BACKGROUND Catheter-based renal artery denervation therapy has become established as a therapeutic option in patients with resistant hypertension. We further investigated the safety and performance of the next generation EnligHTN™ Renal Denervation System (St. Jude Medical) in patients with drug-resistant hypertension.

METHODS The EnligHTN™ Renal Artery Ablation Catheter has 4 electrodes attached on a basket mounted at the tip of the catheter. The basket is collapsed and can be expanded via an external mechanism once the catheter is placed in the desired location of the renal artery. The next generation EnligHTN™ RF Ablation Generator utilizes a novel algorithm for the delivery of 1 minute of radiofrequency energy, optimized for simultaneous delivery of therapy through all 4 electrodes, with an interactive, intuitive user interface. Renal denervation was performed on 39 patients across 6 centers meeting the following inclusion criteria: 18-80 years of age, a systolic BP >160 mmHg, an average daytime systolic ambulatory BP >135 mmHg, on three or more antihypertensive agents (including a diuretic), and renal artery diameter <4 mm and length >20 mm. The primary endpoints are 1) to characterize the rate of serious procedural and device related adverse events from date of procedure through 6 months post procedure and 2) the change in office BP at 6 months post procedure. The secondary endpoints include the changes in 24 hour ambulatory BP and the characterization of renovascular safety and renal function change over time from baseline. Renal artery CT angiography was repeated at 6 months in all patients. The multi-electrode ablation catheter was introduced into each renal artery and two sets of denervation therapy delivered per renal artery.

RESULTS To date 37/38 patients have completed 18-months of follow-up post procedure. One serious device or procedure related adverse event, a pseudo aneurysm, has been observed as adjudicated by an independent Clinical Events Committee. There were no clinically significant changes in renal function through 18-months as observed in eGFR, serum creatinine, cystatin C, or urine albumin-to-creatinine ratio. 18-month office (and 12M, 24 hour ambulatory) BP reductions from baseline were -25/-8 (-11/-4) mmHg, which were statistically significant except for the ambulatory diastolic reduction. Renal artery denervation procedures were performed successfully in all patients, with an average of 4.33 ablation sets and 15.85 ablations performed per patient. The mean total ablation catheter insertion-to-removal time was 22.38 min and mean ablation time was 4.33 min per patient.

CONCLUSIONS Accumulated 24-month results from all sites will be presented at the meeting. After 18-months follow-up post procedure in this first-in-human study, we conclude that data demonstrates the next generation EnligHTN Renal Denervation System continues to be safe, rapid, and effective in the treatment of patients with drug-resistant, uncontrolled hypertension.

CATEGORIES ENDOVASCULAR: Hypertension Therapies and Renal Denervation

KEYWORDS Hypertension, Renal Denervation

TCT-86

Safety and Performance of the Next Generation EnligHTN™ Renal Denervation System in Patients with Drug-resistant Hypertension: 24-Month Results From a First-in-Human Multicentre Study

Stephen G. Worthley,1 Gerry T. Wilkins,2 Mark W. Webster,1 Joseph Montarello,2 Paul Antonis,3 Robert J. Whitbourn,2 Roderic Warren,4 The University of Adelaide, Adelaide, Australia; 2Dunedin Hospital, Dunedin, New Zealand; 3Auckland City Hospital, Auckland, New Zealand; 4Royal Adelaide Hospital, Adelaide, Australia; Monash Heart, Melbourne, Australia; Cardiovascular Research Centre, St. Vincent Hospital Melbourne, Melbourne, Victoria; Royal Melbourne Hospital, Melbourne, Australia

Background: Despite recent setbacks and limitations with radiofrequency (RF)-based therapies, there is continued interest in renal denervation as a therapy for uncontrolled hypertension. We present an update of targeted “chemical renal denervation” using alcohol as the neurolytic agent, as an alternative method for renal denervation.

Methods: The Peregrine System™ is a novel endovascular catheter with three micro-needles which are deployed into the perivascular
space of the renal artery to precisely deliver micro-volumes of alcohol to directly target the nerves. Alcohol is administered using a single infusion in the main renal artery. Doses of 0.15 to 0.6 mL have been studied in this model. The denervation produced with alcohol has been characterized with histology, immunostaining and measurement of renal norepinephrine (NE) in a porcine model. A direct comparison of the denervation produced with alcohol vs. RF was performed using the same model and methods (3 mos. survival). For the RF group 4 renal artery ablations were performed, with one ablation per quadrant.

