A Nonlinear Volterra Equation Arising in the Theory of Superfluidity*

N. Levinson
Department of Mathematics, Massachusetts Institute of Technology Cambridge, Massachusetts

1. In connection with his recently developed theory of superfluidity C. C. Lin [1] has formulated a boundary value problem which in certain situations becomes the following:

$$
\begin{gather*}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad x>0, \quad t>0, \tag{1.1}\\
u(x, 0)=0 \tag{1.2}\\
\frac{\partial u}{\partial x}(0, t)=k[u(0, t)-c \sin t]^{3}, \quad t>0
\end{gather*}
$$

where $k>0$. This problem is somewhat more complicated than one arising in connection with the heat transfer between solids and gases under nonlinear boundary conditions by Mann and Wolf [2] but like that problem can be replaced by a nonlinear Volterra type integral equation.

Here the existence theory will be considered for (1.1) and (1.2) subject to

$$
\begin{equation*}
\frac{\partial u}{\partial x}(0, t)=\Phi[u(0, t)-f(t)], \quad t>0 \tag{1.3}
\end{equation*}
$$

where Φ and $f(t)$ are assumed to be continuous. Moreover $\Phi(y)$ is monotone increasing and $\Phi(0)=0$. The case where $f(t)$ is periodic will be discussed and it will be shown that in that case there exists a continuous periodic function $\phi(t)$ such that

$$
\lim _{t \rightarrow \infty}[u(0, t)-\phi(t)]=0
$$

[^0]If the problem (1.1), (1.2) and (1.3) has a solution $u(x, t)$ which is continuous for $x \geqslant 0, t \geqslant 0$ and if $\partial u / \partial x(x, t)$ is continuous for $t>0$ and bounded as $t \rightarrow+0$ then it can be readily verified that with

$$
\begin{gather*}
\psi(t)=\frac{\partial u}{\partial x}(0, t) \tag{1.4}\\
u(x, t)=-\frac{1}{\sqrt{\pi}} \int_{0}^{t} \frac{\psi(\eta)}{\sqrt{t-\eta}} \exp \left(\frac{-x^{2}}{4(t-\eta)}\right) d \eta \tag{1.5}
\end{gather*}
$$

is a solution of (1.1), (1.2) and (1.4).
From (1.5) follows

$$
u(0, t)=-\frac{1}{\sqrt{\pi}} \int_{0}^{t} \frac{\psi(\eta)}{\sqrt{t-\eta}} d \eta
$$

Combining this with (1.3) and (1.4)

$$
\begin{equation*}
u(0, t)=-\frac{1}{\sqrt{\pi}} \int_{0}^{t} \frac{\Phi[u(0, \eta)-f(\eta)]}{\sqrt{t-\eta}} d \eta \tag{1.6}
\end{equation*}
$$

It is with (1.6) that we shall be concerned here. Once it is shown to have a solution $u(0, t)$, then $\partial u / \partial x(0, t)$ is determined by (1.3) which in turn determines $\psi(t)$ in (1.4) and $u(x, t)$ in (1.5).

The integral equation (1.6) is a special case of that treated by Padmavally in [3] and Theorem 1.1 which follows is more restricted than the results of [3]. However the lemmas used in proving it are needed for Thcorcms 1.2 and 1.3 in any case.

If in (1.6) we define

$$
\begin{equation*}
F(t)=u(0, t)-f(t) \tag{1.7}
\end{equation*}
$$

the (1.6) becomes

$$
\begin{equation*}
F(t)+f(t)=-\pi^{-1 / 2} \int_{0}^{t} \Phi(F(\eta))(t-\eta)^{-1 / 2} d \eta \tag{1.8}
\end{equation*}
$$

A function $f(t)$ is said to satisfy a Lipschitz condition of order $\alpha>0$ at t if there exists a constant K such that

$$
\begin{equation*}
|f(t+h)-f(t)| \leqslant K|h|^{\alpha} \tag{1.9}
\end{equation*}
$$

for small $|h|$.

