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Abstract In our study, we proposed a novel Neuro-fuzzy classification technique for data mining.

The inputs to the Neuro-fuzzy classification system were fuzzified by applying generalized bell-

shaped membership function. The proposed method utilized a fuzzification matrix in which the

input patterns were associated with a degree of membership to different classes. Based on the value

of degree of membership a pattern would be attributed to a specific category or class. We applied

our method to ten benchmark data sets from the UCI machine learning repository for classification.

Our objective was to analyze the proposed method and, therefore compare its performance with two

powerful supervised classification algorithms Radial Basis Function Neural Network (RBFNN)

and Adaptive Neuro-fuzzy Inference System (ANFIS). We assessed the performance of these

classification methods in terms of different performance measures such as accuracy, root-mean-

square error, kappa statistic, true positive rate, false positive rate, precision, recall, and f-measure.

In every aspect the proposed method proved to be superior to RBFNN and ANFIS algorithms.
� 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information,

Cairo University.
  

Open access under CC BY-NC-ND license.
1. Introduction

Data mining has attracted many researchers and analysts in

the information industry and in research organizations as a
whole in the last decades, due to the availability of large
amounts of data and the immediate need for transforming
such data into meaningful information and knowledge. The

useful knowledge gathered can be applied in many areas such
as market survey, customer retention, production control,
evolutionary analysis and science exploration [1,2].

Classification is an important data mining technique which
involves extracting interesting patterns representing knowledge
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from large real-world databases. Such analysis can provide a
deep insight into the better understanding of different large-
scale databases. The study related to effective knowledge

development is also very popular in any research as because
the decision-making process mainly depends upon the
effectiveness of the classification method being utilized.

Basically data classification [3,4] is the method of discover-
ing a model or classifier that describes and differentiates data
classes so that the model could predict the class of entities with

unknown class label value. It is a two-step procedure, in the
first step; a classifier is constructed denoting a predefined set
of concepts or data classes. This is the training phase, where
a classification algorithm constructs the classifier by learning

from a training data set and their associated class label attri-
butes. In the next step the model is used for classification. In
order to estimate the performance of the classifier a test set

independent of the training tuples is used. Several preprocess-
ing steps such as data cleaning, data selection and data
transformation are also applied to the data set before the

classification procedure takes place.
Artificial neural network (ANN) or simply neural network

(NN) [5–7] is a popular data modeling tool that can perform

intelligent tasks similar to the human brain. NN is well-known
for high precision and high learning ability even when a very
little information is available. One of the reliable methods of
data classification from the neural network domain is the

Multilayer Perceptron Backpropagation network (MLPBPN)
[8,9] algorithm. The Radial Basis Function Neural Network
(RBFNN) [10,11] is another powerful neural network model

that utilizes radial basis functions as the activation functions.
The output of such a neural network model is the linear com-
bination of radial basis functions of inputs and neuron param-

eters. RBFNNs have many utilities, comprising classification,
function approximation, system control, and prediction of
time series.

Due to the presence of imprecise input information, ambi-
guity or vagueness in input data, overlapping boundaries
among classes, and indefiniteness in defining features some
uncertainties can still arise at any stage of a data classification

system. The fuzzy set theory [12–14] as a generalization of the
classical set theory is very flexible in handling different aspects
of uncertainties or incompleteness about real life situations. In

a fuzzy system the features are associated with a degree of
membership to different classes. Both NNs and fuzzy systems
are very adaptable in estimating the input–output relation-

ships. Neural networks deal with numeric and quantitative
data while fuzzy systems can handle symbolic and qualitative
data. Neuro-fuzzy hybridization leads to a crossbreed intelli-
gent system widely known as Neuro-fuzzy system (NFS)

[15,16] that exploits the best qualities of these two approaches
efficiently. The hybrid system unites the human alike logical
reasoning of fuzzy systems with the learning and connected-

ness structure of neural networks by means of fuzzy set theory
based approach.

There is another Neuro-fuzzy classification based model

which comprises a set of interpretable IF-THEN rules. They
consider two conflicting requirements in fuzzy modeling: inter-
pretability against accuracy. In reality, one of the two proper-

ties persists. Therefore the rule based Neuro-fuzzy modeling
research area is divided into two branches: the linguistic fuzzy
modeling that focuses on interpretability, primarily the
Mamdani model; and the exact fuzzy modeling that focuses
on accuracy, mainly the Sugeno model or Takagi–Sugeno–
Kang (TSK) model. The rule based Neuro-fuzzy classification
approach normally applies the concept of adaptive neural net-

work. An adaptive network is a network of nodes (processing
elements) and directed links (weights) that is functionally
equivalent to a Fuzzy Inference System and is referred to as

Adaptive Neuro-fuzzy Inference System or ANFIS [15]. It nor-
mally employs the Sugeno fuzzy model to produce IF-THEN
learning rules. The nodes of an adaptive network are associ-

ated with certain parameters which might have an impact on
the final output. ANFIS generally utilizes a hybrid learning
algorithm which is the combination of gradient descent and
least square method to adapt the parameters in adaptive

network. To put it simply, ANFIS is the combination of
MLPBPN and Sugeno fuzzy model. A fuzzy rule in the Sugeno
model has the following form

IF x is P and y is Q THEN z ¼ fðx; yÞ ð1Þ

where P and Q are the fuzzy sets in the antecedent part of the
given IF-THEN learning rule and z = f(x, y) is a crisp
function in the consequent part of the rule.

In our present study, we proposed a novel Neuro-fuzzy
classification technique for data mining that uses a combina-
tion of MLPBPN and fuzzy set theory approach. We applied

our method to ten benchmark data sets from the UCI machine
learning repository for analysis and, therefore compare its per-
formance with RBFNN and ANFIS based classification
models.

This research study is arranged as follows: Section 2
includes the related works done in this area. Section 3 describes
our proposed Neuro-fuzzy classification method while

Section 4 explains the detailed procedure. Section 5 discusses
the performance analysis and results; and Section 6 is reserved
for the conclusion.
2. Related works

Neuro-fuzzy classification is a field of research that has caused

a great deal of attention in the recent decades. In the Neuro-
fuzzy paradigm, several attempts have been made [17–20]
which led to a strong foundation for research. In that context

we have presented some of the works done in this area by other
researchers.

A study performed by Kuncheva [21] described how to
utilize fuzzy pattern recognition concept in solving real life

problems. According to her work, fuzzy pattern recognition
can be related to fuzzy clustering or with fuzzy IF-THEN sys-
tems used as classifiers and it is close to any pattern classifica-

tion paradigm that involves fuzzy sets. She also indicated that
fuzzy systems combined with neural networks should exploit
the merits of these two approaches efficiently.

Pedrycz [22] specified that artificial neural network model
combined with fuzzy set theory based approaches should
possess the merits of both and it should permit one to arrive

at a more knowledgeable decision making systems. The
research study established that Neuro-fuzzy hybridization
leads to a crossbreed intelligent system that can handle real life
situations reasonably well.

A research work performed by Castellano et al. [23] identi-
fied that the use of a Neuro-fuzzy system and an evolutionary
fuzzy system hybridizes the approximate reasoning mechanism
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of fuzzy systems with the learning abilities of artificial neural
networks and evolutionary algorithms. The aim of their work
was to study different hybrid soft computing based systems by

considering the combined use of evolutionary algorithms and
artificial neural networks in order to empower fuzzy systems
with learning and adaptive capabilities. This research work

vastly contributes to the evolutionary Neuro-fuzzy systems.
Abonyi et al. [24] designed Computational Intelligence (CI)

based techniques by combining fuzzy rule-based expert sys-

tems and data mining algorithms founded on Soft Computing
principles. They too established that such techniques could be
considered for feature selection, feature extraction, rule base
optimization and rule base simplification. Applications of

these CI based techniques were demonstrated successfully
using the benchmark Wine data classification problem.

Keles� and Keles� [25] described how to extract strong fuzzy

rules using a Neuro-fuzzy classification tool named
NEFCLASS. According to their work, positive predictive
value of the rule base was 75% and negative predictive value

was 93%.
Nauck [26] designed a combination of neural network and

fuzzy rule based reasoning system. With proper demonstration

they showed that such a combined approach could enhance the
performance of control, decision-making and data analysis
systems.

These research works [27,28] also contributed immensely in

the field of Neuro-fuzzy hybridization by employing different
statistical and machine learning techniques that worth
mentioning.

3. Proposed Neuro-fuzzy method

In the present article, a novel Neuro-fuzzy classification

method is proposed. The method extracts the feature-wise
information about a set of input patterns, fuzzifies its corre-
sponding pattern values using a membership function (MF),
Figure 1 Proposed Neuro-f
and provides the degree of the memberships of individual pat-
terns to several classes. Let us assume that we have N input
patterns and M classes. Let us also consider that each pattern

consists of k attributes. The block diagram of the proposed
classification model is shown in Fig. 1 below.

