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Using ideas from [6,3] and [5] we give a simple proof of the following theorem from [1].

Theorem 1 (Azagra-Fry-Keener). Let X be a real separable normed linear space with a separating polynomial. Then there is a con-
stant K € R such that for each € > 0 and any L-Lipschitz function f : X — R there is a KL-Lipschitz function g € C®(X) satisfying
Supxex [f(x) — g <&.

By B(x,r) (resp. U(x,r)) we denote the closed (resp. open) ball centred at x with radius r > 0. If we need to stress that
the ball is taken in the space X we write Ux(x,r). By X we denote the Taylor complexification of a real normed linear
space X. By H(£2) we denote the set of all holomorphic functions defined on an open subset §2 of a complex normed linear
space.

The proof is divided into a few steps (Proposition 2, Proposition 4, and Lemma 6). We begin by introducing an auxiliary
notion. Let X be a real normed linear space and U = {Uy; x € Uy C X, x € X} be a collection of open neighbourhoods in X.
Let A C X. We say that a function h : [ JU — C separates A with respect to U if

(S1) h|x maps into R,
(S2) h(x) > 1 whenever x € A,
(83) |h(2)| < }l whenever z € Uy, x € X, dist(x, A) > 1.

Proposition 2. Let X be a real normed linear space. Assume that there is U = {Uy; x € Uy C X, x € X} a collection of open neigh-
bourhoods in X and C > 0 such that for each A C X there is a function h4 € H(JU) which separates A with respect to U and such
that ha|x is C-Lipschitz. Then for every € > 0 and every L-Lipschitz function f : X — R there is a 10CL-Lipschitz function g € C*(X)
satisfying supycx | f(X) — g()| < €.

For the proof we need the following technical lemma.
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Lemma 3. There are functions 6, € H(C), n € N, with the following properties:

(T1) 6y|r maps into [0, 1],

(T2) 6y|R is 4-Lipschitz,

(T3) |6n(2)| < 27" forevery ze C, |z < 1,

(T4) 10, (x) — 1] <27 " foreveryxcR, x> 1,

(T5) |(Bn|r) X)| <27 forevery x e R, x < % orx>1.

Proof of Proposition 2. Let us define a function f:X — R by f(x) = ‘g‘ f(Zx). This function is obviously 1-Lipschitz.

Denote f* = max{f‘,O} and ]‘* = max{—f,O} and notice that both functions are again 1-Lipschitz. Next, let us define
sets Ay ={xe X; fT(x) >n} for ne NU{0}. Clearly, A, C Ay_1 for all n € N, and using the 1-Lipschitz property of f¥ it is
easy to check that

dist(X \ Ap, Apt1) =1 forallneN. (1)

Denote hy(z) =6, o ha, for n € N. For each n € N, h, € H(JU) and hy|x is 4C-Lipschitz. Put ht =31 hy.
Fix an arbitrary x € X. Then there is m € N such that x € Aj,—1 \ An. Hence

xeAp forn<m and xe X\ A;,—; forn>m. (2)

From this, (1), (S3), and (T3) it follows that |h,(z)] < 27" for all n > m and z € Uy. Hence the sum in the definition of h*
converges absolutely uniformly on Uy and so h™ € H({ JU). This together with (S1) and (T1) implies that h™|x € C*(X).

Using (2), (S2) and (T4), (1), (S3) and (T3), and finally m — 1 4+ hp (x) € [m — 1, m] and f*(x) € [m — 1, m), we obtain

m—1
00 = Fre0| =] D ha(o + hm(0) + Z ha(x) — F* ()
n=1 n=m+1
m—1 oo ,\
<Y o =1+ D7 (@] +[m—1+hn() — F+ )]
n=1 n=m+1
<Zz + Z 27" 41 <2

n=m+1

Further, from (1) it follows that there is a neighbourhood U of x in X such that U ¢ X\ An and U C A, forn<m — 1.
Thus |ha,(¥)| < % for n>m and y € U, and ha,(y) > 1 for n <m —1 and y € U. This together with (T5) implies
(1) D = 1Onlr) (ha, W) (ha, 1) (W] < 27"C for ne N\ {m —1,m} and y € U. Hence ) ., (hy|x)" converges ab-
solutely uniformly on U and so

(1) @] < Z||<hn|x>(x>|| > 27"C+ || (hmlx) ()| < € +4C =5C.
n#m

Similarly we obtain an approximation of f‘ denoted by h=. Put h=h™ —h~. Then h|x € C®(X), |h(x) — J‘(x)l < 4 for
every x € X, and [|(hlx)' (X[ < II(ht]x)' )1 + [I(h~[x)' (®)]l < 10C for every x € X.
Finally, let g(x) = §h(4?Lx) for x € X. It is straightforward to check that g satisfies the conclusion of our proposition. O

Let X be a set. A collection {1y }neca Of functions on X is called a supremal partition (sup-partition) if

e Yy :X—[0,1] for all a € A,
e there is a Q > 0 such that sup,4 ¥ (%) > Q for each x € X,
e for each x € X and for each ¢ > 0 the set {@ € A; ¥y (Xx) > €} is finite.

