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proof of this theorem.
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Using ideas from [6,3] and [5] we give a simple proof of the following theorem from [1].

Theorem 1 (Azagra–Fry–Keener). Let X be a real separable normed linear space with a separating polynomial. Then there is a con-
stant K ∈ R such that for each ε > 0 and any L-Lipschitz function f : X → R there is a KL-Lipschitz function g ∈ Cω(X) satisfying
supx∈X | f (x) − g(x)| � ε.

By B(x, r) (resp. U (x, r)) we denote the closed (resp. open) ball centred at x with radius r > 0. If we need to stress that
the ball is taken in the space X we write U X (x, r). By X̃ we denote the Taylor complexification of a real normed linear
space X . By H(Ω) we denote the set of all holomorphic functions defined on an open subset Ω of a complex normed linear
space.

The proof is divided into a few steps (Proposition 2, Proposition 4, and Lemma 6). We begin by introducing an auxiliary
notion. Let X be a real normed linear space and U = {Ux; x ∈ Ux ⊂ X̃, x ∈ X} be a collection of open neighbourhoods in X̃ .
Let A ⊂ X . We say that a function h : ⋃ U → C separates A with respect to U if

(S1) h|X maps into R,
(S2) h(x) � 1 whenever x ∈ A,
(S3) |h(z)| � 1

4 whenever z ∈ Ux , x ∈ X , dist(x, A) � 1.

Proposition 2. Let X be a real normed linear space. Assume that there is U = {Ux; x ∈ Ux ⊂ X̃, x ∈ X} a collection of open neigh-
bourhoods in X̃ and C > 0 such that for each A ⊂ X there is a function hA ∈ H(

⋃
U ) which separates A with respect to U and such

that hA |X is C-Lipschitz. Then for every ε > 0 and every L-Lipschitz function f : X → R there is a 10CL-Lipschitz function g ∈ Cω(X)

satisfying supx∈X | f (x) − g(x)| � ε.

For the proof we need the following technical lemma.
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Lemma 3. There are functions θn ∈ H(C), n ∈ N, with the following properties:

(T1) θn|R maps into [0,1],
(T2) θn|R is 4-Lipschitz,
(T3) |θn(z)| � 2−n for every z ∈ C, |z| � 1

4 ,
(T4) |θn(x) − 1| � 2−n for every x ∈ R, x � 1,
(T5) |(θn|R)′(x)| � 2−n for every x ∈ R, x � 1

2 or x � 1.

Proof of Proposition 2. Let us define a function f̂ : X → R by f̂ (x) = 4
ε f ( ε

4L x). This function is obviously 1-Lipschitz.

Denote f̂ + = max{ f̂ ,0} and f̂ − = max{− f̂ ,0} and notice that both functions are again 1-Lipschitz. Next, let us define
sets An = {x ∈ X; f̂ +(x) � n} for n ∈ N ∪ {0}. Clearly, An ⊂ An−1 for all n ∈ N, and using the 1-Lipschitz property of f̂ + it is
easy to check that

dist(X \ An, An+1) � 1 for all n ∈ N. (1)

Denote hn(z) = θn � hAn for n ∈ N. For each n ∈ N, hn ∈ H(
⋃

U ) and hn|X is 4C-Lipschitz. Put h+ = ∑∞
n=1 hn .

Fix an arbitrary x ∈ X . Then there is m ∈ N such that x ∈ Am−1 \ Am . Hence

x ∈ An for n < m and x ∈ X \ An−1 for n > m. (2)

From this, (1), (S3), and (T3) it follows that |hn(z)| � 2−n for all n > m and z ∈ Ux . Hence the sum in the definition of h+
converges absolutely uniformly on Ux and so h+ ∈ H(

⋃
U ). This together with (S1) and (T1) implies that h+|X ∈ Cω(X).