Theorem 1.1. Let $f(t)$ be continuous for $0 \leqslant t<\infty$ and on any finite interval let j satisfy a uniform Lipschitz condition of order $\beta>0$. Let $\Phi(y)$ be monotone increasing, $\Phi(0)=0$, and for any $y_{0}>0$ let there exist a constant $K\left(y_{0}\right)$ such that

$$
\begin{equation*}
\left|\Phi\left(y_{2}\right)-\boldsymbol{\Phi}\left(y_{1}\right)\right| \leqslant K\left(y_{0}\right)\left|y_{2}-y_{1}\right| \tag{1.10}
\end{equation*}
$$

for $\left|y_{1}\right|$ and $\left|y_{2}\right| \leqslant y_{0}$. Then (1.8) possesses a unique continuous solution $F(t)$ an $(0, \infty)$.

Theorem 1.2. In addition to the hypothesis of Theorem 1.1 the further assumptions are made that $f(t)$ has period ω and that with $\max |f(t)|=M$, there is a positive monotone increasing function $k(u)$ for $u>0$ such that

$$
\begin{equation*}
\Phi\left(y_{2}\right)-\Phi\left(y_{1}\right) \geqslant k\left(y_{2}-y_{1}\right) \tag{1.11}
\end{equation*}
$$

for $y_{2}-y_{1}>0$ and $\left|y_{1}\right|$ and $\left|y_{2}\right| \leqslant 2 M$. Then there is a continuous periodic function $\phi(t)$ of period ω and the solution $F(t)$ of (1.8) satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty}[F(t)+f(t)-\phi(t)]=0 \tag{1.12}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
|F(t)+f(t)| \leqslant \max |f(t)| . \tag{1.13}
\end{equation*}
$$

Note that in the earlier formulation $u(0, t)=F(t)+f(t)$ and hence (1.12) and (1.13) imply

$$
\lim _{t \rightarrow \infty}[u(0, t)-\phi(t)]=0
$$

and

$$
|u(0, t)| \leqslant \max |f(t)|
$$

Theorem 1.3. The periodic function $\phi(t)$ is a solution of

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{\infty}[\phi(t)-\phi(t-s)] s^{-3 / 2} d s=-\pi^{1 / 2} \Phi[\phi(t)-f(t)] \tag{1.14}
\end{equation*}
$$

and $\phi(t)$ is uniformly Lipschitz of order exceeding 1/2. The integral equation (1.14) has no other continuous periodic solution than $\phi(t)$. The avera.;e of $\Phi(\phi(t)-f(t))$ is zero.
2. It will be convenient to formulate several lemmas.

Lemma 2.1. If $p(s)$ is piecereise continuous for $0<s<c$ and if $|p(s)| \leqslant m$ then

$$
\begin{equation*}
q(t)=\int_{0}^{t} p(s)(t-s)^{-1 / 2} d s \tag{2.1}
\end{equation*}
$$

is continuous on $0 \leqslant t \leqslant c$ and indeed

$$
\left|q\left(t_{2}\right)-q\left(t_{1}\right)\right| \leqslant 4 m\left|t_{2}-t_{1}\right|^{1 / 2}
$$

for t_{1}, t_{2} on $[0, c]$.
Proof. Let $h>0$. The proof of this well known result follows from

$$
\begin{aligned}
|q(t+h)-q(t)| & \leqslant \int_{0}^{t}|p(s)|\left[(t-s)^{-1 / 2}-(t+h-s)^{-1 / 2}\right] d s \\
& +\int_{t}^{t+h}|p(s)|(t+h-s)^{-1 / 2} d s \\
& \leqslant 2 m\left[t^{1 / 2}-(t+h)^{1 / 2}+h^{1 / 2}\right]+2 m h^{1 / 2} \\
& \leqslant 4 m h^{1 / 2}
\end{aligned}
$$

