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Abstract

A cosmologicakcenarids proposedwhich simultaneously solvethe masshierarchyandthe smalldarkenergyproblem.In
thepresentscenario an effectivgravity mass scaléinverseof the Newton’sconstantjncreasesluring the inflationaryperiod.
Thesmallcosmological constant dhedarkenergydensityin the presenuniverseis dynamicallyrealizedby introducing two,
approximatelyO (2) symmetric dilatonstaking thefundamentamass scalat TeV.
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1. Introduction

There are many interestingideasthat attemptto
solvethe hierarchyproblembetween gravityandpar
ticle physicsmassscaleqthefirst hierarchyproblem),
but none seemsto havelinked this hierarchyprob
lem with anotherhierarchyin cosmology (thesec
ond hierarchyproblem);presence oéfinite, but very
smallcosmologicaktonstantor a dark energyits na-
ture andorigin yet to be identified. We attemptto
constructmodelsthat simultaneously solvéhesehi-
erarchyproblems byradicallychanging cosmology in
the same spiritof ideasas due to Diradl], Brans
andDicke[2]. Importantnewingredient in thegpresent
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work is achoiceof the dilaton potentiablongwith a
curvaturecouplingsimilar to theone givenby Brans
andDicke.

Recentobservations o'WMAP andthelargescale
structureconfirmthe basicvalidity of the inflationary
paradigm[3], but at the sametime it hasleft behind
a greatconundrum ofthe presence othe dark en-
ergy whichis closeto, but dominantover, the dark
matter energy. Thémplied massscaleof (dark en
ergy density}/# is very small of order 102 eV in
themicroscopicscale It thusappearshataresolution
of great mysteriein cosmologyvia inflationary sce
narios hagreatedanotheigreatmystery, whichseems
evenmoreinsurmountable.

We proposea possiblescenariotowards resolu
tion of two hierarchy problemsyhile retainingnice
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features of the inflationary cosmology. Inflation is
achieved by the dilatonic inflaton in our scenario. We
avoid fine tuning of parameters, taking a common
mass scale of order TeV for the dilatonic inflaton po-
tential. In a broken symmetric model of two dilatons
a light scalar boson of mass TeVZ/mp ~ 1 meV is
predicted, whose coupling to matter is gravitationally
suppressed.

The TeV scale model however has a difficulty of
generating the baryon asymmetry of the universe,
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An effective gravitational strength is given by
f (i) = 1/167 G, and this can be spacetime depen-
dent due to a nontrivial spacetime dependence,of
thus modifying the Einstein equation in an essen-
tial way. The usual Einstein equation with a con-
stanty; is however an excellent approximation in the
present universe. (We shall discuss its possible varia-
tion at the end of this Letter.) Existence of the term,
(Fuw = guvfi)/f, in the modified Einstein equa-
tion (2) is important in our cosmological discussion.

since the reheat temperature is too low. This can be From reasons to be clarified later, we introduce two

remedied by a further extension of the present model.

2. Theoretical framework

We work in a general framework of four-dimen-
sional Lagrangian field theory, with two parts left un-
specified for the time being

L=-¢g |:_f(901')R + %(8@-)2 - Vipi) + »Cmi|~
(1)

The dilatonic coupling of the scalar fielg; to the
scalar curvature given by (¢;)R is taken from[2].
But we depart in the choice of the potentiéky;)
from the Brans—Dicke theory, in which a single dila-
ton was introduced along with the null potential and
flo)=e¢?.

The Einstein gravity equation is modified[#)]

1
R;w - Eg/wR
1

whereT,E“v’) is contribution to the energy—momentum
tensor from the scalay, while Tlf’f) is the usual con-
tribution of radiation, matter and other fields. Scalar
field evolution is given by
vl = _29‘011‘ - ;_(QR-
One may use

1 .
[T/%) + T/E‘fj)] T ?(f:u;v - gll"f;’;)’ )

3

—R=——[T — (39;))*>+ 4V (¢;) — 6£°"], 4
s LT~ @) (@) —6f1]. (@)
in the right-hand side of Eq3). HereT is the trace of

the matter energy—momentum tensor.

