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Abstract

We consider a two-type stochastic competition model on the integer lattice Zd : The model

describes the space evolution of two ‘‘species’’ competing for territory along their boundaries.

Each site of the space may contain only one representative (also referred to as a particle) of

either type. The spread mechanism for both species is the same: each particle produces

offspring independently of other particles and can place them only at the neighboring sites that

are either unoccupied, or occupied by particles of the opposite type. In the second case, the old

particle is killed by the newborn. The rate of birth for each particle is equal to the number of

neighboring sites available for expansion. The main problem we address concerns the

possibility of the long-term coexistence of the two species. We have shown that if we start the

process with finitely many representatives of each type, then, under the assumption that the

limit set in the corresponding first passage percolation model is uniformly curved, there is

positive probability of coexistence.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The voter model is an interacting particle system in which individuals (particles)
of two species, Red and Blue, compete for ‘‘territory’’ on a (locally finite) graph.
see front matter r 2005 Elsevier B.V. All rights reserved.
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At each time tX0; every vertex (site) of the graph is occupied by a single particle,
either Red or Blue. At any time, a particle of color i at a vertex x may spontaneously
die, at rate equal to the degree of x, and be replaced by a clone of a randomly chosen
neighbor. Thus, a vertex of color i spontaneously flips to the opposite color j at rate
equal to the number of neighboring vertices of color j. See [7] for a formal
construction of this process and an exposition of its basic properties.

The Richardson model [8] was introduced as a model for the spatial spread of a
population in a favorable environment. The environment is once again a locally
finite graph. At any time a vertex may be occupied by at most one particle (some
vertices may be unoccupied); all particles are of the same species. Once occupied, a
vertex remains occupied forever. Each unoccupied vertex is spontaneously occupied
at instantaneous rate equal to the number of occupied neighbors.

In this paper, we study a hybrid of the voter and Richardson models on the integer
lattice Zd ; which we dub the two-species competition model, or simply the competition

model. The dynamics are as in the voter model, but unlike the voter model, vertices
may be unoccupied. An unoccupied vertex is colonized at rate equal to the number
of occupied neighbors, as in the Richardson model; at the instant of first
colonization, the vertex flips to the color of a randomly chosen occupied neighbor.
Once occupied, a vertex remains occupied forever, but its color may flip, as in the
voter model: the flip rate is equal to the number of neighbors occupied by particles of
the opposite color. The state of the system at any time t is given by the pair
ðRðtÞ;BðtÞÞ; where RðtÞ and BðtÞ denote the set of sites occupied by Red and Blue
particles, respectively. Note that the set RðtÞ [ BðtÞ of occupied sites evolves precisely
as in the Richardson model, and so the growth of this set is governed by the same
Shape Theorem (see Section 3.3 below) as is the Richardson model.

Our primary interest is in the possibility of long-term coexistence of the two
species, given initial conditions in which only finitely many vertices are occupied
(with at least one vertex of each color). It is clear that at least one of the two species
must survive, and that for any nondegenerate finite initial configuration of colors
there is positive probability that Red survives and positive probability that Blue
survives. However, it is not at all obvious (except perhaps in the case where the
ambient graph on which the competition takes place is the integer lattice Z—see
Section 2 below) that the event of mutual survival has positive probability. Our main
result concerns the competition model on the graph Zd : Say that a compact, convex
set S with boundary qS is uniformly curved if there exists Ro1 such that for every
point z 2 qS there is a ball of radius R with z on its surface that contains S:

Theorem 1. If the limit shape S for the Richardson model is uniformly curved, then for

any nondegenerate initial finite configuration the event of mutual survival of the two

species has positive probability.

The proof will be carried out in Sections 3 and 4 below. Theorem 1 is by no means
a complete solution to the coexistence problem, because it remains unknown whether
the limit shape S for the Richardson model is uniformly curved, or even if its
boundary qS is strictly convex. Nevertheless, simulations give every indication that
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it is, and Lalley [6] suggests a possible explanation of what lies behind the strict
convexity of qS:

The two-species complete model is superficially similar to the two-type Richardson

model studied by Haggstrom and Pemantle [4], but differs in that it allows
displacement of colors on occupied sites: in the two-type Richardson model, once a
vertex is occupied by a particle (either red or blue) it remains occupied by that color
forever. The main result of [4] is similar to Theorem 1, but requires no hypothesis
about the Richardson shape: it states that mutual unbounded growth has positive
probability. Because no displacements are allowed, the behavior of the two-type
Richardson model is very closely tied up with the first-passage percolation process
with exponential edge passage times. The two-species competition model is also
closely related to first-passage percolation, but the connection is less direct, because
the possibility of displacements implies that not only the first passages across edges
play a role in the evolution.

