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Abstract

A cosmologicalscenariois proposed,whichsimultaneously solvesthemasshierarchyandthesmalldarkenergyproblem.In
thepresentscenario an effectivegravitymass scale(inverseof theNewton’sconstant)increasesduringthe inflationaryperiod.
Thesmallcosmological constant orthedarkenergydensityin thepresentuniverseis dynamicallyrealizedby introducing two,
approximatelyO(2) symmetric dilatons,taking thefundamentalmass scaleat TeV.
 2005ElsevierB.V. Open access under CC BY license.
1. Introduction

There are many interestingideasthat attemptto
solvethehierarchyproblembetween gravityandpar-
ticle physicsmassscales(thefirst hierarchyproblem),
but noneseemsto have linked this hierarchyprob-
lem with anotherhierarchyin cosmology (thesec-
ond hierarchyproblem);presence ofa finite, but very
small cosmologicalconstant,or a dark energy,its na-
ture andorigin yet to be identified. We attempt to
constructmodelsthat simultaneously solvethesehi-
erarchyproblems byradicallychanging cosmology in
the same spiritof ideasas due to Dirac[1], Brans
andDicke[2]. Importantnewingredient in thepresent
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work is achoiceof thedilaton potentialalongwith a
curvaturecouplingsimilar to theone givenby Brans
andDicke.

Recentobservations ofWMAP andthelargescale
structureconfirmthebasicvalidity of the inflationary
paradigm[3], but at the sametime it hasleft behind
a great conundrum ofthe presence ofthe dark en-
ergy which is close to, but dominantover, the dark
matter energy. Theimplied massscaleof (dark en-
ergy density)1/4 is very small of order 10−3 eV in
themicroscopicscale.It thusappearsthata resolution
of great mysteriesin cosmologyvia inflationarysce-
narios hascreatedanothergreatmystery, whichseems
evenmoreinsurmountable.

We proposea possiblescenariotowards resolu-
tion of two hierarchy problems,while retainingnice
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features of the inflationary cosmology. Inflation
achieved by the dilatonic inflaton in our scenario. W
avoid fine tuning of parameters, taking a comm
mass scale of order TeV for the dilatonic inflaton p
tential. In a broken symmetric model of two dilato
a light scalar boson of mass≈ TeV2/mpl ≈ 1 meV is
predicted, whose coupling to matter is gravitationa
suppressed.

The TeV scale model however has a difficulty
generating the baryon asymmetry of the unive
since the reheat temperature is too low. This can
remedied by a further extension of the present mod

2. Theoretical framework

We work in a general framework of four-dime
sional Lagrangian field theory, with two parts left u
specified for the time being

(1)

L = √−g

[
−f (ϕi)R + 1

2
(∂ϕi)

2 − V (ϕi) +Lm

]
.

The dilatonic coupling of the scalar fieldϕi to the
scalar curvature given byf (ϕi)R is taken from[2].
But we depart in the choice of the potentialV (ϕi)

from the Brans–Dicke theory, in which a single dil
ton was introduced along with the null potential a
f (ϕ) = εϕ2.

The Einstein gravity equation is modified to[4]

Rµν − 1

2
gµνR

(2)= 1

2f

[
T (m)

µν + T (ϕ)
µν

] + 1

f

(
f;µ;ν − gµνf

;λ
;λ

)
,

whereT
(ϕ)
µν is contribution to the energy–momentu

tensor from the scalarϕ, while T
(m)
µν is the usual con

tribution of radiation, matter and other fields. Sca
field evolution is given by

(3)ϕ
;λ
i;λ = − ∂V

∂ϕi

− ∂f

∂ϕi

R.

One may use

(4)−R = 1

2f (ϕ)

[
T − (∂ϕi)

2 + 4V (ϕi) − 6f
;ρ
;ρ

]
,

in the right-hand side of Eq.(3). HereT is the trace of
the matter energy–momentum tensor.
An effective gravitational strength is given b
f (ϕi) = 1/16πG, and this can be spacetime depe
dent due to a nontrivial spacetime dependence oϕ,
thus modifying the Einstein equation in an ess
tial way. The usual Einstein equation with a co
stantϕi is however an excellent approximation in t
present universe. (We shall discuss its possible va
tion at the end of this Letter.) Existence of the ter
(f;µ;ν − gµνf

;λ
;λ )/f , in the modified Einstein equa

tion (2) is important in our cosmological discussio
From reasons to be clarified later, we introduce t
(or more) dilatons and extend the dilatonic coupling

(5)f (ϕi) = ε1ϕ
2
1 + ε2ϕ

2
2,

with εi positive numbers. We later mention what ha
pens in the case of the exactO(2) symmetry ofε1 =
ε2.