The method is divided into three steps which are described

below.
Step 1 (Fuzzification process): In the first step, a member-

ship matrix of order N · M is generated which consists of

the degree of memberships of N different patterns to M differ-
ent classes. Each element in this matrix is a membership func-
tion of the form mfi,j (yi), where yi is the i-th pattern value of
input pattern vector y with i = 1, 2, . . ., N and j= 1, 2, . . .,
M. The MF can be defined as

mfi;jðyiÞ ¼ degree of membership of pattern i to class j ð2Þ
where the i-th pattern yi ¼ xi1; xi2; xi3; . . . ; xik ð3Þ

The input pattern vector y is thus described as

y ¼ ½y1; y2; . . . ; yN�
T ð4Þ

where ‘T’ denotes the matrix transpose operation.
For fuzzification, we have used the generalized bell-shaped

MF which depends upon three different parameters a, b, and c
as given by the equation

mfðy; a; b; cÞ ¼ 1

1þ y�c
a

�� ��2b ð5Þ

Each of these configuration parameters has some special
significance: parameter c determines the center of the MF; a
denotes half-width; and b (together with a) controls the slopes
at the different crossover points. Fig. 2 below shows a typical

bell-shaped MF. By modifying the values of a, b, and c; we will
obtain our desired MF which provides more flexibility for
classification.
uzzy classification model.



Figure 2 A typical generalized bell-shaped MF.

Figure 3 A hidden or output layer unit j of a MLPBPN model.
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After the fuzzification phase the membership matrix for a
particular pattern vector y would actually look like this:

MFðyÞ¼

mf1;1ðy1Þ mf1;2ðy1Þ mf1;3ðy1Þ � � � mf1;Mðy1Þ
mf2;1ðy2Þ mf2;2ðy2Þ mf2;3ðy2Þ � � � mf2;Mðy2Þ
mf3;1ðy3Þ mf3;2ðy1Þ mf3;3ðy3Þ � � � mf3;Mðy3Þ
� � � � � � � � � � � � � � �

mfN;1ðyNÞ mfN;2ðyNÞ mfN;3ðyNÞ � � � mfN;MðyNÞ

2
6666664

3
7777775
ð6Þ

where mfi,j (yi) is the membership of i-th pattern of input vector

y with i= 1, 2, . . ., N and j= 1, 2, . . ., M.
Step 2 (Building the MLPBPN classifier): The second step

of the proposed method transforms the membership matrix

into an M · N vector by transposing all rows and columns.
The vector is then taken as input to a MLPBPN classifier. A
typical MLPBPN model has a single input layer, at least one

hidden layer, and a single output layer. It exhibits two modes
of operation: feedforward and backpropagation. In the
network architecture, the input units are connected in a

feedforward mode, with input layer units fully connected to
the hidden layer units, and hidden units fully connected to
the output layer units. The nodes in the input layer and in
the hidden layer(s) are associated with weights (connection

strengths). Initially, before training, all weights and biases are
selected randomly. In backpropagation mode, the errors, as
well as the learning procedure (updating the weights and

biases), transmit in the backward direction starting from the
output layer unit to the inner nodes. This process is repeated
multiple times, and the network model keeps running to min-

imize the root-mean-square error between the network’s pre-
dicted and target values until all the training samples are
processed or the stopping criterion has been reached. To
demonstrate this, a hidden layer or output layer unit (block)

is shown in Fig. 3 below.
The net input to a MLPBPN unit j in the hidden or output

layers is computed as a linear combination of its inputs. The

predicted (activation) output of unit j is given as follows:

Outputj ¼
1

1þ e�Netj
ð7Þ
where Netj = the net input of unit j in the MLPBPN model.

The net input can be defined as a weighted sum of the
connection strengths (or weights) and the output from the
previous layer:

Netj ¼
X
i

weightij �Outputi þ biasj ð8Þ

where weightij = the connection strength (or weight) of the

link from unit i in the preceding layer to unit j, Outputi =
output of unit i from the preceding layer, and biasj = the bias
of the unit.

We calculate the total sum of squared errors from the

expected output, Targetj:

Error ¼ 1

2

X
j

Targetj �Ouputj
� �2 ð9Þ

The backpropagation network’s weights are then adjusted to
reduce this overall error.

DWeight1� @Error

@Weight
ð10Þ

We will now consider output layer block j with a particular
weight value, weightij.

Dweightij1�
@Error

@weightij
ð11Þ

Because the error is not directly a function of the weight, we

can expand this as follows:

Dweightij ¼ �g � @Error

@Outputj
�
@Outputj
@Netj

� @Netj
@weightij

ð12Þ

where g is a positive constant called the learning rate.

Following this we have the weight updating formula as

weightij ¼ weightij þ Dweightij ð13Þ

Similarly, we can get the formula for bias updating:

biasj ¼ biasj þ Dbiasj ð14Þ

After a rigorous analysis, we have selected a MLPBPN model

with a single hidden layer. The ANN model has utilized gradi-
ent descent with momentum as a supervised learning rule, and
transfer function in the hidden and output layer as tan sig-
moid. The number of nodes in the input layer of the MLPBPN

is equal to the number of input attributes in the data set. Sim-
ilarly, the number of output layer nodes is same as the number
of classes present in the data set. The choice of the number of
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processing elements (PEs) present in the hidden layer is also a

crucial parameter. After a proper investigation we have
selected the number of PEs in the hidden layer [29], L, as given
by the equation

L ¼ number of input attributesþ number of classesð Þ
� 2=3 ð15Þ

Step 3 (Defuzzification process): In the last step, the pro-
posed NFS classifier utilizes a hard classification by employing

a maximum (max) operation to defuzzify the activation output
of the MLPBPN. An input pattern is y designated to a
particular class j with the largest class membership value if

and only if

mfjðyÞ � mfiðyÞ 8i 2 ð1; 2; . . . ;MÞ and i–j ð16Þ

where mfi (y) is the activation value of the i-th neuron in the

output layer of the MLPBPN model.

4. Detailed procedure

The broad level steps of the detailed procedure are described
below.

Step 1: The following preprocessing steps are applied to
each of the original data set before the classification
procedure––
(1a) Data cleaning: This denotes the preprocessing of
data for removing or reducing noise and the han-
dling of missing values. A missing value is typically
replaced by the mean value for that attribute based

on statistics.
(1b) Data selection: Statistical correlation analysis is

used to discard redundant attributes so that only

the relevant attributes are taken from the given
data set.

(1c) Data transformation: This is used to normalize the

data set as because ANN based technique requires
distance measurements in the training phase. It
transforms attribute values to a small-scale range

like �1.0 to +1.0.
Figure 4 Broad level steps o
Step 2: After preprocessing steps, the original data set is

divided into two sub-sets namely the training data set and
the test data set. We have used two-third of the whole data
set for training purpose and the remaining one-third data

for testing purpose.
Step 3: In the training phase, the training data set applies to
our proposed Neuro-fuzzy system (NFS) for developing a
classification model. The training data set is also applied

to the RBFNN and ANFIS techniques separately for build-
ing other classifiers.
Step 4: In the testing phase, the three classification models

(NFS, RBFNN and ANFIS) are then employed to the test
set for estimating the performance of each classifier.
Step 5: The performances of these models are then com-

pared based on the different performance measures (accu-
racy, root-mean-square error, tp-rate, fp-rate, precision,
recall, f-measure, kappa statistic).

The broad level steps of the detailed procedure are
described below in Fig. 4.

5. Experimental results and analysis

The three classification techniques namely NFS, RBFNN, and
ANFIS are trained and tested on ten benchmark data sets

from the University of California, Irvine (UCI) machine learn-
ing repository using MATLAB software (version R2013a).
These data sets are namely Breast Cancer Wisconsin, KDD

Cup 1999 (10-percent), Statlog Landsat Satellite, Mammo-
graphic Mass, Wilt, Mushroom, Pima Indians Diabetes, Iris,
Spambase, and Car Evaluation. Several comparisons are per-

formed; a comparison of classification accuracy, root-mean-
square error (RMSE), kappa statistic values; and, a compari-
son of True Positive Rate (TP-Rate), False Positive Rate
(FP-Rate), Precision, Recall, and F-Measure values derived

from the confusion matrix of each classifier.

5.1. Performance measures

After developing the classifiers by the above mentioned classi-
fication techniques, they are applied to the test data set for
f the detailed procedure.
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performance evaluation. The performances of these models are
then estimated based on the different performance measures
described below.

5.1.1. Root-mean-square error (RMSE)

RMSE [30] is a well-known performance measure of the differ-
ence between the values anticipated by a classifier and the val-

ues actually discovered from the surroundings of the system
being modeled. The RMSE of a classifier prediction with
respect to the computed variable eclassifier is determined as the

square root of the mean-squared error:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðediscovered;k � eclassifier;kÞ2

n

s
ð17Þ

where ediscovered are the discovered values and eclassifier are the

predicted values for "k.

