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A Nonlinear Volterra Equation Arising in the Theory of
Superfluidity*

N. LEVINSON

Department of Mathematics, Massachusetts Institute of Technology Cambridge,
Massachusetts

1. In connection with his recently developed theory of superfluidity
C. C. Lin [1] has formulated a boundary value problem which in certain
situations becomes the following:

w o
73=“a713 £>0, >0, (L1)

u(%,0) =0 (1.2)
ou .
FP (0,8) = k [u(0,8) — ¢sin )3, t>0

where %2 > 0. This problem is somewhat more complicated than one
arising in connection with the heat transfer between solids and gases
under nonlinear boundary conditions by Mann and Wolf [2] but like
that problem can be replaced by a nonlinear Volterra type integral

equation.
Here the existence theory will be considered for (1.1) and (1.2)
subject to
0
= (04) = OO — ()], >0 (13

where @ and /{¢) are assumed to be continuous. Moreover @(y) is monotone
increasing and @(0) = 0. The case where /(¢) is periodic will be discussed
and it will be shown that in that case there exists a continuous periodic
function ¢(f) such that

lim [#(0,8) — $(8)] = 0.

t—>cw0

* This paper was written in the course of research sponsored by the Office of
Naval Research.
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If the problem (1.1), (1.2) and (1.3) has a solution w(x,) which is
continuous for x >0, £ >> 0 and if 9u/9x(x,¢) is continuous for £ > 0
and bounded as £ — + 0 then it can be readily verified that with

b = 320, L4y
__ 1 t P(n) — x?
u(x,t)’—ﬁﬁ t#nexp(ﬂt—ﬁ))dﬁ (1.5}

0

is a solution of (1.1), (1.2) and (1.4).
From (1.5) follows

W) = — = X-‘ﬁ(ﬁ—)— ay.

Combining this with (1.3) and (1.4)

t

#(0,f) = — L Sw
Va Ve =

It is with (1.6) that we shall be concerned here. Once it is shown to have

a solution #(0,f), then 2u/0x(0,¢) is determined by (1.3) which in turn

determines (#) in (1.4) and #(x.t) in (1.5).

The integral equation (1.6) is a special case of that treated by
Padmavally in [3] and Theorem 1.1 which follows is more restricted
than the results of [3). However the lemmas used in proving it are
needed for Theorems 1.2 and 1.3 in any case.

If in (1.6) we define

dn. (1.6)

0

F(t) = u(0,) — (¢) (.7

the (1.6) becomes
E@) 4 f(t) = — %'llzs(p(ﬂn)) (t — )12 dn. (1.8)
0

A function f(¢) is said to satisfy a Lipschitz condition of order « > 0 at ¢
if there exists a constant K such that

[f(t 4+ 1) — f(B)] < Kbl (1.9)

for small |h|.
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THEOREM 1.1. Let f(f) be continuous for 0 <t << co and on any finite
wnterval let | satisfy a uniform Lipschitz condition of order § > 0. Let D(y)
be monotone increasing, P0) = 0, and for any y,> 0 let there exist a
constant K(y,) such that

1D(yz) — P(y)| < Klyo)|y2 — il (1.10)
for |y,| and |y,| << v, Then (1.8) possesses a unigue contimuous solution
FE(t) an (0,00).

THEOREM 1.2. In addition to the hypothesis of Theovem 1.1 the further
assumptions are made that [(t) has period w and that with max |f(t)| = M,
there is a positive monotone tncreasing function k{uw) for u > 0 such that

D(yy) — P(ys) = Ay — ¥)) (1.11)

for v, — vy > 0and |y,| and |y,| < 2M. Then there is a continuous periodic
function $(t) of period w and the solution F(f) of (1.8) satisfies

lim (F() + /() — 4] =0 (112)

Moreover
IE() + /)] < max If(9). (L13)
Note that in the earlier formulation #(0,f) = F(¢) 4 f(t) and hence
(1.12) and (1.13) imply

Iim [#(0,) — ()] =0
and e

|#(0,8)| < max |f(8)].

