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EDITORIAL REVIEW

Multiple intracellular MAP kinase signaling cascades

Mitogen-activated protein (MAP) kinases are important medi-
ators involved in the intracellular network of interacting proteins
that transduce extracellular cues to intracellular responses. Intra-
cellular signaling pathways display a high level of evolutionary
conservation. Recent developments have extensively character-
ized the extracellular signal-regulated kinase (ERK) cascade. The
ERK cascade remains the best-studied MAP kinase signaling
cascade and may be considered as the archetypal MAP kinase
cascade. The utilization of powerful molecular genetic tools
helped to elucidate the existence and the physiological role of
independent MAP kinase signaling cascades in yeast. Based on
this knowledge, new MAP kinase isoforms (SAPK, p38 HOG1
kinase and ERK5) have recently been described in mammalian
cells. These MAP kinases respond to distinct extracellular stimuli
and have different intracellular substrates. A common feature of
all MAP kinase isoforms is the requirement for phosphorylation
of both threonine and tyrosine regulatory sites by a specific
upstream protein kinase for activation. Thus, not only protein
kinases that catalyze phosphorylation, but also protein phosphata-
ses that are capable of dephosphorylation and thereby inactiva-
tion of MAP kinases are of interest in the regulation of these
intracellular signaling pathways. A diverse array of extracellular
signals utilize MAP kinase signaling cascades to initiate a variety
of cell signaling outcomes. The pleiotropic potential of MAP
kinases emphasizes the importance of a tight control of their
activation. In response to extracellular stimuli MAP kinases
regulate the transcriptional activity of several transcription factors
via phosphorylation of either stimulatory or inhibitory regulatory
sites, thereby initiating the expression of a variety of immediate
and delayed early response genes. This regulation of gene expres-
sion and the phosphorylation and regulation of cytosolic as well as
nuclear targets by MAP kinases is critical for cell signaling
outcomes. MAP kinases have not only been suggested to play a
pivotal role in fundamental cellular processes like DNA synthesis,
progression through the cell cycle and cellular proliferation, but
have also been implicated in Gi phase arrest and cellular differ-
entiation [1, 2]. However, we would like to emphasize that this
review by no means suggests that MAP kinase cascades are an
exclusive system to regulate fundamental cellular processes. For
more detailed information on other signaling systems, for instance
the JAK/STAT pathway or PT 3-kinase, please refer to related
reviews [3, 4].

In this review we will discuss the mechanisms of stimulation of
parallel MAP kinase cascades. The ERK cascade is described in
more detail, since it is the best studied MAP kinase cascade and
most of its stimulating mechanisms appear to be representative of
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other MAP kinase cascades. Furthermore, we will discuss mech-
anisms of down-regulation of MAP kinase signaling cascades and
emphasize the physiological relevance of these MAP kinase
cascades in renal and cardiovascular regulation.

The ERK cascade

The activation of ERK in response to extracellular stimulation
can be schematically devided into membranous and cytoplasmic
phases [1] (Fig. 1). The pattern of activation during the membra-
nous phase is mostly determined by the receptor sensing the
extracellular signal, whereas the cytoplasmic phase shows high
homology between the MAP kinase isoforms. Protein-tyrosine
kinase receptors [3, 5], G-protein coupled receptors [6—11] and
cytokine receptors [12, 13] were shown to be capable of activating
the ERK cascade. Many studies focus on the role of ERK in
response to growth factors, since alteration of growth factor
regulated cellular processes is frequently accompanied by altered
cellular proliferation [1].

Growth factors like epidermal growth factor (EGF), platelet-
derived growth factor (PDGF) and fibroblast growth factor (FGF)
bind to receptors with intrinsic protein-tyrosine kinase activity.
Ligand-induced dimerization of the receptor in the plane of
plasma membrane is a property common to the signaling mech-
anisms of these growth factor receptors [14]. Dimerization leads
to activation and to autophosphorylation of tyrosine residues in
the intracellular domains of growth factor receptors [15—171. The
breakthrough in the coupling of growth factor receptors to
activation of Ras signaling pathway came with the understanding
of the role played by recently discovered proteins termed adaptor
proteins.

Adaptor proteins mediate protein-protein interactions in signal
transduction pathways activated by protein tyrosine kinases.
Adaptor proteins do not possess any intrinsic enzymatic activity
and consist only of modular binding domains [18—20]. Src homol-
ogy two (SH2) domains bind to short phosphotyrosine containing
sequences in growth factor receptors and other phosphoproteins.
Together with Src homology three (SH3) domains, which bind to
target proteins through sequences containing proline and hydro-
phobic amino acids, SH2 domains determine the selectivity of
signaling pathways. The specificity in binding of SH2 domains to
phosphotyrosine residues has been investigated using a library of
synthetic peptides containing phosphotyrosine. The preferential
selection of defined amino acids at one or more positions relative
to the phosphotyrosine by different SH2 domains has been
demonstrated [21]. These data and the identification of physio-
logical binding sites of these SH2 domains on growth factor
receptors provided the consensus binding sites for a number of
SH2 domain containing signaling molecules [19, 211. With the
SH2 domain of adaptor protein bound to specific tyrosines in
phosphorylated proteins, the SH3 domains are free to effect the
downstream signal, resulting in the formation of multisubunit
signaling complexes.