Using (2), (S2) and (T4), (1), (S3) and (T3), and finally m − 1 + hm(x) ∈ [m − 1,m] and f̂ +(x) ∈ [m − 1,m), we obtain

∣∣h+(x) − f̂ +(x)
∣∣ =

∣∣∣∣∣
m−1∑
n=1

hn(x) + hm(x) +
∞∑

n=m+1

hn(x) − f̂ +(x)

∣∣∣∣∣
�

m−1∑
n=1

∣∣hn(x) − 1
∣∣ +

∞∑
n=m+1

∣∣hn(x)
∣∣ + ∣∣m − 1 + hm(x) − f̂ +(x)

∣∣

<

m−1∑
n=1

2−n +
∞∑

n=m+1

2−n + 1 < 2.

Further, from (1) it follows that there is a neighbourhood U of x in X such that U ⊂ X \ Am and U ⊂ An for n < m − 1.
Thus |hAn (y)| � 1

4 for n > m and y ∈ U , and hAn (y) � 1 for n < m − 1 and y ∈ U . This together with (T5) implies
‖(hn|X )′(y)‖ = |(θn|R)′(hAn (y))|‖(hAn |X )′(y)‖ � 2−nC for n ∈ N \ {m − 1,m} and y ∈ U . Hence

∑∞
n=1(hn|X )′ converges ab-

solutely uniformly on U and so

∥∥(
h+∣∣

X

)′
(x)

∥∥ �
∞∑

n=1

∥∥(hn|X )′(x)
∥∥ �

∑
n 
=m

2−nC + ∥∥(hm|X )′(x)
∥∥ < C + 4C = 5C .

Similarly we obtain an approximation of f̂ − denoted by h− . Put h = h+ − h− . Then h|X ∈ Cω(X), |h(x) − f̂ (x)| < 4 for
every x ∈ X , and ‖(h|X )′(x)‖ � ‖(h+|X )′(x)‖ + ‖(h−|X )′(x)‖ < 10C for every x ∈ X .

Finally, let g(x) = ε
4 h( 4L

ε x) for x ∈ X . It is straightforward to check that g satisfies the conclusion of our proposition. �
Let X be a set. A collection {ψα}α∈Λ of functions on X is called a supremal partition (sup-partition) if

• ψα : X → [0,1] for all α ∈ Λ,
• there is a Q > 0 such that supα∈Λ ψα(x) � Q for each x ∈ X ,
• for each x ∈ X and for each ε > 0 the set {α ∈ Λ; ψα(x) > ε} is finite.

Proposition 4. Let X be a real normed linear space. Suppose that there is an open neighbourhood Ĝ of X in X̃ and a collection {ψ̂n}n∈N

of functions on Ĝ with the following properties:

(P1) {ψ̂n|X }n∈N is a sup-partition on X,
(P2) the mapping z �→ (anψ̂n(z))n∈N is a holomorphic mapping from Ĝ into c̃0 for any (an) ∈ 	∞ ,
(P3) there is M > 0 such that each ψ̂n|X is M-Lipschitz,
(P4) there is r > 0 such that for each n ∈ N there is x̂n ∈ X such that ψ̂n(x) � Q for x ∈ X, ‖x − x̂n‖ � r.
8
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Then there is a collection U of open neighbourhoods in X̃ such that for each A ⊂ X there is a function hA ∈ H(
⋃

U ) which separates
A with respect to U and such that hA |X is C-Lipschitz, where C = 2r

√
2M/Q .

In the proof we use the following proposition.

Proposition 5. Let q � 1. There is an open set W ⊂ c̃0 and a function μ ∈ H(W ) with the following properties:

(M1) For every w ∈ c0 \ {0} there is 
w > 0 such that Uc̃0
(y,
w) ⊂ W for every y ∈ c0 satisfying |w| � |y| � q|w|, where the

inequalities are understood in the lattice sense.
(M2) μ(w) � 8 for w ∈ c0 , ‖w‖ � 8.
(M3) |μ(z)| � 2 for z ∈ Uc̃0

(y,
w), where y ∈ c0 , ‖y‖ � 1, and w ∈ c0 \ {0}, |w| � |y| � q|w|.
(M4) μ|c0 is

√
2-Lipschitz and maps into R.

