntB → IntB for ST takes |= ⊆ X × L to the
natural extension of the relation (&|=) ⊆ TX × TL to formulae containing infinitary conjunctions.

For S& to be well-defined, we must prove that

(Tf)(t) (&|=1) < iff t (&|=2) (STl)(<) (4)

for any map of interpretations (l, f) : (|=1 ⊆ X1 × L1)→ (|=2 ⊆ X2 × L2), any t ∈ TX2 and any < ∈
STL1. The following characterisation of the logical map induced by S&(|=) will be used to prove
this.

Corina Cîrstea / Information and Computation 204 (2006) 469–502 493

Lemma 67. Let |= ⊆ X × L be an interpretation with logical map s : X → PL, and let e : TP̂ ⇒ P̂T
be given by eX (U) = { t ∈ TX |U (&*) t } for X ∈ |Set| and U ∈ TPX (where * denotes the converse
of the membership relation). Then:

(i) e is a natural transformation;
(ii)The logical map s′ : TX → PTL induced by (&|=) ⊆ TX × TL is given by eL ◦ Ts.

Proof.We note that, for f : X → Y , * ◦Gr(P̂f) = Gr(f)
op ◦ *. Preservation of relational composi-

tion by & together with Remark 25 then give (&*) ◦Gr(TP̂f) = Gr(Tf)
op ◦ (&*), i.e.,

(TP̂f)(V)(&*) t if and only if V (&*) (Tf)(t), for V ∈ TP̂Y and t ∈ TX . But this is equivalent to
eX ◦ TP̂f = P̂Tf ◦ eY . Hence, e is natural.
We also note that (s, 1L) : (|= ⊆ X × L)→ (* ⊆ PL× L) is a cartesian map in Rel. (This follows

directly from the definition of s.) Preservation of cartesian maps by & then gives t (&|=) < if and
only (Ts)(t) (&*) <, for t ∈ TX and < ∈ TL. That is, < ∈ s′(t) if and only if < ∈ eL((Ts)(t)). Hence,
s′ = eL ◦ Ts. �
Proposition 68. S& is well-defined.

Proof.We use induction on < to prove (4). If < ∈ TL, (4) is equivalent to s′1 ◦ Tf = P̂Tl ◦ s′2, where
s′1 : TX1 → PTL1 and s′2 : TX2 → PTL2 are the logical maps induced by &|=1 and &|=2. By (ii) of
Lemma 67, this is equivalent to eL1 ◦ Ts1 ◦ Tf = P̂Tl ◦ eL2 ◦ Ts2, which, in turn, is a consequence
of (i) of Lemma 67 and of Remark 48. Also, if < =∧?, the fact that (4) holds follows from
the induction hypothesis using the definitions of &|=1 and &|=2 on formulae containing infinitary
conjunctions. �
Proposition 69. S& preserves expressiveness w.r.t. &.

Proof.We begin by showing that, if |= ⊆ X × L is adequate for R ⊆ X × X , then &|= ⊆ TX × TL
is adequate for &R ⊆ TX × TX (and hence so is S&|=). The adequacy of |= for R translates to
|=◦R ⊆ |=. The preservation of inclusions by T and of relational composition by & then give
(&|=) ◦ (&R) ⊆ (&|=). That is, &|= is adequate for &R.
Now assume that |= is expressive for R, i.e., R =�L. Following [1], we define A : X → L by

A(x) = ∧
ϕ∈L,x|=ϕ

ϕ. Then:

y R x iff y �L x iff y |= A(x) iff y (Gr(A)
op◦ |=) x. (5)

The definition of A also gives Gr(A) ⊆ |=, and hence
Gr(TA) ⊆ (&=L) ◦Gr(TA) = &(Gr(A)) ⊆ (&|=). (6)

The first inclusion follows from the definition of a relator (Definition 12), the subsequent equality
follows by Lemma 23, and the final inclusion follows from the preservation of inclusions by T and
&. We then have

&R = (&(Gr(A)
op
)) ◦ (&|=) = Gr(TA)

op ◦ (&|=) ⊇ �TL .

The first equality follows from (5) using the preservation of relational composition by &, while
the second equality follows by Remark 25. To prove the containment relation, let v �TL u. By (6),

494 Corina Cîrstea / Information and Computation 204 (2006) 469–502

u (&|=) (TA)(u), and hence also v (&|=) (TA)(u). This, together with (TA)(u)Gr(TA)
op
u now yields

v (Gr(TA)
op ◦ (&|=)) u. We have thus proved that &R ⊇�TL. Hence, &|= is expressive for &R (and

therefore so is S&|=). �
If the final sequence of & stabilises, then the logic induced by S& and & coincides with the frag-

ment of the logic in [1] considered in Definition 64. Moreover, by applying Corollary 60, we obtain
an alternative proof of the expressiveness w.r.t. &-similarity of this logic.