We have run simulations of the competition model with initial configuration
Rð0Þ ¼ fð0; 0Þg and Bð0Þ ¼ fð1; 0Þg: Fig. 1 shows two snap shots of the same
realization of the process taken at the times when the region occupied by both types,
RðtÞ [ BðtÞ; hits the boundary of the rectangles ½
300; 300� � ½
300; 300� and
½
400; 400� � ½
400; 400�; respectively. Observe that the overall shape of the red
and the blue clusters did not change significantly. We believe that the shape of the
regions occupied by the red and blue types stabilizes as times goes to infinity.

For any subset Z  Rd ; define

Ẑ ¼ fx 2 Rd : dist ðx;ZÞp1
2
g;

where dist denotes distance in the L1-norm on Rd : For any subset Z  Rd and any
scalar s40; let Z=s ¼ fy=s : y 2 Zg:
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Fig. 1. Competition model with Rð0Þ ¼ fð0; 0Þg; Bð0Þ ¼ fð1; 0Þg:
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Conjecture 1. There exist random sets ~R and ~B such that with probability one

lim
t!1

R̂ðtÞ=t ¼ ~R; (1)

lim
t!1

B̂ðtÞ=t ¼ ~B; (2)

and

~R [ ~B ¼ S: (3)

If this is true, we expect that the limit sets ~R and ~B will be finite unions of angular
sectors, as the simulation results shown in Fig. 1 suggest. The sizes and directions of
these angular sectors (and even their number) will, we expect, be random, with
distributions depending on the initial configuration. This is illustrated by simulation
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Fig. 2. Competition model with Rð0Þ ¼ fð
2;
2Þ; ð2; 2Þg and Bð0Þ ¼ fð
2; 2Þ; ð2;
2Þg:
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results summarized in Fig. 2 with initial configuration

Rð0Þ ¼ fð
2;
2Þ; ð2; 2Þg;

Bð0Þ ¼ fð
2; 2Þ; ð2;
2Þg:

Three time progressive snap shots of the process were taken. The plots in Fig. 2
suggest that stabilization of the shape was taking place on the considered time
interval.
2. The competition model on Z1

The coexistence problem for the Competition Model in one dimension is
considerably simpler than in higher dimensions. Since the limit shape of the
Richardson model in one dimension is an interval, no auxiliary hypothesis is needed.

Proposition 1. For any nondegenerate finite initial configuration on Z; the event of

mutual survival in the two-species Competition Model has positive probability.

Proof. Without loss of generality, we may assume that the initial configuration
consists of a finite interval of red sites with rightmost point 
1 and a finite interval of
blue sites with leftmost point 0, since [a translate of] such a configuration may be
reached in finite time, with positive probability, from any nondegenerate initial
configuration. Let X t and Y t be the left- and right-most occupied sites (of either
color) at time t, and let Zt be the leftmost blue site. Note that as long as X toZtoY t;
there will be both red and blue sites: all sites to the left of Zt are red, and all sites to
the right are blue. Each of the processes X t and Y t is a pure jump process, with
jumps of size 1 occurring at rate 1; hence, with probability one, as t ! 1;

X t=t
!
 1

and

Y t=t
!1:

The process Zt behaves, up to the time of first exit from ðX t;Y tÞ; as a continuous-
time simple nearest-neighbor random walk on the integers. Consequently, there is
positive probability that Zt never exits the interval ðX t;Y tÞ: But on this event, both
species survive. &

This simple argument clearly shows what the difficulty in higher dimensions will
be: In one dimension, the interface between (connected) red and blue clusters is just a
point; but in higher dimensions, it will in general be a hypersurface, whose time
evolution will necessarily be somewhat complicated.
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3. Preliminaries

3.1. Graphical constructions

The Richardson model, the voter model, and the two-species competition model
all admit graphical contructions using percolation structures. Such constructions
make certain comparison arguments and duality relations transparent. We briefly
review the construction here, primarily to emphasize that the same percolation
structure can be used to simultaneously build versions of all three processes with all
possible initial configurations. See, for instance, [3] for further details in the case of
the Richardson model and the voter model.