Proposition 4. Let X be a real normed linear space. Suppose that there is an open neighbourhood G of X in X and a collection {\n}nen
of functions on G with the following properties:

(P1) {Ynlx e is a sup-partition on X,

(P2) the mapping z — (ay g@n (2))nen is a holomorphic mapping from G into Co for any (ay) € £oo,

(P3) thereis M > 0 such that each tﬂn |x is M-Lipschitz,

(P4) there is r > 0 such that for each n € N there is X, € X such that xﬁn x) < % forxe X, |x— Xl >T.
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Then there is a collection U of open neighbourhoods in X such that for each A C X there is a function hy € H(JU) which separates
A with respect to U and such that ha|x is C-Lipschitz, where C = ZrﬁM/Q.

In the proof we use the following proposition.

Proposition 5. Let ¢ > 1. There is an open set W C o and a function . € H(W) with the following properties:

(M1) For every w € co \ {0} there is Ay, > 0 such that Uz, (y, Aw) C W for every y € co satisfying |w| < |y| < q|lw|, where the
inequalities are understood in the lattice sense.

(M2) pu(w) > 8 for w € co, W] > 8.

(M3) |(2)] <2 for z € Uz, (¥, Aw), where y € co, Iyl < 1, and w € co \ {0}, [w| < |y| < q|wl.

(M4) g, is /2-Lipschitz and maps into R.

o

Proof of Proposition 4. Let W, u, and A, be as in Proposition 5 for q = %. Further, we put G = % , Xp = 3%, and

Yn(2) = ¥ (2r2) for z € G. Then the functions v, |x are 2rM-Lipschitz and

1
llfn(X)é% forx e X, ||X_Xn||>5~ (3)
Denote w(z) = (Yn(2))nen for z € G. By the continuity of the mapping w (which follows from (P2)), for each x € X there
is an open neighbourhood Uy of x in X such that Uy C G and [[w(z) — w(X)|| < Aw()/q whenever z € Uy. (Notice that
w(x) € co \ {0}.) Put U = {Uy; x€ X}.
Let A C X. For each n € N put b, = q if dist(x,, A) < % and b, =1 otherwise. Choose z € | JU/ and let x € X be such that
z € Uy. Then

| (brn(2)) — (baym () | = SU§|bn(wn @) — )| <q sugwn @) — Y| =q||lw@) —w®) | < Awg (4)

and since 0 < w(x) < (bp¥n(x)) < gw(x) in the lattice sense, from (M1) it follows that (b,¥y,(z)) € W. Therefore we
may define ha(z) = %/L((bnwn(z))) for z e | JU and property (P2) implies that hy € H(JU). Further, ha|X is obviously
C-Lipschitz.

Next we show that hs separates A with respect to U. Clearly hy has property (S1). Pick any x € A. From (P1) and
(3) it follows that sup{yn,(x); n e N, dist(x;, A) < %} > Q. Therefore ||(by¥n(x))|| > qQ =8 and consequently (M2) gives
property (S2). Finally, to show (S3) let x € X be such that dist(x, A) > 1. Then, by (3), ¥n(x) < % for those n € N for which

dist(xp, A) < % Thus ||(bnvmx))| < max{q%, 1} = 1. Now (4) together with (M3) implies |ha(2)| < }l forze Uy. O
The following lemma finishes the proof of Theorem 1.

Lemma 6. Let X be a real separable normed linear space with a separating polynomial. Then there is an open neighbourhood G of X
in X and a collection of functions {y }nen Satisfying the properties (P1)-(P4) in Proposition 4.

To prove this lemma we will need a few auxiliary statements.

Lemma 7. Let X be a real normed linear space with a separating polynomial. Then there is A > 0 and a function v € H(£2), where
={x+iyeX; x,y € X, |yl < A}, such that v|x is Lipschitz and maps into [0, +00), v(0) =0, v(x) > ||x|| — 1 for x € X, and
the family of functions {y — Imv(x +iy); y € X, ||yl < A}xex is equicontinuous at 0.