Theorem 70. The logic induced by S& and & characterises &-simulation.

5.4. A logic for probabilistic simulation

We now define a language constructor and associated semantics for probabilistic transition sys-
tems, and prove that this semantics preserves expressiveness w.r.t.&P (see Definition 27). As a result,
we obtain a logic which characterises simulation on unlabelled probabilistic transition systems.
We let9B = {tt,∧,∨}, and let &P : Rel → Rel be as in Definition 27. A language constructor and

associated Sω-semantics can be defined as follows.
Definition 71 (SP and SP).The language constructorSP : Alg(9B)→ Alg(9B) takes a9B-algebra L
to the free9B-algebra over the set {♦pϕ | p ∈ � ∩ [0, 1] , ϕ ∈ L }. TheSω-semanticsSP : IntB → IntB
for SP takes an interpretation d : L→ PX to the interpretation d ′ : SP (L)→ PSωX defined by

d ′(♦pϕ) = {� ∈ SωX |�[d(ϕ)] � p } for ϕ ∈ L .
Thus, a formula of the form ♦pϕ holds for a finite sub-probability distribution � if a state sat-

isfying ϕ is reached via � with probability at least p . The action of SP on arrows is completely
defined by the actions of SP and Sω on arrows. Moreover, Remark 48 can be used to show that SP
is well-defined.
Now recall from Proposition 30 that the Sω-relator &P preserves monics and is ω-accessible.

Hence, by Proposition 10, its final sequence stabilises at some ". We will use Corollary 62 to show
that " is at most ω + ω. We first note that the endofunctors Sω and SP are ω-accessible. Next, we
show that the remaining hypothesis of Corollary 62 is satisfied.

Proposition 72. SP preserves expressiveness w.r.t. &P .

Proof. Let d : L→ PX be an interpretation, and R ⊆ X × X be a preorder on X . First, assume
that d is adequate for R. We immediately infer that d(ϕ) is R

op
-closed for any ϕ ∈ L. To show that

SP (d) : SP (L)→ PSωX is adequate for &PR ⊆ SωX × SωX , let �, / ∈ SωX be such that � (&PR) /.
The proof of the fact that / ∈ SP (d)(<) implies � ∈ SP (d)(<) for all < ∈ SP (L) (and hence � �L /)
is by induction on <. The non-trivial case is when < is of the form ♦pϕ with ϕ ∈ L. In this case, / ∈
SP (d)(<) translates to /[d(ϕ)] ≥ p . Also, since d(ϕ) is Rop

-closed, it follows that �[d(ϕ)] � /[d(ϕ)].
Hence, �[d(ϕ)] � p , that is, � ∈ SP (d)(<).
Now assume that d is expressive for R. To show that SP (d) is expressive for &PR, we must prove

that �[Y] � /[Y] for any Rop
-closed Y ⊆ X , whenever �, / ∈ SωX are such that � �SP (L) /. We can

assume that Y /= ∅ (otherwise �[Y] = /[Y] = 0 and we are done). We note that, for any R
op
-closed

∅ /= Y ⊆ X , Y = ⋃
y∈Y

⋂
y∈d(ϕ)

d(ϕ): the left-to-right inclusion is immediate, whereas the right-to-left in-

Corina Cîrstea / Information and Computation 204 (2006) 469–502 495

clusion follows from the expressiveness of d for R together with Y being R
op
-closed. Thus, if both Y

and the sets {ϕ |ϕ ∈ L, y ∈ d(ϕ) } with y ∈ Y are finite, the formulae ♦pϕY , with p ∈ � ∩ [0, /[Y]]
and ϕY = ∨

y∈Y
∧

y∈d(ϕ)
ϕ can be used to show that �[Y] � /[Y]. For, / ∈ SP (d)(♦pϕY) yields � ∈

SP (d)(♦pϕY) for any p ∈ � ∩ [0, /[Y]]. That is, �[Y] = �[d(ϕY)] � p for any p ∈ � ∩ [0, /[Y]].
This, in turn, gives �[Y] � /[Y].
However, the previously mentioned sets are not, in general, finite. Nevertheless, it is possible to