The percolation structure P is an assignment of independent, rate-1 Poisson
processes to the directed edges xy of the lattice Zd : (For each pair fx; yg of
neighboring vertices, there are two directed edges xy and yx.) Above each vertex x is
drawn a timeline, on which are placed marks at the occurrence times T

xy
i

of the Poisson processes attached to directed edges emanating from x; at each such
mark, an arrow is drawn from x to y. A directed path through the percolation
structure P may travel upward, at speed 1, along any timeline, and may (but does
not have to) jump across any outward-pointing arrow that it encounters. A reverse

path is a directed path run backward in time: thus, it moves downward along
timelines and jumps across inward-pointing arrows. A voter-admissible path is a
directed path that does not pass any inward-pointing arrows. Observe that for each
vertex y and each time t40 there is a unique voter-admissible path beginning at time
0 and terminating at ðy; tÞ: its reverse path is gotten by traveling downward along
timelines, starting at ðy; tÞ; jumping across all inward-pointing arrows encountered
along the way.

Richardson model: A version ZðtÞ of the Richardson model with initial
configuration Zð0Þ ¼ z is obtained by setting ZðtÞ to be the set of all vertices y

such that there is a directed path in the percolation structure P that begins at ðx; 0Þ
for some x 2 z and ends at ðy; tÞ:

Voter model: A version ðRðtÞ;BðtÞÞ of the voter model with initial configuration
Rð0Þ ¼ b; Bð0Þ ¼ bc is gotten by defining BðtÞ ¼ RðtÞc and RðtÞ to be the set of all
vertices y such that the unique voter-admissible path terminating at ðy; tÞ begins at
ðx; 0Þ for some x 2 b:

Two-species competition model: Fix an initial configuration Rð0Þ ¼ x; Bð0Þ ¼ z:
Erase all arrows that lie only on paths that begin at points ðx; 0Þ such that xex [ z;
denote the resulting sub-percolation structure Px;z: Define RðtÞ (respectively, BðtÞ) to
be the set of all vertices y such that there is a voter-admissible path relative to Px;z

that ends at ðy; tÞ and starts at ðx; 0Þ with x 2 x (respectively, x 2 z).
The graphical construction yields as by-products comparison principles for the

Richardson, voter, and competition models. First, the set RðtÞ [ BðtÞ of
vertices occupied by either Red or Blue particles at time t in the competition model
coincides with the set ZðtÞ of occupied vertices in the Richardson model when
Zð0Þ ¼ Rð0Þ [ Bð0Þ: Second, if Rð1ÞðtÞ;Bð1ÞðtÞ is the voter model with initial
configuration Rð1Þð0Þ ¼ xð1Þ; and RðtÞ;BðtÞ is the competition model with initial
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configuration Rð0Þ ¼ x � xð1Þ; Bð0Þ ¼ z  xc; then for all t40;

RðtÞ � Rð1ÞðtÞ:

3.2. Voter model: invasion times

How long does it take for a Red vertex to be overrun by Blue? Clearly, for either
the voter model or the competition model the answer will depend, at least in part, on
how far away the nearest Blue vertices are. The comparison principle implies that,
for any given value r of the distance to the nearest blue vertex, the worst case (for
either model) is the voter model with initial configuration Rð0Þ ¼ Dð0;rÞ and Bð0Þ ¼
Dð0; rÞc; where Dðx; rÞ denotes the disk of radius r centered at x (more precisely, its
intersection with the lattice Zd).

Lemma 1. Fix b 2 ð1
2
; 1Þ; and denote by ðRðtÞ;BðtÞÞ the state of the voter model at time

t. There exist constants c1; c240 (depending on b) such that for all rX1 and all

t 2 ½0;r�; if Rð0Þ contains the disk of radius rb centered at the vertex x, then

PfxeRðtÞgpc1 expf
c2rb
1=2g:

Remark. This holds for any norm on Rd ; not just the Euclidean norm: in particular,
it holds for the Richardson norm defined below. The constant c240 may, of course,
depend on the norm.