We do not assume any fine tuning of the poten
V (ϕi) except that it is a bounded function allowing i
finitely many negative values and infinitely many loc
minima. In this way a large mass hierarchy and
namical relaxation towards a small cosmological c
stant may be realized. The simplest choice realiz
these is a periodic potential of minimum numbers
parameters

(6)V (ϕi) = V0 cos
ϕr

M
+ Λ,

with ϕr =
√

ϕ2
i andV0 > Λ > 0. HereΛ is a collec-

tion of all constants in the standard model Lagrang
Lm such that the potential of the standard model
grangian vanishes at its minimum. We assumeO(2)

rotational symmetry for the potentialV (ϕi).
Important features of our assertions below are v

irrespective of the precise form of the potential. T
essential requirement on the potential for a succes
scenario is that (1) boundedness, (2) infinitely ma
local minima, and (3) infinitely many regions of ne
ative values between minima and maxima. Neverthe
less, it would be useful to have a simple realizat
such as(6) of our idea and to discuss a model expl
itly.

For both simplicity and naturalness we assume
all mass parameters are of the same order, thusV0 ≈
Λ = O[M4] for the choice(6). We take the commo
mass scaleM of order TeV.
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3. Dynamical equation

Consider the Robertson–Walker metric of flat u
verse,ds2 = dt2 − a(t)2 d �x2. Dynamical equation o
time evolution is derived straightforwardly. We wri
it down in terms of the following two field variable
f±,

(7)ϕ1 =
√

f+
2ε1

, ϕ2 =
√

f−
2ε2

, f± = f ± k.

The basic dilaton dynamics is given by

f̈+ + 3Hḟ+

=
[
1+ 6

ε1f+ + ε2f−
f

]−1

(8)×
[
4ε1f+

(
−R̃ − 1

2ε1ϕr

V ′
)

+ ḟ 2+
2f+

]
,

f̈− + 3Hḟ−

=
[
1+ 6

ε1f+ + ε2f−
f

]−1

(9)×
[
4ε2f−

(
−R̃ − 1

2ε2ϕr

V ′
)

+ ḟ 2−
2f−

]
,

(10)R̃ = 1

2f

(
ḟ 2+

8ε1f+
+ ḟ 2−

8ε2f−
− 4V − T

)
.

These ought to be solved along with the modified E
stein equation

(11)H 2 = 1

6f

(
T00 + 1

2
ϕ̇2

i + V

)
− H

ḟ

f
.

We note interesting features ofϕ dynamics. First,
the usual force term− ∂V

∂ϕ
is modified, as seen from

the f dependent terms of(10) −2f±V/f present in
f± equations. The second is presence of the indu
matter coupling∝ T , which may be derived from a
effective Lagrangian of the form,T2 lnf . Thus, the
dilaton couples to matter via the trace of the ener
momentum tensorT .

One dilaton model fails to solve hierarchy proble
from a number of reasons; it requires a fine tun
at the stationary minimum of the potential, name
V = 0 at the same time when−V,ϕ + 4V/ϕ = 0. It
is also difficult to obtain a small dark energy densit

The key for success is introduction of more fre
dom such as an angular momentum in a high
dimensionalϕ-space. We thus introduce 2 dilaton
inflatonsϕ1, ϕ2, as already stated. This makes it po
sible to reach a largef value (very weak gravitationa
interaction) without being trapped in many potent
minima of negative cosmological constant.

4. Cosmological evolution

Let us first point out that this model realizes t
power-law inflation. Ignoring, for the moment, pote
tial variation and replacingV by its averaged valueΛ,
we seek solution, with the ansatz valid for larget ,

(12)f = At2, k = Bt2, a ∝ tω.

Leading order solution is found, in whichω is deter-
mined in terms ofεi . In the smallεi limit the index of
the powerω becomes large.

A large value ofω is favored to approximatel
mimic the exponential expansion of the cosmolo
cal scale factor. The gravity mass scale increase
inflation proceeds likef ∝ a2/ω. Thus, there is no dif
ficulty of obtaining a large enough e-folding factor
inflation, at the same time resolving the mass hie
chy problem. This is a feature already visible in t
model of extended inflation[5], although it has no
been much appreciated.

A naive estimate of the density perturbation give
magnitude of orderM/mpl, which is too small if one
takesM at TeV. Instead, the best way to realize
acceptable density perturbation is to utilize a vers
of curvaton idea, which will be discussed separate

After this inflationary epoch, the inflatonϕi is ex-
pected to settle down to some stationary points.
in our model ofε1 �= ε2 there is no stationary poin
because the requirement of constantϕi values implies
bothV ′ = 0 and V= 0, which is nothing but the fine
tuning of parameters of the potential. The model w
out fine tuning however gives a mechanism of dyna
cal cancellation of the effective cosmological consta
Λeff = 〈1

2ϕ̇2
i + V 〉. We shall discussthis mechanism

later.
Particle production right after inflation gives ris

to the hot big bang. We shall briefly discuss h
this comes about. We take an example of the m
ter energy–momentum tensor,T = 1

2m2
ψψ2, whereψ

represents a generic boson. The mode equation fψ

whenf deviates around 1/16πG by a small amoun
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(13)ψ̈ + (
m2

ψ + k2)ψ + 3Hψ̇ + m̃2
2ξ(t)ψ = 0,

(14)ξ(t) = m2
ψ

2m̃2
2

(
δf

f
− 1

2

(
δf

f

)2

+ O

[(
δf

f

)3])
.

