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A Nonlinear Volterra Equation Arising in the Theory of 
Superfluidity* 

N. LEVINSON 
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Massachusetts 

1. In connection with his recently developed theory of superfluidity 
C. C. Lin [l] has formulated a boundary value problem which in certain 
situations becomes the following: 

at4 a34 
at=ax2 x > 0, t > 0, 

u(x,O) = 0 (1.2) 

J$ (0,t) = k [u(O,t) - c sin t13, t>o 

where k > 0. This problem is somewhat more complicated than one 
arising in connection with the heat transfer between solids and gases 
under nonlinear boundary conditions by Mann and Wolf [2] but like 
that problem can be replaced by a nonlinear Volterra type integral 
equation. 

Here the existence theory will be considered for (1.1) and (1.2) 
subject to 

g (04 = @[u(W) - f(t)], t>o 

where @ and f(t) are assumed to be continuous. Moreover (P(y) is monotone 
increasing and 0(O) = 0. The case where f(t) is periodic will be discussed 
and it will be shown that in that case there exists a continuous periodic 
function 4(t) such that 

lim [zc(O,t) - 4(t)] = 0. 
t+m 

* This paper was written in the course of research sponsored by the Office of 
Naval Research. 
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If the problem (l.l), (1.2) and (1.3) has a solution ti(x,t) which is 
continuous for x > 0, t > 0 and if &/ax(x,t) is continuous for t > 0 
and bounded as t -+ + 0 then it can be readily verified that with 

is a solution of (l.l), (1.2) and (1.4). 
From (1.5) follows 

u(O&) = - L v iv h!L(jq __ . 76 t--);l 
0 

Combining this with (1.3) and (1.4) 

u(O,t) = - L hmrl) - f(s)l,, 
v2-c viq 5 . 

(1.6) 

0 

It is with (1.6) that we shall be concerned here. Once it is shown to have 
a solution zc(O,t), then h/ax(O,t) is determined by (1.3) which in turn 
determines t,h(t) in (1.4) and u(x,t) in (1.5). 

The integral equation (1.6) is a special case of that treated by 
Padmavally in [3] and Theorem 1.1 which follows is more restricted 
than the results of [3]. However the lemmas used in proving it are 
needed for Theorems 1.2 and 1.3 in any case. 

If in (1.6) we define 

the (1.6) becomes 

F(t) = @,4 - f(t) (1.71 

t W) + f(t) = - 7c-1/2 s @(F(q)) (t - $112 L&p (1.8) 

0 

A function f(t) is said to satisfy a Lipschitz condition of order cc > 0 at f 
if there exists a constant K such that 

If@ + 4 - f(t) I d KlV (1.9) 

for small [hj. 
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THEOREM 1.1. Let f(t) be contiwous for 0 < t < 00 and on any finite 
interval let f satisfy a uniform Lipschitz condition of order ,Ll > 0. Let Q(y) 
be monotone increasing, Q(O) = 0, and for any y,, > 0 let there exist a 
constant IC(y,) szcch that 

WY%) - @(Y,)I G WYo)IY, - Yll (1.10) 

for 1~~1 and 1~~1 < yo. Then (1.8) $ossesses a unique continuous solutio+t 
F(t) an (0,ca). 

THEOREM 1.2. In addition to the hypothesis of Theorem 1.1 the further 
assumptions are made that f(t) has period co and that with max If(t)] = M, 
there a’s a positive monotone increasing function k(u) for u > 0 such that 

@(Yz) - @(Yl) a k(Y, - Yl) (1.11) 

for yz - y1 > 0 and Iyl] and ly2/ < 2M. Then there is a continuous periodic 
function $(t) of p erao CO and the solution F(t) of (1.8) satisfies ’ d 

lim IF(t) + f(t) - 441 = 0 (1.12) 
t-em 

Moreover 
IF(t) + f(t) / < max If(t) 1. (1.13) 

Note that in the earlier formulation u(O,t) = F(t) + f(t) and hence 
(1.12) and (1.13) imply 

lim [u(O,t) - d(t)] = 0 
t-+co 

and 
I404 / < max If(t) I. 

THEOREM 1.3, The periodic function $(t) is a solution of 

cc 

a,td $(t) is uniformly Lipschitz of order exceeding l/S. The integral equa- 
tion (1.14) has no other continuous periodic solution thalz 4(t) . The avera.:e 
of @($(t) - f(t)) is zero. 