define a formula ϕ ∈ L with the property that �[Y] = �[d(ϕ)] and /[Y] = /[d(ϕ)]. Then, the above
reasoning canbe applied to the formulae♦pϕwith p ∈ � ∩ [0, /[Y]]. Todefineϕ, letZ = supp(�) ∪
supp(/), and let ≡ ⊆ L× L denote the equivalence relation on L given by ϕ1 ≡ ϕ2 if and only if
d(ϕ1) ∩ Z = d(ϕ2) ∩ Z . Since Z is finite, there are only finitely many equivalence classes w.r.t.≡. For
y ∈ Y , let?y = {ϕ ∈ L | y ∈ d(ϕ) }, and let?0

y ⊆ ?y consist of a set of representatives for?y . Then,
for z ∈ Z , z ∈ d(ϕ) for all ϕ ∈ ?y if and only z ∈ d(ϕ) for all ϕ ∈ ?0

y . Now let? = { ∧
ϕ∈?0

y

ϕ | y ∈ Y },

and let ?0 ⊆ ? consists of a set of representatives for ?. Then, for z ∈ Z , z ∈ d(<) for some < ∈ ?
if and only if z ∈ d(<) for some < ∈ ?0. One can therefore infer that, for z ∈ Z , z ∈ Y if and only
if z ∈ d(∨

<∈?0
<). This, in turn, gives �[Y] = �[d(∨

<∈?0
<)] and /[Y] = /[d(∨

<∈?0
<)]. Then, � �SP (L) /

together with / ∈ SP (d)(♦p ∨
<∈?0

<) gives � ∈ SP (d)(♦p ∨
<∈?0

<), or equivalently �[Y] � p , for all

p ∈ � ∩ [0, /[Y]]. Hence, �[Y] � /[Y]. We have therefore proved that SP (d) is expressive for &PR.
�
Corollary 62 can now be applied to infer that the final sequence of &P stabilises at ω + ω (or

earlier). We can also apply Corollary 60 to obtain:

Theorem 73. The logic induced by SP and &P characterises &P -simulation.

The syntax of the induced logic can alternatively be defined by

ϕ ::= tt | ♦pϕ |ϕ ∧ |ϕ ∨

while the coalgebraic semantics of the logic is given by:

c |=� ♦pϕ iff �(c)[[[ϕ]]�] � p

with [[ϕ]]� = { c ∈ C | c |=� ϕ } (plus the usual clauses for tt, ∧ and ∨). This logic coincides with
the unlabelled version of the logic considered in [9]. We have therefore obtained an alternative,
inductive proof of the expressiveness w.r.t. similarity of that logic (in the unlabelled case).

6. Compositionality of logics for simulation

In this section, we show that expressive logics for simulation can be derived in a compositional
fashion. Specifically, we show that language constructors and associated semantics for combina-
tions of coalgebraic types can be derived from language constructors and corresponding semantics

496 Corina Cîrstea / Information and Computation 204 (2006) 469–502

for the types being combined, and moreover, that the expressiveness of T-semantics w.r.t. T-rela-
tors is preserved by these constructions. As a result, we are able to derive, in a modular fashion,
expressive logics for the notions of simulation defined in Section 4.
We begin by defining several ways to combine language constructors and their associated se-

mantics. (Variations of these definitions have appeared in [7,5].)

Definition 74 (Operations on language constructors). Given two language constructors S1,S2 :
Alg(9B)→ Alg(9B), define S1 ⊕ S2, S1 ⊗ S2, (S1)

A : Alg(9B)→ Alg(9B) by:

• L � S1⊕S2 �� S1L⊕ S2L ,

• L � S1⊗S2 �� S1L⊗ S2L ,

• L � (S1)
A

�� (S1L)
A,

where, for9B-algebrasL1 andL2, the9B-algebrasL1 ⊕ L2,L1 ⊗ L2, and (L1)A are the free9B-algebras
over the sets { 〈'i〉ϕi |ϕi ∈ Li , i ∈ {1, 2} }, { [�i]ϕi |ϕi ∈ Li , i ∈ {1, 2} } and { [a]ϕ1 |ϕ1 ∈ L1 , a ∈ A }, re-
spectively7 .

Another way to combine two language constructors is to simply compose them (using functor
composition).

Proposition 75. S1 ◦ S2,S1 ⊕ S2,S1 ⊗ S2, (S1)
A are language constructors.

Proof (Sketch). All four operations on language constructors preserve accessibility. �
Our aim is to derive logics for T1 ◦ T2 - , T1 + T2 - , T1 × T2 - and (T1)

A - coalgebras, from lan-
guage constructors S1 and S2 and associated T1- and T2-semantics. This motivates the following
definition.

