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Abstract

Let Ĥl be the affine Hecke algebra corresponding to the groupGLl over a p-adic field with
residue field of cardinalityq. We will regard Ĥl as an associative algebra over the fieldC(q).
Consider theĤl+m-moduleW induced from the tensor product of the evaluation modules over the
algebrasĤl and Ĥm. The moduleW depends on two partitionsλ of l and µ of m, and on two
non-zero elements of the fieldC(q). There is a canonical operatorJ acting onW; it corresponds
to the trigonometricR-matrix. The algebrâHl+m contains the finite dimensional Hecke algebra
Hl+m as a subalgebra, and the operatorJ commutes with the action of this subalgebra onW. Under
this action,W decomposes into irreducible subspaces according to the Littlewood–Richardson rule.
We compute the eigenvalues ofJ, corresponding to certain multiplicity-free irreducible components
of W. In particular, we give a formula for the ratio of two eigenvalues ofJ, corresponding to the
“highest” and the “lowest” components. As an application, we derive the well knownq-analogue of
the hook-length formula for the number of standard tableaux of shapeλ.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In this article we will work with the affine Hecke algebra corresponding to the general
linear groupGLl over a local non-Archimedean field. Letq be a formal parameter. LetHl

be the finite dimensional Hecke algebra over the fieldC(q) of rational functions inq, with
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the generatorsT1, . . . , Tl−1 and the relations

(Ti − q)(Ti + q−1) = 0; (1.1)

Ti Ti+1Ti = Ti+1Ti Ti+1; (1.2)

Ti Tj = Tj Ti , j �= i , i + 1 (1.3)

for all possible indicesi and j . Theaffine Hecke algebrâHl is theC(q)-algebra generated
by the elementsT1, . . . , Tn−1 and the pairwise commuting invertible elementsY1, . . . , Yn

subject to the relations (1.1)–(1.3) and

Ti Yi Ti = Yi+1; (1.4)

Ti Yj = Yj Ti , j �= i , i + 1. (1.5)

By definition, the affine algebrâHl containsHl as a subalgebra. There is also a
homomorphismπ1 : Ĥl → Hl identical on the subalgebraHl ⊂ Ĥl ; it can be defined
[1, Theorem 3.4] by settingπ1(Y1) = 1. Indeed, then by (1.4) we have

π1(Yi ) = Ti−1 . . . T1T1 . . . Ti−1 (1.6)

for everyi = 1, . . . , l . Denote byXi the right hand side of the equality (1.6). Using the
relations (1.2) and (1.3), one can check that

Ti X j = X j Ti , j �= i , i + 1

and that the elementsX1, . . . , Xl are pairwise commuting. These elements are invertible
in Hl , because the generatorsT1, . . . , Tl−1 are invertible: we have

T−1
i = Ti − q + q−1 (1.7)

due to (1.1). The elementsX1, . . . , Xl are called theMurphy elements[14] of the Hecke
algebraHl ; they play an important role in the present article.

More generally, for any non-zeroz ∈ C(q), one can define a homomorphismπz :
Ĥl → Hl , also identical on the subalgebraHl ⊂ Ĥl , by settingπz(Y1) = z. It is called the
evaluation homomorphismat z. By pulling any irreducibleHl -moduleV back through the
homomorphismπz we obtain a module over the algebrâHl , called anevaluation module
at z and denoted byV(z). By definition, theĤl -moduleV(z) is irreducible.

Throughout this articlel is a positive integer. For any indexi = 1, . . . , l − 1 let
σi = (i i + 1) be the adjacent transposition in the symmetric groupSl . Take any element
σ ∈ Sl and choose a reduced decompositionσ = σi1 · · · σi L . As usual putTσ = Ti1 · · · TiL ;
this element of the algebraHl does not depend on the choice of reduced decomposition of
σ due to (1.2) and (1.3). The element of maximal length inSl will be denoted byσ0. We
will write T0 instead ofTσ0 for short. The elementsTσ form a basis ofHl as a vector space
over the fieldC(q). We will also use the basis inHl formed by the elementsT−1

σ .
The C(q)-algebraHl is semisimple; see [6, Section 4] for a short proof of this well

known fact. The simple ideals ofHl are labelled by partitionsλ of l , like the equivalence
classes of irreducible representations of the symmetric groupSl . In Section 3of the present
article, for any partitionλ of l we will construct a certain left idealVλ in the algebra
Hl . Under the action of the algebraHl via left multiplication, the subspaceVλ ⊂ Hl is
irreducible; seeCorollary 3.5. The Hl -modulesVλ for different partitionsλ are pairwise
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non-equivalent; seeCorollary 3.6. At q = 1, the algebraHn(q) specializes to the group
ring CSl . The Hn(q)-moduleVλ then specializes to the irreducible representation ofSl ,
corresponding [18] to the partitionλ. Our construction ofVλ employs a certain limiting
process calledfusion procedure[1]; seeSection 2for details, cf. [7, 9].

Using this definition of theHl -moduleVλ, consider the evaluation moduleVλ(z) over
the affine Hecke algebrâHl . Take a partitionµ of a positive integerm and a non-zero
elementw ∈ C(q), then also consider the evaluation moduleVµ(w) over the algebrâHm.
The tensor product̂Hl ⊗ Ĥm is naturally identified with the subalgebra in̂Hl+m, generated
by the elements

T1, . . . , Tl−1, Y1, . . . , Yl and Tl+1, . . . , Tl+m−1, Yl+1, . . . , Yl+m.

Let us denote byW be theĤl+m-module induced from the moduleVλ(z) ⊗ Vµ(w) over
the subalgebrâHl ⊗ Ĥm ⊂ Ĥl+m. Identify the underlying vector space of the moduleW
with the left ideal inHl+m generated byVλ ⊗ Vµ ⊂ Hl ⊗ Hm, so that the subalgebra

Hl+m ⊂ Ĥl+m acts onW via left multiplication. Further, denote byW′ be theĤl+m-
module induced from the moduleVµ(w) ⊗ Vλ(z) over the subalgebrâHm⊗ Ĥl ⊂ Ĥl+m.
The underlying vector space ofW′ is identified with the left ideal inHl+m generated by
Vµ ⊗ Vλ ⊂ Hm ⊗ Hl . Note that then due to (4.5) and (4.6) we have the equality of left
idealsW′ = W Tτ , whereτ is the element of the symmetric groupSl+m permuting

(1, . . . , m, m+ 1, . . . , l +m) 
→ (l + 1, . . . , l +m, 1, . . . , l ). (1.8)

Suppose thatz−1w /∈ q2Z. Then theĤl+m-modulesW and W′ are irreducible and
equivalent; see for instance [20, Remark 8.7]. Hence there is a unique, up to a multiplier
from C(q), non-zero intertwining operator of̂Hl+m-modulesI : W→ W′. The existence
of this operator does not depend on the choice of realization of theĤl+m-modulesW and
W′. For our choice ofW andW′, we will give an explicit formula for the operatorI ; see
Proposition 4.2. This formula fixes the normalization ofI , in particular.

Let J : W → W be the composition of the operatorI : W → W′, and the
operatorW′ → W of multiplication by the elementT−1

τ on the right. Since the subalgebra
Hl+m ⊂ Ĥl+m acts on the left idealsW andW′ in Hl+m via left multiplication, the operator
J commutes with this action ofHl+m. Under this action, the vector spaceW splits into
irreducible components according to the Littlewood–Richardson rule [13, Section I.9].
On every irreducible component appearing with multiplicity one, the operatorJ acts as
multiplication by a certain element ofC(q). In this article, we compute these elements
of C(q) for certain multiplicity-free components ofW; seeTheorems 4.5and4.6. Note
that without affecting the eigenvalues of the operatorJ, one can replaceVλ andVµ in our
definition ofW by any left ideals in the algebrasHl andHm respectively, equivalent toVλ

andVµ as modules over these two algebras.
Let us give an example of applying ourTheorems 4.5and4.6. Write

λ = (λ1, λ2, . . .) and λ = (µ1, µ2, . . .),

where the parts ofλ andµ are as usual arranged in the non-increasing order. Consider also
the conjugate partitions

λ∗ = (λ∗1, λ∗2, . . .) and µ∗ = (µ∗1, µ∗2, . . .).
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There are two distinguished irreducible components of theHl+m-moduleW which are
multiplicity free. They correspond to the two partitions ofl +m

λ+ µ = (λ1+ µ1, λ2 + µ2, . . .) and (λ∗ + µ∗)∗.

Let us denote byhλµ(z, w) the ratio of the corresponding two eigenvalues of the
operatorJ; this ratio does not depend on the normalization of this operator.

Corollary 1.1. We have

hλµ(z, w) =
∏
a,b

z−1w − q−2(µa+λ∗b−a−b+1)

z−1w − q2(λa+µ∗b−a−b+1)
(1.9)

where the product is taken over all a, b = 1, 2, . . . such that b� λa, µa.

We will derive this result fromTheorems 4.5and 4.6, using Proposition 4.7. Now
consider the Young diagrams ofλ andµ. For the partitionλ, this is the set (2.5). The
conditionb � λa, µa in Corollary 1.1means that the node(a, b) belongs to the intersection
of the diagrams corresponding toλ andµ. Recall that the numberλa + λ∗b − a− b+ 1 is
thehook-lengthcorresponding to the node(a, b) of the Young diagram ofλ. The numbers
appearing in (1.9),

λa + µ∗b − a− b+ 1 and µa + λ∗b − a− b+ 1,

may be called themixed hook-lengthsof the first and second kind respectively. Both these
numbers are positive for any node(a, b) in the intersection of the Young diagrams ofλ

andµ; hence there are no cancellations of factors in (1.9).