RESULTS Renal denervation with alcohol creates consistent, dose-related and substantial sympathetic nerve injury. The Peregrine catheter delivers the alcohol directly within the adventitia and peri-adventitial space. Because the alcohol is infused outside of the vessel wall, changes to the media are rare; typically mild and focal; and at the abluminal surface of the media. This contrasts with RF, which typically creates focal transmural medial injury. The ablation area produced by the infusion of alcohol is larger, and typically circumferential, in comparison to the focal ablation produced by RF. Ablation depth (distance from the lumen) and area (morphometric) were significantly greater for alcohol using 0.3 mL and 0.6 mL per artery, compared to RF. Depth (p<0.05 for both alcohol doses) compared to RF: 0.3 mL = 6.6±1.2 mm, 0.6 mL = 8.2±2.2 mm, RF = 3.9±1.2 mm. Area (p=0.0001): 0.3 mL = 30.8±13.7 mm², 0.6 mL = 41.6±7.5 mm², RF = 11.0±7.5 mm². Compared to controls the median NE was reduced by 83% for 0.6 mL, 76% for 0.3 mL and 66% for RF (p<0.095 both alcohol vs. RF). The median procedure time for the alcohol groups was 9 min. vs. 29 min. for RF (p<0.05). Neither RF nor alcohol infusion produced any systemic or renal adverse events.

CONCLUSIONS The use of alcohol with the Peregrine System for “chemical” renal denervation appears to be potentially safer and more time-efficient. Alcohol-mediated denervation of the renal artery is shown to address the issue of adequacy of denervation by demonstrating superior coverage in terms of ablation depth and area, yielding a greater reduction in renal NE vs. RF. Chemical denervation can also be performed in very short renal arteries, avoiding technical issues and advancement of the RF ablation length over the renal artery, or the distal branches as has been proposed for RF. Overall, chemical denervation using alcohol may represent a promising alternative to RF ablation.

CATEGORIES ENDOVASCULAR: Hypertension Therapies and Renal Denervation

KEYWORDS Hypertension, Periphera l renal denervation

TCT-89 Renal Sympathetic Denervation in Treatment Resistant Essential Hypertension: Sham-Controlled, Double-blinded Randomized Trial (RESSET trial)

Ole N. Mathiassen,1 Jesper N. Bech,2 Niels Henrik Buus,3 Kent L. Christensen,1 Henrik Vase,1 Jannik B. Bertelsen,1 Ricickers Hans,4 Ulla Kampmann,5 Morten E. Pedersen,1 Ole L. Pedersen,5 Christian D. Peters,2 Per L. Poulsen,2 Jens F. Lassen,2 Klavs Würgler,3 Hans Erik Boetker,4 Pauline Schroeder,4 Erling B. Pedersen,5 Anne Kaltoft4
1Dept. of Cardiology, Aarhus University Hospital, Skejby, Denmark; 2Aarhus, Denmark; 3Holstebro Hospital, Holstebro, Denmark; 4Dept. of Nephrology, Aarhus University Hospital, Skejby, Aarhus, Denmark; 5Randers Hospital, Randers, Denmark; 6Dept. of Endocrinology, Aarhus University Hospital, NBG, Aarhus, Denmark; 7Viborg Hospital, Viborg, Denmark; 8Silkeborg Hospital, Silkeborg, Denmark; 9Holstebro Hospital, Holstebro, Denmark

BACKGROUND Renal denervation (RDN) for the treatment of resistant hypertension has been shown in pilot studies to lower blood pressure (BP) without safety alerts. However, this was only shown in open-label-styled study designs and has primarily addressed the effect on office BP. We therefore conducted a sham controlled, double blind, randomized, multi-center trial to establish renal denervation efficacy data based on 24-h BP measurements. We expected a 10 mmHg reduction in ABPM systolic daytime BP (ASBP-day) at 3 months in the RDN group as compared to SHAM, and planned to randomize 70 patients.

METHODS Patients with therapy resistant essential hypertension, 30 to 70 years of age, were randomly assigned to undergo RDN or a sham procedure. Inclusion criteria were ASBP-day ≥ 145 mmHg follow one month of stable medication and 2 weeks of compliance registration. Recruitment and patient follow-up was held in seven dedicated hypertension out-patient clinics. Drug treatment was optional, apart from the mandatory use of a diuretic when tolerated by the patient. Follow-up changes in antihypertensive medication were only allowed if requested by the patient or if harmfull changes in BP or safety parameters occurred. Renal artery anatomy was evaluated by CT angiography in advance. All RDN procedures were carried out by the same experienced operator using the simplicity catheter (Medtronic).