TuEOREM 1.3. The periodic function $(t) is a solution of

Lo =

S () — ¢t —5)]s™%ds = — 22 D[$(1) — /()]  (1.14)

and ¢(f) is uniformly Lipschitz of order exceeding 1/2. The integral equa-
tion (1.14) has no other continuous periodic solution than ¢(t). The averare

of D(P(t) — f(t)) is zero.
2. It will be convenient to formulate several lemmas.

LemMMA 2.1. If p(s) o5 piecewise continuous for 0 <s <c and if |p(s)| < m

then
i

g(t) = Si’(s) (¢t —s)7M2ds (2.1)

0
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s conttnuous on 0 <t < ¢ and indeed
l9(t2) — 9(t,)] < 4mity — Ak
for ¢, t, on [0,c].
Proor. Let 4 > 0. The proof of this well known result follows from

t

lgt + &) — q(t)| < S ()| [ — $)=Y2 — (¢ + b — 5)=12] ds
0

t+h

+ s [p(s)] (¢ + A — s)=12ds

£
K 2m[P2 — (¢t + B)Y2 - pUZ] - 2mpll2
< dmhl/2
LEMMA 2.2. Let p(s) satisfy Lemma 2.1 and for some «, 0 < o < 1, let
b(se) — D(s)| < Klsg — 84
on 0<<s,sp<c. Then for 0 <<t <cand h>0
lg(t) — q(t — )| < 4(m + K)htt +ei (2.2)
where h < min (1, (1/3 §H/0- =),
PrOOF. Let a = 24'~%* C(learly

t—a—h

la(t) — 9@ — h)| < s [p(s)| [t — B — s)=12 — (¢ — 5)=112] ds

t—~a

+ S |p(s)] (2 — s)=112 ds

t—a—h

+ jip(w h—0) — p(t —o)jo— 2 do
0

2mha—1% L. 2K h=gll2
4

<
< (m_|_K)h(1+a)/2_
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Lemma 2.3. Let D satisfy (1.10). For some ¢ > 0 let y{t) be continuous
on 0 <t c. Then there exists b > 0 such that the integral equation
i

g0) = y(t) — a2 f@(g(s)) (¢ — 5)=\2 ds (2.3)

has a unique continuous solution on 0 <t < b.

ProoF. Let max |y(f)| on [0,c] bem. Let y, = 2m and let K(y,) = K,
Choose b so that & < ¢ and 2K, (b/n)2 < }.

Then it follows by a standard successive approximation procedure,
starting with g, = 0, that (2.3) has a continuous solution g(#). Uniqueness
on [0,5] also follows from (1.10).

LEMMA 2.4. Let p and q be continuous for 0 < ¢t << ¢ and for each i,
0 < t<c, let p satisfy a Lipschilz condition of order exceeding zero and
for each t for some K, 6 > O and sufficiently small h > 0 let
la(t) — gt — B)| < KpH2+9 (2.4)
If (2.1) holds for 0 <t <<c then

¢

() + } S [9(t) — q(0)] (¢ — o)~ ds = mp(?)
for 0 <t <ec. ’

Proor. The usual analytic continuation procedure can be used.
Let 2= x + ¢y. For Re z > 0 it follows from (2.1} for t < ¢
t t t

5(](0‘) (t — g)x— 1dg = jp(s) ds j (t —_ 0)’“ 1 (0 _ S)_1/2 do
0 0 0

or multiplying by z
t ¢

ot —opras < TEEVIB oy [ g e

0

This can be written as

13

)¢ + z j [g(a) — q(®)] (¢ — o) ~1do

0
t

_ 11(;"(: —lf_) g(’l‘) (p(t)t‘*’l/z +(z+3) S [p(s) — p)1 (¢ — s)*— 12 ds).

0
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In view of (2.4) and the Lipschitz condition on $, the integrals above
converge uniformly with respect to 2z for Rez > — } and hence both
sides are analytic for Rez 2> — }. By analytic continuation then the
equation must be valid for Rez >> — } and in particular for z = — }
which completes the proof.

3. Here proofs will be given for Theorems 1.1, 1.2 and 1.3.

ProoF of THEOREM 1.1. Suppose (1.8) has a continuous solution for
0 < f << a < o but not on any larger interval 0 < << @ 4+ J where § > 0.
By Lemma 2.3 it is clear that 0 < a. Hence either 2 < oo or else a contin-
uous solution exists for 0 <{¢ < . Thus to prove the theorem it is
only necessary to show that 4 <C oo is impossible.