2. It will be convenient to formulate several lemmas. 

LEMMA 2.1. If p(s) is piecezek continuozcs for 0 <s < c and if [p(s) / < m 
then 

q(t) = p(s) (t - s)-I/~ ds 

0 

(2.1) 
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is continuous on 0 < t Q c and indeed 

M2) - sV1)l < 4mlt2 - t1y2 

for t,, t, on [O,c]. 

PROOF. Let h > 0. The proof of this well known result follows from 

t 

)q(t + h) - q(t) I< 
5 

1$(s) ( [(t - s)-~‘~ - (t + h - s)-~‘~] ds 
0 

t+k 

+ 
5 

]#(s) 1 (t + h - s)-1’2 as 
t 

< 2m[t1j2 - (i f 18)112 + W2J + 2mW2 

< 4mh1i2 

LEMMA 2.2. Let p(s) satisfy Lemma 2.1 a& for some a, 0 < 0: < 1, let 

IPb2) - Fw f Kls2 - %I= 

on 0 < sl, s, < c. The% for 0 -=I f < c and h > 0 

lq(t) - q(t - h)/ < 4(m + K)h(1+a)/2 P.2) 

where h < min (1, (l/3 t)“(l-a)). 

PROOF. Let a = 2h’ -a. Clearly 

t--a--k 

jq(t) - q(t - h)I < 
I 

Ifi [(t - h - s)-‘i2 - (t - s)--~/~] ds 
0 

t--a 

+ 
s 

Ifi( (1 - s)-lj2 ds 
t-a-h 

a 

+ 
5 

Ifi(t - h - a) - fi(t - a) (u-1/e a% 
0 

< 2mha-ll2 + 2Khaa112 

< 4(m + K)h(1+a)/2. 
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LEMMA 2.3. Let Q> satisfy (1.10). For some c > 0 let y(t) be colztinuous 
on 0 < t < c. Then there exists b > 0 such that the integral eqtiation 

t 
g(t) = y(t) - 7c-1’2 5 @(g(s)) (t - ,)-l/2 ds (2.3) 

0 

has a unique continuous solution on 0 < t < b. 

PROOF. Let max ly(t)l on [O,c] be m. Let y,, = 2m and let K(y,) = K,. 
Choose b so that b < c and 2K,,(b/n)‘/2< Q. 

Then it follows by a standard successive approximation procedure, 
starting with g,, = 0, that (2.3) has a continuous solution g(t). Uniqueness 
on [O,b] also follows from (1.10). 

LEMMA 2.4. Let 9 and q be continuous for 0 < t < c and for each t, 
0 < t < c, let p satisfy a Lipschitz comdition of order exceeding zero and 
for each t for some K,, 6 > 0 and sufficiently small h > 0 let 

/q(t) - q(t - h) [ < Klh112 +& (2.4) 

If (2.1) holds for 0 <t < c then 

t+q(t) + 4 [q(t) - q(a) ] (t - (T)+~ ds = rip(t) 

for 0 < t < c. 

PROOF. The usual analytic continuation procedure can be used. 
Let z = x + iy. For Re z > 0 it follows from (2.1) for t < c 

t t 1 

5 

. 

4(u) (t - u)~- ldu = 
5 I 

p(s) ds (t - a)*- l (a - s)-lD a% 

0 0 0 

or multiplying by z 

z tq(u)(t--o)‘-‘d~ =F-F(z+ 4) (p(s)(t -s)“-‘l”ds. 
I z 
0 0 

This can be written as 

t 

9w + 2 
5 

w - d41 (t - 4"-1du 
0 

p(t)t a+1/2 + (z + 3) [p(s) - P(t)] (t - s)*-1/2ds . 

0 
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In view of (2.4) and the Lipschitz condition on 9, the integrals above 
converge uniformly with respect to z for Re z > - 4 and hence both 
sides are analytic for Re z 3 - 4. By analytic continuation then the 
equation must be valid for Re z > - i and in particular for z = - 8 
which completes the proof. 