Definition 76 (Operations on semantics for language constructors).Let T1,T2 : Set → Set, letS1,S2 :
Alg(9B)→ Alg(9B) be language constructors, and let Si be a Ti-semantics for Si, with i = 1, 2. De-
fine S1 ⊕ S2 , S1 ⊗ S2 , (S1)

A : IntB → IntB by:

• d : L→ PX � S1⊕S2 �� S1d ⊕ S2d : (S1 ⊕ S2)L→ P(T1 + T2)X ,

• d : L→ PX � S1⊗S2 �� S1d ⊗ S2d : (S1 ⊗ S2)L→ P(T1 × T2)X ,

• d : L→ PX � (S1)
A

�� (S1d)
A : (S1L)

A→ P((T1X)
A) ,

where, for interpretations di : Li → PXi with i = 1, 2, the interpretations d1 ⊕ d2 : L1 ⊕ L2 →
P(X1 + X2), d1 ⊗ d2 : L1 ⊗ L2 → P(X1 × X2) and (d1)A : (L1)A→ P(X1A) are defined by:

7 Taking free 9B-algebras amounts to closing under the logical operators specified by 9B.

Corina Cîrstea / Information and Computation 204 (2006) 469–502 497

• 〈'i〉ϕi � d1⊕d2 �� { �i(xi) | xi ∈ di(ϕi) } for i = 1, 2,

• [�i]ϕi � d1⊗d2 �� { (x1, x2) | xi ∈ di(ϕi) } for i = 1, 2,

• [a]ϕ1 � (d1)A �� { (xa)a∈A | xa ∈ d1(ϕ1) } for a ∈ A.

(Note that the actions of d1 ⊕ d2, d1 ⊗ d2, and (d1)A on formulae containing logical connectives
is uniquely defined by the requirement that interpretations preserve the 9B-structure.)
Again, we can also combine T-semantics by simply composing them.

Proposition 77. S1 ◦ S2,S1 ⊕ S2,S1 ⊗ S2 and (S1)
A are T1 ◦ T2-, T1 + T2-, T1 × T2-, and (T1)

A-se-
mantics for S1 ◦ S2,S1 ⊕ S2,S1 ⊗ S2 and (S1)

A, respectively.

Proof. Immediate from the definitions. �
We note that the modal operators 〈'i〉, [�i] and [a] (and their associated semantics) are similar

to the modal operators used in [16] in the context of polynomial endofunctors.
The next result shows that the expressivity condition required to derive expressive logics for

simulation (Definition 54) is preserved by the previously defined operations.

Proposition 78. If Si preserves expressiveness w.r.t. &i, for i = 1, 2, then S1 ◦ S2,S1 ⊕ S2,S1 ⊗ S2
and (S1)

A preserve expressiveness w.r.t.&1 ◦ &2,&1 ⊕ &2,&1 ⊗ &2 and (&1)A, respectively.
Proof (Sketch). In the case of S1 ◦ S2, the statement follows immediately from the definition of
preservation of expressiveness w.r.t. a relator. Of the remaining cases, we only consider that of co-
products. (The other two can be treated similarly.) Let d : L→ PX be expressive for R ⊆ X × X .
Hence, Sid : SiL→ PTiX is expressive for &iR ⊆ TiX × TiX . Now let i, j ∈ {1, 2}, ti ∈ TiX and
sj ∈ TjX be such that (�i(ti), �j(sj)))∈ (&1R⊕ &2R). If i /= j, this is witnessed by the formula 〈'j〉tt,
which holds in �j(sj) but not in �i(ti). If i = j, this is witnessed by the formula 〈'j〉ϕj , where ϕj holds
in sj but not in tj . �
It is also possible to define language constructors and associated semantics for constant and

identity functors. In the case of the constant functor X "→ A, the language constructor provides an
atomic formula a for each a ∈ A, whereas the associated A-semantics takes any interpretation to
the interpretation mapping a to {a} for a ∈ A. In the case of the identity functor, both the language
constructor and its associated semantics are identity functors (on Alg(9B) and IntB, respectively).
In both cases, the associated semantics preserves expressiveness w.r.t. the corresponding minimal
relator. (Note that this holds independently of the choice of 9B.) As a result, the compositional
techniques described in this section can be applied to any endofunctor T : Set → Set generated by
the syntax:

T ::= A | Id |Pω |Sω |T1 ◦ T2 |T1 + T2 |T1 × T2 |TA

in order to derive both a notion of simulation for T-coalgebras, and a characterising logic for it.
We therefore obtain notions of simulation and characterising logics for a large class of non-de-
terministic and probabilistic system types. These include image-finite labelled transition systems
(T = (Pω)A), reactive (T = (Sω)A), generative (T = Sω ◦ (A× Id)) and stratified (T = Sω + (A× Id))

498 Corina Cîrstea / Information and Computation 204 (2006) 469–502

models of probabilistic systems [30], Hansson’s alternating probabilistic systems (T = Sω + (Pω)A)
[11], Segala’s simple (T = (Pω ◦ Sω)A) and general (T = Pω ◦ Sω ◦ (A× Id)) probabilistic automata
[27], and several other types of non-deterministic and probabilisticmodels. (See [2] for a comprehen-
sive survey of such models from a coalgebraic perspective.) The remainder of this section describes
some of the logics obtained using our approach.