Lemma 2.2. Let $p(s)$ satisfy Lemma 2.1 and for some $\alpha, 0<\alpha<1$, let

$$
\left|p\left(s_{2}\right)-p\left(s_{1}\right)\right| \leqslant K\left|s_{2}-s_{1}\right|^{\alpha}
$$

on $0<s_{1}, s_{2}<c$. Then for $0<t<c$ and $h>0$

$$
\begin{equation*}
|q(t)-q(t-h)| \leqslant 4(m+K) h^{(1+\alpha) / 2} \tag{2,2}
\end{equation*}
$$

where $h<\min \left(1,(1 / 3 t)^{1 /(1-\alpha)}\right)$.
Proof. Let $a=2 h^{1-\alpha}$. Clearly

$$
\begin{aligned}
|q(t)-q(t-h)| & \leqslant \int_{0}^{t-a-h}|p(s)|\left[(t-h-s)^{-1 / 2}-(t-s)^{-1 / 2}\right] d s \\
& +\int_{t-a-h}^{t-a}|p(s)|(t-s)^{-1 / 2} d s \\
& +\int_{0}^{a}|p(t-h-\sigma)-p(t-\sigma)| \sigma^{-1 / 2} d \sigma \\
& \leqslant 2 m h a^{-1 / 2}+2 K h^{\alpha} a^{1 / 2} \\
& \leqslant 4(m+K) h^{(1+\alpha) / 2} .
\end{aligned}
$$

Lemma 2.3. Let Φ satisfy (1.10). For some $c>0$ let $\gamma(t)$ be continuous on $0 \leqslant t \leqslant c$. Then there exists $b>0$ such that the integral equation

$$
\begin{equation*}
g(t)=\gamma(t)-\pi^{-1 / 2} \int_{0}^{t} \Phi(g(s))(t-s)^{-1 / 2} d s \tag{2.3}
\end{equation*}
$$

has a unique continuous solution on $0 \leqslant t \leqslant b$.
Proof. Let $\max |\gamma(t)|$ on $[0, c]$ be m. Let $y_{0}=2 m$ and let $K\left(y_{0}\right)=K_{0}$. Choose b so that $b<c$ and $2 K_{0}(b / \pi)^{1 / 2}<\frac{1}{2}$.

Then it follows by a standard successive approximation procedure, starting with $g_{0}=0$, that (2.3) has a continuous solution $g(t)$. Uniqueness on $[0, b]$ also follows from (1.10).

Lemma 2.4. Let p and q be continuous for $0 \leqslant t<c$ and for each t, $0<t<c$, let p satisfy a Lipschitz condition of order exceeding zero and for each t for some $K_{1}, \delta>0$ and sufficiently small $h>0$ let

$$
\begin{equation*}
|q(t)-q(t-h)| \leqslant K_{1} h^{1 / 2+\delta} \tag{2.4}
\end{equation*}
$$

If (2.1) holds for $0 \leqslant t<c$ then

$$
t^{-1 / 2} q(t)+\frac{1}{2} \int_{0}^{t}[q(t)-q(\sigma)](t-\sigma)^{-3 / 2} d s=\pi p(t)
$$

for $0<t<c$.
Proof. The usual analytic continuation procedure can be used. Let $z=x+i y$. For $\operatorname{Re} z>0$ it follows from (2.1) for $t<c$

$$
\int_{0}^{t} q(\sigma)(t-\sigma)^{z-1} d \sigma=\int_{0}^{t} p(s) d s \int_{0}^{t}(t-\sigma)^{z-1}(\sigma-s)^{-1 / 2} d \sigma
$$

or multiplying by z

$$
z \int_{0}^{t} q(\sigma)(t-\sigma)^{z-1} d \sigma=\frac{\Gamma(z+1) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(z+\frac{3}{2}\right)}\left(z+\frac{1}{2}\right) \int_{0}^{t} p(s)(t-s)^{z-1 / 2} d s
$$

This can be written as

$$
\begin{aligned}
q(t) t^{z} & +z \int_{0}^{t}[q(\sigma)-q(t)](t-\sigma)^{z-1} d \sigma \\
& =\frac{\Gamma(z+1) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(z+\frac{3}{2}\right)}\left(p(t) t^{z+1 / 2}+\left(z+\frac{1}{2}\right) \int_{0}^{t}[p(s)-p(t)](t-s)^{z-1 / 2} d s\right)
\end{aligned}
$$