Proof of Lemma 1. The dual process of the voter model is the coalescing random
walk (see [3] or [7]). Thus, the probability that the vertex x is blue at time t coincides
with the probability that a continuous-time simple random walker started at x at
time 0 will land in the set Bð0Þ at time t. (This is not difficult to deduce directly from
the graphical construction above: the event x 2 BðtÞ occurs if and only if the reverse
voter-admissible path started at ðx; tÞ will terminate at ðy; 0Þ for some y 2 Bð0Þ; but
the reverse voter-admissible path is a simple random walk.) Hence, if Rð0Þ � Dðx; rbÞ
then this probability is dominated by the probability that the continuous-time simple
random walk exits the ball Dðx;rbÞ by time r: &

3.3. Richardson model: shape theorem

The first-order asymptotic behavior of the Richardson model on the integer lattice
Zd is described by the Shape Theorem [2]. Denote by ZðtÞ the set of vertices of Zd that
are occupied at time t, and by Pz the probability measure describing the law of the
process given the initial condition Zð0Þ ¼ z: For any subset Z  Rd ; define

Ẑ ¼ x 2 Rd : distðx;ZÞp1
2

� �
;

where dist denotes distance in the L1-norm on Rd : For any subset Z  Rd and any
scalar s40; let Z=s ¼ fy=s : y 2 Zg:

Theorem 2 (The Shape Theorem). There exists a nonrandom compact convex set S 

Rd ; invariant under permutation of and reflection in the coordinate hyperplanes, and
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with non-empty interior, such that for any finite initial configuration Zð0Þ ¼ z and any

�40; with Pz-probability one, eventually (i.e., for all sufficiently large s)

ð1
 �ÞS �
ẐðsÞ

s
� ð1þ �ÞS:

The exact shape of the limiting set S remains unknown. A simple argument shows
that S is convex, but nobody has succeeded in proving that it is strictly convex. Let
j � j be the norm on Rd associated with the shape set S; that is, for x 2 Rd ; jxj ¼
infft : x 2 S � tg: That this is in fact a norm follows from the convexity of S: The
Shape Theorem is equivalent to the statement that the set of occupied sites grows at
speed one, relative to the norm j � j; in every direction.

The Richardson model admits a description as a first passage percolation model,
as follows. To each edge of the lattice Zd ; attach a mean one exponential random
variable, the ‘‘passage time’’, in such a way that the passage times of distinct edges
are mutually independent. For any self-avoiding path g; define the traversal time tðgÞ
to be the sum of the passage times of the edges in g: For any finite set z of vertices
and any vertex x, define the passage time Tðz; xÞ from z to x to be the infimum of the
traversal times tðgÞ of all self-avoiding paths connecting x to z: A version of the
Richardson model ZðtÞ with initial configuration Zð0Þ ¼ z is given by

ZðtÞ :¼ fx 2 Zd : Tðz;xÞptg:

The first-passage percolation representation gives simultaneous realizations of
Richardson evolutions for all initial configurations. Since traversal times of paths are
the same backwards and forwards, the following duality property is immediate: For
any finite subsets F ;G  Zd and any t40;

PF fZðtÞ \ G ¼ ;g ¼ PGfZðtÞ \ F ¼ ;g: (4)

Kesten [5] and Alexander [1] have established large deviation results for the
passage times in first passage percolation that specialize to the Richardson model as
follows.

Theorem 3. There exist constants c1 and c240 such that for any �40; y 2 Zd and
jyj1=2þ�otojyj3=2
�;

PfjTð0; yÞ 
 jykptgX1
 c1 expf
c2t=
ffiffiffiffiffiffi
jyj

p
g:
3.4. A triangle inequality

The hypothesis of Theorem 1 is that the Richardson shape S is uniformly curved,
that is, that there exists R40 such that for each x 2 qS there is a (Euclidean) ball
D�ðxÞ of radius R containingS with x on its surface. Denote by p : Rdnf0g ! qS the
natural projection onto the boundary of the Richardson shape, that is, for any
x 2 Rd such that xa0;

px ¼ x=jxj:
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Lemma 2. Suppose that S is uniformly curved, then there exists a constant c40 such

that, for all xeS and y 2 S

jx 
 yjXjx 
 pxj þ cjpx 
 yj2

Proof. Let k � k2 be the Euclidean norm (L2-norm) on Rd : Any two norms on Rd are
equivalent, and so the Euclidean norm is equivalent to the Richardson norm: in
particular, there is a constant d41 such that, for any x 2 Rd ;