Example 79. Let 9B = {tt,∧}, and let &⊇ : Rel → Rel, S⊇ : Alg(9B)→ Alg(9B) and S⊇ : IntB →
IntB be as in Examples 15, 46 and 52, respectively. It then follows from Example 55 and Proposi-
tion 78 that (S⊇)A preserves expressiveness w.r.t. (&⊇)A. Also, since the initial sequence of (S⊇)A
stabilises at ω, the logic induced by (S⊇)A and (&⊇)A has syntax L = L((S⊇)A) given by:

L * ϕ ::= tt | [a] |ϕ1 ∧ ϕ2 (∈ L0),

L0 * ::= tt | ♦ϕ | 1 ∧ 2 (ϕ ∈ L),
and coalgebraic semantics defined inductively by:

c |=� ϕ iff �(c) |= ϕ (c ∈ C),
f |= [a] iff f(a) |=0 (f ∈ (PωC)A),
X |=0 ♦ϕ iff ∃ c ∈ X . c |=� ϕ (X ∈ PωC)

with (C , �) a (Pω)A-coalgebra. Note the use of an intermediary 9B-algebra L0 and of two in-
termediary relations |=⊆ (PωC)A × L and |=0⊆ PωC × L0 in defining the syntax and semantics
of the logic. These intermediary steps correspond to the steps used in deriving the underlying lan-
guage constructor and its associated (Pω)A-semantics. We also note that the modal operator [a]
distributes (semantically) over tt and ∧; as a result, the induced logic is equivalent to a fragment of
Hennessy–Milner logic, with [a]tt being semantically equivalent to tt, [a](1 ∧ 2) being semantical-
ly equivalent to [a] ′1 ∧ [a] ′2, and [a]♦ϕ being semantically equivalent to 〈a〉ϕ′, whenever 1, 2,ϕ
are semantically equivalent to ′1,

′
2,ϕ

′, respectively. This logic characterises (&⊇)A-simulation, i.e.,
the standard notion of simulation on labelled transition systems.

The notions of ready and complete simulation between labelled transition systems (see Examples
35 and 36) also admit characterising logics. However, since complete simulation can not be derived
compositionally, nor can its characterising logic.

Example 80.Let9B = {tt,∧}, and let&R⊇ : Rel → Relbe as inExample 35.Also, letSR⊇ : Alg(9B)→
Alg(9B) denote the language constructorwhich takes a9B-algebra L to the free9B-algebra over the
set {B} ∪ {♦ϕ |ϕ ∈ L }. Finally, let SR⊇ : IntB → IntB denote the Pω-semantics for SR⊇ which takes
an interpretation d : L→ PX to the interpretation d ′ : SR⊇L→ P(PωX) given by:

d ′(B) = {∅} d ′(♦ϕ) = { Y ∈ PωX | Y ∩ d(ϕ) /= ∅ }
Then, SR⊇ preserves expressiveness w.r.t. &R⊇. To see this, let d : L→ PX be expressive for R ⊆
X × X , and let Y ,Z ∈ PωX . The fact that Y (&⊇R) Z iff Y �S⊇(L) Z follows from Example 55, to-
getherwith theobservation that (Z = ∅ ⇒ Y = ∅) is equivalent to (B ∈ s′(Z)⇒ B ∈ s′(Y)) (where

Corina Cîrstea / Information and Computation 204 (2006) 469–502 499

s′ : PωX → P(SR⊇L) is the logical map induced by d ′ : SR⊇L→ P(PωX)). Hence, by Proposition 78,
(SR⊇)A preserves expressiveness w.r.t. (&R⊇)A. This, in turn, yields a logic which characterises ready
simulation. The syntax of this logic extends L((S⊇)A) with formulae of the form [a]Bϕ, which hold
in a state c of a (Pω)A-coalgebra (C , �) precisely when �(c)(a) = ∅. The logic thus obtained differs
from the logic typically used to characterise ready simulation equivalence (see, e.g., [29]), where
formulae of the form B, with B ⊆ A, are used to formalise the ability of states in an A-labelled
transition system to perform exactly the actions in B.