5.1.2. Kappa statistic

The Kappa statistics [31], denoted by j, is a long-familiar sta-

tistical measure of inter-rater agreement for categorical data.
In statistics, kappa is considered to be a measure of reliability
among different raters or judges. The value of j is estimated by

the equation:

j ¼ probðOÞ � probðCÞ
1� probðCÞ ð18Þ

where prob(O) is the probability of observed agreements
among raters, and prob(C) is the probability of agreements
expected by chance. If j = 1 the raters have completely agreed

with each other’s decision. If j = 0 then the judges or raters
are not agreed to comply with.

5.1.3. Confusion matrix

In the machine learning domain, the confusion matrix [32] is a
particular tabular representation that provides visualization of
the performance of a classification algorithm. Each column of

the matrix denotes the examples in a predicted class, while each
row indicates the examples in an actual class. This helps to find
out whether a classification algorithm is commonly mislabeling
one as another. It is a table layout with two rows and two col-

umns that allows more detailed analysis than classification
accuracy. Classification accuracy is not a reliable metric for
assessing the performance of a classifier as it may produce mis-

leading results when the numbers of samples in different clas-
ses vary greatly. Table 1 below presents the confusion matrix
for a two class classifier with the following data entries:

(a) True positive (tp) is the number of ‘positive’ instances
categorized as ‘positive’.

(b) False positive (fp) is the number of ‘negative’ instances
categorized as ‘positive’.
Table 1 A Confusion matrix for a two class classifier.

Predicted class

Positive Negative

Actual class

Positive tp fp

Negative fn tn
(c) False negative (fn) is the number of ‘positive’ instances

categorized as ‘negative’.
(d) true negative (tn) is the number of ‘negative’ instances

categorized as ‘negative’.

Several standard terms have been defined in a two-class
confusion matrix. The term accuracy is the ratio of sum of
instances that were correctly classified to total number of

instances present. It is calculated using the equation:

accuracy ¼ tpþ tn

tpþ tnþ fpþ fn
ð19Þ

The precision is the ratio of the predicted positive instances
that were correct, as computed using the equation:

precision ¼ tp

tpþ fp
ð20Þ

The fp-rate is the ratio of negative instances that were

incorrectly classified as positive, determined by the equation:

fp-rate ¼ fp

fpþ tn
ð21Þ

The recall or tp-rate is the ratio of positive instances that
were correctly discovered, as estimated using the equation:

recall ¼ tp� rate ¼ tp

tpþ tn
ð22Þ

In some scenarios high precision may be more important,
while in other scenarios high recall may be more significant.
However, in most types, we try to improve both values. The

combined form of these values is called the f-measure, and
usually expressed as the harmonic mean of both these values:

f-measure ¼ 2 � precision � recall
precisionþ recall

ð23Þ
5.2. Results and analysis

NFS, RBFNN and ANFIS classifiers are applied on each of
the ten UCI machine learning repository data sets for investi-

gation and performance analysis which is reported below. We
have employed the two-third of each data set for training pur-
pose and the remaining one-third data set for testing purpose.
The results described here are exclusively based on the simula-

tion experiment that we have taken.

5.2.1. Breast Cancer Wisconsin data set

We have used the benchmark Breast Cancer Wisconsin (Origi-
nal) data set for diagnosis of breast cancer. It has 699 tuples
and consists of 11 attributes including the class attribute. Of
them the first 10 attributes are considered as input attributes.

The class attribute has exactly two values, namely Benign
and Malignant. The numbers of tuples per class with percent-
age values are––Benign: 458 (65.5%) and Malignant: 241

(34.5%). There are 16 tuples in this data set that contain a
single missing attribute value, denoted by ‘‘?’’.

After the training phase is over, each of the three classifiers

is applied to a test set for classification. Firstly, the perfor-
mance comparisons of these classifiers are done based on the
different performance measures such as classification accuracy,

RMSE, and the kappa statistic as shown below in Table 2.



Table 2 Performance comparisons of three classifiers.

Classifier Classification accuracy (%) RMSE Kappa statistic

NFS 98.4 0.1536 0.9255

RBFNN 94.2 0.2032 0.8623

ANFIS 95.3 0.1728 0.8884
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From Table 2 we could see that, the NFS classifier has an
accuracy of 98.4%. RBFNN model has classification accuracy
of 94.2%; while ANFIS model has an accuracy of 95.3%.

Surely, accuracy wise NFS has performed better than RBFNN
and ANFIS. Then we have analyzed the performance of each
classifier based on the information on RMSE and the kappa

statistic values collected from Table 2. Fig. 5 below shows a
performance comparison among these classifiers.

The experiment has employed very commonly used indica-

tor like the RMSE value which should be as low as possible.
Kappa statistic is used to estimate the accuracy for distinguish-
ing between the reliability of the classified data collected and

their validity. As it is evident from Fig. 5, the kappa statistic
value of the selected algorithms is around 0.81–1.0. According
to the definition of kappa statistic, the accuracy of the classifi-
cation methods is considered to be ‘almost perfect agreement’.

Based on the result, NFS comes out first with an RMSE value
of 0.1536 and a kappa statistic value of 0.9255; followed by
ANFIS having an RMSE value of 0.1728 and a kappa statistic

value of 0.8884 and RBFNN stands last with the highest
RMSE value (0.2032) and the lowest kappa statistic value
Figure 5 Comparison of RMSE and Kappa statistic values.

Table 3 Detailed accuracy by each class for three classifiers.

Classifier Class TP-rate /recall (%)

NFS Benign 99.1

Malignant 98.7

Weighted average 98.4

RBFNN Benign 95.2

Malignant 92.9

Weighted average 94.2

ANFIS Benign 96.9

Malignant 91.3

Weighted average 95.3
(0.8623). Therefore, with regard to the performance measures
such as classification accuracy, RMSE and kappa statistic,
the proposed NFS classifier has performed the best.

Next, the performances of these models are compared
based on the TP-Rate (or Recall), FP-Rate, Precision, and
F-Measure values derived from the confusion matrix of indi-

viduals with respect to the test data set. The detailed accuracy
by each class (Benign and Malignant) for these classifiers is
shown below in Table 3. The weighted average values are also

shown in the following table. The results reported here are
entirely based on simulation experiment. For evaluating the
performance of a classifier, we would expect higher values
for TP-Rate, Precision, Recall, F-Measure; and lower value

for FP-Rate.
We have compared the performance of each classifier based

on the information on a weighted average of different perfor-

mance measures from Table 3; which is then presented in the
form of a 3-D column chart as shown below in Fig. 6.

From Table 3 we could discover that the weighted average

values of TP-Rate (or Recall), FP-Rate, Precision, and F-Mea-
sure for proposed NFS classifier are 98.4%, 3.2%, 98.4%, and
98.4%, respectively; whereas for RBFNN classifier the values

are 94.2%, 6.8%, 94.2%, and 94.2% respectively. For ANFIS
these values are 95.3%, 5.4%, 95.3%, and 95.3% respectively.
Surely, the NFS model has the highest weighted average values
for TP-Rate, Precision, Recall, and F-Measure and the lowest

weighted average value for FP-Rate. Regarding F-Measure as
the best performance measure derived from a confusion
matrix; NFS has the highest value for the F-Measure as

98.4%, followed by ANFIS having an F-Measure value of
95.3% and RBFNN with an F-Measure value of 94.2%.
Fig. 6 also supports this observation.

5.2.2. KDD Cup 1999 (10-percent) data set

The classification of network anomaly is an effervescent
research area. We have used this data set for analyzing net-

work anomaly based classification problem with regard to
the Intrusion Detection Systems (IDSs). The data set has
400,000 records and consists of 42 attributes including the class

attribute. We here classify the network by two classes, namely
Normal and Anomaly. We have chosen this data set because it
is free from any redundant record, so the classifiers will not be
biased towards more frequent data records. Moreover, this

data set contains no missing values of any attribute.
After the training phase is over, each of the three classifiers

is applied to a test set for classification. Firstly, the
FP-rate (%) Precision (%) F-measure (%)

5.1 98.9 98.7

1.8 98.5 97.3

3.2 98.4 98.4

8.7 95.3 95.2

4.2 92.4 92.1

6.8 94.2 94.2

7.3 95.5 96.2

3.1 94.1 92.6

5.4 95.3 95.3



Figure 6 Comparison of three classifiers on weighted average

values.

Table 4 Performance comparisons of three classifiers.

Classifier Classification accuracy (%) RMSE Kappa statistic

NFS 98.7 0.1033 0.9676

RBFNN 95.8 0.1595 0.8981

ANFIS 96.3 0.1371 0.9368

Figure 7 Comparison of RMSE and Kappa statistic values.
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performance comparisons of these classifiers are done based on
the different performance measures such as classification accu-
racy, RMSE, and the kappa statistic as shown below in

Table 4.
Table 5 Detailed accuracy by each class for three classifiers.