(or more) dilatons and extend the dilatonic coupling to

®)

with ¢; positive numbers. We later mention what hap-
pens in the case of the exa@t2) symmetry ofe; =
€.

We do not assume any fine tuning of the potential
V (p;) exceptthat it is a bounded function allowing in-
finitely many negative values and infinitely many local
minima. In this way a large mass hierarchy and dy-
namical relaxation towards a small cosmological con-
stant may be realized. The simplest choice realizing
these is a periodic potential of minimum numbers of
parameters

flpi) = ewf + €2<p§,

V(i) = Vo cos% + A, (6)

with ¢, \/(pT.Z andVp > A > 0. HereA is a collec-
tion of all constants in the standard model Lagrangian
L,, such that the potential of the standard model La-
grangian vanishes at its minimum. We assuth@)
rotational symmetry for the potenti&l(y;).

Important features of our assertions below are valid
irrespective of the precise form of the potential. The
essential requirement on the potential for a successful
scenario is that (1) boundedness, (2) infinitely many
local minima, and (3) infinitely many regions of neg-
ative values between mimia and maxima. Neverthe-
less, it would be useful to have a simple realization
such ag6) of our idea and to discuss a model explic-
itly.

For both simplicity and naturalness we assume that
all mass parameters are of the same order, thus
A = O[M*] for the choice(6). We take the common
mass scalé/ of order TeV.
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3. Dynamical equation

Consider the Robertson—Walker metric of flat uni-
verse,ds? = dt? — a(t)?dx2. Dynamical equation of
time evolution is derived straightforwardly. We write
it down in terms of the following two field variables

S+,

_ [ f+ _ = _
(pl_ 2_617 902_ 262’ fi_f:tk (7)

The basic dilaton dynamics is given by

fr+3H fy
e1f +eaf- }1
=|1+6—————
[ Ty |
x[%1f<— v)4vié} (8)
- 2€10, 2f+ |
f-+3Hf
eifitef 1t
=|1+6—————
[+ 7 }
A
R e Tl M
s 1 f2 2 )
k= 2f'(861f4+-862f' T (10)

These ought to be solved along with the modified Ein-
stein equation
1 1 f
H? = T V)-HZ.
67 ( 00+ </>, + ) 7
We note interesting features of dynamics. First,

the usual force term—dv is modified, as seen from
the f dependent terms qfl0) —2fLV/f present in

11)
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inflatonsg1, ¢, as already stated. This makes it pos-
sible to reach a larg¢ value (very weak gravitational
interaction) without being trapped in many potential
minima of negative cosmological constant.

4. Cosmological evolution

Let us first point out that this model realizes the
power-law inflation. Ignoring, for the moment, poten-
tial variation and replacind’ by its averaged valud,
we seek solution, with the ansatz valid for large
f=Ar, k = B1?, aot®. (12)
Leading order solution is found, in which is deter-
mined in terms ot;. In the small; limit the index of
the powerw becomes large.

A large value ofw is favored to approximately
mimic the exponential expansion of the cosmologi-
cal scale factor. The gravity mass scale increases as
inflation proceeds likegf o a?®. Thus, there is no dif-
ficulty of obtaining a large enough e-folding factor of
inflation, at the same time resolving the mass hierar-
chy problem. This is a feature already visible in the
model of extended inflatiofb], although it has not
been much appreciated.

A naive estimate of the density perturbation gives a
magnitude of orden//mp, which is too small if one
takesM at TeV. Instead, the best way to realize an
acceptable density perturbation is to utilize a version
of curvaton idea, which will be discussed separately.

After this inflationary epoch, the inflatapy is ex-
pected to settle down to some stationary points. But
in our model ofe; # €2 there is no stationary point,

f+ equations. The second is presence of the inducedbecause the requirement of constanvalues implies

matter couplingx 7', which may be derived from an
effective Lagrangian of the form% In f. Thus, the

both V' =0 and V=0, which is nothing but the fine
tuning of parameters of the potential. The model with-

dilaton couples to matter via the trace of the energy— out fine tuning however gives a mechanism of dynami-

momentum tensor .