1187



Protamine kinase

MAPKAPK2

RSK
cPLA2

MAP1, —2, —4

plasma membrane

919

—

Elki
ATF

cMyc
NF-lL6

ciun
cFos

Stat

nucleus

1188 Bokemeyer et al. Multiple MAP kinase signaling cascades

Fig. 1. Stimulation of the ERK cascade after
binding of a growth factor to its receptor protein
tyrosin kinase (RPTK) and downstream ta,'ets of
ERK ERK is a proline-directed kinase that
phosphorylates serine or threonine residues on
its substrates.

An extensive body of data indicates that function of the
mammalian adaptor protein Grb2 (growth factor receptor-bound
protein 2) is the linkage of receptor tyrosine kinases to Ras
signaling pathways. The SH3 domain of Grb2 was shown to recruit
guanine-nucleotide exchange factor Sos (son of sevenless, gene
product in Drosophila) and to enforce its translocation to the
plasma membrane [22].This translocation is thought to bring Sos
in close proximity with Ras, a small GTP-binding protein located
at the cytoplasmic surface of the plasma membrane [23]. Sos
induces the dissociation of GDP from Ras, allowing the formation
of an activated GTP-Ras complex (Fig. 1) [241.

Thereafter several cytoplasmic protein kinases are sequentially
stimulated, collectively known as the MAP kinase signaling cas-
cade. The cytoplasmic phase of ERK activation is thought to be
critical for rapid signal amplification. Activated Ras binds to the
NH2-terminal portion of the serine-threonine protein kinase
Raf-l thereby recruiting Raf-1 to the plasma membrane. Once at
the membrane Raf-l is activated by an unknown mechanism
[25—27]. Raf-1 is a member of a family of related kinases which
also includes B-Raf [26]. In contrast to the ubiquitous Raf-1,
B-Raf is detectable in only a few tissues, such as neuronal cells,
and seems to be responsible for the activation of ERK in PC12

cells [28, 29]. Raf activity may be modulated by upstream kinases
like protein kinase C (PKC) [29, 30], protein kinase A (PKA) [28]
or, since phosphorylation on tyrosine is important for Raf-1
activation [31], by an unidentified protein tyrosine kinase. Raf-1
exhibits high substrate specificity towards MEK (MAP kinase/
ERK kinase) [32]. However, Raf-1 is also suggested to phosphor-
ylate I kappa B thereby releasing the active transcription factor
NF-kappa B [33] and to activate the cell cycle by activation of
Cdc25 [34]. Raf-1 activates the MAP kinase kinase isoforms
MEK1 and MEK2 by phosphorylation of two regulatory serine
residues [35—37]. In addition the activity of MEKs may be
modulated by phosphorylation on threonine residues [38, 39].
MEKS belong to the small group of dual specificity kinases that
catalyze both serine/threonine as well as tyrosine phosphorylation
[40]. Despite findings that MEKs neither translocate to the
nucleus nor localize in the nucleus of several cell types [41, 42],
recent data suggest that the nuclear localization of MEKs is
enhanced by down regulation of protein kinase C [431. Further-
more, MEK may be important for the long-term regulation of the
ERK cascade since MEK protein levels are up-regulated in
response to chronic mitogenic cellular stimulation [44]. MEK1
and MEK2 are highly selective activators of the MAP kinases
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Fig. 2. Multiple MAP kinase signaling pathways
in S. cerevisiae.

ERK1 and ERK2 (also refered to as p44 MAP kinase and p42
MAP kinase, respectively) by phosphorylation of both threonine
and tyrosine regulatory sites [45, 46] (Fig. 1).

ERK was the first cloned MAP kinase in mammalian cells [47].
ERKI and ERK2 are usually considered to be functionally
redundant [11. The regulatory tripeptide motif -Thr-X-Tyr- (X can
be Glu, Gly or Pro) is a common feature of all MAP kinases. The
ERK subfamily of MAP kinases is more exactly defined by a
-Thr-Glu-Tyr- regulatory motif [48]. The phosphorylation sites
have been identified as Thr183 and Tyr185 in mammalian ERK2
[461 and phosphorylation of both residues is required for full
activation [1]. The three-dimensional structure of ERK2 [491
suggests that conformational changes are responsible for its
activation in response to phosphorylation of the regulatory motif
[49, 501.