3. Here proofs will be given for Theorems 1.1, 1.2 and 1.3. 

PROOF of THEOREM 1.1. Suppose (1.8) has a continuous solution for 
0 < t < a < CO but not on any larger interval 0 < t < a + 6 where 6 > 0. 
By Lemma 2.3 it is clear that 0 < a. Hence either a < = or else a contin- 
uous solution exists for 0 < t < co. Thus to prove the theorem it is 
only necessary to show that a < oa is impossible. 

Let max If(t)\ on [O,a] be M,. Let H(t) = F(t) + f(t). Then it will 
be shown that IH( < M, for 0 < t < a. Suppose this is false. Then 
there exists ti < a such that jH(t,) j > Mi. Let max IH( on [O&i] 
be M, and let it be assumed at to < ti. Let tZ = (tr + a)/2 and let 
max (H(t)( on [O,t,] be Mz. Clearly t,< t,. 

It is convenient to write (1.8) as 

t 

H(t) = - cl/2 
5 

@(H(s) - f(s)) (t - s)-112 as (34 
0 

Since IH - fl < M, + M, on [O,t,] it follows from Lemma 2.1 that H 
satisfies a Lipschitz condition of order 4 on [O,t,]. Since f satisfies a 
Lipschitz condition of order ,8 > 0, (1.10) and Lemma 2.2 simply that H 
satisfies a Lipschitz condition ot the type (2.2) at each t on 0 < t < t2. 
Hence by Lemma 2.4 for 0 < t < t,, (3.1) yields 

t 

H(t)t-112 + & 
5 

[H(t) - H(u)] (t - u)-~‘~ da = -d2@[EZ(t) - f(t)]. (3.2) 
0 

Putting t = t, then H(t,,) = M, (or else -M,, which is treated similarly). 
Thus 

f&l) - H(a) >, 0, o<u<t(). 

Thus the left side of (3.2) is positive. Since H(t,,) = M, > Ml > 0, 
@(H(t,) - f(Q) > tD(M, - M,) > 0 and so the right side is not positive. 
This is impossible. Hence on [O,a), IH(t)I < max If(t In Lemma 2.1 
this implies that H(t) is uniformly continuous on [O,a], (and indeed 
uniformly Lipschitz 4). Hence H(a - 0) exists and so F(t) exists as a 
continuous bounded solution of (1.8) on 0 < t < a. 
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Next let t = r + a. Then (1.8) becomes 

a 

F(Z + a) + f(T + a) = - 7c-1/2 
I 

@(F(a)) (z + a - u)-1/2 da 

0 

- 5r1’2 @[F(a + a)](r - a)-1/2&J. 
s 

(3.3) 

0 

If 

y(z) = - f(z + a) - 7c-1/2 
I 

@(F(a)) (t + a - u)-ljz da 
n 

then by Lemma 2.3, F(t + a) exists as a continuous solution for some 
b > 0, 0 < z < b. Hence F(t) is continuous beyond t = a. This proves 
that a < 00 is impossible. 

The uniqueness also follows from the formulation (3.3) since if a 
unique continuous solution exists for 0 < t < a (here a = 0 is allowed) 
then Lemma 2.3 applied to (3.3) shows that it is also unique on some 
interval to the right of a. Hence the assumption that uniqueness 
holds only on a finite interval leads to a contradiction. This proves 
Theorem 1.1. 

PROOF of THEOREM 1.2. Since If/ is p eriodic it is bounded on [O,eoJ. 
Denoting its 1.u.b. by RI,, IHI < M, as was shown in the proof of 
Theorem 1.1. Let i and j be integers and suppose for 0 < t < 20 and 
j>i-m 

lim sup [H(t + jw) - H(t + iw) j =: A > 0. 

Clearly 1 < 2M,. Given E > 0 there exists (tn, 2’,, j,J, n = 1,2,. . . such 
that 

and, for E < i, 

H(b + jnw) - H@n + i&o) > 1 - & > 0. (3.4) 

For t > 0, there exists i,,(s) such that for j 3 i > $(E) 

fqt + jo) - H(t + iw) < /I+ F. (35) 
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Using t = t,, + j,,o and t = t, + ~,CU in (3.2) and subtracting gives 

tn + ino 

Al+& 
I 

[H& + &w) - H(& + j*w - s)]s-5/2 as 

0 

in -t $p 

-i j wn+ i&o) - H(& + i,o - s)]s-312 ds 

0 

= - ~u2@[H(t, + if@) - f&a + $@)I 

+ n1'2@[qhl + i&g - f(h + &do)1 (3.6) 

where since IHI < MI 

IAll f 2M,(i,~)-~~~. (3.7) 

Since I@(H - /)I < @(2M,) it follows from (3.1) and Lemma (2.1) 
that H is uniformly Lipschitz & on [0, 001. Since f is periodic and uniformly 
Lipschitz j3 > 0 on any finite interval it is uniformly Lipschitz j3 on [0, OO]. 