One dilaton model fails to solve hierarchy problems
from a number of reasons; it requires a fine tuning
at the stationary minimum of the potential, namely
V =0 at the same time wheaV,, 4+ 4V /¢ =0. It
is also difficult to obtain a small dark energy density.

The key for success is introduction of more free-

cal cancellation of the effective cosmological constant,
Aett = (3¢? + V). We shall discusshis mechanism
later.

Particle production right after inflation gives rise
to the hot big bang. We shall briefly discuss how
this comes about. We take an example of the mat-
ter energy—momentum tens@r,= 2m2 ¥2, wherey

dom such as an angular momentum in a higher- represents a generic boson. The mode equatiott for

dimensionalgp-space. We thus introduce 2 dilatonic

when f deviates around /16 G by a small amount
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is

U+ (m3, + k?)y + 3H Y + w3t () =0, (13)

-5 )] v

There exist two mass eigenstates of the dilaton, and we

took the lighter dilaton since it gives more important
contribution here.
We shall first discuss the fluctuation equation in

order to derive these mass values. With the ansatz,

f = fo+38f, k=ko+ 8k the linearized equations fol-
low

(3f:++3H5j+> =M2<3f+>

Sf_+3HSf- 8f-
MZ =0[M?], (15)
2 VvV f+ /-
det{ M?) ~ h ( o ) (16)

where detM?) appearsO[M°m
0[M6m 2], since V/(=
later.

The mass diagonalization, taking into accolhtx
1/myp, yields two eigenmasses of order,

,]1], but actually
V) o 1/mp, as is shown

m1 = O[M],

3 M? M \?
mzzo[ pl} o[l ew(lTv) (17)

We call the second, light dilaton newdiron, named af-

ter Newton and Dirac.

Back to the inflaton decay, large and small ampli-
tude decay o is described as follows. First, the large
initial amplitude condition is fulfilled, since

2 2
mo M ms mp|
s(ri>=0[~;” ]=0[ vr
mimp| M

for § f decay, taking initiallySg; (;) = O[M]. Thus,
the inflaton oscillation leads to explosive particle pro-
duction due to the parametric resonance effégt
Thermalization is quickly achieved, giving a reheat
temperature of ordev/.

After this initial phase of preheating and thermal-
ization, the dimensionless amplitudgs) drops to
0[1], and the large amplitude oscillation stops. After

] > 1, (18)

this takes place, the only process of dilaton decay is
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two-body perturbative decay. To correctly derive these
rates, one has to note correctly normalized fields given

by (2/2¢; )18 f+//fx. These decay rates are then
ri=o0[M3/mi,

4
my, ]

M8 e 1if M O\°
=o[m_gl]~(1o4 9 (mv)’ (19)

where for the newdiron only neutrino-pair and two
photon decays are possible due to the small mass.
Thus, the newdiron is effectively stable.

For the success of nucleosynthesis, the heavy dila-
ton must decay prior to nucleosynthesis. This gives a
mass scale constraint

= 0[(103 s)—l(%/)g] S (1Pt o

M > afew TeV.

F2=0|:

(20)

More elaborate analysis including the gravitino over-
production favors the mass constraint of orddr>

100 TeV, which can be accommodated in the present
model.

5. Dynamical relaxation towar ds vanishing A

At some stage of cosmological evolution after infla-
tion, the cosmological constant (or more precisely the
vacuum energy density) of order (Té\fhust relax to-
wards smaller values of order (meV)Ve analyze this
problem by assuming the main terrfisandk of order
fo (constant) andk > § /. The resulting equation for
k fluctuation is

Sk + 3H 8k

_ <1 PG +ezf>1
fo

2V’
X |: (ko+3k)+—(61f+—62f )V]
Pr fo

From the solution o8k = O[mp] x oscillating func-
tion, one obtains the kinetic term of order,

t

.2 2
%k = 0[1] % (/ dr' v/(z/)> = o[mM*4).

(21)
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Since this quantity is nonvanishing and of ordéf,
there is a chance of cancdltan against the potential
term V. Indeed, for a largegp there are a great many
trajectories of vanishinglef.