ERK belongs to the group of serine/threonine kinases and
analysis of its substrate specificity demonstrated that ERK is a
proline-directed protein kinase that phosphorylates -Ser/Thr-Pro-
motifs [51]. After mitogenic stimulation ERK is capable of
translocation to the nucleus [41, 52]. Therefore, not only cytoplas-
mic but also nuclear proteins can be phosphorylated by ERK.
Putative nuclear targets are several transcription factors indicat-
ing the importance of ERK in the regulation of transcriptional
activity [53]. The transcription factor Elk-i is one of the best
characterized substrates of ERK. Elk-i binds together with the
serum response factor to the serum response element in the
promoter region of many genes. The serum response element
plays an especially significant role in the promoter of the tran-
scription factor c-fos [54]. Phosphorylation of Elk-i by ERK
increases its transcriptional activity [55—57]. Other transcription
factors implicated as substrates of ERK are c-Myc [58], ATF-2
[59] and NF-1L6 [601. Furthermore, ERK was shown to phosphor-
ylate c-Jun but the significance of this finding in vivo remains to be
determined, since recently identified MAP kinases distinct from
ERK were shown to regulate c-Jun (see next section). Recent
studies suggest the ERK cascade to be involved in cytokine-
activated signaling cascades that are mediated by the Janus family

of tyrosine kinases and the STAT proteins, since the DNA binding
capacity of the STAT transtriction factors is increased by a
ERK-dependent phosphorylation of serine residues of STATs [61,
62]. The STAT proteins are suggested to be the direct substrate of
ERK [61, 621.

Protein kinases are another major group of substrates for ERK.
p90RSK (RSK) was first identified as a substrate of ERK [63]. RSK
is activated by phosphorylation on threonine [64]. The ribosomal
protein S6 was the first described substrate of this serine/threo-
nine kinase. However, recent reports indicate that the kinase
p70S6K is responsible for S6 phosphorylation in vivo. Another
substrate of RSK is the transcription factor c-fos [65]. This
phosphorylation may be important in the regulation of the
transcriptional activity of the AP-1 complex. Other downstream
kinases serving as substrates for ERK are MAP kinase-activated
protein kinase 2 (MAPKAP kinase 2) [66] and protamine kinase
[67]. The ability of ERK to phosphorylate several upstream
proteins of the ERK cascade including the NGF receptor, Sos,
Raf-1 and MEK might serve as a mechanism of negative feedback
regulation [1, 68, 69].

Phosphorylation of cytoskeletal elements like microtuble-asso-
ciated proteins (MAP)-i, MAP-2, MAP-4 and Tau by ERK
appears to important for the regulation of cellular morphology
and cytoskeletal rearrangements [70] and activation of phospho-
lipase A2 by ERK ties the ERK signaling cascade to arachidonate
metabolism [71].

Multiple MAP kinase signaling cascades

Data about signaling pathways in the yeast Saccharomyces
cerevisiae were useful in the identification of the ERK- and other
MAP kinase-cascades in mammalian cells. Several independent
signaling pathways employing MAP kinase homologues have been
described in S. cerevisae (Fig. 2). A common theme among these
pathways is the requirement of a sequential protein kinase
reaction to phosphoiylate and activate the next kinase in the
pathway [72]. In general, the MAP kinase isoforms are activated
by phosphorylation on the regulatory threonine and tyrosine
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of MAP kinases in mammalian cells [79—81]. Two isoforms of 46
kDa and 55 kDa were named JNK1 and JNK2, respectively, and
seem to be functionally redundant [79, 82]. JNK!SAPK regulates
c-Jun transcriptional activity by phosphorylation of the N-terminal
activating domain, Ser-63 and -73 [83], whereas ERK phosphory-
lates the inhibitory C-terminal site, Ser-243 [83, 84]. N-terminal
phosphorylation of c-Jun induces the formation of c-Jun/c-Fos
heterodimers and c-Jun homodimers that increase the transcrip-
tional activity of many genes by binding to the AP-1 sites in their
promoter region [85]. Other nuclear targets of JNKJSAPK are the
transcription factors ATF2 and Elk-i that are phosphorylated and
activated by JNK/SAPK [86—881. JNKISAPK is activated by
extracellular stress (UV-light, heat shock, osmolarity), cytokines

MAPK k (TNF-a, IL-i) or growth factors (EGF) [48].
kinase Recently, JNK kinase (JNKK), also referred to as MKK4 or

SEKI, the upstream dual specificity protein kinase of JNK/SAPK,

MAPK
has been described by different groups [89—911. The upstream

kin ase kinase ofJNKK is MEKK (Fig. 3) [92, 93]. MEKK was originally
described as a MEK activating kinase based on its ability to