According to the famous formula from [3], the product of the hook-lengths of the
Young diagram ofλ is equal to the ratiol !/ dimVλ. We call the equality (1.9) the mixed
hook-length formula. Its counterpart for the degenerate, or graded affine Hecke algebras
[2, 12] which does not involve the parameterq has appeared in [15]. Theq-analogue of the
hook-length formula [3] is also known; see for instance [13, Example I.3.1]. As another
application of ourTheorem 4.5we give a new proof of thisq-analogue; see the end of
Section 4.

2. Fusion procedure for the algebra Hl

In this section, for any standard tableauΛ of shapeλ we will construct a certain non-
zero elementFΛ ∈ Hl . Under left multiplication by the elements ofHl , the left ideal
Hl FΛ ⊂ Hl is an irreducibleHl -module. The irreducibleHl -modules corresponding to
two standard tableaux are equivalent if and only if these tableaux have the same shape. The
idea of this construction goes back to [1, Section 3] were no proofs were given however.
The elementFΛ is related to theq-analogue of the Young symmetrizer in the group ring
CSl constructed in [5]; see the end of next section for details of this relation.
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For eachi = 1, . . . , l − 1 introduce theHl -valued rational function in two variables
x, y ∈ C(q)

Fi (x, y) = Ti + q − q−1

x−1y− 1
. (2.1)

As a direct calculation using (1.1) and (1.2) shows, these functions satisfy

Fi (x, y)Fi+1(x, z)Fi (y, z) = Fi+1(y, z)Fi (x, z)Fi+1(x, y). (2.2)

Due to (1.3) these rational functions also satisfy the relations

Fi (x, y)Fj (z, w) = Fj (z, w)Fi (x, y); j �= i , i + 1. (2.3)

Using (1.1) once again, we obtain the relations

Fi (x, y)Fi (y, x) = 1− (q − q−1)2xy

(x − y)2
. (2.4)

Our construction of the elementFΛ ∈ Hl is based on the following simple observation.
Consider the rational function ofx, y, z defined as the product on either side of (2.2). The
factor Fi+1(x, z) on the left hand side of (2.2), and the factorFi (x, z) on the right hand
side have singularities atx = z. However,

Lemma 2.1. Restriction of the rational function(2.2) to the set of(x, y, z) such that
x = q±2y, is regular at x= z �= 0.

Proof. Let us expand the product on the left hand side of (2.2) in the factorFi+1(x, z). By
the definition (2.1) we will get the sum

Fi (x, y)Ti+1Fi (y, z)+ q − q−1

x−1z− 1
Fi (x, y)Fi (y, z).

Here the restriction tox = q±2y of the first summand is evidently regular atx = z. After
the substitutiony = q∓2x, the second summand takes the form

q − q−1

x−1z− 1
(Ti ∓ q±1)

(
Ti + q − q−1

q±2x−1z− 1

)
= q− q−1

x−1z− q∓2
(q±1∓ Ti ).

The rational function ofx, z at the right hand side of the last displayed equality is also
evidently regular atx = z. �

Let Λ be any standard tableau of shapeλ. Here we refer to theYoung diagram

{(a, b) ∈ Z
2 | 1 � a, 1 � b � λa} (2.5)

of the partitionλ. Any bijective function on the set (2.5) with values 1, . . . , l is called a
tableau. The values of this function are theentriesof the tableau. The symmetric groupSl

acts on the set of all tableaux of given shape by permutations of their entries. The tableau
Λ is standard ifΛ(a, b) < Λ(a+ 1, b) andΛ(a, b) < Λ(a, b+ 1) for all possible integers
a andb. If Λ(a, b) = i then putci (Λ) = b− a. The differenceb− a here is thecontent
corresponding to the node(a, b) of the Young diagram (2.5).
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Now introducel variablesz1, . . . , zl ∈ C(q). Equip the set of all pairs(i , j ), where
1 � i < j � l , with the following ordering. The pair( i , j ) precedes another pair( i ′, j ′)
if j < j ′, or if j = j ′ but i < i ′. Take the ordered product

−→∏
(i, j )

Fj−i (q
2ci (Λ)zi , q2cj (Λ)zj ) (2.6)

over this set. Consider the product (2.6) as a rational function taking values inHl , of the
variablesz1, . . . , zl . Denote this function byFΛ(z1, . . . , zl ). LetZΛ be the vector subspace
in C(q)×l consisting of all tuples(z1, . . . , zl ) such thatzi = zj whenever the numbersi
and j appear in thesame columnof the tableauΛ, that is wheneveri = Λ(a, b) and
j = Λ(c, b) for somea, b andc. Note that the point(1, . . . , 1) ∈ C(q)×l belongs to the
subspaceZΛ.

Theorem 2.2. The restriction of the rational function FΛ(z1, . . . , zl ) to the subspace
ZΛ ⊂ C(q)×l is regular at the point(1, . . . , 1).

Proof. Consider any standard tableauΛ′ obtained from the tableauΛ by an adjacent
transposition of its entries, say byσk ∈ Sl . Using the relations (2.2) and (2.3), we derive
the equality of rational functions in the variablesz1, . . . , zl

FΛ(z1, . . . , zl )Fl−k(q
2ck+1(Λ)zk+1, q2ck(Λ)zk)

= Fk(q
2ck(Λ)zk, q2ck+l (Λ)zk+1)FΛ′(z

′
1, . . . , z′l ), (2.7)

where the sequence of variables(z′1, . . . , z′l ) is obtained from the sequence(z1, . . . , zl ) by
exchanging the termszk andzk+1. Observe that

(z′1, . . . , z′l ) ∈ ZΛ′ ⇔ (z1, . . . , zl ) ∈ ZΛ.

Also observe that here|ck(Λ)− ck+1(Λ)| � 2 because the tableauxΛ andΛ′ are standard.
Therefore the functions

Fk(q
2ck(Λ)zk, q2ck+l (Λ)zk+1) and Fl−k(q

2ck+1(Λ)zk+1, q2ck(Λ)zk)

appearing in the equality (2.7), are regular atzk = zk+1 = 1. Moreover, their values at
zk = zk+1 = 1 are invertible in the algebraHl ; see the relation (2.4). Due to these two
observations, the equality (2.7) shows thatTheorem 2.2is equivalent to its counterpart for
the tableauΛ′ instead ofΛ.

Denote byΛ◦ thecolumn tableauof shapeλ. By definition, we haveΛ◦(a + 1, b) =
Λ◦(a, b) + 1 for all possible nodes(a, b) of the Young diagram (2.5). There is a chain
Λ,Λ′, . . . ,Λ◦ of standard tableaux of the same shapeλ, such that each subsequent tableau
in the chain is obtained from the previous one by an adjacent transposition of the entries.
Due to the above argument, it now suffices to proveTheorem 2.2only in the caseΛ = Λ◦.
Note that

(Tk − q)2 = (−q− q−1)(Tk − q) for k = 1, . . . , l − 1. (2.8)

Consider the ordered product (2.6) whenΛ = Λ◦. Suppose that the factor

Fj−i (q
2ci (Λ◦)zi , q2cj (Λ◦)zj ) (2.9)
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in that product has a singularity atzi = zj = 1. Then ci (Λ◦) = cj (Λ◦). If here
i = Λ◦(a, b) theni + 1= Λ◦(a+ 1, b) < j . The next factor after (2.9) is

Fj−i−1(q
2ci+1(Λ

◦)zi+1, q2cj (Λ◦)zj ) (2.10)

whereci+1(Λ◦) = ci (Λ◦) − 1. Due to the relations (2.2) and (2.3), the product of all the
factors before (2.9) is divisible on the right by

Fj−i−1(q
2ci (Λ◦)zi , q2ci+1(Λ

◦)zi+1). (2.11)

Note that the restriction of (2.11) to zi = zi+1 equalsTj−i−1 − q. Also note that the
restriction tozi = zi+1 of the ordered product of three factors (2.9)–(2.11) is regular at
zi = zj = 1 due toLemma 2.1.

Now for every pair(i , j ) such that (2.9) is singular atzi = zj = 1, insert the factor
(2.11) divided by(−q−q−1) immediately before the two adjacent factors (2.9) and (2.10)
in the product (2.6) with Λ = Λ◦. These insertions do not alter the values of restriction of
the entire product toZΛ◦ due to (2.8). But with these insertions, restriction of the product
toZΛ◦ is evidently regular. �

Due toTheorem 2.2, an elementFΛ ∈ Hl can now be defined as the value at the point
(1, . . . , 1) of the restriction toZΛ of the functionFΛ(z1, . . . , zl ). Note that forl = 1 we
haveFΛ = 1. For anyl � 1, take the expansion of the elementFΛ ∈ Hl in the basis of the
elementsTσ whereσ is ranging overSl .

Proposition 2.3. The coefficient in FΛ ∈ Hl of the element T0 is 1.

Proof. Expand the product (2.6) as a sum of the elementsTσ with coefficients from
the field of rational functions ofz1, . . . , zl ; these functions take values inC(q). The
decomposition inSl with ordering of the pairs(i , j ) as in (2.6)

σ0 =
−→∏
(i, j )

σ j−i

is reduced, hence the coefficient atT0 = Tσ0 in the expansion of (2.6) is 1. By the definition
of FΛ, the coefficient ofT0 in FΛ must also be 1. �

In particular,Proposition 2.3shows thatFΛ �= 0 for any standard tableauΛ. Denote
by αl the involutive antiautomorphism of the algebraHl over the fieldC(q), defined by
settingαl (Ti ) = Ti for every indexi = 1, . . . , l − 1. Note that each of the Murphy
elementsX1, . . . , Xl of the algebraHl is αl -invariant.