Proof. It is an easy well-known fact that if X admits a separating polynomial then X admits a homogeneous separating
polynomial (see e.g. [4]). Put v(z) = (1 + P(2))!/" — 1 for a suitable n-homogeneous separating polynomial P. The equicon-
tinuity follows from the fact that v is even Lipschitz on the whole of £2. For the details see [1, Lemma 2]. O

Lemma 8. There are functions ¢, € H(C") and constants 8, > 0, n € N, with the following properties:

(H1) ¢n|gn maps into [0, 1],
(H2) ¢n|rn is 1-Lipschitz with respect to the maximum norm,
H3) |pn(2)| < 27" for every z € C" such that thereis j € {1, ...,n — 1} for whichRez; <

(
(H4) ¢n(x) > 1 forevery x e R" for whichx, <3 andx; >3,i=1,...,n—1,
(H5) ¢n(x) < 35 forx € R", x, > 5.

Land |Imz| <§jfori=1,...,n,
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With the aid of the statements above the proof of Lemma 6 is not difficult.

Proof of Lemma 6. Let v and 2 be the function and the set from Lemma 7 and ¢, be the functions from Lemma 8. Let
{xn}nen be a dense subset of X. Put

Vn(2) = ¢n(V(Zz—X1),...,v(Zz— X)) forze R, neN.

Then ¢, € H(£2) and by (H1) v¥,|x maps into [0, 1].

Let M > 0 be such that v|x is M-Lipschitz. Pick any x € X. Then from the density of {x;} and the fact that v(y) <
M||y|l for any y € X it follows that there is k € N such that v(x — x;) < 3. Let k € N be the smallest such number. Then
property (H4) implies that v (x) > 1 . Thus sup,ey ¥n(x) > > Q for each x € X, where Q = 411

By the continuity of v there is p > 0 such that [v(2)| < 5 whenever ze X, |zl < p. Now fix x € X and find an index j e N
such that ||x; —x|| < p. Using the equicontinuity of {y — Im v(w+iy)} at 0 choose 0 < Aj < A such that [Imv(w+iy)| < §;
whenever w,y € X, ||yl < Aj. Let us define Uy={z=w +iy ¢ X: lz—xjll < p, llyll < Aj}. Notice that Uy is an open
neighbourhood of x and z —x; € 2 for every z € Uy, [ e N. Let z=w +1iy € Uy. Then |[Imv(z —x)| = [Imv(w — X +iy)| < §;
for every I € N. Furthermore, |Rev(z — xj)| < [v(z — xj)| < % Hence, by (H3), |¢¥n(2)| < 27" for n > j and z € U,. It follows
that for any (an) € €oo, (@n¥n(2)IneN = Y neq Gn¥n(2)en € Co and the sum converges absolutely uniformly on Uy. As the
mappings z +— ap¥n(z)e, are holomorphic as mappings from 2 into ¢o, we can conclude that (a,yp) is a holomorphic
mapping from G = |J,.x Ux into ¢o, which gives (P2).

Property (P3) obviously holds by (H2). Finally we show that (P4) is satisfied with r = 6. Indeed, fix n € N. For x € X,
X — xn|| =6 we have v(x —x,) > ||x — x|| — 1 > 5, hence, by (H5), yn(x) < % = %. O

For the proof of Proposition 5 we need the following version of the Implicit Function Theorem with explicit estimates
on the size of the region where the solution is found.

Theorem 9 (Implicit Function Theorem). Let X be a complex normed linear space, U C X and V C C open sets, and F € H(U x V).
Letze U, 0 €V satisfy F(z,0) =0. FurtherletR >0,S > 0,and M > 0 be such that B(z,S) C U, B(t1, R) C V, and |F(z u)| <

h 0and0 <r< 1-2% pyrc=ar— M’ ands=S-C_. Th
forevery ze B(z,S), u € B(il, R). Assume t at| (z )| >a>0and0<r < < 2 arem- Put c=ar — gp—y an s=S§ HM enfor
each z € U(Z, s) there is a unique u € B(il,r) satlsfymg F(z,u) = 0. Denote such u by ¢(z). Then ¢ € H(U(Z, 5)).

The proof of this theorem is fairly standard using for example the Rouché theorem and Cauchy’s estimates for on C

and for 2 az on X. Some details can be found e.g. in [2], although the estimates and the proof given there are not entlrely
correct.