Classifier Class TP-rate/recall (%)

NFS Normal 98.6

Anomaly 98.9

Weighted average 98.6

RBFNN Normal 95.2

Anomaly 93.9

Weighted average 95.7

ANFIS Normal 97.9

Anomaly 94.4

Weighted average 96.3
From Table 4 we could see that, NFS classifier has an accu-
racy of 98.7%. RBFNN model has classification accuracy of
95.8%; while ANFIS model has an accuracy of 96.3%. Surely,

accuracy wise NFS has performed better than RBFNN and
ANFIS. Then we have analyzed the performance of each clas-
sifier based on the information on RMSE and the kappa statis-

tic values collected from Table 4. Fig. 7 below shows a
performance comparison among these classifiers.

The experiment has employed very commonly used indica-

tor like the RMSE value which should be as low as possible.
Kappa statistic is used to estimate the accuracy for distinguish-
ing between the reliability of the classified data collected and
their validity. As it is evident from Fig. 7, the kappa statistic

value of the selected algorithms is around 0.81–1.0. According
to the definition of kappa statistic, the accuracy of the classifi-
cation methods was considered to be ‘almost perfect agree-

ment’. Based on the result, NFS comes out first with an
RMSE value of 0.1033 and a kappa statistic value of 0.9676;
followed by ANFIS having an RMSE value of 0.1371 and a

kappa statistic value of 0.9368 and RBFNN stands last with
the highest RMSE value (0.1595) and the lowest kappa statistic
value (0.8981). Therefore, with regard to the performance mea-

sures such as classification accuracy, RMSE and kappa statis-
tic, the proposed NFS classifier has performed the best.

Next, the performances of these models are compared
based on the TP-Rate (or Recall), FP-Rate, Precision, and

F-Measure values derived from the confusion matrix of indi-
viduals with respect to the test data set. The detailed accuracy
by each class (Normal and Anomaly) for these classifiers is

shown below in Table 5. The weighted average values are also
shown in the following table. The results reported here are
entirely based on simulation experiment. For evaluating the

performance of a classifier, we would expect higher values
for TP-Rate, Precision, Recall, F-Measure; and lower value
for FP-Rate.

We have compared the performance of each classifier based
on the information on a weighted average of different
performance measures from Table 5; which is then presented
in the form of a 3-D column chart as shown below in

Fig. 8.
From Table 5 we have discovered that the weighted average

values of TP-Rate (or Recall), FP-Rate, Precision, and F-Mea-

sure for proposed NFS classifier are 98.6%, 2.9%, 98.6%, and
98.6%, respectively; whereas for RBFNN classifier these val-
ues are 95.7%, 4.7%, 95.7%, and 95.7% respectively. For

ANFIS these values are 96.3%, 3.9%, 96.3%, and 96.3%
respectively. Surely, the NFS model has the highest weighted
FP-rate (%) Precision (%) F-measure (%)

3.9 98.9 99.5

1.4 98.4 98.4

2.9 98.6 98.6

7.7 95.3 95.2

4.2 93.4 93.1

4.7 95.7 95.7

6.7 95.7 96.2

3.1 94.3 92.6

3.9 96.3 96.3



Figure 8 Comparison of three classifiers on weighted average

values.

Table 6 Performance comparisons of three classifiers.

Classifier Classification accuracy (%) RMSE Kappa statistic

NFS 92.3 0.1346 0.9181

RBFNN 87.2 0.1698 0.8785

ANFIS 85.4 0.2363 0.8263

Figure 9 Comparison of RMSE and Kappa statistic values.
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average values for TP-Rate, Precision, Recall, and F-Measure
and the lowest weighted average value for FP-Rate. Consider-
ing F-Measure as the best performance measure derived from a

confusion matrix; the NFS model has the highest precision
value for the F-Measure as 98.6%, followed by the ANFIS
model which has an F-Measure value of 96.3% and RBFNN
with an F-Measure value of 95.7%. Fig. 8 also provisions this

reflection as well.

5.2.3. Statlog Landsat Satellite data set

We have used the Statlog Landsat Satellite data set of Austra-
lian agricultural land in predicting the land classes constituting
dissimilar soil types. The current database is constructed
choosing only a small section (82 rows · 100 columns) from

the original Landsat Multispectral Scanner (MSS) imagery
data having 4 spectral bands in one single image frame. Such
interpretation is quite useful for the integrated approach to

remote sensing. In a satellite image, 3 · 3 (=9) square neigh-
borhood of pixels is selected and the corresponding 4 spectral
values of pixels are calculated. This multivariate data set has

6435 tuples and contains 36 (=4 spectral bands · 9 pixels in
the neighborhood) input attributes and one class label attri-
bute. The input attributes lie quantitative with their values in
the range of 0–255. The classification approach is associated

with the central pixel in each neighborhood area. Therefore
we need to consider only 4 input attributes. The class label
attribute contains 6 values––red (class 1), cotton (class 2), gray

(class 3), damp gray (class 4), vegetation stubble (class 5), and
very damp gray (class 7). There is no example of class 6 (mix-
ture type) in the data set.

After the training phase is over, each of the three classifiers
is applied to a test set for classification. Firstly, the perfor-
mance comparisons of these classifiers are done based on the

different performance measures such as classification accuracy,
RMSE, and the kappa statistic as shown below in Table 6.

From Table 6 we could see that, NFS classifier has an
accuracy of 92.3%. RBFNN model has classification accuracy

of 87.2%; while ANFIS model has an accuracy of 85.4%.
Surely, accuracy wise NFS has performed better than RBFNN
and ANFIS. Then we have analyzed the performance of each

classifier based on the information on RMSE and the kappa
statistic values collected from Table 6. Fig. 9 below shows a
performance comparison among these classifiers.
The experiment has employed very commonly used indica-
tor like the RMSE value which should be as low as possible.
Kappa statistic is used to estimate the accuracy for distinguish-

ing between the reliability of the classified data collected and
their validity. As it is evident from Fig. 9, the kappa statistic
value of the selected algorithms is around 0.81–1.0. According

to the definition of kappa statistic, the accuracy of the classifi-
cation methods is considered to be ‘almost perfect agreement’.
Based on the result, NFS comes out first with an RMSE value

of 0.1346 and a kappa statistic value of 0.9181; followed by
RBFNN having an RMSE value of 0.1698 and a kappa statis-
tic value of 0.8785 and ANFIS stands last with the highest
RMSE value (0.2363) and the lowest kappa statistic value

(0.8263). Therefore, with regard to the performance measures
such as classification accuracy, RMSE and kappa statistic,
the proposed NFS classifier has performed the best.

Next, the performances of these models are compared
based on the TP-Rate (or Recall), FP-Rate, Precision, and
F-Measure values derived from the confusion matrix of indi-

viduals with respect to the test data set. The detailed accuracy
by each of the six classes for these classifiers is shown below in
Table 7. The weighted average values are also shown in the fol-
lowing table. The results reported here are entirely based on

simulation experiment. For evaluating the performance of a
classifier, we would expect higher values for TP-Rate, Preci-
sion, Recall, F-Measure; and lower value for FP-Rate.

We have compared the performance of each classifier based
on the information on a weighted average of different perfor-
mance measures from Table 7; which is then presented in the

form of a 3-D column chart as shown below in Fig. 10.
From Table 7 we have discovered that the weighted average

values of TP-Rate (or Recall), FP-Rate, Precision, and F-Mea-

sure for proposed NFS classifier are 92.3%, 1.9%, 92.3%, and
92.3%, respectively; whereas for RBFNN classifier these val-
ues are 87.2%, 3.2%, 87.2%, and 87.2% respectively. For
ANFIS these values are 85.4%, 4.3%, 85.4%, and 85.4%



Figure 10 Comparison of three classifiers on weighted average

values.

Table 8 Performance comparisons of three classifiers.

Classifier Classification accuracy (%) RMSE Kappa statistic

NFS 84.4 0.3459 0.6798

RBFNN 80.2 0.3853 0.6025

ANFIS 81.7 0.3623 0.6354

Table 7 Detailed accuracy by each class for three classifiers.