In view of (2.4) and the Lipschitz condition on p, the integrals above converge uniformly with respect to z for $\operatorname{Re} z \geqslant-\frac{1}{2}$ and hence both sides are analytic for $\operatorname{Re} z \geqslant-\frac{1}{2}$. By analytic continuation then the equation must be valid for $\operatorname{Re} z \geqslant-\frac{1}{2}$ and in particular for $z=-\frac{1}{2}$ which completes the proof.
3. Here proofs will be given for Theorems 1.1, 1.2 and 1.3.

Proof of Theorem 1.1. Suppose (1.8) has a continuous solution for $0 \leqslant t<a<\infty$ but not on any larger interval $0 \leqslant t<a+\delta$ where $\delta>0$. By Lemma 2.3 it is clear that $0<a$. Hence either $a<\infty$ or else a continuous solution exists for $0 \leqslant t<\infty$. Thus to prove the theorem it is only necessary to show that $a<\infty$ is impossible.

Let $\max |f(t)|$ on $[0, a]$ be M_{1}. Let $H(t)=F(t)+f(t)$. Then it will be shown that $|H(t)| \leqslant M_{1}$ for $0 \leqslant t<a$. Suppose this is false. Then there exists $t_{1}<a$ such that $\left|H\left(t_{1}\right)\right|>M_{1}$. Let $\max |H(t)|$ on $\left[0, t_{1}\right]$ be M_{0} and let it be assumed at $t_{0} \leqslant t_{1}$. Let $t_{2}=\left(t_{1}+a\right) / 2$ and let $\max |H(t)|$ on $\left[0, t_{2}\right]$ be M_{2}. Clearly $t_{0}<t_{2}$.

It is convenient to write $(1,8)$ as

$$
\begin{equation*}
H(t)=-\pi^{-1 / 2} \int_{0}^{t} \Phi(H(s)-f(s))(t-s)^{-1 / 2} d s \tag{3.1}
\end{equation*}
$$

Since $|H-f| \leqslant M_{1}+M_{2}$ on $\left[0, t_{2}\right]$ it follows from Lemma 2.1 that H satisfies a Lipschitz condition of order $\frac{1}{2}$ on $\left[0, t_{2}\right]$. Since f satisfies a Lipschitz condition of order $\beta>0,(1.10)$ and Lemma 2.2 simply that H satisfies a Lipschitz condition of the type (2.2) at each t on $0<t<t_{2}$. Hence by Lemma 2.4 for $0<t<t_{2}$, (3.1) yields
$H(t) t^{-1 / 2}+\frac{1}{2} \int_{0}^{t}[H(t)-H(\sigma)](t-\sigma)^{-3 / 2} d \sigma=-\pi^{1 / 2} \Phi[H(t)-f(t)]$.
Putting $t=t_{0}$ then $H\left(t_{0}\right)=M_{0}$ (or else $-M_{0}$ which is treated similarly). Thus

$$
H\left(t_{0}\right)-H(\sigma) \geqslant 0, \quad 0 \leqslant \sigma \leqslant t_{0}
$$

Thus the left side of (3.2) is positive. Since $H\left(t_{0}\right)=M_{0}>M_{1}>0$, $\Phi\left(H\left(t_{0}\right)-f\left(t_{0}\right)\right) \geqslant \Phi\left(M_{0}-M_{1}\right) \geqslant 0$ and so the right side is not positive. This is impossible. Hence on $[0, a),|H(t)| \leqslant \max |f(t)|$. In Lemma 2.1 this implies that $H(t)$ is uniformly continuous on $[0, a]$, (and indeed uniformly Lipschitz $\frac{1}{2}$). Hence $H(a-0)$ exists and so $F(t)$ exists as a continuous bounded solution of (1.8) on $0 \leqslant t \leqslant a$.