Proof of Proposition 4. Let W , μ, and 
w be as in Proposition 5 for q = 8
Q . Further, we put G = 1

2r Ĝ , xn = x̂n
2r , and

ψn(z) = ψ̂n(2rz) for z ∈ G . Then the functions ψn|X are 2rM-Lipschitz and

ψn(x) � Q

8
for x ∈ X, ‖x − xn‖ � 1

2
. (3)

Denote w(z) = (ψn(z))n∈N for z ∈ G . By the continuity of the mapping w (which follows from (P2)), for each x ∈ X there
is an open neighbourhood Ux of x in X̃ such that Ux ⊂ G and ‖w(z) − w(x)‖ < 
w(x)/q whenever z ∈ Ux . (Notice that
w(x) ∈ c0 \ {0}.) Put U = {Ux; x ∈ X}.

Let A ⊂ X . For each n ∈ N put bn = q if dist(xn, A) � 1
2 and bn = 1 otherwise. Choose z ∈ ⋃

U and let x ∈ X be such that
z ∈ Ux . Then∥∥(

bnψn(z)
) − (

bnψn(x)
)∥∥ = sup

n∈N

∣∣bn
(
ψn(z) − ψn(x)

)∣∣ � q sup
n∈N

∣∣ψn(z) − ψn(x)
∣∣ = q

∥∥w(z) − w(x)
∥∥ < 
w(x) (4)

and since 0 � w(x) � (bnψn(x)) � qw(x) in the lattice sense, from (M1) it follows that (bnψn(z)) ∈ W . Therefore we
may define hA(z) = 1

8 μ((bnψn(z))) for z ∈ ⋃
U and property (P2) implies that hA ∈ H(

⋃
U ). Further, hA |X is obviously

C-Lipschitz.
Next we show that hA separates A with respect to U . Clearly hA has property (S1). Pick any x ∈ A. From (P1) and

(3) it follows that sup{ψn(x); n ∈ N, dist(xn, A) � 1
2 } � Q . Therefore ‖(bnψn(x))‖ � qQ = 8 and consequently (M2) gives

property (S2). Finally, to show (S3) let x ∈ X be such that dist(x, A) � 1. Then, by (3), ψn(x) � Q
8 for those n ∈ N for which

dist(xn, A) � 1
2 . Thus ‖(bnψn(x))‖ � max{q Q

8 ,1} = 1. Now (4) together with (M3) implies |hA(z)| � 1
4 for z ∈ Ux . �

The following lemma finishes the proof of Theorem 1.

Lemma 6. Let X be a real separable normed linear space with a separating polynomial. Then there is an open neighbourhood G of X
in X̃ and a collection of functions {ψn}n∈N satisfying the properties (P1)–(P4) in Proposition 4.

To prove this lemma we will need a few auxiliary statements.

Lemma 7. Let X be a real normed linear space with a separating polynomial. Then there is 
 > 0 and a function ν ∈ H(Ω), where
Ω = {x + iy ∈ X̃; x, y ∈ X, ‖y‖ < 
}, such that ν|X is Lipschitz and maps into [0,+∞), ν(0) = 0, ν(x) � ‖x‖ − 1 for x ∈ X, and
the family of functions {y �→ Imν(x + iy); y ∈ X, ‖y‖ < 
}x∈X is equicontinuous at 0.

Proof. It is an easy well-known fact that if X admits a separating polynomial then X admits a homogeneous separating
polynomial (see e.g. [4]). Put ν(z) = (1 + P (z))1/n − 1 for a suitable n-homogeneous separating polynomial P . The equicon-
tinuity follows from the fact that ν is even Lipschitz on the whole of Ω . For the details see [1, Lemma 2]. �
Lemma 8. There are functions φn ∈ H(Cn) and constants δn > 0, n ∈ N, with the following properties:

(H1) φn|Rn maps into [0,1],
(H2) φn|Rn is 1-Lipschitz with respect to the maximum norm,
(H3) |φn(z)| � 2−n for every z ∈ C

n such that there is j ∈ {1, . . . ,n − 1} for which Re z j � 1
2 and | Im zi | � δ j for i = 1, . . . ,n,

(H4) φn(x) � 1
4 for every x ∈ R

n for which xn � 3 and xi � 3, i = 1, . . . ,n − 1,

(H5) φn(x) � 1
32 for x ∈ R

n, xn � 5.
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With the aid of the statements above the proof of Lemma 6 is not difficult.