Classifier Class TP-rate/recall (%) FP-rate (%) Precision (%) F-measure (%)

NFS 1 97.5 2.2 93.4 95.4

2 97.5 0.1 99.2 98.3

3 96.6 2.3 92.1 94.3

4 66.7 0.2 77.4 71.7

5 93.6 0.9 92.8 93.2

7 91.5 1.6 94.5 93.0

Weighted average 92.3 1.9 92.3 92.3

RBFNN 1 97.8 1.3 96.8 97.3

2 96.0 0.6 95.6 95.8

3 89.9 2.5 90.8 90.4

4 64.9 3.3 71.0 67.8

5 79.7 1.9 85.1 82.4

7 89.1 5.6 83.6 86.3

Weighted average 87.2 3.2 87.2 87.2

ANFIS 1 99.3 1.4 96.4 97.9

2 93.3 0.7 96.3 94.8

3 94.0 3.6 86.7 90.2

4 42.2 4.3 54.6 47.6

5 75.5 1.8 84.8 79.9

7 83.8 7.7 78.2 80.9

Weighted average 85.4 4.3 85.4 85.4
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respectively. Surely, the NFS model has the highest weighted

average values for TP-Rate, Precision, Recall, and F-Measure
and the lowest weighted average value for FP-Rate. Consider-
ing F-Measure as the best performance measure derived from a

confusion matrix; the NFS model has the highest precision
value for the F-Measure as 92.3%, followed by the RBFNN
model which has an F-Measure value of 87.2% and ANFIS

with an F-Measure value of 85.4%. Fig. 10 also supports this
observation.

5.2.4. Mammographic Mass data set

Then, we have used the benchmark Mammographic Mass data
set for breast cancer detection. The given UCI data set is the
outcome of research conducted on human breast tissue masses

by using Breast Imaging-Reporting and Data System
(BI-RADS) combined with digital mammography. This data
set has 961 numbers of tuples and consists of 6 attributes
comprising the BI-RADS assessment, Age, three BI-RADS
features, namely Shape, Margin, and Density; and lastly the
class attribute named Severity. The implications of each of

the attributes in the MM data set are described below.
The first attribute in this data set is BI-RADS assessment

which ranges from 1 to 5. The second attribute Age denotes

the age of the patient age in years. The third, fourth and fifth
attributes are regarded to be BI-RADS features associated
with a mammographic mass lesion and they are namely Shape,

Margin, and Density. Shape indicates the shape of a mammo-
graphic mass and it ranges from 1 to 4. Margin is the mass
margin and it takes on values from 1 to 5. Density specifies
the mammographic mass density and it ranges from 1 to 4.

The class attribute has got only two values, namely Benign
(normal) and Malignant (cancerous) denoted by numeric
values ‘0’ and ‘1’ respectively.

After the training phase is over, each of the three classifiers
is applied to a test set for classification. Firstly, the perfor-
mance comparisons of these classifiers are done based on the

different performance measures like classification accuracy,
RMSE, and the kappa statistic as shown below in Table 8.

From Table 8 we could see that, NFS classifier has an accu-
racy of 84.4%. RBFNN model has classification accuracy of

80.2%; while ANFIS model has an accuracy of 81.7%. Surely,
accuracy wise NFS has performed better than RBFNN and
ANFIS. Then we have analyzed the performance of each

classifier based on the information on RMSE and the kappa
statistic values collected from Table 8. Fig. 11 below shows a
performance comparison among these classifiers.



Figure 11 Comparison of RMSE and Kappa statistic values.
Figure 12 Comparison of three classifiers on weighted average

values.
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The experiment has employed very commonly used indica-
tor like the RMSE value which should be as low as possible.
As it is evident from Fig. 11, the kappa statistic value of the
selected algorithms was around 0.61–0.80. According to the

definition of kappa statistic, the accuracy of the classification
methods is considered to be ‘substantial’. Based on the result,
NFS comes out first with an RMSE value of 0.3459 and a

kappa statistic value of 0.6798; followed by ANFIS having
an RMSE value of 0.3623 and a kappa statistic value of
0.6354 and RBFNN stands last with the highest RMSE value

(0.3853) and the lowest kappa statistic value (0.6025).
Therefore, with regard to the performance measures such as
classification accuracy, RMSE and kappa statistic, the

proposed NFS classifier has performed the best.
Next, the performances of these models are compared

based on the TP-Rate (or Recall), FP-Rate, Precision, and
F-Measure values derived from the confusion matrix of

individuals with respect to the test data set. The detailed accu-
racy by each class (benign and malignant) for these classifiers is
shown below in Table 9. The weighted average values are also

shown in the following table. The results reported here are
entirely based on simulation experiment. For evaluating the
performance of a classifier, we would expect higher values

for TP-Rate, Precision, Recall, F-Measure; and lower value
for FP-Rate.

We have compared the performance of each classifier based
on the information on a weighted average of different perfor-

mance measures from Table 9; which is then presented in the
form of a 3-D column chart as shown below in Fig. 12.
Table 9 Detailed accuracy by each class for three classifiers.

Classifier Class TP-rate/recall (%)

NFS Benign 88.1

Malignant 79.5

Weighted average 84.4

RBFNN Benign 78.0

Malignant 83.1

Weighted average 80.2

ANFIS Benign 78.0

Malignant 86.7

Weighted average 81.7
From Table 9 and Fig. 12, we could discover that the

weighted average values of TP-Rate (or Recall), FP-Rate,
Precision, and F-Measure for the NFS classifier are 84.4%,
16.8%, 84.7%, and 84.4%, respectively; whereas for RBFNN
classifier these values are 80.2%, 19.1%, 80.4%, and 80.2%

respectively. For ANFIS these values are 81.7%, 17.0%,
81.9%, and 81.7% respectively. Surely, the NFS model has
the highest weighted average values for TP-Rate, Precision,

Recall, and F-Measure and the lowest weighted average value
for FP-Rate. Considering F-Measure as the best performance
measure derived from a confusion matrix; the NFS model

has the highest precision value for the F-Measure as 84.4%,
followed by the ANFIS model which has an F-Measure value
of 81.7% and RBFNN with an F-Measure value of 80.2%.

5.2.5. Wilt data set

This multivariate data set represents a high-resolution remo-
tely sensed data set from a remote sensing survey in the Quick-

bird imagery. The data set consists of image segments from the
pan-chromatic image band (Pan Band) and usually applied in
predicting the soil type of diseased trees. It has 4889 tuples and
consists of 6 attributes. The first attribute denotes the Gray

Level Co-Occurrence Matrix with respect to the Pan band.
The second, third and fourth columns indicate mean green
value, mean red value, and mean Near Infrared value respec-

tively. The fifth attribute denotes the Standard deviation value
with respect to the Pan band. The class attribute has two val-
ues namely ‘w’ denoting diseased trees and class ‘n’ indicating
FP-rate (%) Precision (%) F-measure (%)

20.5 85.0 86.5

11.9 83.5 81.5

16.8 84.7 84.4

16.9 85.9 81.7

22.0 74.2 78.4

19.1 80.4 80.2

13.3 88.5 82.9

22.0 75.0 80.4

17.0 81.9 81.7
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other land cover. There are 74 tuples for the ‘w’ class and 4265
for ‘n’ class.

After the training phase is over, each of the three classifiers

is applied to a test set for classification. Firstly, the perfor-
mance comparisons of these classifiers are done based on the
different performance measures like classification accuracy,

RMSE, and the kappa statistic as shown below in Table 10.
From Table 10 we could see that, NFS classifier has an

accuracy of 98.9%. RBFNN model has classification accuracy

of 94.8%; while ANFIS model has an accuracy of 93.7%.
Surely, accuracy wise NFS has performed better than RBFNN
and ANFIS. Then we have analyzed the performance of each
classifier based on the information on RMSE and the kappa

statistic values collected from Table 10. Fig. 13 below shows
a performance comparison among these classifiers.

As it is evident from Fig. 13, the kappa statistic value of the

NFS method was around 0.81–1.0; which, according to the
definition of kappa statistic is considered to be ‘almost perfect
agreement’. While the kappa statistic value of the RBFNN and

ANFIS methods is around 0.61–0.80 and was considered to be
‘substantial’. Based on the result, NFS comes out first with an
Table 10 Performance comparisons of three classifiers.

Classifier Classification accuracy (%) RMSE Kappa statistic

NFS 98.9 0.1105 0.8787

RBFNN 94.8 0.2247 0.7876

ANFIS 93.7 0.2549 0.7589

Figure 13 Comparison of RMSE and Kappa statistic values.

Table 11 Detailed accuracy by each class for three classifiers.

Classifier Class TP-rate/recall (%)

NFS w 88.4

n 99.6

Weighted average 98.9

RBFNN w 60.9

n 98.5

Weighted average 94.7

ANFIS w 46.0

n 99.0

Weighted average 93.7
RMSE value of 0.1105 and a kappa statistic value of 0.8787;
followed by RBFNN having an RMSE value of 0.2247 and
a kappa statistic value of 0.7876 and ANFIS stands last with

the highest RMSE value (0.2549) and the lowest kappa statistic
value (0.7589). Therefore, with regard to the performance
measures such as accuracy, RMSE and kappa statistic, the

NFS classifier has performed the best.
Next, the performances of these models are compared

based on the TP-Rate (or Recall), FP-Rate, Precision, and

F-Measure values derived from the confusion matrix of indi-
viduals with respect to the test data set. The detailed accuracy
by each of the two classes (‘w’ and ‘n’) for these classifiers is
shown below in Table 11. The weighted average values are also

shown in the following table.
We have compared the performance of each classifier based

on the information on a weighted average of different perfor-

mance measures from Table 11; which is then presented in the
form of a 3-D column chart as shown below in Fig. 14.

