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We use recent measurements of the expansion history of the universe to place constraints on the parameter

space of cubic Galileon models, in particular we concentrate on those models which contain the simplest

Galileon term plus a linear potential. This gives strong constraints on the Lagrangian of these models. Most

dynamical terms in the Galileon Lagrangian are constraint to be small and the acceleration is effectively

provided by a constant term in the scalar potential, thus reducing, effectively, to a LCDM model for current

acceleration. The effective equation of state is indistinguishable from that of a cosmological constant w = −1

and the data constraint it to have no temporal variations of more than at the few % level. The energy density

of the Galileon can contribute only to about 10% of the acceleration energy density, the other 90% being a

cosmological constant term. This demonstrates how useful direct measurements of the expansion history of

the universe are at constraining the dynamical nature of dark energy. 
c © 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The past decade in observational cosmology has been marked by

the confirmation from different probes of the observed late-time ac-

celerated expansion of the universe [ 1 –8 ]. The current challenge in

theoretical physics and cosmology is to explain the nature of this ac-

celeration. While the explanation as a pure cosmological constant is

consistent with all data sets, other models that modify the Einstein–

Hilbert action remain attractive as means of explaining acceleration.

Among them, the Galileon models offer a robust framework in order

to explain the dynamics of dark energy. They were originally intro-

duced for a flat space-time [ 9 ] in order to construct the most general

single-field modified gravity theory which respects the Galilean-shift

symmetry ( π → π + b μx μ + c , with b μ and c constants) and avoids

Ostrogradski instabilities (no more than second derivatives in the

equations of motion). The generalization of a curved space-time, the

covariant Galileon [ 10 ], breaks softly the Galilean-shift symmetry, but

avoids the Ostrogradski instabilities. 
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In this model, the form of the action becomes 

S = 

∫ 
d 4 x 

√ −g 

[ 

M 

2 
pl 

2 

R + 

1 

2 

5 ∑ 

i= 1 
c i L i 

] 

+ 

∫ 
d 4 xL M 

, (1)

where c 1–5 are dimensionless constants. L M 

is the Lagrangian of a

pressureless perfect fluid with density ρ and four-velocity u μ, i.e. the

dark matter. The five Lagrangian densities for the scalar field are 

L 1 = M 

3 π (2)

L 2 = ( ∇π ) 
2 (3)

L 3 = 

( �π ) ( ∇π ) 
2 

M 

3 
(4)

L 4 = ( ∇π ) 
2 

[ 
2 ( �π ) 

2 − 2 π; μv π ; μv − R ( ∇π ) 
2 / 2 

] 
M 

6 
(5)

L 5 = ( ∇π ) 
2 
[ ( �π ) 

3 − 3 ( �π ) π; μv π
; μv + 2 π v 

; μπ
ρ
; v π

μ
; ρ

+ − 6 π; μπ ; μv π ; ρG  vρ ] /M 

9 , 
(6)

where M is a constant with dimensions of mass and π is the Galileon

field. L 1 is the most general potential term that respects the Galilean-

shift symmetry in a flat space-time. L 2 is the well known standard

kinetic term. L 3 −5 are the so-called non-standard kinetic terms be-

cause they mix first and second derivatives of the scalar field. An im-

portant property of the Galileon models is the Vainshtein mechanism
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Fig. 1. Hubble parameter H as a function of the redshift z . The blue points are the data 

we use in our analysis. The black line shows the evolution of the best fit �CDM model 

with H 0 = 72 . 8 and �m 0 = 0.26. The red line shows the best fit we have found for 

the Galileon evolution, i.e. { H 0 � 72 , �m 0 � 0 . 27 , d 1 � −47 , d 2 � 13 × 10 3 , d 3 � −14 } . 
The gray area shows the 1–σ region for the joint distribution of the parameters in the 

Galileon Lagrangian. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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 11 ], which is due to the non-standard kinetic terms. This mechanism 

ecouples the scalar field from gravity at small scales ( r � r V , where 

 V is a characteristic scale called Vainshtein radius), in order to satisfy 

olar-system constraints hiding the presence of a fifth force. 