Proposition 2.4. The element FΛT−1
0 is αl -invariant.

Proof. Any element of the algebraHl of the formFi (x, y) is αl -invariant. Hence applying
the antiautomorphismαl to an element ofHl the form (2.6) just reverses the ordering of the
factors corresponding to the pairs(i , j ). Using the relations (2.2) and (2.3), we can rewrite
the reversed product as

−→∏
(i, j )

Fl− j+i (q
2ci (Λ)zi , q2cj (Λ)zj )
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where the pairs(i , j ) are again ordered as in (2.6). But due to (1.2) and (1.3), we also have
the identity in the algebraHl

Fl−i (x, y)T0 = T0Fi (x, y).

This identity along with the equalityαl (T0) = T0 implies that every value of the function
FΛ(z1, . . . , zl )T

−1
0 is αl -invariant. So is the elementFΛT−1

0 ∈ Hl . �

Proposition 2.5. If k = Λ(a, b) and k+ 1 = Λ(a + 1, b) then the element FΛ ∈ Hl is
divisible on the left by Tk − q.

Proof. Using the relations (2.2) and (2.3), one demonstrates that the product (2.6) is always
divisible on the left by the function

Fk(q
2ck(Λ)zk, q2ck+l (Λ)zk+1).

If herek = Λ(a, b) andk + 1 = Λ(a+ 1, b) then restriction of this function tozi = zi+1
equalsTk − q. Hence the required property of the elementFΛ ∈ Hl immediately follows
from the definition of this element.�

Fix any standard tableauΛ of shapeλ. Let ρ ∈ Sl be the permutation such that
Λ = ρ · Λ◦, that isΛ(a, b) = ρ(Λ◦(a, b)) for all possiblea andb. For any j = 1, . . . , l
take the subsequence of the sequenceρ(1), . . . , ρ(l ) consisting of alli < j such that
ρ−1(i ) > ρ−1( j ). Denote byA j the result of reversing this subsequence. Let|A j | be the
length of sequenceA j . We have a reduced decomposition in the symmetric groupSl ,

ρ =
−→∏

j=1,...,l

 −→∏
k=1,...,|A j |

σ j−k

 . (2.12)

Let σi L · · · σi1 be the product of adjacent transpositions at the right hand side of (2.12). For
each tailσiK · · · σi1 of this product, the imageσiK · · · σi1 ·Λ◦ is a standard tableau. This can
easily be proved by induction on the lengthK = L, . . . , 1 of the tail; see also the proof of
Proposition 2.6below. Note that for anyi ∈ A j andk ∈ {1, . . . , l − 1} the elements of the
algebraHl ,

Fk(q
2ci (Λ), q2cj (Λ)) and Fk(q

2cj (Λ), q2ci (Λ)),

are well defined and invertible. Indeed, ifi = Λ(a, b) and j = Λ(c, d) for somea, b and
c, d thena < c andb > d. Soci (Λ)− cj (Λ) = b− a− d + c � 2 here.

Proposition 2.6. We have the equality in the algebra Hl

FΛ ·
−→∏

j=1,...,l

 −→∏
k=1,...,|A j |

Fl− j+k(q
2cj (Λ), q2ci (Λ))


=

−→∏
j=1,...,l

 −→∏
k=1,...,|A j |

Fj−k(q
2ci (Λ), q2cj (Λ))

 · FΛ◦ where i= A j (k).
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Proof. We will proceed by induction on the lengthL = |A1| + · · · + |Al | of the element
ρ ∈ Sl . Let n be the minimal of the indicesj such that the sequenceA j is not empty.
Then we haveAn(1) = n− 1. Indeed, ifAn(1) < n− 1 thenρ−1(An(1)) > ρ−1(n− 1).
ThenAn(1) ∈ An−1, which would contradict the minimality ofn. The tableauσn−1 · Λ is
standard; denote it byΛ′. In our proof ofTheorem 2.2we used the equality (2.7). Setting
k = n− 1 in that equality and then usingTheorem 2.2itself, we obtain the equality inHl

FΛFl−n+1(q
2cn(Λ), q2cn−1(Λ)) = Fn−1(q

2cn−1(Λ), q2cn(Λ))FΛ′ . (2.13)

For each indexj = 1, . . . , l denote byA′j the counterpart of the sequenceA j for
the standard tableauΛ′ instead ofΛ. Each of the sequencesA′1, . . . ,A′n−2 andA′n is
empty. The sequenceA′n−1 is obtained from the sequenceAn by removing its first term
An(1) = n − 1. By replacing the termsn − 1 andn, whenever any of them occurs,
respectively byn andn − 1 in all the sequencesAn+1, . . . ,Al we obtain the sequences
A′n+1, . . . ,A′l .

Assume that theProposition 2.6is true forΛ′ instead ofΛ. Write the product on the left
hand side of the equality to be proved inProposition 2.6as

FΛFl−n+1(q
2cn(Λ), q2cn−1(Λ)) ·

−→∏
k=2,...,|An|

Fl−n+k(q
2cn(Λ), q2ci (Λ))

×
−→∏

j=n+1,...,l

 −→∏
k=1,...,|A j |

Fl− j+k(q
2cj (Λ), q2ci (Λ))


where in the first linei = An(k), while in the second linei = A j (k). Using the equality
(2.13) and the description of the sequencesA′1, . . . ,A′l as given above, the latter product
can be rewritten as

Fn−1

(
q2cn−1(Λ), q2cn(Λ)

)
FΛ′

×
−→∏

j=1,...,l

 −→∏
k=1,...,|A′j |

Fl− j+k(q
2cj (Λ′), q2ci (Λ′))

 wherei = A′j (k).

By the inductive assumption, this product equals

Fn−1

(
q2cn−1(Λ), q2cn(Λ)

)
·
−→∏

j=1,...,l

 −→∏
k=1,...,|A′j |

Fj−k(q
2ci (Λ′), q2cj (Λ′))


times FΛ◦ , where we keep to the notationi = A′j (k). Using the description of the
sequencesA′1, . . . ,A′l once again, the last product can be rewritten as on the right hand
side of the equality to be proved inProposition 2.6. �

Proposition 2.7. If k = Λ(a, b) and k+ 1 = Λ(a, b + 1) then the element FΛ ∈ Hl is
divisible on the left by Tk + q−1.
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Proof. Given a pair of indices(a, b) such thatλa > b, it suffices to proveProposition 2.7
for just one standard tableauΛ of shapeλ. Indeed, letΛ̃ be another standard tableau of the
same shape, such thatΛ̃(a, b) = k̃ andΛ̃(a, b+ 1) = k̃ + 1 for somek̃ ∈ {1, . . . , l − 1}.
Let σ be the permutation such thatΛ̃ = σ · Λ. There is a decompositionσ = σiN · · ·σi1
such that for eachK = 1, . . . , N − 1 the tableauΛK = σiK · · ·σi1 · Λ is standard. Note
that this decomposition is not necessarily reduced. UsingTheorem 2.2, we get

←−∏
K=1,...,N

FiK (q2ciK (ΛK ), q2ciK +1(ΛK )) · FΛ

= FΛ̃ ·
←−∏

K=1,...,N

Fl−iK (q2ciK +1(ΛK ), q2ciK (ΛK )) (2.14)

whereΛN = Λ̃. Note that here for everyK = 1, . . . , N the factor

Fl−iK (q2ciK+1(ΛK ), q2ciK (ΛK ))

is invertible. Further, we have the equalityσσk = σk̃σ by the definition of the permu-
tationσ . Using the relations (2.2) and (2.3), we obtain the equality

←−∏
K=1,...,N

FiK (q2ciK (ΛK ), q2ciK +1(ΛK )) · Fk(q
2ck(Λ), q2ck+1(Λ))

= Fk̃(q
2ck̃(Λ̃), q2ck̃+1(Λ̃)) ·

←−∏
K=1,...,N

Fl−iK (q2ciK +1(ΛK ), q2ciK (ΛK )).

The last equality along with the equality (2.14) shows, thatProposition 2.7implies its
counterpart for the tableaũΛ and the index̃k, instead ofΛ andk respectively. Here we also
use the equalities

Fk(q
2ck(Λ), q2ck+1(Λ)) = Tk + q−1,

Fk̃(q
2ck̃(Λ̃), q2ck̃+1(Λ̃)) = Tk̃ + q−1.

Let us consider the column tableauΛ◦ of shapeλ. Put m = Λ◦(a, b). Also put
n = Λ◦(λ∗b, b); thenΛ◦(a, b + 1) = n + a. We will prove that the elementFΛ◦ ∈ Hl

is divisible on the left by the product

←−∏
i=m,...,n

 −→∏
j=n+1,...,n+a

Fi+ j−n−1(q
2ci (Λ◦), q2cj (Λ◦))

 . (2.15)

ThenProposition 2.7will follow. Indeed, putk = m+ a− 1; this is the value of the index
i + j − n− 1 in (2.15) wheni = m andn = n + a. Let Λ be the tableau such thatΛ◦ is
obtained from the tableauσk · Λ by the permutation

←−∏
i=m,...,n

 −→∏
j=n+1,...,n+a

σi+ j−n−1

 .
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The tableauΛ is standard. Moreover, thenΛ(a, b) = k andΛ(a, b+ 1) = k+ 1. Note that
the rightmost factor in the product (2.15), corresponding toi = m andn = n+ a, is

Fm+a−1(q
2cm(Λ◦), q2cn+a(Λ◦)) = Tk + q−1.