1

d
kxk2pjxjpdkxk2:

Let l be the tangent hyperplane to D�ðxÞ at px: For any y 2 S; denote by yp the
(orthogonal) projection of y on l: Since S is uniformly curved (and hence strictly
convex),

jx 
 yjXjx 
 pxj þ jy 
 ypj:

Elementary trigonometric observations imply that, since y 2 D�ðxÞ and yp is on the
tangent line l, there exists a constant c0 that depends only on R and such that for all
such y’s

ky 
 ypk24c0kpx 
 yk22:

Hence,

jy 
 ypj4
c0

d3
jpx 
 yj2

which proves the inequality of the lemma. &
4. Proof of Theorem 1

4.1. Strategy

We begin by showing that it suffices to restrict attention to a special class of initial
configurations, which we dub sliced Richardson shapes. These are obtained as
follows: Run the Richardson model (starting from the initial configuration with two
adjacent occupied sites, one at the origin) for a (large) time T, and let ZT be the
occupied set. Let xT be the subset of ZT consisting of all points with positive first
coordinates, and let zT ¼ ZTnx: Observe that, starting from any nondegenerate finite
initial configuration the competition model can evolve to a sliced Richardson shape
in finite time, with positive probability. (This will occur if, following the first time
that there are adjacent Red and Blue sites, only these sites reproduce, and only on
their sides of the hyperplane separating them.) Thus, it suffices to prove that for all
sufficiently large T, with positive probability the sliced Richardson shape xT ; zT is
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such that

Px;z

\
tX0

RðtÞ ¼ ; or
\
tX0

BðtÞ ¼ ;

( )
o4e: (5)

Here and in the sequel Px;z will denote the probability measure governing the
evolution of the competition model under the initial condition Rð0Þ ¼ x; Bð0Þ ¼ z: By
the Bonferroni inequality, it suffices to prove that

Px;z

\
tX0

RðtÞ ¼ ;

( )
o2e: (6)

The idea behind the proof of (6) is this: If the initial condition x; z is such that x
and z are, approximately, the intersections of kS with complementary angular
sectors A;Ac in Rd based at the origin, for large k, then at time t ¼ dk the sets
RðtÞ;BðtÞ should, with high probability, be approximately the intersections of kð1þ
dÞS with the same angular sectors A;Ac: This is because (1) the Shape Theorem for
the Richardson model implies that RðtÞ [ BðtÞ should be close to ð1þ dÞkS; (2) the
uniform curvature of S implies that the first occupations of vertices in A \ ððt þ

kÞSnkSÞ and Ac \ ððt þ kÞSnkSÞ should (except for those near the boundaries) be
by Red and Blue, respectively; and (3) Lemma 1 implies that, once a region is totally
occupied by Red, it must remain so (except near its boundary) for a substantial
amount of time afterward.

4.2. Stabilization estimate

The key step is to show that once one of the species (say Red) has occupied an
angular sector in the Richardson shape, it is very unlikely for the opposite species
(Blue) to make a large incursion into this sector for some time afterward.
Henceforth, let d be the metric associated with the Richardson norm. For any set
z and any vertex x, define the distance dðz; yÞ between z and x to be the infimum of
the distances dðy; xÞ for all vertices in y 2 z: For any point x 2 Rd and any r40;
denote by Dðx; rÞ the disk of radius r centered at x relative to the metric d. (We shall
not attempt to distinguish between open and closed disks, as this distinction will not
matter in any of the estimates.) For r1or2 denote by Dðx; r1; r2Þ the annular region
Dðx; r2ÞnDðx; r1Þ: For each z 2 qS and any R40; define the angular sector Aðz; RÞ of
aperture R centered at z by

Aðz; RÞ :¼ fy 2 Rdnf0g : dðpy; zÞoRg:

Fix r40; nX1; b 2 ð1=2; 1Þ and a 2 ð1=2; 1Þ such that ðbþ 1Þ=2oa; and let A1  A2

be angular sectors with common center z and apertures ror þ na
1; respectively. Fix
d 2 ð0; 1Þ; and define

R0 ¼ Rn
0 ¼ Dð0; n=ð1þ dÞ; n 
 nbÞ \ A2 \ Zd ;