Even though the comparison of the Galileon with observations has 

lready produced interesting results [ 12 –19 ], in this paper we want 

o use the expansion history of the universe to constrain a subclass of 

hese models: the cubic Galileon ( c 4 = c 5 = 0). In particular we take 

nto account c 1 �= 0 which acts as a cosmological constant in the case 
′ → 0. It is important to note that this condition can be reached only 

ynamically (see [ 20 ] for a discussion on the role of this term). Thus, 

ith this setup we have a simple model that can eventually reduce to 

he �CDM model. This will be particularly important in the parameter 

pace analysis we are doing in the next sections, and it will affect our 

onclusions. 

Throughout the paper we adopt units c = h ¯ = G = 1; our signature 

s ( −, + , + , + ). Greek indices run over { 0, 1, 2, 3 } , denoting space-

ime coordinates, whereas Latin indices run over { 1, 2, 3 } , labeling 

patial coordinates. 

. Galileon cosmology 

In a flat Friedmann–Lema ̂ ıtre–Robertson–Walker (FLRW) uni- 

erse, 

 s 2 = a ( τ ) 
2 
[ 
−d τ 2 + δij d x 

i d x j 
] 
, (7) 

he Friedmann equations and the Galileon field equation read, respec- 

ively 

3 M 

2 
pl H 

2 

a 2 
= ρm 

+ ρπ , (8) 

M 

2 
pl H 

2 

a 2 
= 

(
1 + 

2 aH 

′ 

H 

)
= −pπ, (9) 

c 1 M 

3 

2 
+ c 2 H 

2 

[
π ′′ + 

H 

′ π ′ 

H 

+ 

3 π ′ 

a 

]

− 6 c 3 H 

4 π ′ 

M 

3 a 

[
π ′′ + 

3 H 

′ π ′ 

2 H 

+ 

π ′ 

a 

]
= 0 , 

(10) 

here H ≡ a ′ ( τ ) = a ( τ ) is the Hubble parameter, primes represent 

erivatives with respect to the scale factor a and 

π ≡ c 1 M 

3 

2 
π + 

c 2 
2 
H 

2 π ′ 2 − 3 c 3 
3 

H 

4 π ′ 3 , (11) 

M a 
p π ≡ − c 1 M 

3 

2 
π + 

c 2 
2 
H 

2 π ′ 2 − c 3 

M 

3 
H 

4 π ′ 2 
[
π ′′ + 

H 

′ π ′ 

H 

]
, (12) 

are the scalar field density and pressure, respectively. Since the mass 

scale M can be easily absorbed into the coefficients c i , without loss 

of generality, we have defined M 

3 ≡ M pl H 

2 
0 , where H 0 is the value of 

the Hubble parameter H( τ ) today. 

In principle, the background evolution, Eqs. (9) and (10) , of this 

model is given once six parameters { c 1 ; c 2 ; c 3 ; H( a i ); π ( a i ); π ′ ( a i ) }
are fixed. In order to work with dimensionless quantities and to fix 

the initial conditions it is possible to renormalize the Hubble and the 

Galileon fields 

H ( a ) → h ( a ) ≡ H ( a ) 

aH 0 
(13) 

π ′ ( a ) → x ( a ) ≡ a i π ′ ( a ) 
aπ ′ ( a i ) 

a 2 h ( a ) 
2 . (14) 

It is important to note that the background equations have a de- 

generacy in the parameter space. This means that different set of 

parameters can give the same cosmology. Thus, it is convenient to 

eliminate one degree of freedom (d.o.f.) through a redefinition of the 

parameters [ 19 ] 

c i → d i ≡
(

π ′ ( a i ) 
a i M pl 

)i 

c i . (15) 