Proof of Lemma 6. Let ν and Ω be the function and the set from Lemma 7 and φn be the functions from Lemma 8. Let
{xn}n∈N be a dense subset of X . Put

ψn(z) = φn
(
ν(z − x1), . . . , ν(z − xn)

)
for z ∈ Ω, n ∈ N.

Then ψn ∈ H(Ω) and by (H1) ψn|X maps into [0,1].
Let M > 0 be such that ν|X is M-Lipschitz. Pick any x ∈ X . Then from the density of {xn} and the fact that ν(y) �

M‖y‖ for any y ∈ X it follows that there is k ∈ N such that ν(x − xk) � 3. Let k ∈ N be the smallest such number. Then
property (H4) implies that ψk(x) � 1

4 . Thus supn∈N ψn(x) � Q for each x ∈ X , where Q = 1
4 .

By the continuity of ν there is ρ > 0 such that |ν(z)| < 1
2 whenever z ∈ X̃ , ‖z‖ < ρ . Now fix x ∈ X and find an index j ∈ N

such that ‖x j −x‖ < ρ . Using the equicontinuity of {y �→ Imν(w + iy)} at 0 choose 0 < 
 j < 
 such that | Imν(w + iy)| < δ j

whenever w, y ∈ X , ‖y‖ < 
 j . Let us define Ux = {z = w + iy ∈ X̃; ‖z − x j‖ < ρ, ‖y‖ < 
 j}. Notice that Ux is an open
neighbourhood of x and z − xl ∈ Ω for every z ∈ Ux , l ∈ N. Let z = w + iy ∈ Ux . Then | Imν(z − xl)| = | Imν(w − xl + iy)| < δ j

for every l ∈ N. Furthermore, |Reν(z − x j)| � |ν(z − x j)| < 1
2 . Hence, by (H3), |ψn(z)| � 2−n for n > j and z ∈ Ux . It follows

that for any (an) ∈ 	∞ , (anψn(z))n∈N = ∑∞
n=1 anψn(z)en ∈ c̃0 and the sum converges absolutely uniformly on Ux . As the

mappings z �→ anψn(z)en are holomorphic as mappings from Ω into c̃0, we can conclude that (anψn) is a holomorphic
mapping from G = ⋃

x∈X Ux into c̃0, which gives (P2).
Property (P3) obviously holds by (H2). Finally we show that (P4) is satisfied with r = 6. Indeed, fix n ∈ N. For x ∈ X ,

‖x − xn‖ � 6 we have ν(x − xn) � ‖x − xn‖ − 1 � 5, hence, by (H5), ψn(x) � 1
32 = Q

8 . �
For the proof of Proposition 5 we need the following version of the Implicit Function Theorem with explicit estimates

on the size of the region where the solution is found.

Theorem 9 (Implicit Function Theorem). Let X be a complex normed linear space, U ⊂ X and V ⊂ C open sets, and F ∈ H(U × V ).
Let ẑ ∈ U , û ∈ V satisfy F (ẑ, û) = 0. Further let R > 0, S > 0, and M > 0 be such that B(ẑ, S) ⊂ U , B(û, R) ⊂ V , and |F (z, u)| � M

for every z ∈ B(ẑ, S), u ∈ B(û, R). Assume that | ∂ F
∂u (ẑ, û)| � a > 0 and 0 < r � 1

2
aR2

aR+M . Put c = ar − Mr2

R(R−r) and s = S c
c+M . Then for

each z ∈ U (ẑ, s) there is a unique u ∈ B(û, r) satisfying F (z, u) = 0. Denote such u by ϕ(z). Then ϕ ∈ H(U (ẑ, s)).