Denote byF the product of all factors in (2.15) but the rightmost one. Further, denote by
G the product obtained by replacing each factor inF

Fi+ j−n−1(q
2ci (Λ◦), q2cj (Λ◦))

respectively by

Fl−i− j+n+1(q2cj (Λ◦), q2ci (Λ◦)).

The elementF ∈ Hl is invertible, and we haveF FΛ = FΛ◦G. Therefore the divisibility of
the elementFΛ◦ on the left by the product (2.15) will imply the divisibility of the element
FΛ on the left byTk + q−1.

Take the tableau obtained fromΛ◦ by removing the entriesn + a + 1, . . . , l . This is
the column tableau corresponding to a certain partition ofn+ a; let us denote this tableau
by Υ◦. The proof ofTheorem 2.2shows that the elementFΛ◦ ∈ Hl is divisible on the left
by the elementFΥ◦ ∈ Hn+a. Here we use the standard embeddingHn+a → Hl where
Ti 
→ Ti for eachi = 1, . . . , n − a − 1. Hence it suffices to prove the divisibility of the
elementFΥ◦ ∈ Hn+a on the left by the product (2.15). Therefore it suffices to consider
only the case wheren+ a = l . We will actually prove thatFΛ◦ is divisible on the right by

−→∏
i=m,...,n

 ←−∏
j=n+1,...,l

Fl−i− j+n+1(q
2ci (Λ◦), q2cj (Λ◦))

 . (2.16)

The divisibility of FΛ◦ on the left by the product (2.15) wheren+ a = l will then follow
by Proposition 2.4.

The elementFΛ◦ ∈ Hl is the value at the point(1, . . . , 1) of the restriction to the
subspaceZΛ◦ ⊂ C(q)×l of the rational functionFΛ◦(z1, . . . , zl ). This function has been
defined as the ordered product (2.6) whereΛ = Λ◦. Let us change the ordering of the pairs
( i , j ) in (2.6) to thelexicographicalone, so that now the pair( i , j ) precedes another pair
(i ′, j ′) if i < i ′, or if i = i ′ but j < j ′. This reordering does not alter any value of the
function FΛ◦(z1, . . . , zl ) due to the relations (2.3). Using the new ordering, we can once
again prove that the restriction ofFΛ◦(z1, . . . , zl ) to the subspaceZΛ◦ is regular at the point
(1, . . . , 1). Indeed, take any factor (2.9) in the product (2.6) such thatci (Λ◦) = cj (Λ◦).
If here j = Λ◦(a, b) then j −1= Λ◦(a−1, b) > i . The factor in (2.6) immediately before
(2.9) is now

Fj−i−1(q
2ci (Λ◦)zi , q2cj−1(Λ◦)zj−1) (2.17)

wherecj−1(Λ◦) = cj (Λ◦) + 1. Due to the relations (2.2) and (2.3), the product of all the
factors after (2.9) is divisible on the left by

Fj−i−1(q
2cj−1(Λ

◦)zj−1, q2cj (Λ◦)zj ). (2.18)

The restriction tozj−1 = zj of the ordered product of the three factors (2.9), (2.17) and
(2.18) is regular atzi = zj = 1; cf. Lemma 2.1.
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With the new ordering, consider the product of all those factors in (2.6) wherei � m.
Any such factor is regular atzi = zj = 1, because we are considering only the case
n + a = l . At the point(z1, . . . , zl ) = (1, . . . , 1), the product of these factors takes the
value

−→∏
i=m,...,l−1

 −→∏
j=i+1,...,l

Fj−i (q
2ci (Λ◦), q2cj (Λ◦))

 . (2.19)

The argument given in the previous paragraph not only shows that the restriction of
FΛ◦(z1, . . . , zl ) to the subspaceZΛ◦ is regular at(1, . . . , 1), it also shows that the element
FΛ◦ is divisible on the right by the product (2.19). Using (2.2) and (2.3), the product (2.19)
is equal to (2.16) multiplied on the left by

−→∏
i=m,...,n−1

 −→∏
j=i+1,...,n

Fj−i (q
2ci (Λ◦), q2cj (Λ◦))


×

−→∏
i=n+1,...,l−1

 −→∏
j=i+1,...,l

Fj−i+n−m+1(q
2ci (Λ◦), q2cj (Λ◦))

 . �

Let us now regardFΛ as an element of the algebraHl+1, by using the standard
embeddingHl → Hl+1 whereTi 
→ Ti for anyi = 1, . . . , l − 1.

Proposition 2.8. We have equality of rational functions in z, valued in Hl+1

−→∏
k=1,...,l

Fk(z, q2ck(Λ)) · FΛ =
T1 · · · Tl − zT−1

1 · · · T−1
l

1− z
· FΛ.

Proof. Denote byF(z) the rational function with the values inHl+1, defined as the product
of the left hand side of the equality to be proved. Note that

F(0) = T1 · · · Tl FΛ and F(∞) = T−1
1 · · · T−1

l FΛ

due to (1.7). It remains to show thatF(z) may have a pole only atz= 1 and that this pole
is simple. Sincec1(Λ) = 0 the factorF1(z, q2c1(Λ)) in the product definingF(z) has a
simple pole atz = 1. Take anyz0 ∈ C(q). Suppose there is an indexj ∈ {2, . . . , l } such
thatz0 = q2cj (Λ). The factorFj (z, q2cj (Λ)) has a pole atz= z0. We shall prove that when
we estimate the order of the pole ofF(z) atz= z0 from above, any factor withj > 1 does
not count.

Let i ∈ {1, . . . , j − 1} be the maximal index such that|ci (Λ) − cj (Λ)| = 1. Note that
i = Λ(a, b); then eitherj = Λ(a + 1, b) or j = Λ(a, b+ 1). Consider the sequence of
tableaux of shapeλ,

Λ′ = σ j−1 · Λ ,Λ′′ = σ j−2 · Λ′, . . . ,Λ( j−i−1) = σi+1 · Λ( j−i−2).
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Each of these tableaux is standard. Using this sequence, we obtain the relation

FΛ ·
←−∏

k=i+1,..., j−1

Fl−k(q
2cj (Λ), q2ck(Λ))

=
←−∏

k=i+1,..., j−1

Fk(q
2ck(Λ), q2cj (Λ)) · FΛ( j−i−1) (2.20)

in the algebraHl ; cf. the proof ofProposition 2.6. Each of the factors

Fl−k(q
2cj (Λ), q2ck(Λ))

in (2.20) is invertible. The entriesi and i + 1 of the tableauΛ( j−i−1) correspond to the
same nodes of the Young diagram (2.5) as the entriesi and j of the tableauΛ respectively.
Using eitherProposition 2.5or 2.7, the elementFΛ( j−i−1) is divisible on the left by

Fi (q
2ci (Λ), q2cj (Λ)) = Ti ∓ q±.

The relation (2.20) now shows that the elementFΛ is divisible on the left by

←−∏
k=i,..., j−1

Fk(q
2ck(Λ), q2cj (Λ)).

Using the relations (2.2) and (2.3), we obtain an equality in the algebraHl+1

−→∏
k=1,...,l

Fk(z, q2ck(Λ)) ·
←−∏

k=i,..., j−1

Fk(q
2ck(Λ), q2cj (Λ))

=
−→∏

k=1,...,i−1

Fk(z, q2ck(Λ)) ·
←−∏

k=i+1,..., j−1

Fk+1(q
2ck(Λ), q2cj (Λ))

× Fi (z, q2ci (Λ))Fi+1(z, q2cj (Λ))Fi (q
2ci (Λ), q2cj (Λ))

×
−→∏

k=i+1,..., j−1

Fk+1(z, q2ck(Λ)) ·
−→∏

k= j+1,...,l

Fk(z, q2ck(Λ)). (2.21)

The product in the line (2.21) above is regular atz= q2cj (Λ); cf. Lemma 2.1.
Now take any other indexj ′ �= j such thatcj (Λ) = cj ′(Λ). We assume thatj ′ > 1. Let

i ′ ∈ {1, . . . , j ′ − 1} be the corresponding maximal index such that|ci ′(Λ) − cj ′(Λ)| = 1.
If j ′ > j , then alsoi ′ > j because the tableauΛ is standard. Thus the two sets of
indices{i ′, . . . , j ′} and{i , . . . , j } are always disjoint. Therefore we can apply the above
argument to both factorsFj (z, q2cj (Λ)) and Fj ′(z, q2cj ′ (Λ)) in the product definingF(z)
simultaneously, and so on. In this way we show that when estimating from above the order
of the pole of the functionF(z) atz= z0, all the factorsFj (z, q2cj (Λ)) wherez0 = q2cj (Λ)

but j > 1, do not count. �

Now denote byι the embeddingHl → Hl+1 defined by settingι(Ti ) = Ti+1.
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Proposition 2.9. We have the equality
−→∏

k=1,...,l

Fk(z, q2ck(Λ)) · FΛ = ι(FΛ) ·
←−∏

k=1,...,l

Fl−k+1(z, q2ck(Λ)).

Proof. Take the variablesz1, . . . , zl ∈ C(q). Using the relations (2.2) and (2.3) and
the definition (2.6) of FΛ(z1, . . . , zl ) we obtain the equality of rational functions in the
variablesz, z1, . . . , zl

−→∏
k=1,...,l

Fk(z, q2ck(Λ)zk) · FΛ(z1, . . . , zl )

= ι(FΛ(z1, . . . , zl )) ·
←−∏

k=1,...,l

Fl−k+1(z, q2ck(Λ)zk).