The requirement of constarft (gravity scale) and
the tuning conditiomesf = 0 give
9 _o, gv-_Sfefo,_ g

2 derer @r
These two Eqg(22), to be supplemented by E(@1),
ought to be solved in favor offf, ko). Suppose that
the Newton’s constant is measured to a precision
(which is at presents 10-4). Then, there are of or-
der 13°s(M /(1 TeV))~1 possible (o, ko) values that
fit measured data.

Note that the coefficient of these Eq22), fo/¢,
is of ordermp. Hence the facto’ must be small
of orderM4/mp| to cancel against other terms of or-
der M*. This explains the already mentioned mass
relation,ny ~ Mz/mp| due to the presence 0f'.

There are a great many, k) values of solutions
to both of Eqs(22), close to trajectories df' = 0, or
more preciselyy, = MNnw + O[Mz/mp|] for a large
integerN. Thus, a very smallie may be dynamically

(22)

obtained near these points which however cannot be
stationary anchor points, hence one expects that never-
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In both scenarios of dynamical relaxation towards
the vanishing cosmological constant, the exact tuning
is not necessary and moreover is unlikely to occur.
Under this circumstance one expects a residual dila-
ton energy as the dark matter candidate. The tuning to
the amplitude precision of the leading ordﬂ?/mm
yields the dark energy density of order,

M2\ [ T\ 3
on=0| () |()
with T,/ Ty the expansion factor after the relaxation.
If the relaxation epoch is close to the present age, the
dilaton oscillation energy is of the right order of mag-
nitude to explain the present amount of dark matter.

There is another possibility. Supposettitize ap-
proach to anchor points had occurred around nucleo-
synthesis or at the heavy dilaton decay. Then, one gets
aright order of magnitude of the presetds, since its
present value

(24)

)

6
~ (1 4 .

(1 meV) (1 TeV)
Finally, let us discuss what happens if the sce-

(25)

ending shifts towards these points occur in the present Nario works, as expected. The result differs, depending

version of model ok # €3.

We however point out with the exa@(2) sym-
metry of ¢ = €2 = ¢ there exist stationary anchor
points of very small effective cosmological constant.

whether the dark matter is provided by the dilaton os-
cillation or another form of stable particles such as
lightest supersymmetric particles. If the dark matter is
made of newdiron, one obtains, from the consistency

This comes about, because the angular momentumWith the modified Einstein equation, for the value

L = p192 — 21 is conserved with the® (2) symme-
try, and the stationary condition reduces to
2 2
L_ =0, -
@r 8eg? Z(P,?
which should be solved foffy, L). There are again
such candidate values of order'2§M/(1 TeV))~1
that fit observation. The critical question for realiza-
tion of this result concerns a natural initial setting for
the conserved quantity? which should be of order
M4m§,. We shall address this question elsewhere.
The O (2) symmetric model has one heavy dilaton
of massO[M], whose decay rate is of ordM3/m§,.
What happens to the light dilaton is that it becomes

+V=0, (23)

massless, which however completely decouples from

the rest of the world.

defined byw = p/p,

w=-1-— 'OD—M.

PDE
If the dark matter is attributed to another source, one
has the usuab = —1. Clearly, a better understanding
of the relaxation process ivelcome. The time depen-
dence ofw differs, depending on how the relaxation
occurs, in particular, when this occurs. Observation of
future deep sky surveys is crucial to test the model of
dynamical relaxation.

(26)

6. Variation of Newton’s constant

In the present model variation of the gravitational
constant is inevitable, although its magnitude is model
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dependent. We shall discuss the simplest case of howmore, a class of multi-dilaton models give a possibility
much it varies due to nonrelativistic (NR) matter of of solving the problem of how the present dark energy
mass density,, excluding the dilaton oscillation. For  density becomes of ordeTeVZ/mm)“.

simplicity, we take theO(2) symmetric model. The Interesting details and some extensions of the
quantity 1 varies, withm, the heavy dilaton mass, ac- present model will be presented in separate publica-
cording to tion.
5+ 3HSf +m2sf = —2 27)
m = .
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