RESULTS 69 patients, mean age 56 ± 9 year, were randomized for RDN (n = 36) or SHAM (n = 33). One patient suffered a NSTEMI close to randomization. Therefore RDN was excluded. Group showed similar demographic and baseline parameters. Mean baseline ASBP was 159 ± 12 mmHg (RDN) and 195 ± 14 mmHg (SHAM). Groups had similar reductions in ASBP compared to baseline at 3 months: - 2.6 ± 18.8 mmHg (RDN) vs. - 6.0 ± 13.5 mmHg (SHAM) and at 6 months: - 6.1 ± 18.9 mmHg (RDN) vs. - 4.3 ± 15.1 mmHg (SHAM). Mean antihypertensive DDD usage at 3 month was equal 6.8 ± 2.7 (RDN) vs. 7.0 ± 2.5 (SHAM), although more RDN patients (41%) had medical changes than SHAM pt (24%).

CONCLUSIONS Renal denervation performed at a single center and by a high volume operator reduced ASBP to the same level as SHAM control. This result is in line with findings from the HTNQ trial.

CATEGORIES ENDOVASCULAR: Hypertension Therapies and Renal Denervation

KEYWORDS Clinical Trial, Hypertension, Renal sympathetic denervation

TCT-90 Sustained Beneficial Effects of Multi-Electrode Renal Denervation on Cardiac Adaptations In Resistant Hypertension: A 24-Months Follow-Up Study

Konstantinos P. Tsoulos1, Vasilios Papademetriou,2 Kyriakos Dimitriadis3, Alexandros Kaslakogias4, Athanasios Kordalis1, Eirini Andrikou1, Anastasios Milkas5, Ioannis Liatakis,1 Athanasios Kordalis1, Elizabeth O. Lau,1 Dimitrios Toussilis1
1First Cardiology Clinic, University of Athens, Hippokration Hospital, Athens, Greece; 2Veterans Affairs and Georgetown University Medical Centers, Washington DC, USA; 3St.Jude Medical, Inc., Irvine, CA

BACKGROUND In this study we investigated whether multi-electrode catheter-based renal sympathetic denervation (RDN) has favorable effects on left ventricular (LV) structural and functional indices in patients with resistant hypertension after a follow-up of 24 months.

METHODS Twenty patients with resistant hypertension [age: 57±10 years, 13 males, office blood pressure (BP): 182±97/19±18 mmHg under 4±5±0.6 drugs] who underwent RDN were followed-up for 24 months. A full transthoracic echocardiographic study was performed in all patients and LV mass was calculated using the Devereux formula and was indexed for body surface area and height.

RESULTS Average office BP was reduced to 148±81/85±14 mmHg at 12 months and to 143±23/80±14 mmHg at 24 months (p<0.001 for all). In the RDN group, LV mass index was significantly reduced from 136±2.01 g/m² (56±8.7 g/m²) at 12 months and to 15.1±2±3.3 g/m² (48.8±9.3 g/m²) at 24 months (p<0.01 for all). RDN decreased mean interventricular septum thickness from 12±1±2 mm to 11±3±0.9 nm at 12 months and to 11±3±0.9 mm at 24 months (p<0.05 for all). After RDN, the number of patients with concentric LV hypertrophy (i.e. relative wall thickness<0.42 and LV mass<48 g/m² for male and >4.4 g/m² for female) decreased from 16 patients (80%) at baseline to 10 patients (50%) at 12 months, and to 7 patients (36.8%) at 24 months. Regarding diastolic function RDN caused an increase in mitral valve E/A ratio from 0.62±0.28 to 0.70±0.25 at 12 months and to 0.84±0.32 at 24 months (p<0.05 for all). A decrease in the E/E’ ratio from 14.8±6.1 to 11.8±3.7 at 12 months and to 9.7±4 (p<0.05 for all).

CONCLUSIONS This the first study to show that multi-electrode RDN system results in a significant and sustained improvement of diastolic function and attenuation of LV mass index in increased cardiovascular risk resistant hypertensive patients after a follow-up of 24 months. These results suggest pleiotropic cardiovascular benefits of RDN therapy in the setting of resistant hypertension.

CATEGORIES ENDOVASCULAR: Hypertension Therapies and Renal Denervation