Restricting, in the above displayed equality, the functionFΛ(z1, . . . , zl ) to ZΛ, and then
evaluating the restriction at the point(1, . . . , 1) ∈ ZΛ, we deriveProposition 2.9from
Theorem 2.2. �

3. Young symmetrizers for the algebra Hl

For every standard tableauΛ of shapeλ we have defined an elementFΛ of the algebra
Hl . Let us now assign toΛ another element ofHl , which will be denoted byGΛ. Letρ ∈ Sl

be the permutation such thatΛ = ρ ·Λ◦, as it was inSection 2. For anyj = 1, . . . , l denote
by B j the subsequence of the sequenceρ(1), . . . , ρ(l ) consisting of alli < j such that
ρ−1(i ) < ρ−1( j ). Note that we have a reduced decomposition in the symmetric groupSl ,

ρσ0 =
−→∏

j=1,...,l

 −→∏
k=1,...,|B j |

σ j−k


where|B j | is the length of sequenceB j ; cf. the reduced decomposition (2.12). Consider
the rational function taking values inHl , of the variablesz1, . . . , zl

−→∏
j=1,...,l

 −→∏
k=1,...,|B j |

Fj−k(q
2ci (Λ)zi , q2cj (Λ)zj )

 wherei = B j (k).

Denote this rational function byGΛ(z1, . . . , zl ). Using induction on the length of the
elementρ ∈ Sl as in the proof ofProposition 2.6, one can prove that

FΛ(z1, . . . , zl ) = GΛ(z1, . . . , zl )

×
←−∏

j=1,...,l

 ←−∏
k=1,...,|A j |

Fl− j+k(q
2ci (Λ)zi , q2cj (Λ)zj )

 wherei = A j (k).

Therefore, restriction ofGΛ(z1, . . . , zl ) to the subspaceZΛ ⊂ C(q)×l is regular at the
point (1, . . . , 1) due toTheorem 2.2. The value of that restriction at(1, . . . , 1) is our
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elementGΛ ∈ Hl by definition. Moreover, thenFΛ equals

GΛ ·
←−∏

j=1,...,l

 ←−∏
k=1,...,|A j |

Fl− j+k(q
2ci (Λ), q2cj (Λ))

 wherei = A j (k).

Using the relation (2.4), this factorization ofFΛ implies that the left hand side of the
equality inProposition 2.6also equalsGΛ times

∏
j=1,...,l

 ∏
k=1,...,|A j |

(
1− (q − q−1)2q2ci (Λ)+2cj (Λ)

(q2ci (Λ) − q2cj (Λ))2

) wherei = A j (k).

Rewriting the factors of the last displayed product,Proposition 2.6yields

Corollary 3.1. We have the equality in the algebra Hl∏
j=1,...,l

 ∏
k=1,...,|A j |

(
1− (q − q−1)2

(qci (Λ)−cj (Λ) − qcj (Λ)−ci (Λ))2

) · GΛ

=
−→∏

j=1,...,l

 −→∏
k=1,...,|A j |

Fj−k(q
2ci (Λ), q2cj (Λ))

 · FΛ◦ where i= A j (k).

Yet arguing like in the proof ofProposition 2.3, the definition ofGΛ implies

Proposition 3.2. The element GΛ equals Tρσ0 plus a sum of the elements Tσ with certain
non-zero coefficients fromC(q), where the length of eachσ ∈ Sl is less than that ofρσ0.

Note thatGΛ◦ = FΛ◦ by definition. Denote byVλ the left ideal in the algebraHl

generated by the elementFΛ◦ . Due toCorollary 3.1we haveGΛ ∈ Vλ for any standard
tableauΛ of shapeλ. Proposition 3.2shows that the elementsGΛ ∈ Hl for all pairwise
distinct standard tableauxΛ of shapeλ are linearly independent. The next theorem implies,
in particular, that these elements also span the vector spaceVλ.

For anyk = 1, . . . , l − 1 use the notationdk(Λ) = ck(Λ)− ck+1(Λ). If the tableauσkΛ
is not standard, then the numbersk andk+1 standnext to each otherin the same row or in
the same column ofΛ; that isk+1= Λ(a, b+1) or k+1= Λ(a+1, b) for k = Λ(a, b).
Then we havedk(Λ) = −1 or dk(Λ) = 1 respectively. But if the tableauσkΛ is standard,
then we have|dk(Λ)| � 2.

Theorem 3.3. For any standard tableauΛ and any k= 1, . . . , l − 1 we have:

(a)
TkGΛ =

{
qGΛ if dk(Λ) = −1,

−q−1GΛ if dk(Λ) = 1;
(b)

TkGΛ = q − q−1

1− q2dk(Λ)
GΛ + GσkΛ

×
1− (q − q−1)2

(qdk(Λ) − q−dk(Λ))2
if dk(Λ) � −2,

1 if dk(Λ) � 2.
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Proof. The elementGΛ ∈ Hl is obtained by multiplyingFΛ on the right by a certain
element ofHl . Hence Part (a) ofTheorem 3.3immediately follows fromPropositions 2.5
and2.7. Now suppose that the tableauσkΛ is standard. Moreover, suppose thatdk(Λ) � 2;
in this case we havek ∈ Ak+1. UsingCorollary 3.1along with the relations (2.2) and (2.3),
one can get the equality(

1− (q − q−1)2

(qdk(Λ) − q−dk(Λ))2

)
GΛ = Fk(q

2ck(Λ), q2ck+1(Λ))GσkΛ. (3.1)

Using the relation (2.4), we obtain from (3.1) the equality

Fk(q
2ck+1(Λ), q2ck(Λ))GΛ = GσkΛ.

The last equality implies Part (b) ofTheorem 3.3in the case whendk(Λ) � 2; see the
definition (2.1). Exchanging the tableauxΛ andσkΛ in (3.1), so that the resulting equality
applies in the case wheredk(Λ) � −2, we prove Part (b) ofTheorem 3.3in this remaining
case. �

Thus the elementsGΛ ∈ Hl for all pairwise distinct standard tableauxΛ of shapeλ
form a basis in the vector spaceVλ. This basis is distinguished due to

Proposition 3.4. We have Xi GΛ = q2ci (Λ)GΛ for each i= 1, . . . , l.

Proof. We will proceed by induction oni = 1, . . . , l . By definition,X1 = 1. On the other
hand,c1(Λ) = 0 for any standard tableauΛ. ThusProposition 3.4is true fori = 1. Now
suppose thatProposition 3.4is true for i = k wherek < l . To show that it is also true
for i = k + 1, we will useTheorem 3.3. Note thatXk+1 = Tk XkTk. If dk(Λ) = ±1, then
Tk XkTkGΛ equals

∓q∓1TkXkGΛ = ∓q2ck(Λ)∓1TkGΛ = q2ck(Λ)∓2GΛ = q2ck+1(Λ)GΛ

respectively. Ifdk(Λ) � 2, then the productTk XkTkGΛ equals

TkXk

(
q − q−1

1− q2dk(Λ)
GΛ + GσkΛ

)

= q2ck+1(Λ)Tk

(
q− q−1

q−2dk(Λ) − 1
GΛ + GσkΛ

)

= q2ck+1(Λ)

(
q − q−1

q−2dk(Λ) − 1

(
q − q−1

1− q2dk(Λ)
GΛ + GσkΛ

)

+ q − q−1

1− q−2dk(Λ)
GσkΛ +

(
1− (q − q−1)2

(qdk(Λ) − q−dk(Λ))2

)
GΛ

)
= q2ck+1(Λ)GΛ.

In the case wheredk(Λ) � −2, the proof of the equalityXk+1GΛ = q2ck+1(Λ)GΛ is similar
and is omitted here. �

Let us now consider the left idealVλ ⊂ Hl as theHl -module. Here the algebraHl acts
via left multiplication.
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Corollary 3.5. The Hl -module Vλ is irreducible.

Proof. The vectorsGΛ ∈ Vλ whereΛ is ranging over the set of all standard tableaux
of the given shapeλ, form an eigenbasis for the action onVλ of the Murphy elements
X1, . . . , Xl ∈ Hl . Moreover, the ordered collections of the corresponding eigenvalues
q2c1(Λ), . . . , q2cl (Λ) are pairwise distinct for all different tableauxΛ. On the other hand,
by Corollary 3.1any basis vectorGΛ ∈ Vλ can be obtained by acting on the element
GΛ◦ ∈ Vλ with a certain invertible element ofHl . �

Corollary 3.6. The Hl -modules Vλ for different partitionsλ of l are pairwise non-
equivalent.

Proof. Take any symmetric polynomialf in l variables over the fieldC(q). For all
standard tableauxΛ of the same shapeλ, the values of this polynomial

f (q2c1(Λ), . . . , q2cl (Λ)) ∈ C(q) (3.2)

are the same. Hence byProposition 3.4, the elementf (X1, . . . , Xl ) ∈ Hl acts onVλ

via multiplication by the scalar (3.2). On the other hand, the partitionλ can be uniquely
restored from the values (3.2) where the polynomialf varies. Thus theHl -modulesVλ

with different partitionsλ cannot be equivalent.�

Remark. The centre of the algebrâHl consists of all the Laurent polynomials in the
generatorsY1, . . . , Yl which are invariant under permutations of these generators; see for
instance [12, Proposition 3.11]. In particular, the elementf (X1, . . . , Xl ) ∈ Hl is central,
as the image of a central element ofĤl under the homomorphismπ . Moreover, the centre
of the algebraHl coincides with the collection of all elementsf (X1, . . . , Xl ) where the
symmetric polynomialf varies; cf. [8]. However, we do not use any of these facts in this
section. �

For anyk = 1, . . . , l − 1 consider the restriction of theHl -moduleVλ to the subalgebra
Hk ⊂ Hl . We use the standard embeddingHk → Hl , whereTi 
→ Ti for each index
i = 1, . . . , k − 1.