B0 ¼ Bn
0 ¼ ðDð0; n=ð1þ dÞÞ [ ðDð0; n=ð1þ dÞ; n þ nbÞ \ Ac

2ÞÞ \ Zd ;
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B1 ¼ Bn
1 ¼ ðDð0; nÞ [ Ac

1Þ \ Zd ;

R1 ¼ Rn
1 ¼ ðDð0; n; nð1þ dÞ 
 ðn þ dnÞbÞ \ A1Þ \ Zd :

Lemma 3. There exist constants c1; c240 such that the following is true, for any nX1:
If the initial configuration x; z is such that x � Rn

0 and z  Bn
0; then

1
 Px;zfBðdnÞ  Bn
1gpc1n

3d expf
c2ðdnÞb
1=2
g: (7)

Proof. To prove (7) we find exponential upper bounds on

PR0
;B0fBðdnÞ \R1a;g

and

PR0
;B0fBðdnÞ \ ðR1 [B1Þ

ca;g:

Claim 1. For all sufficiently large n and for all x 2 R1

dðx;R0Þ þ 4ðdnÞbodðx;B0Þ:

Proof. First, observe that by Lemma 2, for every x 2 R1 such that jxj4n þ nb; we
have

dðx;B0Þ4jx 
 pxðn þ nbÞj þ cn2a
1:

Also,

dðx;R0Þpjx 
 pxðn þ nbÞj þ 2nb:

These inequalities imply Claim 1 for all x 2 R1 \ Dð0; n þ nbÞ
c and all sufficiently

large n.
Next, if x 2 R1 is such that nojxjon þ nb; then

dðx;R0Þp2nb:

Also, by Lemma 2, for all y 2 B0;

dðy;xÞ4cðdnÞ2a
1:

These two inequalities imply Claim 1 for all x 2 R1 \ Dð0; n; n þ nbÞ and all
sufficiently large n. &

Claim 2. With probability ! 1 as n ! 1; for every x 2 R1; every site of the ball

Dðx; ðdnÞbÞ will be colonized by time tx ¼ dðx;R0Þ þ 2ðdnÞb: In particular, there exist

constants c140 and c240 (not depending on x) such that for every x 2 R1

PR0;B0
fDðx; ðdnÞbÞgRðtxÞ [ BðtxÞgpc1ðdnÞdb expf
c2ðdnÞb
1=2

g:

Proof. Fix x 2 R1 and let tx ¼ dðx;R0Þ þ 2ðdnÞb: For every z 2 Dðx; ðdnÞbÞ;

dðz;R0Þ þ ðdnÞbptx: (8)
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Notice that the number of sites in Dðx; ðdnÞbÞ is of order ðdnÞdb: By Theorem 3 and
(8), it follows that for some c140 and c240 (not depending on x)

PR0;B0
fDðx; ðdnÞbÞgRðtxÞ [ BðtxÞg¼ PR0[B0

fDðx; ðdnÞbÞgZðtxÞg

p c1ðdnÞdb expf
c2ðdnÞb
1=2
g:

Hence, with probability ! 1 as n ! 1; for every x 2 R1; every site of the ball
Dðx; ðdnÞbÞ will be colonized at time tx: &

Define the boundary qA of a set A  Zd as the set of all z 2 A that have at least
one nearest neighbor that is not in A: Next, for a set A  Zd let tðAÞ be the first
time at which the blue species reaches A:

Claim 3. With probability ! 1 as n ! 1; for every x 2 R1; the blue species will not

reach the ball Dðx; ðdnÞbÞ by time tx: In particular, there exist constants c140 and

c240 such that for every x 2 R1

PR0;B0
ftðDðx; ðdnÞbÞÞotxgpc1ðdnÞðd
1Þðbþ1Þ expf
c2ðdnÞb
1=2

g:

Proof. Notice that

PR0;B0
ftðDðx; ðdnÞbÞÞptxgpPB0

fZðtxÞ \ Dðx; ðdnÞbÞa;g

¼PDðx;ðdnÞbÞfZðtxÞ \B0a;g:

By Claim 1, for large n we have dðx;B0Þ4tx þ 2ðdnÞb: Hence,

PDðx;ðdnÞbÞfZðtxÞ \B0a;gpPDðx;ðdnÞbÞfZðtxÞgDðx; tx þ 2ðdnÞbÞg:

Obviously, for every z 2 qDðx; ðdnÞbÞ and y 2 qDðx; tx þ 2ðdnÞbÞ; we have

dðz; yÞXtx þ ðdnÞb=2:

Apply Theorem 3 to each pair of such vertices to get

PfTðz; yÞotxgoc1 expf
c2ðdnÞb
1=2
g:

The number of vertices in qDðx; ðdnÞbÞ is of order ðdnÞðd
1Þb; and the number of
vertices in qDðx; tx þ 2ðdnÞbÞ is of order at most ðdnÞðd
1Þ: Hence,

PDðx;ðdnÞbÞfZðtxÞgDðx; tx þ 2ðdnÞbÞpc1ðdnÞðd
1Þðbþ1Þ expf
c2ðdnÞb
1=2
g:

This finishes the proof of Claim 3. &

Claim 4. With probability ! 1 as n ! 1; there are no Blue particles in R1 at time dn:
In particular, there exist constants c140 and c240 such that

PR0;B0
fR1 \ BðdnÞa;gpc1ðdnÞðd
1Þðbþ1Þþd expf
c2ðdnÞb
1=2

g:
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Proof. By Claim 3, for all x 2 R1 with txXdn;

PR0
;B0fx 2 BðdnÞgpc1ðdnÞðd
1Þðbþ1Þ expf
c2ðdnÞb
1=2

g: (9)

Next, for all x 2 R1 with txodn; Claims 2 and 3 imply that for some c140 and c240

PR0;B0
fDðx; ðdnÞbÞgRðtxÞgpc1ðdnÞðd
1Þðbþ1Þ expf
c2ðdnÞb
1=2

g:

Hence, by Lemma 1, there exist constants c1 and c2 such that for every such x we
have

PR0;B0
fxeRðdnÞgpc1ðdnÞðd
1Þðbþ1Þ expf
c2ðdnÞb
1=2

g: (10)

The number of vertices in R1 is of order ðdnÞd : Thus, by combining (9) and (10), we
get

PR0;B0
fBðdnÞ \R1a;gpc1ðdnÞðd
1Þðbþ1Þþd expf
c2ðdnÞb
1=2

g: &

Claim 5. With probability ! 1 as n ! 1; the blue species will not reach the set

ðR1 [B1Þ
c by time dn: In particular, there exist constants c140 and c240 such that

PR0;B0
ftððR1 [B1Þ

c
Þpdngpc1n

2ðd
1Þ expf
c2ðdnÞb
1=2
g:

Proof. For large n the distance between the sets B0 and ðR1 [B1Þ
c is greater than

dn þ ðdnÞb: The number of vertices on the boundary of B0 is of order nd
1: Using the
same line of argument as in the proof of Claim 3 we get

PR0;B0
ftððR1 [B1Þ

c
ÞpdngpPB0

fZðdnÞgR1 [B1g

pc1n
2ðd
1Þ expf
c2ðdnÞb
1=2

g: &

Now, Claims 4 and 5 imply (7) and finish the proof of Lemma 3:

PR0;B0
fBðdnÞgB1gpc1n

3d expf
c2ðdnÞb
1=2
g: &

4.3. Proof of (6)

Let Zt be the set of sites occupied by the Richardson evolution (started from the
default initial configuration) at time t. Fix T ¼ T0X1 and d40; and set

Tn ¼ Tð1þ dÞn;

tn ¼ Tdð1þ dÞn
1;

and

tn ¼ Tn 
 T ¼
Xn

j¼1

tn:



ARTICLE IN PRESS

G. Kordzakhia, S.P. Lalley / Stochastic Processes and their Applications 115 (2005) 781–796794
Fix b 2 ð1=2; 1Þ; and for each n ¼ 0; 1; . . . define events

Fn :¼ fð1
 Tb
1
n ÞS � ẐðTnÞ=Tn � ð1þ Tb
1

n ÞSg;

Gn :¼ fð1
 Tb
1
n ÞS � ẐðtnÞ=Tn � ð1þ Tb
1

n ÞSg:

By the Kesten–Alexander large deviation theorems (Theorem 3),

lim
T!1

X1
n¼0

PðF c
nÞ ¼ 0

and so, for sufficiently large T, the probability is nearly 1 that the configuration ZT

will be such that

X1
n¼0

PZT
ðGc

nÞoe: (11)