Let max |f(f)| on [0,a] be M;. Let H(f) = F(¢) + f(#). Then it will
be shown that |H(f)| < M, for 0 < ¢<<a. Suppose this is false. Then
there exists ¢, < a such that |H(4)] > M;. Let max |H(t)] on [04]
be M, and let it be assumed at £, <. Let £, = (f; + 4)/2 and let
max [H(f)| on [0,] be M, Clearly #)< t,.

It is convenient to write (1.8) as

t

H({t) = — a—12 S@(H(S) — Hs)) (¢ — s)~ Y2 ds (3.1)

0

Since |H — f| < My + M, on [0,,] it follows from Lemma 2.1 that H
satisfies a Lipschitz condition of order } on [04,]. Since f satisfies a
Lipschitz condition of order > 0, (1.10) and Lemma 2.2 simply that H
satisfies a Lipschitz condition ot the type (2.2) at each f on 0 <t < ¢,.
Hence by Lemma 2.4 for 0 < £<C £,, (3.1) yields

t

H@— 12 + %j [H(f) — H(0)] (¢ — o)~ do = —aPOH(Y) — f(t)]. (3.2)

0

Putting ¢ = £, then H(t,) = M, (or else — M, which is treated similarly).
Thus

H{t) —Ho) =0, 0<0o<t,

Thus the left side of (3.2) is positive. Since H(fy) = My> M, >0,
D(H(ty) — f(ty) = (M, — M,) > 0 and so the right side is not positive.
This is impossible. Hence on [0,a), |H(f)| < max |f(). In Lemma 2.1
this implies that H(f) is uniformly continuous on [0,a], (and indeed
uniformly Lipschitz ). Hence H(a — 0) exists and so F(¢) exists as a
continuous bounded solution of (1.8) on 0 ¢ < a.
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Next let =1+ a. Then (1.8) becomes

F(v+ @) + /(v + a) = — a2 jdﬁ(F () (z + @ — ) do
" j‘l’w + o)l — o) da. (3.3

0
If

@€

o) =—Hz+a) - jfp(F(a)) (v +a—0)"Wdo

0

then by Lemma 2.3, F(v 4 a) exists as a continuous solution for some
b>0,0<t<b Hence F(f) is continuous beyond ¢ = a. This proves
that @ <C oo is impossible.

The uniqueness also follows from the formulation (3.3) since if a
unique continuous solution exists for 0 < ¢ <{ a (here 2 = 0 is allowed)
then Lemma 2.3 applied to (3.3) shows that it is also unique on some
interval to the right of a. Hence the assumption that uniqueness
holds only on a finite interval leads to a contradiction. This proves
Theorem 1.1.

ProoF of THEOREM 1.2. Since [f] is periodic it is bounded on [0, 0].
Denoting its Lu.b. by M,, |H| <M, as was shown in the proof of
Theorem 1.1. Let ¢ and 7 be integers and suppose for 0 << 2w and

=1 > o0
limsup [H(t + jo) — H{ + iw)] = 4> 0.

Clearly 4 <C 2M,. Given & > 0 there exists (l,, 7,, 1), # = 1,2,... such
that

0<t, < 2, In == by —> 0 as n — 0o
and, for e < 4,
H(t, + fuw) — H(t, + tpw) > 4 — &> 0. (3.4)
For ¢ = 0, there exists 4y(e) such that for 7 = ¢ = 4y{¢)

Hit+ jo) — Hit +iw) < A + e (8.5)
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Using ¢ =1¢, + fyw and ¢ =1¢, + 7,0 in (3.2) and subtracting gives
byt i
4, +3 s [H(tn + jaw) — H(ty + faew — s)]s—¥2ds
]
t,+i,0
— % g [H{t, + tp0) — H(by -+ tpew — s))s~ 32 ds
6
= — l’® [H(tn -+ 7nw) - f(tn + jnw)]
+ 72D [H (b, + taw) — f{En + taw)] (3.6)
where since |H| << M,
|4, < 2M, (i), (3.7)