From Table 11 we have discovered that the weighted aver-

age values of TP-Rate (or Recall), FP-Rate, Precision, and F-
Measure for proposed NFS classifier are 98.9%, 11.4%,
99.0%, and 98.9%, respectively; whereas for RBFNN classifier

these values are 94.7%, 35.7%, 95.1%, and 94.8% respec-
tively. For ANFIS these values are 93.7%, 49.6%, 94.1%,
and 93.7% respectively. Surely, the NFS model has the highest
weighted average values for TP-Rate, Precision, Recall, and

F-Measure and the lowest weighted average value for FP-Rate.
Considering F-Measure as the best performance measure
derived from a confusion matrix; the NFS model has the
Figure 14 Comparison of three classifiers on weighted average

values.

FP-rate (%) Precision (%) F-measure (%)

0.4 94.8 90.5

11.6 99.2 99.4

11.4 99.0 98.9

1.5 71.6 65.8

39.1 97.5 98.0

35.7 95.1 94.8

1.0 74.1 56.7

54.0 96.6 97.8

49.6 94.1 93.7
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highest precision value for the F-Measure as 98.9%, followed
by the RBFNN model which has an F-Measure value of
94.8% and ANFIS with an F-Measure value of 93.7%.

Fig. 14 also supports this observation.

5.2.6. Mushroom data set

The Mushroom data set consists of hypothetical samples

regarding a set of 23 gilled mushroom species in the Agaricus
and Lepiota family of mushrooms. This data set is the result of
a research study carried out with records gathered from the

Audubon Society Field Guide to mushrooms in North Amer-
ica. It has 8124 tuples and consists of 22 attributes including
the class attribute. All the attributes are nominally valued.

The class attribute has exactly two values namely ‘edible’
and ‘poisonous’. The numbers of tuples per class with percent-
age values are––edible: 4208 (51.8%) and poisonous: 3916

(48.2%). There are 2480 tuples in this data set that contain a
single missing attribute value, for the attribute number 11.

After the training phase is over, each of the three classifiers
is applied to a test set for classification. Firstly, the perfor-

mance comparisons of these classifiers are done based on the
different performance measures like classification accuracy,
RMSE, and the kappa statistic as shown below in Table 12.

From Table 12 we could see that, NFS classifier has an
accuracy of 99.8%. RBFNN model has classification accuracy
of 98.2%; while ANFIS model has an accuracy of 95.4%.

Surely, accuracy wise NFS has performed better than RBFNN
and ANFIS. Then we have analyzed the performance of each
classifier based on the information on RMSE and the kappa

statistic values collected from Table 12. Fig. 15 below shows
a performance comparison among these classifiers.

The experiment has employed very commonly used indica-
tor like the RMSE value which should be as low as possible.

Kappa statistic is used to estimate the accuracy for distin-
guishing between the reliability of the classified data collected
and their validity. As it is evident from Fig. 15, the kappa sta-

tistic value of the selected algorithms is around 0.81–1.0.
Table 12 Performance comparisons of three classifiers.

Classifier Classification accuracy (%) RMSE Kappa statistic

NFS 99.8 0.0792 0.9956

RBFNN 98.2 0.1316 0.9631

ANFIS 95.4 0.1873 0.9073

Figure 15 Comparison of RMSE and Kappa statistic values.
According to the definition of kappa statistic, the accuracy
of the classification methods is considered to be ‘almost per-
fect agreement’. Based on the result, NFS comes out first with

an RMSE value of 0.0792 and a kappa statistic value of
0.9956; followed by RBFNN having an RMSE value of
0.1316 and a kappa statistic value of 0.9631and ANFIS stood

last with the highest RMSE value (0.1873) and the lowest
kappa statistic value (0.9073). Therefore, with regard to the
performance measures such as classification accuracy, RMSE

and kappa statistic, the proposed NFS classifier has
performed the best.

Next, the performances of these models are compared
based on the TP-Rate (or Recall), FP-Rate, Precision, and

F-Measure values derived from the confusion matrix of indi-
viduals with respect to the test data set. The detailed accuracy
by each class (edible and poisonous) for these classifiers is

shown below in Table 13. The weighted average values are also
shown in the following table. The results reported here are
entirely based on simulation experiment.

We have compared the performance of each classifier based
on the information on a weighted average of different perfor-
mance measures from Table 11; which is then presented in the

form of a 3-D column chart as shown below in Fig. 16.
From Table 13 and Fig. 16, we have discovered that the

weighted average values of TP-Rate (or Recall), FP-Rate,
Precision, and F-Measure for proposed NFS classifier are

99.8%, 1.2%, 99.8%, and 99.8%, respectively; whereas for
RBFNN classifier these values are 97.3%, 3.1%, 97.2%,
and 97.2% respectively. For ANFIS these values are 95.4%,

4.9%, 95.6%, and 95.4% respectively. Surely, the NFS model
has the highest weighted average values for TP-Rate, Preci-
sion, Recall, and F-Measure and the lowest weighted average

value for FP-Rate. Considering F-Measure as the best perfor-
mance measure derived from a confusion matrix; the NFS
model has the highest precision value for the F-Measure as

99.8%, followed by the ANFIS model which has an
F-Measure value of 97.2% and RBFNN with an F-Measure
value of 95.4%.
5.2.7. Pima Indians diabetes data set

This multivariate data set is used for diabetes detection, and is
the result of a research survey carried out in the National Insti-
tute of Diabetes and Digestive and Kidney Diseases, United

States on the female patients of Pima Indian heritage having
age greater than 21. It has got 768 tuples and contains 9
numeric-valued attributes including the class. The class

attribute has got two values, namely ‘‘tested negative for dia-
betes’’ and ‘‘tested positive for diabetes’’ and denoted by val-
ues ‘0’ and ‘1’ respectively. Many constraints were added for

selecting the tuples from a large database. They are namely––

(1) the number of times a woman become pregnant,

(2) the plasma glucose concentration for a 2 h in an oral
glucose tolerance test,

(3) the diastolic blood pressure (mmHg),
(4) the triceps skin fold thickness (mm),

(5) the 2-h serum insulin (muU/ml),
(6) the body mass index (weight in kg/[height in meter]2),
(7) the diabetes pedigree function,

(8) the age in years, and
(9) the class variable.



Figure 16 Comparison of three classifiers on weighted average

values. Figure 17 Comparison of RMSE and Kappa statistic values.

Table 13 Detailed accuracy by each class for three classifiers.

Classifier Class TP-rate/recall (%) FP-rate (%) Precision (%) F-measure (%)

NFS Edible 99.9 2.1 99.9 99.9

Poisonous 99.8 1.3 99.8 99.8

Weighted average 99.8 1.2 99.8 99.8

RBFNN Edible 98.9 2.7 97.5 98.2

Poisonous 97.3 1.1 98.8 98.1

Weighted average 97.3 3.1 97.2 97.2

ANFIS Edible 99.3 8.8 92.4 95.7

Poisonous 91.2 0.7 99.2 95.0

Weighted average 95.4 4.9 95.6 95.4
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After the training phase is over, each of the three classifiers
is applied to a test set for classification. Firstly, the perfor-

mance comparisons of these classifiers are done based on the
different performance measures such as classification accuracy,
RMSE, and the kappa statistic as shown below in Table 14.

From Table 14 we could see that, NFS classifier has an
accuracy of 82.1%. RBFNN model has classification accuracy
of 79.7%; while ANFIS model has an accuracy of 80.5%.
Surely, accuracy wise NFS has performed better than RBFNN

and ANFIS. Then we have analyzed the performance of each
classifier based on the information on RMSE and the kappa
statistic values collected from Table 14. Fig. 17 below shows

a performance comparison among these classifiers.
The experiment has employed very commonly used indica-

tor like the RMSE value which should be as low as possible.

Kappa statistic is used to estimate the accuracy for distinguish-
ing between the reliability of the classified data collected and
their validity. As it is evident from Fig. 17, the kappa statistic
value of the selected algorithms was around 0.41–0.60.

According to the definition of kappa statistic, the accuracy
Table 14 Performance comparisons of three classifiers.