It is possible to use the first Friedmann equation, Eq. (8) , to elimi- 

nate the potential term in Eq. (9) [ 21 , 22 ]. Together with Eq. (10) , and

using this reparametrization, we have now our set of two first-order 

differential equations 

2 hh ′ = −3 �m 0 a 
−3 − d 2 x 

2 

h 2 
− d 3 x 

2 

h 2 

(
x ′ − 3 x − xh ′ 

h 

)
(16) 

d 1 
2 

+ d 2 

(
x ′ − xh ′ 

h 
+ 3 x 

)
− 6 d 3 x 

(
x ′ − xh ′ 

2 h 
+ 

3 

2 
x 

)
= 0 , (17) 

where �m 0 ≡ ρm 0 / (3 M 

2 
pl H 

2 
0 ) is the value of the matter density today. 

The parameter region we have explored satisfies [ 23 ] 

d 2 − 6 d 3 x + 

3 d 2 3 x 
4 

2 h 4 
> 0 (18) 

d 2 − 2 d 3 a 

(
x ′ + 

2 x 

a 
− xh ′ 

h 

)
− d 2 3 x 

4 

2 h 4 
≥ 0 (19) 

in order to avoid ghost and laplace instabilities. 

The initial condition for the Galileon field is x( a i ) = a 2 i h 
2 ( a i ), while

we do not need to fix π ( a i ). Even if the initial conditions are completed 

by fixing h ( a = 1) = 1, we found it is convenient to add another 

constraint in order to avoid instabilities in the numerical integration 

of the differential equations, precisely we imposed that at early times 

the energy density of DM was dominant w.r.t. the energy density of 

the Galileon 

h 2 � 

�m 0 

a 3 
. (20) 

Therefore, the set of parameters we need to study the background 

dynamics for, Eqs. (16) and (17) , will be { �m0 , d 1 , d 2 , d 3 } . 

3. Numerical results 

Age measurements of massive, red galaxies can be used to estimate 

the upper edge of the age distribution at each redshift, the so-called 

red envelope ages. These measurements of the oldest galaxy ages vs. 

redshift can be used as a redshift-dependent lower bound on the age 

of the universe. In total we use 32 such age estimates in the redshift 

range z = 0.1–1.85, with independent error bars at the 10% level 
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Fig. 2 a. for the marginalised distribution of each parameter. Black thick lines refer to the distribution obtained using a Gaussian prior on H 0 ( H 0 = 73.8 ± 2.4 km s −1 Mpc −1 ), 

while the horizontal lines represent the 1 σ ( 	χ2 = 1) and the 2 σ ( 	χ2 = 4) bounds for the 1D marginalized distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(see Fig. 1 ). We refer to [ 24 –28 ] and references therein for details

on the data sets used and on the age estimation from galaxy spectra.

In particular, the difference between our work and the interesting

results obtained in [ 29 , 30 ] is that we are directly constraining H ( z )

rather than its integral as the SN Ia distances. 

Using these data we have minimized the χ2 distribution 

χ2 = 

N ∑ 

i= 1 

[ H 0 h ( z i ) − H obs ( z i ) ] 
2 

σ 2 
i 

, (21)

with a Nelder–Mead algorithm. From now we shall introduce another

variable (i.e. H 0 , which of course does not influence our background

equations of motion), leading to a five-dimensional parameter space.

Trying with different initial points, we have found that the best fit

has χ2 � 13.9, and its coordinates are { H 0 � 72 , �m 0 � 0 . 27 , d 1 �
−47 , d 2 � 13 × 10 3 , d 3 � −14 } . 

We then explored the parameter region around this minimum

with grids of 50 points in each dimension, in order to plot the 1 σ
(68.3% CL) and the 2 σ (95.4% CL) regions. In particular, in Fig. 2 we

plot the 1D marginalized distributions for each parameter. In Fig. 3

we plot the 1 σ ( 	χ2 = 2.3) and the 2 σ ( 	χ2 = 6.18) regions for the

2D joint distributions. In both figures we show the results obtained

using a Gaussian prior on H 0 ( H 0 = 73 . 8 ± 2 . 4 km s −1 Mpc −1 ) [ 31 ] and

a flat prior on �m 0 ∈ [0.26; 0.30]. 