______ _______ _______ phosphorylate MEK in vitro or during overexpression [94]. But
_______ _______ _______ _______ recent studies showed in vivo that Raf-i acts upstream of MEK in

the ERK signaling cascade whereas MEKK selectively phospho-
rylates and activates JNKK in the JNK/SAPK signaling cascade,
thereby describing two independent MAP kinase cascades in
mammalian cells [89, 92, 93]. Like ERK, JNKJSAPK is activated
in response to extracellular stimuli binding to both tyrosine kinase
receptors [93, 95] or G protein-coupled receptors [96, 97]. Other
potent agonists of JNKISAPK are intra- and extracellular stress
stimuli like hyperosmolarity, UV-light or protein synthesis inhib-
itors [48]. Growth factors like epidermal growth factor (EGF)
induced stimulation of JNK/SAPK is Ras-dependent [93] whereas
activation by cytokines like tumor necrosis factor a (TNF-a) is
Ras-independent [93]. Recently members of the Rho family, a
subgroup of the Ras superfamily of small GTP-binding proteins,
have been reported to be important for activation of the JNK/
SAPK cascade [95, 98]. The Rho-like proteins Raci and CDC42
were shown to be essential for the Ras-dependent activation of
the MEKK-JNKK-.JNK/SAPK cascade by EGF and the Ras-
independent activation by TNF-a [95, 98]. However, JNK/SAPK
activation by protein synthesis inhibitors like anisomycin is inde-
pendent of the small GTP binding proteins Rac and Cdc42 [95].
Rac and Cdc42 can bind to the p21-activated serine/threonine
kinase PAK and stimulate its autophosphorylation activity [99,
100]. PAK may mediate the effect of Rac and Cdc42 to the
JNKJSAPK cascade [98] (Fig. 3).

A third isoform of mammalian MAP kinases, p38 HOG1
kinase, has been cloned and shown to be similar to the yeast
high-osmolarity glycerol response I (HOG1) kinase [101—103].
The physiological substrate of p38 HOG1 kinase remains to be
determined in mammalian cells. p38 HOG1 kinase is defined by
the regulatory tripeptide dual phosphorylation motif -Thr-Gly-
Tyr- in place of -Thr-Glu-Tyr- in ERKs and -Thr-Pro-Tyr- in
JNKJSAPKs. Recently MKK3 (MAP kinase kinase 3), the up-
stream dual specificity kinase of p38 HOG1 kinase has been
identified [90], whereas the upstream kinase of MKK3 in the p38
HOG1 kinase cascade is unknown (Fig. 3). Interestingly, JNKK
(also referred to as MKK4 or SEK1) was also shown to phosphor-
ylate and activate p38 HOG1 kinase, but MEKK dependent
activation of JNKK in vivo induced JNK/SAPK activation but had
only weak effect on p38 1-IOGI kinase activity [89, 90]. In
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Fig. 3. Multiple MAP kinase signaling pathways in mammalian cells.

residues by dual specificity protein kinases, also referred to as
MAP kinase kinases. The MAP kinase kinase isofornis are
activated by an upstream kinase, also referred to as MAP kinase
kinase kinase (Fig. 2).

The MAP kinase signaling pathways in S. cerevisae function
independently of one another in the regulation of osmotic stress
response, mating, pseudohyphal development and cell-wall bio-
synthesis [73—75]. The conformational requirements of the sub-
strates recognized by MAP kinase kinases and MAP kinasae
kinase kinases may be a mechanism to maintain the signaling
specificity of each MAP kinase pathway [72]. The mammalian
kinases RAF-1 and MEK, for example, recognize only their native
substrates MEK and ERK, respectively. Denatured substrates or
peptides encoding the regulatory sequence of ERK are not
recognized [72]. Another mechanism of signaling specificity may
be brought about by formation of complexes involving members
of a MAP kinase cascade. The protein binding protein STE5,
identified in S. cerevisiae, was shown to bind to the members of the
mating pathway, STE1I, STE7, KSSI and FUS3, rather than
kinases of the osmosensing or cell-wall biosynthesis pathway [72,
76—78] (Fig. 2). These STE5 containing protein complexes would
allow rapid and selective regulation of the pheromone-responsive
mating pathway in S. cerevisiae. However, so far mammalian
equivalents of STE5 have not been described.

Until recently, ERKI and ERK2 were the only well-character-
ized mammalian MAP kinases (as described above). The discov-
ery of other MAP kinases introduced further tiers to the complex
system of intracellular signal transduction (Fig. 3). The c-Jun
N-terminal kinase (iNK), also referred to as stress-activated
protein kinase (SAPK), was recently described as a new subgroup
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correlation with the adaptor protein STE5 in yeast, as described
above, an adaptor protein in mammalian cells that formats a
complex with MEKK, JNKK and JNK/SAPK may explain this
finding. This complex could be responsible for the MEKK-
induced activity of JNKK towards JNK/SAPK rather than p38
HOG1 kinase. However, since p38 HOG1 kinase, like JNK/
SAPK, is inducible by the GTP binding proteins Rac and CDC42
and responds to the same extracellular stimuli as the JNK/SAPK
cascade, its unique physiological function remains to be estab-
lished.