Corollary 3.7. The vector GΛ ∈ Vλ belongs to the Hk-invariant subspace in Vλ ,
equivalent to the Hk-module Vκ where the partitionκ is the shape of the tableau obtained
by removing fromΛ the entries k+ 1, . . . , l.

Proof. It suffices to consider the casek = l−1 only. For each indexa such thatλa > λa+1,
denote byVa the vector subspace inVλ spanned by the all those vectorsGΛ where
Λ(a, λa) = l . By Theorem 3.3, the subspaceVa is preserved by the action of the subalgebra
Hl−1 ⊂ Hl onVλ. Moreover,Theorem 3.3shows that theHl−1-moduleVa is equivalent to
Vκ where the partitionκ of l − 1 is obtained by decreasing theath part ofλ by 1. �

The properties of the vectorGΛ given byCorollary 3.7for k = 1, . . . , l − 1, determine
this vector inVλ uniquely up to a non-zero factor fromC(q). These properties can be
restated for any irreducibleHl -moduleV equivalent toVλ. Explicit formulas for the action
of the generatorsT1, . . . , Tl−1 of Hl on the vectors inV determined by these properties are
known; cf. [14, Theorem 6.4].
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Settingq = 1, the algebraHl specializes to the symmetric group ringCSl . The element
Tσ ∈ Hl then specializes to the permutationσ ∈ Sl itself. The proof ofTheorem 2.2
demonstrates that the coefficients in the expansion of the elementFΛ ∈ Hl relative to the
basis of the elementsTσ are regular atq = 1 as rational functions of the parameterq. Thus
the specialization of the elementFΛ ∈ Hl at q = 1 is well defined. The same is true for
the elementGΛ ∈ Hl ; seeCorollary 3.1. The specializations atq = 1 of the basis vectors
GΛ ∈ Vλ form theYoung seminormal basisin the corresponding irreducible representation
of the groupSl . The action of the generatorsσ1, . . . , σl−1 of Sl on the vectors of the latter
basis was first given by [19, Theorem IV]. For the interpretation of the elementsFΛ and
GΛ using representation theory of the affine Hecke algebraĤl , see [1, Section 3] and
references therein.

Let ϕλ be the character of the irreducibleHl -moduleVλ. Determine a linear function
δ : Hl → C(q) by setting

δ(T−1
σ ) =

{
1 if σ = 1,

0 otherwise.

It is known that the functionδ is central; see for instance [4, Lemma 5.1]. Atq = 1,
this function specializes to the character of the regular representation of the algebraCSl ,
normalized so that the value of the character at 1∈ Sl is 1. This observation implies
that each of the coefficients in the expansion of the functionδ relative to the basis of the
charactersϕλ in the vector space of central functions onHl is non-zero. Thus for some
scalarshλ(q) ∈ C(q),

δ =
∑
λ

h−1
λ (q) ϕλ. (3.3)

For any standard tableauΛ of shapeλ, denote byEΛ the elementFΛT−1
0 ∈ Hl . Recall

that the elementFΛ ∈ Hl can be obtained by multiplyingGΛ on the right by some element
of Hl . It follows from Proposition 2.4andTheorem 3.3, that the elementEΛ belongs to
the simple two-sided ideal of the algebraHl corresponding to the equivalence class of
irreducibleHl -moduleVλ. Further,Propositions 2.4and3.4 imply the equalities

Xi EΛ = EΛXi = q2ci (Λ)EΛ for i = 1, . . . , l . (3.4)

Proposition 3.8. Here E2
Λ = hλ(q)EΛ for any standard tableauΛ of shapeλ.

Proof. The proofs ofCorollaries 3.5and3.6 show that the equalities (3.4) determine the
elementEΛ ∈ Hl uniquely, up to a multiplier fromC(q). HenceE2

Λ = hΛ(q)EΛ for some
hΛ(q) ∈ C(q). Note that byProposition 2.3, the coefficient of 1 in the expansion of the
elementEΛ ∈ Hl relative to the basis of the elementsT−1

σ is 1.
To prove thathΛ(q) = hλ(q), we will employ an argument from [5, Section 3].

At q = 1, the elementEΛ specializes to the diagonal matrix element of the irreducible
representation ofSl parametrized by the partitionλ, corresponding to the vector of the
Young seminormal basis parametrized by the tableauΛ. As a linear combination the
elements of the groupSl , this matrix element is normalized so that its coefficient at 1∈ Sl

is 1. ThereforehΛ(q) �= 0.
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The elementh−1
Λ (q)EΛ ∈ Hl is an idempotent, so for any partitionω of l the value

ϕω(h−1
Λ (q)EΛ) is an integer. In particular, this value does not depend on the parameterq,

and can be determined by specializing toq = 1. Thus we get

ϕω(h−1
Λ (q)EΛ) =

{
1 if ω = λ,

0 otherwise.

Applying the functions at each side of the equality (3.3) to the elementh−1
Λ (q)EΛ ∈ Hl ,

we obtain the equalityh−1
Λ (q) = h−1

λ (q). �

Several formulas are known for the scalarshλ(q). Two different formulas for eachhλ(q)

were given in [17]; see also [5, Section 3]. Another formula reads as

hλ(q) =
∏
(a,b)

1− q2(λa+λ∗b−a−b+1)

1− q2
· qλ1(1−λ1)+λ2(1−λ2)+··· (3.5)

where the product is taken over all nodes(a, b) of the Young diagram (2.5). At q = 1,
the rational function ofq on the right hand side of (3.5) specializes to the product of the
hook-lengthsλa+ λ∗b− a− b+ 1 corresponding to the nodes(a, b) of the Young diagram
(2.5). We will give a new proof of (3.5) by usingTheorem 2.2andProposition 3.8; see the
end ofSection 4for the proof.

From now on until the end of this section, we will assume thatΛ is the row tableau
of shapeλ. By definition, here we haveΛ(a, b+ 1) = Λ(a, b)+ 1 for all possible nodes
(a, b) of the Young diagram (2.5). According to the notation ofSection 2, letρ ∈ Sl be the
permutation such that the row tableauΛ = ρ · Λ◦. Let Sλ be the subgroup inSl preserving
the collections of numbers appearing in every row of the tableauΛ; it is called theYoung
subgroup. Following [5], consider the elementAλ = PλT−1

ρ−1 QλTρ−1 of the algebraHl ,
where

Pλ =
∑
σ∈Sλ

q−�(σ )T−1
σ and Qλ =

∑
σ∈Sλ∗

(−q)�(σ )T−1
σ . (3.6)

Here�(σ ) is the length of a permutationσ . At q = 1, the elementAλ ∈ Hl specializes
[18] to theYoung symmetrizerin CSl corresponding toΛ.

Proposition 3.9. If Λ is the row tableau of shapeλ, then GΛT−1
ρσ0
= Aλ.

Proof. Let U be the vector subspace inHl formed by all elementsB such that

Tk B = q B if σk ∈ Sλ, (3.7)

BTk = −q−1B if σk ∈ Sλ∗ . (3.8)

Then dimU = 1; see for instance [5, Section 1]. Using the definition ofAλ, we can verify
that AλT−1

ρ−1 ∈ U . On the other hand, consider the element

B = GΛT−1
ρσ0

T−1
ρ−1 = GΛT−1

0 . (3.9)
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It satisfies the condition (3.7) thanks to Part (a) ofTheorem 3.3, because hereΛ is the row
tableau of shapeλ. By Proposition 2.7, we also have

TkFΛ◦ = −q−1FΛ◦ if σk ∈ Sλ∗ .

Due toCorollary 3.1, the element (3.9) can be obtained by multiplyingFΛ◦T
−1
0 on the left

by a certain element ofHl . But the elementFΛ◦T
−1
0 is αl -invariant. Hence the element

(3.9) also satisfies the condition (3.8). ThusGΛT−1
0 ∈ U .

To complete the proof ofProposition 3.9, it suffices to compare the coefficients atTρσ0

in the expansions of the elementsGΛ andAλTρσ0 of Hl relative to the basis of the elements
Tσ . For GΛ this coefficient is 1 byProposition 3.2. Let S′λ be the subgroupσ0Sλ∗σ0 ⊂ Sl .
Observe that ifσ ∈ Sλ andσ ′ ∈ S′λ, then

�(σρσ0σ
′) = �(ρσ0)− �(σ )− �(σ ′).

In particular, then we haveσρσ0σ
′ = ρσ0 only for σ = σ ′ = 1. Therefore

AλTρσ0 =
∑

σ∈Sλ

q−�(σ )T−1
σ

 T−1
ρ−1

 ∑
σ∈Sλ∗

(−q)�(σ )T−1
σ

 T0

=
∑

σ∈Sλ

q−�(σ )T−1
σ

 Tρσ0

∑
σ ′∈S′λ

(−q)�(σ
′)T−1

σ ′


=
∑
σ∈Sλ

∑
σ ′∈S′λ

q−�(σ )(−q)�(σ
′)Tσ−1ρσ0σ

′−1.