The proof of this theorem is fairly standard using for example the Rouché theorem and Cauchy’s estimates for ∂n F
∂un on C

and for ∂ F
∂z on X . Some details can be found e.g. in [2], although the estimates and the proof given there are not entirely

correct.

Proof of Proposition 5. Define μ on c0 as the Minkowski functional of the set {x ∈ c0; ∑∞
n=1(xn)2n � 1}. Then μ is an

equivalent norm on c0 for which ‖x‖ � μ(x) �
√

2‖x‖ (see [4]). This gives property (M4) and (M2).
Let F : c̃0 × (C \ {0}) → C be defined as F (z, u) = ∑∞

n=1(zn/u)2n − 1. This function is holomorphic on c̃0 × (C \ {0}) and
for every x ∈ c0 \ {0} we have F (x,μ(x)) = 0.

Fix w ∈ c0 \ {0}. Put R = ‖w‖
2 , S = ‖w‖

4 , M = 1 + ∑∞
n=1(

1
2 + 2q

‖w‖ |wn|)2n , a = 1√
2q‖w‖ , r = min{ 1

2
aR2

aR+M ,2 − √
2 },

and 
w = s as defined in Theorem 9. Now choose any y ∈ c0, |w| � |y| � q|w|. Then R < ‖w‖ � ‖y‖ � μ(y), thus
B(μ(y), R) ⊂ V = C \ {0}. For any z ∈ U (y, S), u ∈ B(μ(y), R) we have |u| � μ(y) − R � ‖y‖ − R � ‖w‖ − R = ‖w‖

2 and

|zn| � |yn| + |zn − yn| � q|wn| + ‖z − y‖ � q|wn| + ‖w‖
4 , and hence |F (z, u)| � 1 + ∑∞

n=1 | zn
u |2n � M . Finally, | ∂ F

∂u (y,μ(y))| =
|− 1

μ(y)

∑∞
n=1 2n(

yn
μ(y)

)2n| � 1
μ(y)

∑∞
n=1(

yn
μ(y)

)2n = 1
μ(y)

� 1√
2‖y‖ � a. Thus by Theorem 9 the equation F (z, u) = 0 uniquely

determines a holomorphic function μw
y on Uc̃0

(y,
w) with values in B(μ(y), r) and this holds for every y ∈ c0, |w| �
|y| � q|w|.

Take any two functions μ1 = μ
w1
y1 , μ2 = μ

w2
y2 defined on open balls U1 and U2 respectively. If U1 and U2 intersect, then

it is easy to check that U1 ∩ U2 ∩ c0 is a non-empty set relatively open in c0. Since μ1 = μ on U1 ∩ c0 and μ2 = μ on
U2 ∩ c0, it follows that both holomorphic functions μ1 and μ2 agree on some ball in U1 ∩ U2 and therefore on the whole
U1 ∩ U2. This observation allows us to put W = ⋃{Uc̃0

(y,
w); w ∈ c0 \ {0}, y ∈ c0, |w| � |y| � q|w|} and define μ on W
by μ(z) = μw

y (z) whenever z ∈ U (y,
w). This gives property (M1).
To prove (M3) let w ∈ c0 \ {0}, y ∈ c0, |w| � |y| � q|w|, ‖y‖ � 1, and z ∈ Uc̃0

(y,
w). Then by the choice of r above we

have μ(z) ∈ B(μ(y),2 − √
2 ) and therefore |μ(z)| � |μ(y)| + 2 − √

2 �
√

2‖y‖ + 2 − √
2 � 2. �

It remains to prove Lemma 3 and Lemma 8. The proofs are standard using integral convolution technique and estimates
which are not difficult. We could just write the formulas for the functions in consideration and stop there (we claim a short
proof after all). Nevertheless for the convenience of the reader we include rather detailed computations.