Recently, another mammalian MAP kinase, ERKS, and its dual
specificity kinase MEK5 have been cloned [1041. The upstream
kinase or downstream substrates are so far unknown.

Phosphatases regulating MAP kinase cascades
Recently, it was shown, in PC12 cells, that the duration of ERK

activation by extracellular stimuli is critical for cell signaling
outcomes, since transient activation of MAP kinase induced
mitogenesis whereas sustained activation of MAP kinase induced
cell differentiation [2]. These data emphasixe the importance of
mechanisms to terminate the activity of ERK. Protein phosphor-
ylation is a reversible and dynamic process and is balanced by the
antagonism of kinases that catalyze phosphorylation and phos-
phatases that catalyze dephosphorylation. In analogy to kinases,
phosphatases are divided into two major groups: protein serine/
threonine phosphatases (PSP) and protein tyrosine phosphatases
(PTP) [105, 1061.

As described above, MAP kinases are activated by phosphory-
lation on both threonine and tyrosine regulatory sites. Therefore,
recently cloned dual specificity PTPs that exhibit dual catalytic
activity toward phosphotyrosine and phosphothreonine in sub-
strate proteins are of special interest in the regulation of the MAP
kinase signaling pathways. The vaccina H-i gene product (VH-1)
was the first phosphatase shown to effectively hydrolyze both
phosphotyrosine and phosphoserine/phosphothreonine [107]. Re-
cently isolated mammalian VH-1-like dual specificity PTPs with
significant structural similarities over a stretch of 50 amino acid
residues within the catalytic domain, exhibit catalytic activity
towards both regulatory sites in ERK [108, 109]. CL100 and B23
are widely expressed human dual specificity PTPs [110—112],
whereas PAC1 is expressed in T-lymphocytes, human mesangial
cells and human umbilical vein endothelial cells [112, 113]. VHR,
the smallest member of mammalian VH-1-like PTPs, dephospho-
rylates ERK in vitro but failed to exhibit a substrate specificity
towards ERK [110, 114]. MKP-1 (MAP kinase phosphatase 1, also
refered to as 3CH134 [115]), the mouse homologue of CL100
[116] (97% identity), and PAC1 inactivate ERK in vivo.

Expression of MKP-1 in COS cells [117] or rat embryonic
fibroblasts REF-52 cells [118] prevents the activation of ERK not
only by serum or tetradecanoyl phorbol (TPA), but also by
oncogenic v-Ras and activated Raf. Expression of PAC1 in COS
cells and T-lymphocytes leads to inhibition of ERK activity
normally stimulated by EGF, TPA or T-cell activation [119].
MKP-1 and PACI are immediate early response genes and both
are expressed transiently in response to mitogenic stimulation.
ERK is also transiently activated and the kinetics of ERK
down-regulation coincides with the appearance of newly synthe-
sized MKP-1 protein in NIH3T3 fibroblasts [117]. In addition,
inhibition of protein synthesis blocks the down-regulation of ERK
in NIH3T3 cells [117] and vascular smooth muscle cells [120],

suggesting the synthesis of MKP-1 being required for ERK
inactivation. Furthermore, a physical association between ERK
and a catalytically inactive mutant of MKP-1 has been demon-
strated [117]. Recently it was shown that MKP-1 antisense
oligonucleotides prolonged the activation of ERK in vascular
smooth muscle cells but did not affect the down-regulation of
MEK, the upstream kinase of ERK [120]. Taken together, the
above results strongly suggest that ERK is a physiological sub-
strate of the dual specificity PTPs MKP-1 and PAC1 (Fig. 4).

However, this may not be the case in all cell systems. The
inactivation of ERK following mitogenie stimulation of chromaf-
fin cells (PC12), adipose cells (3T3-L1) or endothelial cells (PAE)
occurs normally when protein synthesis is inhibited [121, 122]. In
PCI 2 cells the protein serine/threonine phosphatase PP2A and an
unidentified protein tyrosine phosphatase are suggested to be
responsible for down-regulation of stimulated ERK [122]. Specific
inhibition of PP2A in CV1 cells results in up-regulation of MEK
and ERK in vivo [123]. Since PP2A is largely located in the
cytoplasm [108, 124] it may be responsible for inactivation of
MEK and cytosolie ERK. In contrast, dual specificity PTPs are
located in the nucleus [113, 125, 126] and may therefore be
responsible for dephosphorylation of ERK in the nucleus in
several cell systems.