Classifier Classification accuracy (%) RMSE Kappa statistic

NFS 82.1 0.3886 0.5413

RBFNN 79.7 0.4487 0.5007

ANFIS 80.5 0.4205 0.5197
of the classification methods is considered to be ‘moderate’.
Based on the result, NFS comes out first with an RMSE value

of 0.3886 and a kappa statistic value of 0.5413; followed by
ANFIS having an RMSE value of 0.4205 and a kappa statistic
value of 0.5197 and RBFNN stands last with the highest
RMSE value (0.4487) and the lowest kappa statistic value

(0.5007). Therefore, with regard to the performance measures
such as classification accuracy, RMSE and kappa statistic,
the proposed NFS classifier has performed the best.

Next, the performances of these models are compared
based on the TP-Rate (or Recall), FP-Rate, Precision, and
F-Measure values derived from the confusion matrix of indi-

viduals with respect to the test data set. The detailed accuracy
by each class (‘0’ and ‘1’) for these classifiers is shown below in
Table 15. The weighted average values are also shown in the
following table. The results reported here are entirely based

on simulation experiment. For evaluating the performance of
a classifier, we would expect higher values for TP-Rate, Preci-
sion, Recall, F-Measure; and lower value for FP-Rate.

We have compared the performance of each classifier based
on the information on a weighted average of different perfor-
mance measures from Table 11; which is then presented in the

form of a 3-D column chart as shown below in Fig. 18.
From Table 15 we have discovered that the weighted aver-

age values of TP-Rate (or Recall), FP-Rate, Precision, and F-

Measure for proposed NFS classifier are 81.5%, 32.4%,
81.7%, and 81.1%, respectively; whereas for RBFNN classifier
these values are 79.9%, 33.3%, 79.3%, and 78.9% respec-
tively. For ANFIS these values are 80.5%, 31.9%, 80.0%,



Figure 18 Comparison of three classifiers on weighted average

values.

Table 16 Performance comparisons of three classifiers.

Classifier Classification accuracy (%) RMSE Kappa statistic

NFS 96.7 0.1415 0.9499

RBFNN 83.3 0.3333 0.7512

ANFIS 95.5 0.2897 0.9131

Figure 19 Comparison of RMSE and Kappa statistic values.

Table 15 Detailed accuracy by each class for three classifiers.

Classifier Class TP-rate/recall (%) FP-rate (%) Precision (%) F-Measure (%)

NFS 0 94.3 44.9 81.8 87.6

1 55.1 5.7 81.8 65.9

Weighted average 81.5 32.4 81.7 81.1

RBFNN 0 91.4 44.9 81.4 86.1

1 55.1 8.6 75.0 63.5

Weighted average 79.9 33.3 79.3 78.9

ANFIS 0 91.4 42.9 82.1 86.5

1 57.1 8.6 75.7 65.1

Weighted average 80.5 31.9 80.0 79.7
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and 79.7% respectively. Surely, the NFS model has the highest
weighted average values for TP-Rate, Precision, Recall, and
F-Measure and the lowest weighted average value for FP-Rate.

Considering F-Measure as the best performance measure
derived from a confusion matrix; the NFS model has the high-
est precision value for the F-Measure as 81.1%, followed by

the ANFIS model which has an F-Measure value of 79.7%
and RBFNN with an F-Measure value of 78.9%. Fig. 18 also
supports this observation.

5.2.8. Iris data set

This data set is frequently used in the research literature for
classification. It has got 150 tuples and 5 attributes including

the class. The four input attributes are sepal length (in cm),
sepal width (in cm), petal length (in cm), and petal width (in
cm) respectively. The class attribute has got three values,
namely ‘Iris-setosa’, ‘Iris-versicolor’, and ‘Iris-virginica’. The

data set contains 3 classes of 50 tuples each, where each class
refers to a type of Iris plant. Each class is linearly separable
from the other two classes.

After the training phase is over, each of the three classifiers
is applied to a test set for classification. Firstly, the perfor-
mance comparisons of these classifiers are done based on the

different performance measures like classification accuracy,
RMSE, and the kappa statistic as shown below in Table 16.

From Table 16 we could see that, NFS classifier has an

accuracy of 96.7%. RBFNN model has classification accuracy
of 83.3%; while ANFIS model has an accuracy of 95.5%.
Surely, accuracy wise NFS has performed better than RBFNN
and ANFIS. Then we have analyzed the performance of each
classifier based on the information on RMSE and the kappa
statistic values collected from Table 16. Fig. 19 below shows
a performance comparison among these classifiers.

As it is evident from Fig. 19, the kappa statistic value of the
NFS and ANFIS algorithms is around 0.81–1.0. According to
the definition of kappa statistic, the accuracy of the classifica-

tion methods is regarded as ‘almost perfect agreement’. While
the kappa statistic value of RBFNN is ‘substantial’ as it lies
within the range 0.61–0.80. Based on the result, NFS comes
out first with an RMSE value of 0.1415 and a kappa statistic

value of 0.9499; followed by ANFIS having an RMSE value
of 0.2897 and a kappa statistic value of 0.9131 and RBFNN
stood last with the highest RMSE value (0.3333) and the low-

est kappa statistic value (0.7512). Therefore, with regard to the
performance measures such as classification accuracy, RMSE
and kappa statistic, the proposed NFS classifier performed

the best.
Next, the performances of these models are compared

based on the TP-Rate (or Recall), FP-Rate, Precision, and

F-Measure values derived from the confusion matrix of indi-
viduals with respect to the test set. The detailed accuracy by
each class (‘Iris-setosa’, ‘Iris-versicolor’, and ‘Iris-virginica’)
for these classifiers is shown below in Table 17. The weighted



Figure 20 Comparison of three classifiers on weighted average

values.

Table 18 Performance comparisons of three classifiers.

Classifier Classification accuracy (%) RMSE Kappa statistic

NFS 92.3 0.1536 0.8412

RBFNN 87.6 0.3191 0.7423

ANFIS 89.5 0.3047 0.7767

Figure 21 Comparison of RMSE and Kappa statistic values.

Table 17 Detailed accuracy by each class for three classifiers.

Classifier Class TP-rate/recall (%) FP-rate (%) Precision (%) F-measure (%)

NFS Iris-setosa 99.9 0.7 98.9 99.9

Iris-versicolor 99.8 1.5 90.9 95.2

Iris-virginica 88.9 2.9 89.9 94.1

Weighted average 96.7 2.3 97.0 96.6

RBFNN Iris-setosa 99.9 0.7 99.9 99.9

Iris-versicolor 52.9 0.5 99.9 66.7

Iris-virginica 99.9 23.8 64.3 78.3

Weighted average 83.3 7.1 89.3 82.4

ANFIS Iris-setosa 99.9 0.7 99.9 99.9

Iris-versicolor 99.8 6.9 88.9 94.1

Iris-virginica 86.7 0.5 99.9 92.9

Weighted average 95.6 3.7 96.0 95.5
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average values are also shown in the following table. The

results reported here are solely based on simulation
experiment. For evaluating the performance of a classifier,
we would expect higher values for TP-Rate, Precision, Recall,

F-Measure; and lower value for FP-Rate.
We have compared the performance of each classifier based

on the information on a weighted average of different perfor-

mance measures from Table 17; which is then presented in the
form of a 3-D column chart as shown below in Fig. 20.

From Table 17 we have discovered that the weighted aver-
age values of TP-Rate (or Recall), FP-Rate, Precision, and F-

Measure for proposed NFS classifier are 96.7%, 2.3%, 97.0%,
and 96.6%, respectively; whereas for RBFNN classifier these
values are 83.3%, 7.1%, 89.3%, and 82.4% respectively. For

ANFIS these values are 95.6%, 3.7%, 96.0%, and 95.5%
respectively. Surely, the NFS model has the highest weighted
average values for TP-Rate, Precision, Recall, and F-Measure

and the lowest weighted average value for FP-Rate. Consider-
ing F-Measure as the best performance measure derived from a
confusion matrix; the NFS model has the highest precision
value for the F-Measure as 96.6%, followed by the ANFIS

model which has an F-Measure value of 95.5% and RBFNN
with an F-Measure value of 82.4%. Fig. 20 also supports this
observation.

5.2.9. Spambase data set

This is a very popular data set in the classification domain. The
data set is used for classifying electronic mail (email) as spam
or non-spam. It has got 4601 tuples and consists of 58
attributes including the class attribute. The class attribute
has got two values, namely non-spam, and spam denoted by

values ‘0’ and ‘1’ respectively.
After the training phase is over, each of the three classifiers

is applied to a test set for classification. Firstly, the perfor-
mance comparisons of these classifiers are done based on the

different performance measures such as classification accuracy,
RMSE, and the kappa statistic as shown below in Table 18.

From Table 18 we could see that, NFS classifier has an

accuracy of 92.3%. RBFNN model has classification accuracy
of 87.6%; while ANFIS model has an accuracy of 89.5%.
Surely, accuracy wise NFS has performed better than RBFNN

and ANFIS. Then we have analyzed the performance of each
classifier based on the information on RMSE and the kappa
statistic values collected from Table 18. Fig. 21 below shows

a performance comparison among these classifiers.
The experiment has employed very commonly used

indicator like the RMSE value which should be as low as
possible. Kappa statistic is used to estimate the accuracy for



Table 19 Detailed accuracy by each class for three classifiers.