Example 81.Let9B = {tt,∧}, and let&C⊇ : Rel → Relbe as inExample 36.Also, letSC⊇ : Alg(9B)→
Alg(9B) denote the language constructor which takes a 9B-algebra L to the free 9B-algebra over
the set {B} ∪ { 〈a〉ϕ | a ∈ A , ϕ ∈ L } (with A some fixed set of labels). Finally, letSC⊇ : IntB → IntB de-
note the (Pω)A-semantics for SC⊇ which takes an interpretation d : L→ (PX)A to the interpretation
d ′ : SC⊇L→ P((PωX)A) given by

d ′(B) = {f : A→ PωX | f(a) = ∅ for all a ∈ A},
d ′(〈a〉ϕ) = { f : A→ PωX | f(a) ∩ d(ϕ) /= ∅ }.

It is easy to show that SC⊇ preserves expressiveness w.r.t. &C⊇. The logic induced by SC⊇ and &C⊇
characterises complete simulation on labelled transition systems.

We now turn to coalgebraic types which involve probabilistic features. Specifically, we consid-
er labelled probabilistic transition systems (T = (Sω)A) and simple probabilistic automata (T =
(Pω ◦ Sω)A).
Example 82. Let 9B = {tt,∧,∨}, and let SP : IntB → IntB be as in Definition 71. It then follows by
Propositions 72 and 78 that (SP)A preserves expressiveness w.r.t. (&P)A. The logic induced by (SP)A

and (&P)A has syntax L = L((SP)A) given by

L * ϕ ::= tt | [a] |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 (∈ L0),

L0 * ::= tt | ♦pϕ | 1 ∧ 2 | 1 ∨ 2 (ϕ ∈ L),
and coalgebraic semantics defined inductively by

c |=� ϕ iff �(c) |= ϕ (c ∈ C),
f |= [a] iff f(a) |=0 (f ∈ (SωC)A),
� |=0 ♦pϕ iff �[[[ϕ]]�] � p (� ∈ SωC)

with (C , �) an (Sω)A-coalgebra. It then follows by Corollary 60 that this logic characterises prob-
abilistic simulation. Moreover, this logic is equivalent to the logic used in [9], with [a]♦pϕ being
semantically equivalent to 〈a〉pϕ′, whenever ϕ is semantically equivalent to ϕ′.
Example 83. A logic which characterises the notion of simulation obtained in Example 38 for sim-
ple probabilistic automata can be derived by combining S⊇ with SP , and S⊇ with SP . The logic
induced by (S⊇ ◦ SP)

A and (&⊇ ◦ &P)A has syntax L = L((S⊇ ◦ SP)A) given by:

L * ϕ ::= tt | [a] |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 (∈ L0),

500 Corina Cîrstea / Information and Computation 204 (2006) 469–502

L0 * ::= tt | ♦C | 1 ∧ 2 | 1 ∨ 2 (C ∈ L1),

L1 * C ::= tt | ♦pϕ | C1 ∧ C2 | C1 ∨ C2 (ϕ ∈ L),

and coalgebraic semantics defined similarly to previous examples. This logic captures the notion
of simulation induced by (&⊇ ◦ &P)A (see Example 38).
We conclude this section by comparing the notion of simulation derived in Example 38 with

two existing notions of simulation for simple probabilistic automata, namely strong simulation and
strong probabilistic simulation, as defined in [27] (see also [18]).
Strong simulation [27] is a generalisation of the notion of simulation for probabilistic transition

systems, and can be characterised using a multi-sorted logic similar to the one obtained here (with
non-deterministic formulae being used to formalise properties of states of a probabilistic automaton,
and with probabilistic formulae being used to formalise properties of probability distributions over
these states) [18]. Moreover, it follows easily that the logic obtained here is equivalent to the one in
[18] (with formulae of the form [a]♦C in our logic corresponding to non-deterministic formulae of
the form 〈a〉C′ in [18]). This equivalence between the two logics, together with the fact these logics
characterise (&⊇ ◦ &P)A-simulation and strong simulation, respectively, results in (&⊇ ◦ &P)A-sim-
ulation being the same as strong simulation.
The definition of strong probabilistic simulation [27] uses combined transitions to weaken the

requirements in the definition of strong simulation. A combined transition s
a ��

C� involves a

convex combination � of a set {�i| s a �� �i } of probability distributions, that is, � =∑i Di�i,
with

∑
i Di = 1. Then, the definition of strong probabilistic simulation requires that any transition

s
a �� � in one probabilistic automaton is matched by a combined transition t

a ��
C / in the other

automaton (subject to some additional constraints on� and /). Strong probabilistic simulation can
also be defined in our setting, as shown in the following example.