M. Johanis / J. Math. Anal. Appl. 388 (2012) 1–7 5
Proof of Lemma 8. Let ζn : R
n → [0,1] be a 1-Lipschitz function (with respect to the maximum norm) such that

ζn(x) =
{

0 whenever xn � 4 or ∃i ∈ {1, . . . ,n − 1}: xi � 1,

1 whenever xn � 3 and ∀i ∈ {1, . . . ,n − 1}: xi � 2.

For each n ∈ N put δn = √
2−n/8 and find an ∈ R such that

an2−n � 3, (5)

e−an2−n/8 � 2
√

π · 2−n, (6)

and
+∞∫

−
√

an2−n

e−t2
dt � 1

n
√

2

√
π. (7)

Finally, put

φn(z) = 1

cn

∫
Rn

ζn(t)e−an
∑n

i=1 2−i(zi−ti)
2

dt for z ∈ C
n,

where cn = ∫
Rn e−an

∑n
i=1 2−i t2

i dt =
√

( π
an

)n
∏n

i=1 2i .

Using standard theorems on integrals dependent on parameter we obtain φn ∈ H(Cn). Property (H1) is obvious, and
property (H2) is easy to check.

Next we will need the elementary estimate

+∞∫
x

e−t2
dt �

+∞∫
x

te−t2
dt = 1

2
e−x2

for x � 1. (8)

To prove (H3) we use successively the definition of ζn , Fubini’s theorem, substitution, Re z j � 1
2 , estimate (8) together

with (5), the definition of δ j , and finally (6) to obtain

∣∣φn(z)
∣∣ � 1

cn

∫
Rn

ζn(t)e−an
∑n

i=1 2−i Re(zi−ti)
2

dt = ean
∑n

i=1 2−i(Im zi)
2

cn

∫
Rn

ζn(t)e−an
∑n

i=1 2−i(Re zi−ti)
2

dt

� eanδ2
j

cn

∫
t∈R

n

t j>1

e−an
∑n

i=1 2−i(Re zi−ti)
2

dt = eanδ2
j

cn

∫
Rn−1

e−an
∑

i 
= j 2−i(Re zi−ti)
2

dt ·
+∞∫
1

e−an2− j(Re z j−t j)
2

dt j

= eanδ2
j

√
π

√
an2− j

+∞∫
1

e−an2− j(Re z j−t)2
dt = eanδ2

j

√
π

+∞∫
√

an2− j(1−Re z j)

e−t2
dt � eanδ2

j

√
π

+∞∫
1
2

√
an2− j

e−t2
dt

� eanδ2
j

2
√

π
· e− 1

4 an2− j = 1

2
√

π
· e−an(2− j/4−δ2

j ) <
1

2
√

π
· e−an2−n/8 � 2−n.

To prove (H4) we use successively the definition of ζn , Fubini’s theorem and substitution, xn � 3 and xi � 3, substitution,
and (7) to obtain

φn(x) � 1

cn

∫
tn�3

ti�2, i=1,...,n−1

e−an
∑n

i=1 2−i(xi−ti)
2

dt = 1

cn

3−xn∫
−∞

e−an2−nt2
dt ·

n−1∏
i=1

+∞∫
2−xi

e−an2−i t2
dt

� 1

cn

0∫
−∞

e−an2−nt2
dt ·

n−1∏
i=1

+∞∫
−1

e−an2−i t2
dt � 1

2

1

cn

n∏
i=1

+∞∫
−1

e−an2−i t2
dt = 1

2

1

(
√

π )n

n∏
i=1

+∞∫
−
√

an2−i

e−t2
dt

� 1

2

1

(
√

π )n

n∏
i=1

+∞∫
−
√

a 2−n

e−t2
dt = 1

2

(
1√
π

+∞∫
−
√

a 2−n

e−t2
dt

)n

� 1

4
.

n n
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Finally, to prove (H5) we use successively the definition of ζn , Fubini’s theorem, substitution, xn � 5, and (8) together
with (5) to obtain

φn(x) � 1

cn

∫
t∈R

n

tn<4

e−an
∑n

i=1 2−i(xi−ti)
2

dt =
√

an

π2n

4∫
−∞

e−an2−n(xn−t)2
dt = 1√

π

√
an2−n(4−xn)∫

−∞
e−t2

dt

� 1√
π

+∞∫
√

an2−n

e−t2
dt � 1

2
√

π
· e−an2−n

<
1

32
. �

Proof of Lemma 3. Let ζ : R → [0,1] be defined as ζ(t) = 0 for t � 5
8 , ζ(t) = 4t − 5

2 for t ∈ ( 5
8 , 7

8 ), and ζ(t) = 1 for t � 7
8 .