The coefficient ofTρσ0 in the sum displayed in the last line above is 1.�

Remark. One can give another expression for the elementAλ ∈ Hl defined via (3.6), by
using the identities∑

σ∈Sl

q−�(σ )T−1
σ = ql(1−l)

∑
σ∈Sl

q�(σ )Tσ ,

∑
σ∈Sl

(−q)�(σ )T−1
σ = (−q)l(l−1)

∑
σ∈Sl

(−q)−�(σ )Tσ . �

4. Eigenvalues of the operator J

Take any partitionλ of l . For any standard tableauΛ of shapeλ denote byVΛ the left
ideal in the algebraHl , generated by the elementFΛ defined inSection 2. If Λ = Λ◦ then
VΛ = Vλ in the notation ofSection 3. Recall that the elementFΛ ∈ Hl can be obtained
by multiplying FΛ◦ on the left and on the right by certain invertible elements ofHl ;
seeProposition 2.6. HenceVΛ is equivalent toVλ as theHl -module. The algebraHl acts
on any left idealVΛ ⊂ Hl via left multiplication. Also recall that the elementFΛ can be
obtained by multiplyingGΛ by certain element ofHl on the right. Thus byProposition 3.4

Xi FΛ = q2ci (Λ)FΛ for each i = 1, . . . , l . (4.1)
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For any non-zeroz ∈ C(q), consider the evaluation̂Hl -moduleVΛ(z). This is the
pullback of theHl -moduleVΛ back through the homomorphismπz; seeSection 1. As
a vector spaceVΛ(z) is the left idealVΛ ⊂ Hl , and the subalgebraHl ⊂ Ĥl acts on this
vector space via left multiplication. By (4.1), in the Ĥl -moduleVΛ(z) we have

Yi · FΛ = zq2ci (Λ)FΛ for each i = 1, . . . , l . (4.2)

Note that any element of̂Hl can be written as a sum of certain Laurent monomials in
Y1, . . . , Yl multiplied by some elements ofHl on the left. Therefore the action of the
generatorsY1, . . . , Yl on theĤl -moduleVΛ(z) is determined by (4.2).

Take a partitionµ of m, and any standard tableauM of shapeµ. Also take any non-zero

elementw ∈ C(q). Let us realize thêHl+m-moduleW induced from thêHl ⊗ Ĥm-module
VΛ(z)⊗VM (w) as the left ideal inHl+m generated by the productFΛ F̄M . HereF̄M denotes
the image of the elementFM ∈ Hm under the embeddingHm→ Hl+m : Tj 
→ Tl+ j . The
action of the generatorsY1, . . . , Yl+m ∈ Ĥl+m on this left ideal is then determined by
setting

Yi · FΛ F̄M = zq2ci (Λ)FΛ F̄M for each i = 1, . . . , l ; (4.3)

Yl+ j · FΛ F̄M = wq2cj (M)FΛ F̄M for each j = 1, . . . , m.

Further, consider̂Hl+m-moduleW′ induced from thêHm⊗ Ĥl -moduleVM (w) ⊗ VΛ(z).
Let us realizeW′ as the left ideal inHl+m generated by the productFM F̄Λ, where F̄Λ

denotes the image ofFΛ ∈ Hl under the embeddingHl → Hl+m : Ti 
→ Ti+m. The
generatorsY1, . . . , Yl+m act onW′ so that

Yi+m · FM F̄Λ = zq2ci (Λ)FM F̄Λ for each i = 1, . . . , l ; (4.4)

Yj · FM F̄Λ = wq2cj (M)FM F̄Λ for each j = 1, . . . , m.

Consider the elementτ of the symmetric groupSl+m, which was defined as the permutation
(1.8). We will use one reduced decomposition of this element,

τ =
←−∏

i=1,...,l

 −→∏
j=1,...,m

σi+ j−1

 .

The corresponding elementTτ of the algebraHl+m satisfies the relations

Ti Tτ = Tτ Ti+m for each i = 1, . . . , l − 1; (4.5)

Tl+ j Tτ = Tτ Tj for each j = 1, . . . , m− 1. (4.6)

In particular, these relations imply the equality inHl+m

FΛ F̄M Tτ = Tτ FM F̄Λ. (4.7)

Now introduce two elements of the algebrâHl+m,

SΛM (z, w) =
−→∏

i=1,...,l

 ←−∏
j=1,...,m

Fl+m−i− j+1(q
2ci (Λ)z, q2cj (M)w)

 , (4.8)
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S′ΛM (z, w) =
←−∏

i=1,...,l

 −→∏
j=1,...,m

Fi+ j−1(q
2ci (Λ)z, q2cj (M)w)

 .

We have assumed thatz−1w /∈ q2Z so that these two elements are well defined; see (2.1).
Using the relations (2.2) and (2.3) together with the definitions of the elementsFΛ ∈ Hl

andFM ∈ Hm, we obtain the relation in the algebraHl+m

FΛ F̄M SΛM (z, w) = S′ΛM (z, w)FM F̄Λ. (4.9)

We will use one more expression for the element ofHl+m, appearing on either side of
the equality (4.9). For eachi = 1, . . . , l denote byX̄i the image of the Murphy element
Xi ∈ Hl under the embeddingHl → Hl+m : Ti 
→ Tm+i .

Proposition 4.1. The element of the algebra Hl+m in (4.9) equals Tτ times

←−∏
i=1,...,l

z−1w − q2ci (Λ) X̄i X
−1
i+m

z−1w − q2ci (Λ)
· FM F̄Λ.

Proof. UsingPropositions 2.8and2.9repeatedly, for the standard tableauM instead ofΛ
and for the elementq2ci (Λ)zw−1 ∈ C(q) instead ofz wherei = 1, . . . , l , one shows that
the element of the algebraHl+m on the right hand side of (4.9) equals the product

←−∏
i=1,...,l

z−1wTi · · · Ti+m−1 − q2ci (Λ)T−1
i · · · T−1

i+m−1

z−1w − q2ci (Λ)
· FM F̄Λ. (4.10)

The ordered product of the factors in (4.10) corresponding toi = l , . . . , 1 can be rewritten
asTτ , multiplied on the right by the product overi = l , . . . , 1 of

−→∏
k=1,...,i−1

(Tk · · · Tk+m−1)
−1

×z−1w − q2ci (Λ)T−1
i+m−1 · · · T−1

i T−1
i · · · T−1

i+m−1

z−1w − q2ci (Λ)

×
←−∏

k=1,...,i−1

(Tk · · · Tk+m−1)

= Ti+m−1 · · · Tm+1 ·
−→∏

k=1,...,i−1

(Tk · · · Tk+m)−1

×z−1w − q2ci (Λ)T−1
i+m−1 · · · T−1

i T−1
i · · · T−1

i+m−1

z−1w − q2ci (Λ)

×
←−∏

k=1,...,i−1

(Tk · · · Tk+m−1) · T−1
m+1 · · · T−1

i+m−1.
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We can now complete the proof ofProposition 4.1by using the definitions ofXi ∈ Hl and
Xm+i ∈ Hl+m, along with the relations for allj = 1, . . . , m

−→∏
k=1,...,i−1

(Tk · · · Tk+m)−1 · T−1
i+ j−1 ·

←−∏
k=1,...,i−1

(Tk · · · Tk+m) = T−1
j . �

It follows from the relation (4.9) that the right multiplication inHl+m by the element
SΛM (z, w) determines a linear operatorI : W→ W′.

Proposition 4.2. The operator I: W→ W′ is an Ĥl+m-intertwiner.

Proof. The subalgebraHl+m ⊂ Ĥl+m acts onW, W′ via left multiplication; so the
operatorI commutes with this action by definition. The left idealW in Hl+m is generated
by the elementFΛ F̄M ; therefore it suffices to check that

Yi · I (FΛ F̄M ) = I (Yi · FΛ F̄M ) for each i = 1, . . . , l +m.

Firstly, consider the case wherei � l . In this case by using (4.3), (4.4) and (4.9)

Yi · I (FΛ F̄M ) = Yi · (S′ΛM (z, w)FM F̄Λ) = S′ΛM (z, w)

× (Ym+i · FM F̄Λ) = zq2ci (Λ)S′ΛM (z, w)FM F̄Λ = I (Yi · FΛ F̄M ).

Here we also used the defining relations (1.4) and (1.5) of the algebraĤl+m; for more
details of this argument see [16, Section 2]. The casei > l can be considered similarly.�

Consider the operator of the right multiplication inHl+m by the element

RΛM (z, w) = SΛM (z, w)T−1
τ .

Because of the relations (4.7) and (4.9), this operator preserves the subspaceW ⊂ Hl+m.
Restriction of this operator to the subspaceW will be denoted byJ. The subalgebra
Hl+m ⊂ Ĥl+m acts on theĤl+m-module W via left multiplication, so the operator
J : W → W commutes with this action. Now regardW as aHl+m-module only. Let
ν be any partition ofl + m such that theHl+m-moduleW has exactly one irreducible
component equivalent toVν . The operatorJ preserves this component, and acts thereon as
multiplication by a certain element ofC(q). Denote this element byrν(z, w); it depends
on the parametersz andw as a rational function ofz−1w, and does not depend on the
choice of the tableauxΛ andM of the given shapesλ andµ. In this section, we compute
the eigenvaluesrν(z, w) of J for certain partitionsν.

Choose any sequencei1, . . . , iλ∗1 ∈ {1, 2, . . . } of pairwise distinct indices; this sequence
needs not to be increasing. Recall thatλ∗1 is the number of non-zero parts in the partitionλ.
Consider the partitionµ as an infinite sequence with finitely many non-zero terms. Define
an infinite sequenceξ = (ξ1, ξ2, . . .) by

ξia = µia + λa, a = 1, . . . , λ∗1;
ξi = µi , i �= i1, . . . , iλ∗1.

Suppose we get the inequalitiesξ1 � ξ2 � · · · so thatξ is a partition ofl + m. Then
theHl+m-moduleW has exactly one irreducible component equivalent toVξ . This follows
from the Littlewood–Richardson rule [13, Section I.9]. We will compute the eigenvalue
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rξ (z, w) by applying the operatorJ to a certain vector in that irreducible component. For
the purposes of this computation, assume thatΛ is the column tableauΛ◦; the tableauM
will remain arbitrary.