Classifier Class TP-rate/recall (%) FP-rate (%) Precision (%) F-measure (%)

NFS 0 93.6 9.6 93.4 93.5

1 90.4 6.4 90.6 90.5

Weighted average 92.3 8.3 92.3 92.3

RBFNN 0 90.3 16.3 89.0 89.6

1 83.7 9.7 85.5 84.6

Weighted average 87.6 13.6 87.6 87.6

ANFIS 0 95.8 17.8 87.6 91.5

1 80.2 4.2 92.9 86.1

Weighted average 89.5 12.5 89.7 89.3
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distinguishing between the reliability of the classified data
collected and their validity. As it is evident from Fig. 21, the

kappa statistic value of the proposed NFS method is around
0.81–1.0. According to the definition of kappa statistic, the
accuracy of this classification method is considered to be

‘almost perfect agreement’. While the kappa statistic values
of RBFNN and ANFIS algorithms are ‘substantial’ as they
lie within the range 0.61–0.80. Based on the result, NFS comes

out first with an RMSE value of 0.1536 and a kappa statistic
value of 0.8412; followed by ANFIS having an RMSE value
of 0.3047 and a kappa statistic value of 0.7767 and RBFNN
stands last with the highest RMSE value (0.3191) and the low-

est kappa statistic value (0.7423). Therefore, with regard to the
performance measures like classification accuracy, RMSE and
kappa statistic, the proposed NFS classifier has performed the

best.
Next, the performances of these models are compared

based on the TP-Rate (or Recall), FP-Rate, Precision, and

F-Measure values derived from the confusion matrix of indi-
viduals with respect to the test data set. The detailed accuracy
by each class (‘0’ and ‘1’) for these classifiers is shown below in
Table 19. The weighted average values are also shown in the

following table. The results reported here are entirely based
on simulation experiment.

We have compared the performance of each classifier based

on the information on a weighted average of different perfor-
mance measures from Table 19; which is then presented in the
form of a 3-D column chart as shown below in Fig. 22.

From Table 19 and Fig. 22, we have discovered that the
weighted average values of TP-Rate (or Recall), FP-Rate,
Figure 22 Comparison of three classifiers on weighted average

values.
Precision, and F-Measure for the NFS classifier are 92.3%,
8.3%, 92.3%, and 92.3%, respectively; whereas for RBFNN

the values are 87.6%, 13.6%, 87.6%, and 87.6% respectively.
For ANFIS these values are 89.5%, 12.5%, 89.7%, and 89.3%
respectively. Surely, the NFS model has the highest weighted

average values for TP-Rate, Precision, Recall, and F-Measure
and the lowest weighted average value for FP-Rate. The NFS
model has the highest precision value for the F-Measure as

92.3%, followed by the ANFIS model which has an
F-Measure value of 89.3% and RBFNN with an F-Measure
value of 87.6%.

5.2.10. Car Evaluation data set

The Car Evaluation data set is constructed from a simple hier-
archical decision model originally developed for demonstra-
tion purpose. The model actually comprises three

intermediate concepts: Price, Technology, and Comfort. The
database has got 1728 tuples and consists of 7 attributes
including the class attribute. It contains tuples which directly

relate the cars to six input attributes––buying, maint, doors,
persons, lug_boot, and safety respectively. The class attribute
has got four values, namely ‘unacceptable’, ‘acceptable’,

‘good’, and ‘very good’.
After the training phase is over, each of the three classifiers

is applied to a test set for classification. Firstly, the perfor-

mance comparisons of these classifiers are done based on the
different performance measures like classification accuracy,
RMSE, and the kappa statistic as shown below in Table 20.

From Table 20 we could see that, NFS classifier has an

accuracy of 91.2%. RBFNN model has classification accuracy
of 89.8%; while ANFIS model has an accuracy of 86.1%.
Surely, accuracy wise NFS has performed better than RBFNN

and ANFIS. Then we have analyzed the performance of each
classifier based on the information on RMSE and the kappa
statistic values collected from Table 20. Fig. 23 below shows

a performance comparison among these classifiers.
As it is evident from Fig. 23, the kappa statistic value of the

selected algorithms is around 0.61–0.80. According to the
Table 20 Performance comparisons of three classifiers.

Classifier Classification accuracy (%) RMSE Kappa statistic

NFS 91.2 0.1778 0.7887

RBFNN 89.8 0.1882 0.7695

ANFIS 86.1 0.2032 0.7053



Figure 23 Comparison of RMSE and Kappa statistic values.

Figure 24 Comparison of three classifiers on weighted average

values.
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definition of kappa statistic, the accuracy of the classification
methods is considered to be ‘substantial’. Based on the result,

NFS comes out first with an RMSE value of 0.1778 and a
kappa statistic value of 0.7887; followed by RBFNN having
an RMSE value of 0.1882 and a kappa statistic value of

0.7695 and ANFIS stands last with the highest RMSE value
(0.2032) and the lowest kappa statistic value (0.7053). There-
fore, with regard to the performance measures like classifica-

tion accuracy, RMSE and kappa statistic, the proposed NFS
classifier has performed the best.

Next, the performances of these models are compared
based on the TP-Rate (or Recall), FP-Rate, Precision, and

F-Measure values derived from the confusion matrix of indi-
viduals with respect to the test data set. The detailed accuracy
by each of the 4 classes (‘unacceptable’, ‘acceptable’, ‘good’,

and ‘very good’) for these classifiers is shown below in
Table 21. The weighted average values are also shown in the
following table.

We have compared the performance of each classifier based
on the information on a weighted average of different perfor-
mance measures from Table 21; which is then presented in the
form of a 3-D column chart as shown below in Fig. 24.

From Table 21 we have discovered that the weighted
average values of TP-Rate (or Recall), FP-Rate, Precision,
and F-Measure for proposed NFS classifier are 91.8%,
Table 21 Detailed accuracy by each class for three classifiers.

Classifier Class TP-rate/recall (%)

NFS Unacceptable 99.9

Acceptable 77.2

Good 41.7

Very good 58.3

Weighted average 91.8

RBFNN Unacceptable 94.6

Acceptable 86.1

Good 42.9

Very good 75.0

Weighted average 89.9

ANFIS Unacceptable 92.1

Acceptable 79.7

Good 50.0

Very good 50.0

Weighted average 86.1
8.2%, 90.0%, and 91.1%, respectively; whereas for RBFNN
classifier these values are 89.9%, 9.1%, 90.0%, and 89.8%

respectively. For ANFIS these values are 86.1%, 10.3%,
87.0%, and 86.5% respectively. Surely, the NFS model has
the highest weighted average values for TP-Rate, Precision,

Recall, and F-Measure and the lowest weighted average value
for FP-Rate. Considering F-Measure as the best performance
measure derived from a confusion matrix; the NFS model

has the highest precision value for the F-Measure as 91.1%,
followed by the RBFNN model which has an F-Measure value
of 89.8% and ANFIS with an F-Measure value of 86.5%.
Fig. 24 also supports this observation.

With regard to the different performance measures used for
the ten UCI data sets; we have got better results on average for
NFS compared to RBFNN and ANFIS. An algorithm having

lower error rates will be considered effective as because it has
the more powerful classification capability and predictive abil-
ity in the data mining field. Considering this, our proposed

NFS based method has performed better than the RBFNN
and ANFIS algorithms.

6. Conclusion

As a conclusion, we have taken on our objective which is to
investigate and compare the proposed NFS method with
FP-rate (%) Precision (%) F-measure (%)

9.3 95.5 97.2

2.7 86.9 82.3

0.9 63.5 48.5

1.5 59.3 58.3

8.2 90.0 91.1

10.5 95.4 95.0

7.5 77.3 81.4

1.2 60.0 50.0

0.1 99.9 85.7

9.1 90.0 89.8

12.4 94.5 93.3

6.4 78.8 79.2

2.1 50.0 50.0

3.3 35.3 41.4

10.3 87.0 86.5
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RBFNN and ANFIS classifiers based on different perfor-
mance measures like accuracy, RMSE, kappa statistic, TP-
Rate, FP-Rate, Precision, Recall, and F-Measure. These classi-

fiers are tested with ten benchmark UCI data sets. The results
suggest that among the three classifiers studied and analyzed,
the proposed NFS classifier has the potential to significantly

improve the conventional classification methods for use in
Data Mining research field. These classification methods,
described here are powerful and effective. The results reported

in this study are correct, appropriate; and completely based on
simulation experiment. Nevertheless, a more widespread
experimental assessment of the proposed technique will be
the goal of our future research. Furthermore, the integration

of other interestingness measures mentioned in the literature
is also part of our intended future work.
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