Little is known whether distinct dual specificity PTPs serve
specific functions in the control of intracellular signaling or are
functionally redundant. Dual specificity phosphatases are regu-
lated on the transcriptional level [127]. Recent data demonstrat-
ing a differential regulation of VHR and B23 in liver cell lines and
CL100, PAC1 and B23 in human mesangial cells [112] suggest
unique roles of distinct dual specificity PTPs in intracellular
signaling. Furthermore, the substrate specificity of distinct dual
specificity PTPs towards other MAP kinases like JNK!SAPK or
p38 HOG1 kinase remains to be determined. JNK/SAPK has
been tested as a substrate of MKP-1 by two independent groups
with conflicting results. Transfeetion of HeLa cells with MKP-1
inhibited the activation of JNKISAPK in vivo [128], whereas in
vitro and in vivo data in rat fibroblasts suggest a relative selectivity
of MPK-1 for ERK compared to JNK!SAPK [118]. Recently two
new members of the group of dual specificity PTPs have been
described [129, 130]. Since it has been demonstrated that dual
specificity kinases exhibit high substrate selectivity towards dis-
tinct MAP kinases (see above), it might be expected that dual
specificity PTPs will exhibit a similar selectively, each targeting a
distinct MAP kinase. If this proves to be the ease, dual specificity
PTPs would introduce further tiers of control into the regulatory
network. Our recent data indicate that MKP-1 transcription is
mediated by the MEKK-JNKK-JNK/SAPK pathway rather than
the Raf-MEK-ERK pathway [131], thereby suggesting a crosstalk
between both pathways since MKP-1 is capable of inactivating
ERK. This may be an important mechanism to maintain signaling
specificity.

Several other components of the ERK cascade are regulated by
protein phosphorylation and are therefore potential substrates of
protein phosphatases. As described above, the regulatory phos-
phoserines in MEK can be hydrolyzed by PP2A in vitro [132] and
in vivo [123]. Recently, thus far unidentified membrane-associated
protein phosphatases were shown to be responsible for Raf-1
dephosphorylation and inactivation (Fig. 4) [133].
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Fig. 4. Phosphatases involved in the down-
regulation of the ERK cascade.

Physiological relevance of MAP kinase signaling cascades

Proliferation and differentiation
The ERK-signaling cascade plays a pivotal role in growth

factor-induced cell proliferation. In most cells mitogenic stimula-
tion by various extracellular agonists correlates with activation of
ERK. More important are data from studies using antisense
approaches and inactive or constitutively active mutants of com-
ponents of the ERK cascade. Dominant negative interfering
mutants of Ras or Raf-1 were shown to inhibit growth factor
induced cell proliferation [134, 1351, whereas constitutively acti-
vated Raf-1 induced cell proliferation [134]. Furthermore, domi-
nant negative or constitutively active mutants of MEK inhibit or
accelerate cell proliferation of NIH3T3 cells respectively [136,
137]. Finally mutants of ERK and its antisense eDNA caused an
inhibition of proliferation [138]. Moreover, at least a third of
tumors contain mutated Ras genes [139], indicating the impor-
tance of Ras and Ras-dependent signaling in oncogenesis. Like
Ras, Raf kinases were first described as constitutively active
mutants with the ability to transform cells oncogenically [140].
Recently, activated MEK has been shown to induce cellular
transformation [141]. These data point to an important role of the
ERK cascade in the control of cell proliferation and oncogenesis.

However, in some cases cellular proliferation may occur indepen-
dent of ERK activation [142, 143].

In contrast to the ERK cascade, the JNK/SAPK intracellular
signaling pathway is capable of mediating inhibition of cell
growth. As described above, JNK/SAPK is strongly inducible by
extra- and intracellular stress stimuli that induce cell death.
Furthermore, expression of a constitutively active mutant of
MEKK, an upstream kinase of JNKISAPK, inhibits cell growth
[921. Recent data suggest that activation of JNK/SAPK and of p38
HOG1 kinase induce apoptosis, while activation of the ERK
cascade prevents apoptosis in PC12 cells after withdrawal of
neural growth factor [144].

Cellular differentiation appears to be another physiological
response linked to the ERK signaling pathway. Differentiation of
PC12 cells [145, 1461, monocytes [1471, T-cells [148] and mast cells
[149] is mediated by the ERK cascade. Differentiation of PC12
cells, characterized by neurite outgrowth, is induced by extracel-
lular stimulation with neural growth factor (NGF) [145]. A
sustained activation of the ERK cascade by NGF seems to cause
the cellular differentiation [146, 150]. However, other intracellular
events may require integration with the ERK cascade to induce
differentiation in PC12 cells [151]. In contrast, epidermal growth
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factor (EGF) induces proliferation of PC12 cells [21. The pro-
longed activation of ERK by NGF versus the transient activation
of ERK by EGF is suggested to be responsible for the cell
signaling decision [2]. This idea is supported by several studies
[reviewed in 2]. For instance, transfection of PC12 cells with
oncogenic Ras or Raf induces sustained activation of ERK and
cell differentiation [151, 152].

Based on the data described above, both cellular proliferation
and differentiation are closely related to the ERK signaling
pathway and the duration of activation may be critical for cell
signaling outcomes.