There exist two mass eigenstates of the dilaton, and
took the lighter dilaton since it gives more importa
contribution here.

We shall first discuss the fluctuation equation
order to derive these mass values. With the ans
f = f0 + δf , k = k0 + δk the linearized equations fo
low(

δf̈+ + 3Hδḟ+
δf̈− + 3Hδḟ−

)
=M2

(
δf+
δf−

)
,

(15)M2
ij =O

[
M2],

(16)det
(
M2) ≈ V ′V ′′

ϕ3
r

(
f+
ε1

+ f−
ε2

)
,

where det(M2) appearsO[M5m−1
pl ], but actually

O[M6m−2
pl ], sinceV ′(≡ V,ϕ) ∝ 1/mpl, as is shown

later.
The mass diagonalization, taking into accountV ′ ∝

1/mpl, yields two eigenmasses of order,

m̃1 = O[M],
(17)m̃2 = O

[
M2

mpl

]
= O[1 meV]

(
M

1 TeV

)2

.

We call the second, light dilaton newdiron, named
ter Newton and Dirac.

Back to the inflaton decay, large and small amp
tude decay ofϕ is described as follows. First, the larg
initial amplitude condition is fulfilled, since

(18)ξ(ti ) = O

[
m2

ψM

m̃2
1mpl

]
= O

[
m2

ψmpl

M3

]

 1,

for δf̃2 decay, taking initiallyδϕi(ti) = O[M]. Thus,
the inflaton oscillation leads to explosive particle p
duction due to the parametric resonance effect[6].
Thermalization is quickly achieved, giving a rehe
temperature of orderM.

After this initial phase of preheating and therm
ization, the dimensionless amplitudeξ(t) drops to
O[1], and the large amplitude oscillation stops. Af
this takes place, the only process of dilaton deca
two-body perturbative decay. To correctly derive the
rates, one has to note correctly normalized fields gi
by (2

√
2εi )

−1δf±/
√

f±. These decay rates are th
Γ1 = O[M3/m2

pl],

Γ2 = O

[
m4

ψ

m2
plm̃2

]

(19)= O

[
M6

m5
pl

]
≈ (

1048 s
)−1

(
M

1 TeV

)6

,

where for the newdiron only neutrino-pair and tw
photon decays are possible due to the small m
Thus, the newdiron is effectively stable.

For the success of nucleosynthesis, the heavy d
ton must decay prior to nucleosynthesis. This give
mass scale constraint

Γ1 = O

[(
103 s

)−1
(

M

1 TeV

)3]
>

(
103 s

)−1 ⇒
(20)M > a few TeV.

More elaborate analysis including the gravitino ov
production favors the mass constraint of order,M >

100 TeV, which can be accommodated in the pres
model.

5. Dynamical relaxation towards vanishing Λeff

At some stage of cosmological evolution after infl
tion, the cosmological constant (or more precisely
vacuum energy density) of order (TeV)4 must relax to-
wards smaller values of order (meV)4. We analyze this
problem by assuming the main termsf andk of order
f0 (constant) andδk̇ 
 δḟ . The resulting equation fo
k fluctuation is

δk̈ + 3Hδk̇

=
(

1+ 6
ε1f+ + ε2f−

f0

)−1

×
[
−2V ′

ϕr

(k0 + δk) + 4

f0
(ε1f+ − ε2f−)V

]
.

From the solution ofδk = O[mpl] × oscillating func-
tion, one obtains the kinetic term of order,

(21)
ϕ̇2

k

2
= O[1] ×

( t∫
dt ′ V ′(t ′)

)2

= O
[
M4].
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Since this quantity is nonvanishing and of orderM4,
there is a chance of cancellation against the potentia
termV . Indeed, for a largef0 there are a great man
trajectories of vanishingΛeff.

The requirement of constantf (gravity scale) and
the tuning conditionΛeff = 0 give

(22)
ϕ̇2

k

2
+ V = 0, 3V − ε1 + ε2

4ε1ε2

f0

ϕr

V ′ = 0.