Next let $t=\tau+a$. Then (1.8) becomes

$$
\begin{align*}
F(\tau+a)+f(\tau+a)= & -\pi^{-1 / 2} \int_{0}^{a} \Phi(F(\sigma))(\tau+a-\sigma)^{-1 / 2} d \sigma \\
& -\pi^{-1 / 2} \int_{0}^{\tau} \Phi[F(a+\sigma)](\tau-\sigma)^{-1 / 2} d \sigma . \tag{3.3}
\end{align*}
$$

If

$$
\gamma(\tau)=-f(\tau+a)-\pi^{-1 / 2} \int_{0}^{a} \Phi(F(\sigma))(\tau+a-\sigma)^{-1 / 2} d \sigma
$$

then by Lemma 2.3, $F(\tau+a)$ exists as a continuous solution for some $b>0,0 \leqslant \tau \leqslant b$. Hence $F(t)$ is continuous beyond $t=a$. This proves that $a<\infty$ is impossible.

The uniqueness also follows from the formulation (3.3) since if a unique continuous solution exists for $0 \leqslant t \leqslant a$ (here $a=0$ is allowed) then Lemma 2.3 applied to (3.3) shows that it is also unique on some interval to the right of a. Hence the assumption that uniqueness holds only on a finite interval leads to a contradiction. This proves Theorem 1.1.

Proof of Theorem 1.2. Since $|f|$ is periodic it is bounded on $[0, \infty]$. Denoting its l.u.b. by $M_{1},|H| \leqslant M_{1}$ as was shown in the proof of Theorem 1.1. Let i and j be integers and suppose for $0 \leqslant t \leqslant 2 \omega$ and $j \geqslant i \rightarrow \infty$

$$
\lim \sup [H(t+j \omega)-H(t+i \omega)]=\lambda>0
$$

Clearly $\lambda \leqslant 2 M_{1}$. Given $\varepsilon>0$ there exists $\left(t_{n}, i_{n}, i_{n}\right), n=1,2, \ldots$ such that

$$
0 \leqslant t_{n} \leqslant 2 \omega, \quad i_{n} \geqslant i_{n} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty
$$

and, for $\varepsilon<\lambda$,

$$
\begin{equation*}
H\left(t_{n}+i_{n} \omega\right)-H\left(t_{n}+i_{n} \omega\right)>\lambda-\varepsilon>0 . \tag{3.4}
\end{equation*}
$$

For $t \geqslant 0$, there exists $i_{0}(\varepsilon)$ such that for $j \geqslant i \geqslant i_{0}(\varepsilon)$

$$
\begin{equation*}
H(t+j \omega)-H(t+i \omega)<\lambda+\varepsilon \tag{3.5}
\end{equation*}
$$

Using $t=t_{n}+j_{n} \omega$ and $t=t_{n}+i_{n} \omega$ in (3.2) and subtracting gives

$$
\begin{align*}
& A_{1}+\frac{1}{2} \int_{0}^{t_{n}+i_{n} \omega}\left[H\left(t_{n}+i_{n} \omega\right)-H\left(t_{n}+i_{n} \omega-s\right)\right] s^{-3 / 2} d s \\
& \quad-\frac{1}{2} \int_{0}^{t_{n}+i_{n} \omega}\left[H\left(t_{n}+i_{n} \omega\right)-H\left(t_{n}+i_{n} \omega-s\right)\right] s^{-3 / 2} d s \\
& =-\pi^{1 / 2} \Phi\left[H\left(t_{n}+j_{n} \omega\right)-f\left(t_{n}+j_{n} \omega\right)\right] \\
& \quad+\pi^{1 / 2} \Phi\left[H\left(t_{n}+i_{n} \omega\right)-f\left(t_{n}+i_{n} \omega\right)\right] \tag{3.6}
\end{align*}
$$

where since $|H| \leqslant M_{1}$

$$
\begin{equation*}
\left|A_{1}\right| \leqslant 2 M_{1}\left(i_{n} \omega\right)^{-1 / 2} \tag{3.7}
\end{equation*}
$$