Since |P(H — f)| < P(2M,) it follows from (3.1) and Lemma (2.1)
that H is uniformly Lipschitz } on [0,cc]. Since f is periodic and uniformly
Lipschitz 8 > 0 on any finite interval it is uniformly Lipschitz 8 on [0,cc].
(It is no restriction to assume g < §.) Using Lemma 2.2 on (3.1} it now
follows that there is a K, such that

|H(t) — H(t — 5)| < Kys@+812 (3.8)

for large £ and 0 <Cs < 1. Hence

&

S |H(th + juww) — H(tw + fuw — s|s—32 ds < 2K,eP?|8 (8.9
0

and similarly with 7, replaced by 7,. Hence (3.6) gives

i, w[2

%Swm+nm—Hm+am

— [Hulty + Juw — 8) — H(ln + tpo — s}s— 32 ds

+ AL+ Ag+ Ay = — w2 O[H (b, + jaw) — f{tn + fnw)]

+ 7B O[H(t, + inw) — f(tn + 1aw)] (3.10)
where by (3.9)

|4s| < 4K,682)8 3.11)
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and A4, is the sum of two terms each dominated by
by t+ige
3 S 2M s—32 ds < 2M | (Fu) — Y2
T, 0f2

and hence
Ag| < 4M, (Faw)— 12 (3.12)
3 1

If » is large enough then by (3.5)
Hy(ty + juew — s) — H(ty + fwn — 5) < A+ ¢

for s < 7,w/2. Using this and (3.4), the integral on the left of (3.10) is
greater than — 22, Hence

— 2642 4 4, + Ay + 4

K — a B{[@(H(tn + aw) — [(tn + faw))

~ B(H(ty + inw) — f{tn + in0))T}-
By (1.11) and (3.4) this gives

—2eW2 4 A4, + A, + Ay

S — a7 P E[H by + jaw) — H{ts + inw)].
By (3.4)

2612 A, | + |Ag| + |4 = 72 R(A — ).
By (3.7), (3.11) and (3.12)
2612 |- GM, (i) 112 + 4K oo ]B > 1 h(A — o).

Letting # — oo and then noting that ¢ is arbitrary it follows that 4 < 0.
A similar procedure holds for liminf. Hence for 0 <¢< 2w and

lim [H(t + jw) — H{t + iw)] = 0.
Hence there exists ¢(f) such that

lim H{t + jo) = ¢(t) 0<t< 2. (3.13)

j—>o0

Since H is continuous and since the convergence in (3.13) is uniform in ¢,
&(?) is continuous. It obviously has period w.
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Proor of THEOREM 1.3. From (3.8) and the uniform convergence
of H{t + jw) to ¢() it follows that ¢ is uniformly Lipschitz of order
exceeding }. Setting ¢ = ¢ — s in (3.2) and letting ¢ — oo yields

$ S ($(t) — (t — 5)]s~%2ds = — a2 D[(t) — [(2)]
0

which is (1.14). The left side can also be written as

0

H 5 ($(5) — &t — )] 2 (s 4 jw)~32 ds
o

i=0

To prove (1.14) has no other solution than ¢, assume there is a
continuous periodic solution . Let ¢ — ¢ have a positive maximum
A > 0 which is taken on at 4. Using (1.14) for ¢ and ¢, subtracting and
setting ¢ = ¢, gives

o

H S [lte) — lte) — (Bt — 5) — ity — 9))] D (s + foo) =2 ds
0

j=0
= — 72 D[lly) — [(to)] + 72 P [(t) — [(te)]-

The integral on the left is non-negative while the right side is negative
for A > 0. This is impossible. Similarly ¢ — ¢ cannot have a negative
minimum and this proves uniqueness.

Since (1.14) is absolutely integrable both sides can be integrated with
respect to ¢ from O to w and the order on the left side reversed. Since

S () — (¢t —s)]dt =0
0

the left side vanishes which proves that the average of @(¢(t) — f(2))
is zero. Thus in terms of (1.3), as 7 — oo,

ou

> (0,¢ + jw) - D[S(t) — f(t)]

and hence as { — oo, 9u/9x(0,f) tends to a periodic function with average
value zero.
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