Using Lemma 2.2 on (3.1) it now (It is no restriction to assume /I < ).) 
follows that there is a I$ such that 

jH(t) - H(t - s) 

for large t and 0 < s c 1. Hence 

r” 

1 < K$(l +N2 (3.3) 

I IH(t,, + &co) - H(t,, + &W - S/S-~/~ ds < 2Kz.d2//? (3.9) 
0 

and similarly with in replaced by i,. Hence (3.6) gives 

i,w/2 

B 1 {H(k, + ina4 - H(a + ino) 

e 

- [H,(t, + i,w - s) - H(& + &co - s}s-~/~ ds 

+ A, + A, + A, = - d2 @[H(t,, + ins) - f(tn + in0)1 

+ d’2 @own + ko) - f(h + 4@J)l (3.10) 

where by (3.9) 

IA21 < 4K2@V (3.11) 
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and A, is the sum of two terms each dominated by 

‘n + in@ 

4 
5 

2Mrs-s~s as < 2Mr(i*o)-1’2 

i,mt2 

and hence 

IA,] < 4Mr(i,o)-iI” 

If IZ is large enough then by (3.3) 

II& + j”0.l - s) - H(& + io, - s) < il + F 

(3.12) 

for s < i,,c0/2. Using this and (3.4), the integral on the left of (3.10) is 
greater than -22~~1~. Hence 

- 2.~~‘~ + A, + A, + A, 

< - z-1’2 ( [@(H(tn + ino) - f&a + inw)) 

- @(H(tn + G&u) - i(a + &4)1]. 

By (1.11) and (3.4) this gives 

- 2~~1~ + A, + A, + A, 

BY (3.4) 

< - n-1/z k[H(t,, + &co) - H(tn + &LO)]. 

2Y2 + IA,] + ]A21 + IA,] > i~--l’~ k(l - E). 

By (3.7), (3.11) and (3.12) 

2&1/s + GM,(i,,o)-‘12 + 4K2d2/,8 > n-1/2 k(A - E). 

Letting n + 00 and then noting that E is arbitrary it follows that h < 0. 
A similar procedure holds for lim inf. Hence for 0 < t < 2w and 
j>i-tcG 

lim [H(t + jo) - H(t + io)] = 0. 

Hence there exists 4(t) such that 

fi&W + io) = #) O<t<2co. (3.13) 

Since H is continuous and since the convergence in (3.13) is uniform in t, 
4(t) is continuous. It obviously has period o. 
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PROOF of THEOREM 1.3. From (3.8) and the uniform convergence 
of H(t + iw) to 4(t) it follows that 4 is uniformly Lipschitz of order 
exceeding 4. Setting u = t - s in (3.2) and letting t -+ 00 yields 

which is (1.14). The left side can also be written as 

To prove (1.14) has no other solution than 4, assume there is a 
continuous periodic solution I/I. Let C$ - # have a positive maximum 
3, > 0 which is taken on at to. Using (1.14) for 4 and I/J, subtracting and 
setting t = to gives 

w 

4 1 [No) - Wo) - (#4to - 4 - wo - 4)l 2 6 + i4-3'2ds 
0 j=o 

= - d2 @P&J - &)I + d2 @[$(Q - &,,I. 

The integral on the left is non-negative while the right side is negative 
for A > 0. This is impossible. Similarly 4 - 4 cannot have a negative 
minimum and this proves uniqueness. 

Since (1.14) is absolutely integrable both sides can be integrated with 
respect to t from 0 to o and the order on the left side reversed. Since 

w 

5 

[r+(t) - &t - s)] at = 0 

0 

the left side vanishes which proves that the average of @($(t) - f(t)) 
is zero. Thus in terms of (1.3), as i -+ 00, 

;(O,t + iw) -@P&t) - f(41 

and hence as t -+ bo, &/ax(O,t) tends to a periodic function with average 
value zero. 
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