These two Eqs.(22), to be supplemented by Eq.(21),
ought to be solved in favor of (f0, k0). Suppose tha
the Newton’s constant is measured to a precisioδ
(which is at present≈ 10−4). Then, there are of or
der 1015δ(M/(1 TeV))−1 possible (f0, k0) values that
fit measured data.

Note that the coefficient of these Eqs.(22), f0/ϕr

is of ordermpl. Hence the factorV ′ must be smal
of orderM4/mpl to cancel against other terms of o
der M4. This explains the already mentioned ma
relation,m̃2 ≈ M2/mpl due to the presence ofV ′.

There are a great many(f, k) values of solutions
to both of Eqs.(22), close to trajectories ofV ′ = 0, or
more preciselyϕr = MNπ + O[M2/mpl] for a large
integerN . Thus, a very smallΛeff may be dynamically
obtained near these points which however canno
stationary anchor points, hence one expects that ne
ending shifts towards these points occur in the pre
version of model ofε1 �= ε2.

We however point out with the exactO(2) sym-
metry of ε1 = ε2 = ε there exist stationary ancho
points of very small effective cosmological consta
This comes about, because the angular momen
L = ϕ1ϕ̇2 − ϕ2ϕ̇1 is conserved with theO(2) symme-
try, and the stationary condition reduces to

(23)−V ′ + 4V

ϕr

+ L2

8εϕ3
r

= 0,
L2

2ϕ2
r

+ V = 0,

which should be solved for(f0, L). There are again
such candidate values of order 1015δ(M/(1 TeV))−1

that fit observation. The critical question for realiz
tion of this result concerns a natural initial setting
the conserved quantityL2 which should be of orde
M4m2

pl. We shall address this question elsewhere.
TheO(2) symmetric model has one heavy dilat

of massO[M], whose decay rate is of orderM3/m2
pl.

What happens to the light dilaton is that it becom
massless, which however completely decouples f
the rest of the world.
-

In both scenarios of dynamical relaxation towa
the vanishing cosmological constant, the exact tun
is not necessary and moreover is unlikely to occ
Under this circumstance one expects a residual d
ton energy as the dark matter candidate. The tunin
the amplitude precision of the leading orderM2/mpl
yields the dark energy density of order,

(24)ρDM = O

[(
M2

mpl

)4](
T0

Td

)3

,

with Td/T0 the expansion factor after the relaxatio
If the relaxation epoch is close to the present age,
dilaton oscillation energy is of the right order of ma
nitude to explain the present amount of dark matte

There is another possibility. Suppose that the ap-
proach to anchor points had occurred around nuc
synthesis or at the heavy dilaton decay. Then, one
a right order of magnitude of the presentΛeff, since its
present value

(δΛeff)0 = O

[
M6

m2
pl

](
T0

MeV

)3

(25)≈ (1 meV)4
(

M

1 TeV

)6

.

Finally, let us discuss what happens if the s
nario works, as expected. The result differs, depend
whether the dark matter is provided by the dilaton
cillation or another form of stable particles such
lightest supersymmetric particles. If the dark matte
made of newdiron, one obtains, from the consiste
with the modified Einstein equation, for thew value
defined byw ≡ p/ρ,

(26)w = −1− ρDM

ρDE
.

If the dark matter is attributed to another source,
has the usualw = −1. Clearly, a better understandin
of the relaxation process is welcome. The time depen
dence ofw differs, depending on how the relaxatio
occurs, in particular, when this occurs. Observation
future deep sky surveys is crucial to test the mode
dynamical relaxation.

6. Variation of Newton’s constant

In the present model variation of the gravitation
constant is inevitable, although its magnitude is mo
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a,
dependent. We shall discuss the simplest case of
much it varies due to nonrelativistic (NR) matter
mass densityρm excluding the dilaton oscillation. Fo
simplicity, we take theO(2) symmetric model. The
quantityf varies, withmd the heavy dilaton mass, a
cording to

(27)δf̈ + 3Hδḟ + m2
dδf = 2ε

1+ 12ε
ρm.

Assuming that this NR matter dominates as the m
component of the dark matter, one derives aδf/f ,
hence−δG/G, variation between epochs of NR ma
ter appearance and NR matter dominance≈ 16ε/

((1+ 12ε)Nd), whereNd is the relativistic degrees o
freedom contributing to the energy density at NR m
ter appearance. Thus, this fraction can be made sm
and furthermore its changeafter NR matter dominanc
is small, although the variation can be made large
accommodate some nonstandard varyingG. We shall
discuss elsewhere how muchG varies when the dar
matter is made of the newdiron.

In summary, the Dirac’s large number hypoth
sis has been resurrected along with inflation. Furth
more, a class of multi-dilaton models give a possibi
of solving the problem of how the present dark ene
density becomes of order(TeV2/mpl)

4.
Interesting details and some extensions of

present model will be presented in separate publ
tion.
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