MAP kinase cascades in the cardiovascular system

Cardiac hypertrophy causes impaired systolic and diastolic
function and reduces the coronary reserve, therefore leading to
higher mortality in heart failure and ischemic heart desease. Left
ventricular hypertrophy occurs as an adaptive process to increased
workload. In vitro mechanical stress induces hypertrophic re-
sponses [153] and stimulates the activation of all components of
the Raf-MEK-ERK signaling cascade in neonatal cardiac myo-
cytes [153, 154]. However, transfection studies investigating the
effect of constitutively active Raf-1 in cardiac myocytes suggested
that the ERK signaling pathway is critical to induce gene expres-
sion associated with hypertrophy, but is not sufficient to induce
cardiac myocyte hypertrophy [155]. In accordance with an impor-
tant role of the renin-angiotensin system in stretch-induced
cardiac hypertrophy [154, 156], several studies demonstrated a
reduced ERK activation by mechanical stress in the presence of
an angiotcnsin II antagonist [154, 157]. Angiotensin II itself was
shown to be a potent stimulator of ERK in cardiac myocytes [158].
The MEKK-JNKK-JNKJSAPK pathway may also be involved in
intracellular signaling in stretch-induced hypertrophy, since MEKK
is activated in response to mechanical stress in cardiocytes [154].
However, the physiological relevance of this finding remains to be
determined.

Endothelin-1 (ET-1) and fibroblast growth factor (FGF) are
other agonists that induce a response of cardiac myocytes in vitro
akin to the hypertrophic response in vivo. Both ET-1 and FGF
stimulation of cardiocytes induce activation of ERK [158—160],
reinforcing the hypothesis that the ERK cascade is relevant to the
hypertrophic response of the heart. Moreover, ERK has been
suggested to play a role in the recovery from ischemia, since ERK
is activated after metabolic inhibition of cardiac myocytes and its
activation parallels the induction of immediate early response
genes like c-Jun and c-Myc [161].

Proliferation of vascular smooth muscle cells (VSMC) is an
important pathophysiological mechanism in hypertension and
atherosclerosis. Vasoconstrictors like angiotensin II, ET-1 or
vasopressin and growth factors like PDGF or FOE were shown to
induce proliferation of VSMC. These mitogens activate ERK in
VSMC [162—165] whereas substances like heparin [166] or ele-
vated levels of cAMP [167], that were shown to be antiprolifera-
tive in VSMC, inhibit the activation of ERK in this cell system.
This correlation strongly suggests an important role of the ERK
cascade in the control of cellular proliferation in VSMC. Recently
it was shown that mechanical load of carotid arteries induces ERK
activation [168]. Therefore, ERK may also be involved in vascular
remodeling in response to high intravascular pressure.

MAP kinase cascades in the kidney

Growth factors play a pivotal role in renal physiology and
pathophysiology. For instance, mesangial cell proliferation and
expansion that accompanies several forms of glomerulonephritis
are suggested to be related to PDGF [169]. Furthermore, strong
evidence points to ET-1 and angiotensin II as important media-
tors of cyclosporine A side-effects including glomerulosclerosis
[170, 171], which may be due to cellular proliferation. The
mitogens PDGF, FT-i and angiotensin II were shown to induce
ERK activation in mesangial cells [4, 172, 173]. Based on the data
in fibroblasts, describing the pivotal of ERK in proliferation (see
above), it can be assumed that the activation of ERK in mesangial
cells also contributes to the proliferation of mesangial cells. In
addition ET and PDGF stimulate de novo synthesis of MEK and
ERK in mesangial cells [44, 174, 175], thereby contributing to a
sustained activation of the ERK cascade. Therefore, the ERK
cascade may be an crucial mediator of mesangial cell proliferation
in renal deseases mediated by growth factors like ET-1 or PDGF.
Interestingly, mesangial cell proliferation is not only induced by
growth factor dependent activation of kinase cascades but also by
vanadate, an inhibitor of protein tyrosine phosphatases [176]. This
finding points to the antagonism of kinases and phosphatases as
an important regulator of cellular activation. Heparin is a potent
inhibitor of mesangial cell proliferation [177] and exhibits bene-
ficial effects in renal injury in some animal models that are
accompanied by cellular proliferation of the mesangium [178].
These effects of heparin may be due to its ERK inactivating
capacity in mesangial cells [179] or due to its antiinflammatory
effect by inhibition of the expression of prostaglandin endoperox-
ide synthase-2 (PGHS-2) [180]. Recent data suggest the ERK and
the JNKJSAPK signaling pathways to induce the expression of
PGHS-2 [181, 182], and therefore the antiinflammatory effect of
heparin may also be due to inhibition of ERIC.

Sphingolipid nietabolites have been implicated in cellular pro-
liferation. The catalysis of sphingomyelin, the major membrane
sphingolipid, to the cell growth regulatory lipids ceramide and
sphingosine is regulated in response to growth factors and cyto-
kines in rat mesangial cells. Recently, the mitogenic metabolite
sphingosine was shown to stimulate ERK with no effect on
JNKJSAPK whereas ceramide, an antiproliferative lipid, selec-
tively stimulates JNKJSAPK in rat mesangial cells [183]. These
findings suggest that the growth regulatory effect of sphingolipids
is mediated through activation of separate MAP kinase cascades
reinforcing the pivotal role of MAP kinases in the control of cell
growth in mesangial cells.