Proof of Proposition 5. Define 1 on co as the Minkowski functional of the set {x € co; Y poq (%1)2" < 1}. Then p is an
equivalent norm on cg for which ||x|| < p(x) < < V2||x|| (see [4]). This gives property (M4) and (M2).

Let F : ¢o x (C\ {0}) — C be defined as F(z,u) = Zf,il(zn/u)zn — 1. This function is holomorphic on ¢g x (C\ {0}) and
for every x € cg \ {0} we have F(x, u(x)) =0.

. . 2

Fix weco\ {0} Put R=130 s =Tl M=1+50G + @hlwi)™ a= 2 r=min{} /.2 - V2),
and Ay =s as defined in Theorem 9. Now choose any y € co, |w| < |yl < gqlw|. Then R < [w| < |lyll < u(y), thus
B((y), R) C V =C\ {0). For any z € U(y. S), u € B(u(y), R) we have [u| > pu(y) = R > [yl = R > [lw| — R = 15 and
20l < [ynl + 120 = ynl < qlwal + 12—yl <glwal + ”W”. and hence |F(z,w)| <1+ Yonsi 122" < M. Finally, |55 (y, u(y))] =
__1 Ny 2n 2n _ . T .
| ) D oneq 2n(ﬂ(y)) | > u(y) Y 1(u(y)) M(y) > ~/_HyH > a. Thus by Theorem 9 the equation F(z,u) = 0 uniquely
determines a holomorphic function uy on Ug (¥, Aw) with values in B(u(y),r) and this holds for every y € co, |w| <
|yl < gqlwl.

Take any two functions @1 = /,L;/ll, U = MJ",VZZ defined on open balls U; and U, respectively. If U; and U, intersect, then
it is easy to check that U; N Uz Ncp is a non-empty set relatively open in cg. Since 1 = on Uy Nco and @y = 1 on
U Nco, it follows that both holomorphic functions w1 and w, agree on some ball in U; N U, and therefore on the whole
Uy NU>. This observation allows us to put W = J{Ug, (¥, Aw); weco\ {0}, y €co, |w|<|y| <q|wl|} and define  on W
by w(z) = uy (z) whenever z € U(y, Ay). This gives property (M1).

To prove (M3) let w e co \ {0}, y € co, [W| < |yl <qlwl|, |yll <1, and z € Ug, (¥, Aw). Then by the choice of r above we
have 1(2) € B(1(y).2 — ~/2) and therefore [11(2)| < |4(¥)| +2 - vV2<V2|yll +2-v2<2. O

It remains to prove Lemma 3 and Lemma 8. The proofs are standard using integral convolution technique and estimates
which are not difficult. We could just write the formulas for the functions in consideration and stop there (we claim a short
proof after all). Nevertheless for the convenience of the reader we include rather detailed computations.
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Proof of Lemma 8. Let {, : R" — [0, 1] be a 1-Lipschitz function (with respect to the maximum norm) such that

0 wheneverx, >4or3die{l,....,n—1}:x; <1,
(x) =
1 whenever x;

\Band‘v’le{ s, n—1}x > 2.
For each n e N put §, =,/27"/8 and find a, € R such that
ap2™" >3, (5)
e @278 <o w2, (6)
and
+o00 1
P
e dt > —Jm (7
/ 7
— /anz—n
Finally, put

1 n i
¢n(2) = - / Ca(t)e 0 Xiz1 2 @4t forz e CM,
n
Rﬂ

—i,2 :
where ¢, = fpa e Y27 g — J(E) T, 21

Using standard theorems on integrals dependent on parameter we obtain ¢, € H(C"). Property (H1) is obvious, and
property (H2) is easy to check.

Next we will need the elementary estimate
+00 +00

1
/e’tzdtg /te’tzdtzie”‘2 forx > 1.