Fix an initial configuration Z so that the preceding estimate holds for ZT ¼ Z; and
use this to construct the split Richardson shape x ¼ xT ; z ¼ zT as in Section 4.1
above: x and z are the subsets of ZT with positive and nonpositive first coordinates,
respectively. Since the union of the Red and Blue sites in the competition model
evolves as the Richardson model, it follows from (11) that if the initial configuration
is Rð0Þ ¼ x; Bð0Þ ¼ z then with probability in excess of 1
 e;

ð1
 Tb
1
n ÞS �

x̂ðtnÞ [ ẑðtnÞ

Tn

� ð1þ Tb
1
n ÞS (12)

for all n ¼ 0; 1; 2; . . . : Denote by G� the event that (12) holds for all nX0:
On the event G�; the union of the Red and Blue regions will, at each time Tn 
 T ;

fill a region close enough to a Richardson shape that estimate (7) will be applicable
whenever the Red and Blue populations are restricted (at least approximately) to
angular sectors. Thus, define sequences An

1  An
2 of concentric angular sectors with

apertures r1ðnÞor2ðnÞ such that

r2ðnÞ 
 r1ðnÞ ¼ Ta
1
n

and

r2ðn þ 1Þ ¼ r1ðnÞ

and with r2ð0Þ chosen so that A0
2 is the halfspace consisting of all points in Rd with

positive first coordinates. Here 1
2
oboðbþ 1Þ=2oao1 as in Section 4.2 above. Note

that the second equality guarantees that Anþ1
2 ¼ An

1: This in turn, together with the
fact that the sequence Tn is increasing, implies that the angular sectors are nested:
Anþ1

i  An
i : Moreover, because Tn is an exponentially growing sequence and ao1;

lim
n!1

r1ðnÞ :¼ r140
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provided T ¼ T0 is sufficiently large. Therefore, the intersection

A1 ¼
\1
n¼1

An
1

is an angular sector with nonempty interior.
Finally, for each nX0 define Hn to be the event that at time tn there are no blue

sites in An
2 outside the (Richardson norm) disk of radius Tn
1: (For n ¼ 0; set

T
1 ¼ T0=ð1þ dÞ:) On the event Gn \ Hn; the set of all occupied sites is close to
Tn �S; and the red sites fill at least the outer layer of this set in the sector An

2: We
claim that for all sufficiently large T,

PxT ;zT

\1
n¼0

ðGn \ HnÞ

 !
X1
 2e: (13)

To see this, let n be the smallest index n such that ðGc
n [ Hc

nÞ occurs. Since n ¼ n can
only occur on Gn
1 \ Hn
1;

PxT ;zT
fn ¼ ngpPxT ;zT

ðGc
nÞ þ PxT ;zT

ðHc
n jGn
1 \ Hn
1Þ:

Inequality (11) provides a bound on the sum of the first of these terms, and Lemma 3
bounds the second. Thus, for T sufficiently large,

X1
n¼0

PxT ;zT
fn ¼ ngo2e;

this proves (13).
On the event Gn \ Hn; the Red species must at time tn occupy at least the outer

layer of the occupied set in the angular sector A1: Consequently, on the eventT
nX1ðGn \ HnÞ; Red survives! This proves (6). &
5. Concluding remark

The preceding argument, in addition to proving that the event that mutual
survival has positive probability, also goes part of the way towards proving
Conjecture 1: If at a large time T one of the colors (say Red) occupies the outer layer
of an angular sector, then with conditional probability approaching 1 as T ! 1 it
will occupy a slightly smaller angular sector forever after. Since the same is true for
the other species, it follows that in at least some evolutions Red and Blue will each
occupy angular sectors.

Unfortunately, it remains unclear what happens near the interface at large times.
Although the preceding arguments show that neither Red nor Blue can make too
deep an incursion into the other species’ sector(s), it may be possible for one to
repeatedly make small incursions across the interface that engender more (and
necessarily thinner) angular sectors in its zone of occupation. Thus, it may be that
the limit shapes exist, but consist of countably many angular sectors.
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Finally, it remains unclear if stabilization must eventually occur on the event of
mutual survival, that is, if it is necessarily the case that at large times T the outer
layer of the occupied region must segregate into well-defined Red and Blue zones.
Since local coalescence occurs in the voter model, one naturally expects that the same
will be true in the competition model; thus far, we have been unable to prove this.
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