Obviously ζ is a 4-Lipschitz function. For each n ∈ N find an ∈ R such that

3

8

√
an � 1, (9)

e− 5
64 an � 2

√
π · 2−n, (10)

+∞∫
− 1

8
√

an

e−t2
dt �

(
1 − 2−n)√π, (11)

and

2
√

an · e− 1
64 an �

√
π · 2−n. (12)

Finally, put

θn(z) = 1

cn

∫
R

ζ(t)e−an(z−t)2
dt for z ∈ C,

where cn = ∫
R

e−ant2
dt =

√
π
an

.

Using standard theorems on integrals dependent on parameter we obtain θn ∈ H(C). Property (T1) is obvious, and prop-
erty (T2) is easy to check.

To prove (T3) we use successively the definition of ζ , | Im z| � 1
4 , substitution, Re z � 1

4 , estimate (8) together with (9),
and finally (10) to obtain

∣∣θn(z)
∣∣ � 1

cn

∫
R

ζ(t)e−an Re(z−t)2
dt = ean(Im z)2

cn

∫
R

ζ(t)e−an(Re z−t)2
dt � e

1
16 an

cn

+∞∫
5
8

e−an(Re z−t)2
dt

= e
1

16 an

√
π

+∞∫
√

an( 5
8 −Re z)

e−t2
dt � e

1
16 an

√
π

+∞∫
3
8
√

an

e−t2
dt � e

1
16 an

2
√

π
· e− 9

64 an = e− 5
64 an

2
√

π
� 2−n.

To prove (T4) we use successively the definition of ζ , substitution, x � 1, and (11) to obtain

θn(x) � 1

cn

+∞∫
7
8

e−an(x−t)2
dt = 1√

π

+∞∫
√

an( 7
8 −x)

e−t2
dt � 1√

π

+∞∫
− 1

8
√

an

e−t2
dt � 1 − 2−n.

Finally, we show (T5). Differentiating under the integral sign we obtain

θ ′
n(x) = 2an

cn

∫
ζ(t)(t − x)e−an(t−x)2

dt.
R
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Thus for x � 1
2 using the definition of ζ , substitution, and (12) we get

∣∣θ ′
n(x)

∣∣ � 2an

cn

+∞∫
5
8

(t − x)e−an(t−x)2
dt = 1

cn

−an( 5
8 −x)2∫

−∞
e y dy =

√
an

π
· e−an( 5

8 −x)2 �
√

an

π
· e− 1

64 an � 2−n.

On the other hand, for x � 1 using the definition of ζ , evaluation of the integrals, and (12) we get

∣∣θ ′
n(x)

∣∣ = 2an

cn

∣∣∣∣∣
7
8∫

5
8

ζ(t)(t − x)e−an(t−x)2
dt +

+∞∫
7
8

(t − x)e−an(t−x)2
dt

∣∣∣∣∣

� 2an

cn

7
8∫

5
8

|t − x|e−an(t−x)2
dt + 2an

cn

∣∣∣∣∣
+∞∫
7
8

(t − x)e−an(t−x)2
dt

∣∣∣∣∣

= −2an

cn

7
8∫

5
8

(t − x)e−an(t−x)2
dt + 1

cn
· e−an( 7

8 −x)2

= 1

cn

(
e−an( 7

8 −x)2 − e−an( 5
8 −x)2 + e−an( 7

8 −x)2) � 2

cn
· e−an( 7

8 −x)2 � 2

√
an

π
· e− 1

64 an � 2−n. �
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