Example 84. Let &PA : Rel → Rel be the Pω ◦ Sω-relator defined by

S &PA(R) T iff ∀ / ∈ S . ∃ {�i | i ∈ I} ⊆ T . ∃ {Di | i ∈ I} ⊆ [0, 1] . ∑i Di = 1
and

∑
i Di�i[X] � /[Y] whenever (�R1)

−1[X] ⊇ (�R2)−1[Y]

for R ⊆ X × Y , S ∈ PωSωX and T ∈ PωSωY . Then, (&PA)A-simulation coincides with strong proba-
bilistic simulation. Again, this is proved by exhibiting a logic which characterises (&PA)A-simulation,
and then showing that this logic is equivalent to the logic used in [18] to characterise strong probabi-
listic simulation. The sought logic has the same syntax as the logic in Example 83, but its semantics
accounts for the use of combined transitions in defining strong probabilistic simulation. Specifically,
the clause:

M |=0 ♦C iff ∃� ∈ M.� |=1 C

is replaced by

M |=0 ♦C iff ∃ {�i | i ∈ I} ⊆ M . ∃ {Di | i ∈ I} ⊆ [0, 1] .∑
i Di = 1 and

∑
i Di�i[X] |=1 C

Corina Cîrstea / Information and Computation 204 (2006) 469–502 501

whereM ∈ SωC and (C , �) is aPω ◦ Sω-coalgebra. The expressiveness of this logic w.r.t. (&PA)A-sim-
ulation is proved by first showing that thePω ◦ Sω-semantics forS⊇ ◦ SP described above preserves
expressiveness w.r.t.&PA, and subsequently using themodular techniques described at the beginning
of this section to move to the labelled case.

7. Summary

We have presented amodular approach to defining notions of simulation, and logics which char-
acterise them, by modelling systems as coalgebras of endofunctors. Our approach was based on
the coalgebraic approach to defining notions of simulation [28,1,17], and on an inductive technique
for defining logics for coalgebras [5]. We have shown that the expressiveness w.r.t. simulation of an
inductively defined logic for coalgebras can be inferred from an expressivity condition involving
one step in the definition of the logic, and the relator inducing that notion of simulation. We have
also proposed modular techniques for deriving notions of simulation and associated characterising
logics for increasingly complex coalgebraic types.
We have applied these results to derive Baltag’s logic for coalgebraic simulation, and to obtain an

alternative proof of the expressiveness of this logic w.r.t. simulation. We have also derived notions
of simulation and associated characterising logics for several kinds of non-deterministic and prob-
abilistic systems, including (probabilistic) transition systems and probabilistic automata. We have,
as a result, obtained both coalgebraic and logical characterisations of several existing notions of
simulation, including standard, complete and ready simulation on labelled transition systems, sim-
ulation on probabilistic transition systems, and strong (probabilistic) simulation on probabilistic
automata.
Our approach applies to a large class of state-based systems, the only requirement on these

systems being that they can be modelled as coalgebras. In particular, the techniques described in
Sections 4 and 6 can be applied to derive notions of simulation and characterising logics for all
coalgebraic types identified in [2] as relevant to the modelling of probabilistic systems. Only two of
these types, namely probabilistic transition systems and simple probabilistic automata, have been
considered here. It would also be interesting to investigate the notions of simulation and associated
logics that are obtained by applying our approach to the alternating probabilistic systems of [11],
or the general probabilistic automata of [27].

References

[1] A. Baltag, A logic for coalgebraic simulation, in: H. Reichel (Ed.), Coalgebraic Methods in Computer Science,
Electronic Notes in Theoretical Computer Science, vol. 33, Elsevier, 2000.

[2] F. Bartels, A. Sokolova, E. de Vink, A hierarchy of probabilistic system types, in: H.P. Gumm (Ed.), Coalgebraic
Methods in Computer Science, Electronic Notes in Theoretical Computer Science, vol. 82.1, Elsevier, 2003.

[3] F. Borceux, Handbook of Categorical Algebra, vol. II, Cambridge University Press, Cambridge, 1994.
[4] C. Cîrstea, On expressivity and compositionality in logics for coalgebras, in: H.P. Gumm (Ed.), CoalgebraicMethods

in Computer Science, Electronic Notes in Theoretical Computer Science, vol. 82.1, Elsevier, 2003.
[5] C. Cîrstea, A compositional approach to defining logics for coalgebras, Theor. Comput. Sci. 327 (2004) 45–69.
[6] C. Cîrstea, On logics for coalgebraic simulation, in: J. Adámek, S. Milius (Eds.), Coalgebraic Methods in Computer

Science, Electronic Notes in Theoretical Computer Science, vol. 106, Elsevier, 2004.