Since $|\Phi(H-f)| \leqslant \Phi\left(2 M_{1}\right)$ it follows from (3.1) and Lemma (2.1) that H is uniformly Lipschitz $\frac{1}{2}$ on $[0, \infty]$. Since f is periodic and uniformly Lipschitz $\beta>0$ on any finite interval it is uniformly Lipschitz β on $[0, \infty]$. (It is no restriction to assume $\beta<\frac{1}{2}$.) Using Lemma 2.2 on (3.1) it now follows that there is a K_{2} such that

$$
\begin{equation*}
|H(t)-H(t-s)| \leqslant K_{2} s^{(1+\beta) / 2} \tag{3.8}
\end{equation*}
$$

for large t and $0 \leqslant s<1$. Hence

$$
\begin{equation*}
\int_{0}^{\varepsilon} \mid H\left(t_{n}+j_{n} \omega\right)-H\left(t_{n}+j_{n} \omega-s \mid s^{-3 / 2} d s \leqslant 2 K_{2} \varepsilon^{\beta / 2} / \beta\right. \tag{3.9}
\end{equation*}
$$

and similarly with j_{n} replaced by i_{n}. Hence (3.6) gives

$$
\begin{align*}
\frac{1}{2} \int_{\varepsilon}^{i_{n} \omega / 2}\left\{H\left(t_{n}+j_{n} \omega\right)\right. & -H\left(t_{n}+i_{n} \omega\right) \\
& -\left[H_{n}\left(t_{n}+j_{n} \omega-s\right)-H\left(t_{n}+i_{n} \omega-s\right\} s^{-3 / 2} d s\right. \\
& +A_{1}+A_{2}+A_{3}=-\pi^{1 / 2} \Phi\left[H\left(t_{n}+j_{n} \omega\right)-f\left(t_{n}+j_{n} \omega\right)\right] \\
& +\pi^{1 / 2} \Phi\left[H\left(t_{n}+i_{n} \omega\right)-f\left(t_{n}+i_{n} \omega\right)\right] \tag{3.10}
\end{align*}
$$

where by (3.9)

$$
\begin{equation*}
\left|A_{\mathbf{2}}\right| \leqslant 4 K_{2} \varepsilon^{\beta / 2} / \beta \tag{3.11}
\end{equation*}
$$

and A_{3} is the sum of two terms each dominated by

$$
\frac{1}{2} \int_{i_{n} \omega / 2}^{t_{n}+i_{n} \omega} 2 M_{1} s^{-3 / 2} d s \leqslant 2 M_{1}\left(i_{n} \omega\right)^{-1 / 2}
$$

and hence

$$
\begin{equation*}
\left|A_{3}\right| \leqslant 4 M_{1}\left(i_{n} \omega\right)^{-1 / 2} \tag{3.12}
\end{equation*}
$$

If n is large enough then by (3.5)

$$
H_{n}\left(t_{n}+j_{n} \omega-s\right)-H\left(t_{n}+i \omega_{n}-s\right)<\lambda+\varepsilon
$$

for $s \leqslant i_{n} \omega / 2$. Using this and (3.4), the integral on the left of (3.10) is greater than $-2 \varepsilon^{1 / 2}$. Hence

$$
\begin{aligned}
& -2 \varepsilon^{1 / 2}+A_{1}+A_{2}+A_{3} \\
& \leqslant-\pi^{-1 / 2}\left\{\left[\Phi\left(H\left(t_{n}+i_{n} \omega\right)-f\left(t_{n}+j_{n} \omega\right)\right)\right.\right. \\
& \left.\left.-\Phi\left(H\left(t_{n}+i_{n} \omega\right)-f\left(t_{n}+i_{n} \omega\right)\right)\right]\right\}
\end{aligned}
$$

By (1.11) and (3.4) this gives

$$
\begin{aligned}
& -2 \varepsilon^{1 / 2}+A_{1}+A_{2}+A_{3} \\
& \leqslant-\pi^{-1 / 2} k\left[H\left(t_{n}+j_{n} \omega\right)-H\left(t_{n}+i_{n} \omega\right)\right]
\end{aligned}
$$