(8)

1
with (5), the definition of §;, and finally (6) to obtain

To prove (H3) we use successively the definition of ¢,, Fubini’s theorem, substitution, Rez; < 5, estimate (8) together
ith (5 -

n —i 2
I ) efn Xi—1 27 (Imz;) n .
nte) < - [ e esZi e e S et e
n
Rn
ané? ‘ 4,82 _ +00 ‘
< e / e—n Yii 27 Rezi—t)? gy — © " / o—n Yizj2 ' Rezi—t)? ¢ / p—n2 I Rezj—t)? dt;
C C
" ie]R; " Rn-1 1
j>
ansjz. and? +o0
e J
ap2—J —‘1“2 TRezj=0) 4¢ — e dt < / et dt
VT NG
A/@n27I (1-Rez;) I/an2-i
an52~ . .
<& e _ 1 a@ash 1 ca2s g
2T 2T 2T
To prove (H4) we use successively the definition of ¢,, Fubini’'s theorem and substitution, x, < 3 and x; > 3, substitution
and (7) to obtain
3—xn n_i T
Pu0) > — / emon T2 0t g — L / e ar T [ e ar
c C y
" tn<3 " =177y
ti>2, i=1,..,n—1
1 0 n—1 to° n T . 1 1 n +o0 ,
— [ e w2 g / o2 P gp s 1 f e~mn2 C dr = — / e~ dt
/ 2 1_! 27 U
-1 -1 T Va2
1 1 n +00 1 1 +o0 n 1
2 2
> - e ldt=-| — edr) >-.
/2(ﬁ)ng / 2<ﬁ / )/4
N —/ap2"
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Finally, to prove (H5) we use successively the definition of ¢,, Fubini’s theorem, substitution, x, > 5, and (8) together
with (5) to obtain

4 A/ 27" (4—xn)
¢Tl (X) < l / e*ﬂn Z?:l zii(xi*ti)z dt = / agn e*anzin(xn 7[.)2 dt = \/L_ / e*fz dt
Cn T b/

teR" —00 —00
th<4
+00
1 2 1 —n 1
<— e dt < e o g
W f N3 32
A/ an2—"n

Proof of Lemma 3. Let ¢ : R — [0, 1] be defined as ¢(t) =0 for t < 3, ¢(t) =4t — 3 for t € (3, %), and ¢(t) =1 for t > .
Obviously ¢ is a 4-Lipschitz function. For each n € N find a, € R such that

3
gx/a_n> 1, (9)
e~ s <2/ 27", (10)
+00
/ e de > (1-27")7, (11)
W
and
2/an e 8% < 27, (12)

Finally, put

1
O (2) = — / c(e~™@ 0 dt forzeC,
n
R

Qn
Using standard theorems on integrals dependent on parameter we obtain 6, € H(C). Property (T1) is obvious, and prop-
erty (T2) is easy to check.
To prove (T3) we use successively the definition of ¢, |Imz| < %, substitution, Rez < %, estimate (8) together with (9),
and finally (10) to obtain

2
where ¢ = [pe ™" dt = /.

1 +00
1 5 ean(lmz)2 5 160 ,
}Gn(z)| < — / {(t)e‘“" Re(z—t) dt= — / ;(t)e—an(Rez—t) dt <— / e—an(Rez—t) dt
Cn Cn Cn
R R 5
8
1 +00 1 +00 1 5
e 16 / 2 dt < e1en / 2 dt < e —%a, e 6aln <N
= e t e e 6471 = .
JTT : W , N3 YN
Jan(3—Rez) 3+/an

To prove (T4) we use successively the definition of ¢, substitution, x > 1, and (11) to obtain

1 “+00 1 —+o00 ] +0oo
Onx) > — | e~ g — / e Pdt > — / e dt>1-2""
h(X) o f = =
i Van(§—x) ~1/an

Finally, we show (T5). Differentiating under the integral sign we obtain

0 (x) = zcﬂ / C(t)(t — x)e~ 0% g,
n
R
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Thus for x < % using the definition of ¢, substitution, and (12) we get

5
—an(3—x)?

—+00
2a 2 1 a 5_ 02 a 1
|9,{,(X)| < “*n / (t_x)e—an([—X) dt = — / eY dy= n ,e—an(g—x) < -n .e~ 6 <2—n'
Cn Cn v e
% —00

On the other hand, for x > 1 using the definition of ¢, evaluation of the integrals, and (12) we get

5 g +o0
0,(0| = =0 / £(0)(t — x)e~ 0" dr / (t — x)e~ @ g
7
§

Cn

ol SOl

N

Cn

+00
2a 2a
—"/|t—x|e‘”n“"‘)Z dt+ =2 /(t—x)e‘“"“"‘)2 dt
C
5 "y
8

8
7

5
— —20an /(t _ X)e—an(t—x)z dt + l . e*an(%*x)z
Cn Cn
3
— l(e—an(%—X)z _ e m(3—¥? +e—an(§—X)Z) < 2 e~ n(g—x)? <2 I =gz <2". g
Cn Cn T
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