In Figs. 2 and 3 , it can be seen that the parameter d 2 can be sig-

nificantly larger than the other parameters. This result is expected,

indeed during the matter-dominated epoch we have the following

approximated relations 

�m 

( a � 1 ) � 1 (22)

�π ( a � 1 ) � 

d 1 
6 �m 0 

a 3 + 

d 2 
6 

a 4 − d 3 �m 0 a 
3 . (23)
Here, the d 1 and d 3 terms scale as ∝ a 3 , while d 2 as ∝ a 4 . This

means that the Galileon initial energy density is determined mostly

by the d 1,3 terms, while the d 2 term can be increased by a factor a −1

(10 3 at our initial time) before affecting the dynamics at early times.

If we want to generalize this statement to the epochs in which the

Galileon contribution becomes non-negligible, we have to consider

the behavior first noted in [ 23 ], when the authors describe the hierar-

chical dynamics of ρπ (the difference is that they are not considering

d 1 ). Taking into account all the d 2,5 terms, it is shown that if d i is

dominant at a certain epoch, the following terms i.e. d i + 1 , d i + 2 , . . .
will remain subdominant at all subsequent times. 

Having obtained constraints on the coeffcients of the Galileon La-

grangian, we turn our attention to the meaning of this results in more

observational terms. In Fig. 4 we show the values of �π and w π for

the best fitting parameters to the H ( z ) data (solid line) and their 1–σ
uncertainty regions, obtained from the joint distribution of d 1–3 . The

best fitting value of w π is indistinguishable from that of a cosmologi-

cal constant at the 0.1% level. The 1–σ range allows for variations only

of few % from the value of a cosmological constant. The relative con-

tribution of �π to �� is ∼1 at the 10% level, while for the best fitting

model is indistinguishable from a cosmological constant term. Even

within the 1–σ regions nearly 90% of the accelerating energy density

has to be a cosmological constant. These two parameters indicate that

the dynamics of the Galileon is nearly inexistent and that it behaves

mostly as a cosmological constant. A similar result was found in [ 32 ],

where the authors perform a dynamical analysis in the context of the

Generalized Galileon (or Horndeski) theory. In addition, in [ 33 ], the

authors claim that the background evolution of the cubic Galileon

with a potential is not significantly affected by L 3 . This result agrees

with our observation that for viable models the background dynamics
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Fig. 3. 1 σ (dark gray) and 2 σ (light gray) regions for the joint distribution in 2D. In all the panels we have used a Gaussian prior on H 0 ( H 0 = 73.8 ± 2.4 km s −1 Mpc −1 ). 

Fig. 4. Left panel: The evolution of the Galileon energy density ( �π ) w.r.t. the evolution of the �CDM model energy density ( ��). Right panel: The evolution of w π as a function of 

the redshift z . Solid lines are the best fit model while gray areas represent the 1–σ region for the joint distribution. 
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is driven by the potential term. 

4. Conclusions 

In this short note we have shown constraints obtained by compar-

ing the measured expansion history of the universe and the prediction

from the cubic Galileon model with a linear potential. We have found

tight constraints in most of the Lagrangian terms of the model. Even

with the addition of 3 extra free parameters, the best fit we have found

has χ2 � 13 . 9 vs . χ2 
� � 16 . 0, which is not a significant improvement.

In fact, using a simple bayesian evidence computation the Galileon

model is excluded at the “Decisive” level (odds > 100:1 against the

Galileon model). This conclusion is also supported by exploring the

cosmological observables �π and w π , which indicate a behavior sim-

ilar to a cosmological constant for the model. The expansion history

measurements have proven to be extremely useful at constraining

the dynamical evolution of dark energy (see also Refs. [ 34 , 35 ] where

we constrained the dynamics of an effective general dark energy La-

grangian to be less than at the 7% level). Future measurements at the %

level of the expansion history of the universe from the Euclid satellite,

will provide an even more stringent test on the dynamics of recent

cosmic acceleration. 
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