By (3.4)

$$
2 \varepsilon^{1 / 2}+\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right| \geqslant \pi^{-1 / 2} k(\lambda-\varepsilon)
$$

By (3.7), (3.11) and (3.12)

$$
2 \varepsilon^{1 / 2}+6 M_{1}\left(i_{n} \omega\right)^{-1 / 2}+4 K_{2} \varepsilon^{\beta / 2} / \beta \geqslant \pi^{-1 / 2} k(\lambda-\varepsilon) .
$$

Letting $n \rightarrow \infty$ and then noting that ε is arbitrary it follows that $\lambda \leqslant 0$. A similar procedure holds for lim inf. Hence for $0 \leqslant t \leqslant 2 \omega$ and $j \geqslant i \rightarrow \infty$

$$
\lim [H(t+j \omega)-H(t+i \omega)]=0
$$

Hence there exists $\phi(t)$ such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} H(t+j \omega)=\phi(t) \quad 0<t \leqslant 2 \omega . \tag{3.13}
\end{equation*}
$$

Since H is continuous and since the convergence in (3.13) is uniform in t, $\phi(t)$ is continuous. It obviously has period ω.

Proof of Theorem 1.3. From (3.8) and the uniform convergence of $H(t+j \omega)$ to $\phi(t)$ it follows that ϕ is uniformly Lipschitz of order exceeding $\frac{1}{2}$. Setting $\sigma=t-s$ in (3.2) and letting $t \rightarrow \infty$ yields

$$
\frac{1}{2} \int_{0}^{\infty}[\phi(t)-\phi(t-s)] s^{-3 / 2} d s=-\pi^{1 / 2} \Phi[\phi(t)-f(t)]
$$

which is (1.14). The left side can also be written as

$$
\frac{1}{2} \int_{0}^{\omega}[\phi(t)-\phi(t-s)] \sum_{j=0}^{\infty}(s+j \omega)^{-3 / 2} d s
$$

To prove (1.14) has no other solution than ϕ, assume there is a continuous periodic solution ψ. Let $\phi-\psi$ have a positive maximum $\lambda>0$ which is taken on at t_{0}. Using (1.14) for ϕ and ψ, subtracting and setting $t=t_{0}$ gives

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{\omega}\left[\phi\left(t_{0}\right)-\psi\left(t_{0}\right)-\left(\phi\left(t_{0}-s\right)-\psi\left(t_{0}-s\right)\right)\right] \sum_{j=0}^{\infty}(s+j \omega)^{-3 / 2} d s \\
&=-\pi^{1 / 2} \Phi\left[\phi\left(t_{0}\right)-f\left(t_{0}\right)\right]+\pi^{1 / 2} \Phi\left[\psi\left(t_{0}\right)-f\left(t_{0}\right)\right] .
\end{aligned}
$$

The integral on the left is non-negative while the right side is negative for $\lambda>0$. This is impossible. Similarly $\phi-\psi$ cannot have a negative minimum and this proves uniqueness.

Since (1.14) is absolutely integrable both sides can be integrated with respect to t from 0 to ω and the order on the left side reversed. Since

$$
\int_{0}^{\omega}[\phi(t)-\phi(t-s)] d t=0
$$

the left side vanishes which proves that the average of $\Phi(\phi(t)-f(t))$ is zero. Thus in terms of (1.3), as $j \rightarrow \infty$,

$$
\frac{\partial u}{\partial x}(0, t+j \omega) \rightarrow \Phi[\phi(t)-f(t)]
$$

and hence as $t \rightarrow \infty, \partial u / \partial x(0, t)$ tends to a periodic function with average value zero.

References

1. Lin, C. C., Hydrodynamics of liquid helium II, Phys. Rev. Letters, 2, 245-246 (1959).
2. Mann, W. R. and Wolf, F., Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9, 163-184 (1951).
3. Padmavally, K., On a non-linear integral equation. I. Math. and Mech. 7, 533 (1958).

[^0]: * This paper was written in the course of research sponsored by the Office of Naval Research.