Furthermore, phospholipase A2 activity regulates the release of
arachidonate metabolites, which modulate renal blood flow and
glomerular filtration [184]. Phospholipase A2 is known to be
regulated through phosphorylation by the ERK cascade in re-
sponse to growth factors [71], and it is tempting to speculate that
the ERK signaling pathway is critical in the regulation of phos-
pholipase A2 in renal cells.

MAP kinase signaling pathways have also been implicated in
the renal response to hyperosmolarity. The p38 HOG1 kinase
pathway has been reported to be involved in the osmosensing
signal transduction in yeast, since organisms with inactive mutants
of p38 11001 kinase failed to grow normally in a hyperosmolar
environment [74]. In mammalian distal tubular cells not only ERK
but also JNKJSAPK and p38 HOOl kinase are stimulated by
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Table 1. Summary of the physiological relevance of MAP kinase
cacades in the heart, vasculature and kidney

Organ Physiological status
Critical MAP kinase

cascade

Heart

Vasculature

-cellular hypertrophy of
cardiac myocytes

-recovery from ischemia
-proliferation of smooth

muscle cells

-ERK and JNK!SAPK
cascades

-ERK cascade
-ERK cascade (in response

to growth factors and
mechanical stress)

Kidney -mesangial cell proliferation

-inflammatory response

-response to hyperosmolarity

-ERK cascade (in response
to growth factors and
sphingolipids)

-ERK cascade (induces
PGHS-2 expression in
mesangial cells)

-ERK, JNKJSAPK and p38
HOG1 kinase (in tubular
epithelial cells)

hyperosmolarity [185—188]. The physiological relevance of each
MAP kinase cascade in the cellular response to osmotic stress
remains to be determined. However, based on the well examined
function of these pathways in yeast it is tempting to speculate that
the p38 HOG1 kinase pathway may also play a pivotal role in the
cellular osmotic stress response and regulation of osmolyte trans-
porter genes. This hypothesis is supported by the finding that
arginine vasopressin (AVP), a hormone responsible for water and
electrolyte transport in the distal tubule under hyperosmolar
conditions [189, 190], inhibits epidermal growth factor (EGF)
activation of the ERK cascade in Madin-Darby canine kidney
(MDCK) epithelial cells [185, 191]. The elevation of intracellular
cAMP in response to AVP has been suggested to mediate this
inhibition [191]. Furthermore, growth factors like EGF were
reported to induce ERK activation and DNA synthesis in distal
tubule cells, whereas the ERK activation by hyperosmotic stress is
accompanied with reduced DNA synthesis [187]. Thus, additional
intracellular pathways, like the JNK/SAPK or p38 HOG1 kinase
pathway, are almost certainly involved in the cellular response to
hyperosmolarity.

Conclusion

Based on the data presented in this review the regulatory
network of intracellular signaling cascades is not only an impor-
tant factor in cellular physiology, but may also be critical in
cardiovascular and renal physiology and pathophysiology (Table
1). A better understanding of the intracellular mechanisms that
regulate fundamental cellular responses like cellular proliferation
may provide new insights for renal desease in vivo. For instance,
the development of proliferative glomerulonephritis appears to be
dependent on the combined effects of a variety of extracellular
mediators that might converge at critical intracellular signaling
modules, like MAP kinases, to mediate their pathophysiological
effects. Therefore, in future therapeutic strategies in complex
renal diseases it might be more promising to target these essential
intracellular signaling modules than blocking any single extracel-
lular mediator.

However, there are still several questions about the regulation
and function of MAP kinase cascades that remain unanswered.
For example, the substrates of the recently described MAP
kinases, p38 HOG1 kinase and ERK5, are still unknown. Further-
more, the role of distinct dual specificity PTPs in the control of

intracellular signaling is unclear. The specificity of distinct dual
specificity kinases (MEK-ERK, JNKK-JNK!SAPK, MKK3-p38
HOG1, MEK5-ERK5) leads one to speculate that, working in
parallel, distinct members of the group of dual specificity PTPs
will be shown to exhibit selective catalytic activity towards distinct
MAP kinases, thereby introducing further tiers to the regulatory
network. In addition, one can expect to get important information
about the developmental and physiological relevance of intracel-
lular MAP kinase signaling pathways from experiments inactivat-
ing genes encoding MAP kinases utilizing dominant negative
mutants or antisense strategies in cell culture and gene knock out
strategies in mice. Nonetheless, the description of multiple MAP
kinase cascades and of the mechanisms involved in their regula-
tion is a major discovery in intracellular signal transduction.
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