502 Corina Cîrstea / Information and Computation 204 (2006) 469–502

[7] C. Cîrstea, D. Pattinson, Modular construction of modal logics, in: Proceedings of CONCUR 2004, Lecture Notes
in Computer Science, vol. 3170, Springer, 2004, pp. 258–275.

[8] E.P. de Vink, J.J.M.M. Rutten, Bisimulation for probabilistic transition systems: a coalgebraic approach, Theor.
Comput. Sci. 221 (1999) 271–293.

[9] J. Desharnais, Logical characterisation of simulation for Markov chains, in: Proceedings of PROBMIV’99, Univer-
sity of Birmingham, 1999, pp. 33–48.

[10] E.A. Emerson, E.M. Clarke, Using branching time temporal logic to synthesize synchronization skeletons, Sci. Com-
put. Programm. 2 (3) (1982) 241–266.

[11] H. Hansson, Time and probability in formal design of distributed systems, Real-Time Safety Critical Systems, Else-
vier, 1994.

[12] H. Hansson, B. Jonsson, A logic for reasoning about time and reliability, Formal Aspects Comput. 6 (5) (1994)
512–535.

[13] C. Hermida, B. Jacobs, Structural induction and coinduction in a fibrational setting, Informat. Comput. 145 (2) (1998)
107–152.

[14] W.H. Hesselink, A. Thijs, Fixpoint semantics and simulation, Theor. Comput. Sci. 238 (2000) 275–311.
[15] B. Jacobs, Categorical Logic and Type Theory. Number 141 in Studies in Logic and the Foundations ofMathematics,

North Holland, Amsterdam, 1999.
[16] B. Jacobs, Many-sorted coalgebraic modal logic: a model-theoretic study, Theor. Informat. Appl. 35 (2001) 31–59.
[17] B. Jacobs, J. Hughes, Simulations in coalgebra, in: H.P. Gumm (Ed.), Coalgebraic Methods in Computer Science,

Electronic Notes in Theoretical Computer Science, vol. 82.1, Elsevier, 2003.
[18] B. Jonsson, K.G. Larsen, W. Yi, Probabilistic extensions of process algebras, in: J.A. Bergstra, A. Ponse, S.A. Smolka

(Eds.), Handbook of Process Algebra, Elsevier, 2001, pp. 685–710 (chapter 11).
[19] D. Kozen, Results on the propositional mu-calculus, Theor. Comput. Sci. 27 (1983) 333–354.
[20] K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Informat. Comput. 94 (1991) 1–28.
[21] R. Milner, Communication and Concurrency, International series in computer science, Prentice Hall, Englewood

Cliffs, NJ, 1989.
[22] L.S. Moss, Coalgebraic logic, Ann. Pure Appl. Logic 96 (1999) 277–317.
[23] D. Park, Concurrency and automata on infinite sequences, in: Proceedings of 5th GI-Conference on Theoretical

Computer Science, Lecture Notes in Computer Science, vol. 104, 1981, pp. 167–183.
[24] A. Pnueli, A temporal logic of concurrent programs, Theor. Comput. Sci. 13 (1) (1981) 45–60.
[25] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theor. Comput. Sci. 249 (1) (2000) 3–80.
[26] R. Segala, Modelling and Verification of Randomized Distributed Real-Time Systems, PhD thesis, Massachusetts

Institute of Technology, 1995.
[27] R. Segala,N. Lynch, Probabilistic simulations for probabilistic processes, in: B. Jonsson, J. Parrow (Eds.), Proceedings

of CONCUR 94, Lecture Notes in Computer Science, vol. 836, Springer, 1994, pp. 481–496.
[28] A. Thijs, Simulation and Fixpoint Semantics, PhD thesis, Rijksuniversiteit Groningen, 1996.
[29] R.J. van Glabbeek, The linear time—branching time spectrum I; the semantics of concrete, sequential processes, in:

J.A. Bergstra, A. Ponse, S.A. Smolka (Eds.), Handbook of Process Algebra, Elsevier, 2001, pp. 3–99 (chapter 1).
[30] R.J. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative and stratified models of probabilistic processes,

Informat. Comput. 121 (1) (1995) 59–80.
[31] J. Worrell, Terminal sequences for accessible endofunctors, in: B. Jacobs, J. Rutten (Eds.), Coalgebraic Methods in

Computer Science, Electronic Notes in Theoretical Computer Science, vol. 19, Elsevier, 1999.