The image of the action of the elementFM F̄Λ◦ in the irreducibleHl+m-moduleVξ is a
one-dimensional subspace. Let us describe this subspace explicitly. LetΞ be the tableau
of shapeξ , defined as follows. Firstly, putΞ (c, d) = M(c, d) for all nodes(c, d) of the
Young diagram ofµ. Further, for any positive integerj consider all those parts ofλ which
are equal toj . These are the partsλa where the indexa belongs to the sequence

λ∗j+1+ 1, λ∗j+1+ 2, . . . , λ∗j . (4.11)

The lengthλ∗j − λ∗j+1 of this sequence is the multiplicity of the partj in the partitionλ; let
us denote this multiplicity byn for short. Rearrange the sequence (4.11) to the sequence
a1, . . . , an such that the inequalitiesi a1 < · · · < i an hold. Then for every terma = ak of
the rearranged sequence put

Ξ (i a, µia + b) = m+ Λ◦(λ∗j+1+ k, b) whereb = 1, . . . , λa.

Proposition 4.3. The tableauΞ is standard.

Proof. For any possible integersc andd, the conditionΞ (c, d) < Ξ (c, d+ 1) is satisfied
by definition, because the tableauxΛ◦ and M are standard. For any node(c, d) of the
Young diagram ofµ, the conditionΞ (c, d) < Ξ (c+ 1, d) is also satisfied by definition.
Now suppose there are two different numbersk andk′ greater thanm that appear in the
same column of the tableauxΞ . Let i andi ′ be the corresponding rows ofΞ ; assume that
i < i ′. Herei = i a andi ′ = i a′ for certain indicesa, a′ ∈ {1, . . . , λ∗1}. If λa � λa′ then
k < k′ because the tableauΛ◦ is standard. Here we also use the definition ofΞ . Now
suppose thatλa < λa′ . Thenµi > µi ′ , because the assumptioni < i ′ implies

µi + λa � µi ′ + λa′ .

Let b andb′ be the columns of the tableauΛ◦ corresponding to its entriesk−m andk′−m.
Sincek andk′ appear in the same column of the tableauΞ whileµi > µi ′ , we haveb < b′.
Thenk < k′ by the definition ofΛ◦. �

UsingProposition 4.3, consider the vectorGΞ ∈ Vξ as defined inSection 3. Take the
elementQλ ∈ Hl as defined in (3.6). Denote byQ̄λ the image of this element under the
embeddingHl → Hl+m : Ti 
→ Ti+m.

Proposition 4.4. The image of the action of the element FM F̄Λ◦ ∈ Hl+m on the Hl+m-
module Vξ is spanned by the vector̄QλGΞ .

Proof. PutV = FM Vξ . The subspaceV ⊂ Vξ is spanned by all those vectorsGΞ̃ where,

for every node(c, d) of the Young diagram ofµ, the standard tableaũΞ of shapeξ

satisfies the conditioñΞ (c, d) = M(c, d). The action of the element̄FΛ◦ ∈ Hl+m on
Vξ preserves the subspaceV ⊂ Vξ , and the imagēFΛ◦V is one-dimensional. Moreover,
we haveF̄Λ◦V = Q̄λV ; see [5, Section 1].

It now remains to check that̄QλGΞ �= 0. Due to our choice of the tableauΞ , it suffices
to consider the case where each non-zero part ofλ equals 1. In this case, the element
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Qλ ∈ Hl is central. On the other hand, any vector ofV has the formC̄GΞ whereC̄ is
the image of some elementC ∈ Hl under the embeddingHl → Hl+m : Ti 
→ Ti+m. So
Q̄λV �= {0} implies Q̄λGΞ �= 0. �
Theorem 4.5. We have the equality

rξ (z, w) =
∏
(a,b)

z−1w − q−2(µia+λ∗b−ia−b+1)

z−1w − q2b−2a

where the product is taken over all nodes(a, b) of the Young diagram(2.5).

Proof. First consider the case where each non-zero part ofλ equals 1. In this case,Λ◦ is
the only one standard tableau of shapeλ and we haveci (Λ◦) = 1− i for anyi = 1, . . . , l .
The product displayed inProposition 4.1then equals

←−∏
i=1,...,l

z−1w − q2−2i X̄i X−1
i+m

z−1w − q2−2i
· FM F̄Λ◦ . (4.12)

We will prove by induction onl = 1, 2, . . . that the product (4.12) equals∏
i=1,...,l

z−1w − q2−2l X−1
i+m

z−1w − q2−2i
· FM F̄Λ◦ . (4.13)

The elementsXm+1, . . . , Xl+m ∈ Hl+m pairwise commute; hence the ordering of the
factors corresponding toi = 1, . . . , l in the product (4.13) is irrelevant.Theorem 4.5will
then follow in our special case. Indeed, letZξ be the minimal central idempotent in the
algebraHl+m corresponding to the partitionξ . Using Proposition 4.1together with the
equality between (4.12) and (4.13), we get

J(Zξ FΛ◦ F̄M ) = Zξ S′Λ◦M (z, w)FM F̄Λ◦T
−1
τ

= Tτ Zξ ·
∏

i=1,...,l

z−1w − q2−2l X−1
i+m

z−1w − q2−2i
· FM F̄Λ◦T

−1
τ

= Tτ Zξ ·
∏

i=1,...,l

z−1w − q2−2l X−1
i+m

z−1w − q2−2i

×
∏

j=1,...,m

z−1w − q2−2l X−1
j

z−1w − q2−2l−2cj (M)
· FM F̄Λ◦T

−1
τ

= Tτ Zξ ·
∏

i=1,...,l

z−1w − q2−2l−2ci+m(Ξ )

z−1w − q2−2i

×
∏

j=1,...,m

z−1w − q2−2l−2cj (Ξ )

z−1w − q2−2l−2cj (M)
· FM F̄Λ◦T

−1
τ

=
∏

a=1,...,l

z−1w − q2ia−2l−2µia

z−1w − q2−2a
· Zξ FΛ◦ F̄M = rξ (z, w)Zξ FΛ◦ F̄M , (4.14)
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asTheorem 4.5claims. Here we used the counterparts of the relations (4.1) for the standard
tableauM andΞ instead ofΛ; cf. our proof ofCorollary 3.6.

Now let us prove the equality between (4.12) and (4.13). We haveX1 = 1 by definition;
hence that equality is obvious whenl = 1. Suppose thatl > 1. The numerator of the
fraction in (4.12) corresponding to the indexi = 1 equals

z−1w − X−1
m+1 = z−1w − T−1

m · · · T−1
1 T−1

1 · · ·T−1
m . (4.15)

In our special case, we have the relations in the algebraHl+m

Tm+i F̄Λ◦ = −q−1F̄Λ◦ for i = 1, . . . , l − 1.

Using these relations along with the equality (4.15), we obtain

(z−1w − X−1
m+1)F̄Λ◦

= (−q)l−1Tm+1 · · · Tl+m−1(z
−1w − q2−2l X−1

l+m)F̄Λ◦ . (4.16)

Further, for anyi = 2, . . . , l the elementsT1, . . . , Ti−2 commute with the Murphy
elementXi ∈ Hl . So the elementsTm+1, . . . , Ti+m−2 commute withX̄i ∈ Hl+m; they also
commute withXi+m. Therefore fori = 2, . . . , l we have

X̄i X
−1
i+mTm+1 · · · Tl+m−1

= Tm+1 · · · Ti+m−2 X̄i X
−1
i+mTi+m−1 · · · Tl+m−1 = Tm+1 · · · Ti+m−2

× Ti+m−1 · · · Tm+1T−1
m · · · T−1

1 T−1
1 · · ·T−1

i+m−1Ti+m−1Ti+m · · · Tl+m−1

= Tm+1 · · · Tl+m−1Ti+m−2 · · · Tm+1T−1
m · · ·T−1

1 T−1
1 · · · T−1

i+m−2

= Tm+1 · · · Tl+m−1X̄i−1X−1
i+m−1.

Therefore by using the equality (4.16), the product (4.12) equals

(−q)l−1Tm+1 · · · Tl+m−1 ·
←−∏

i=2,...,l

z−1w − q2−2i X̄i−1X−1
i+m−1

z−1w − q2−2i

× z−1w − q2−2l X−1
m+l

z−1w − 1
· FM F̄Λ◦ = (−q)l−1Tm+1 · · · Tl+m−1

×
←−∏

i=2,...,l

z−1w − q2−2l X−1
i+m−1

z−1w − q2−2i
· z−1w − q2−2l X−1

m+l

z−1w − 1
· FM F̄Λ◦

= (−q)l−1Tm+1 · · · Tl+m−1 ·
←−∏

i=1,...,l

z−1w − q2−2l X−1
i+m

z−1w − q2−2i
· FM F̄Λ◦ . (4.17)

Here we used the equality between the counterparts of the products (4.12) and (4.13) for
l − 1 instead of l and for q2z−1w instead of z−1w, which we have by the
inductive assumption. We also used commutativity of the Murphy elementXl+m with
Tm+1, . . . , Tl+m−2. To establish the equality between the products (4.12) and (4.13)
themselves, it now remains to observe that the product overi = 1, . . . , l in the line (4.17)
is symmetric inXm+1, . . . , Xl+m and therefore commutes withTm+1, . . . , Tl+m−1; cf. the
remark after our proof ofCorollary 3.6.
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Thus we have provedTheorem 4.5when each non-zero part ofλ is 1. Now letλ be an
arbitrary partition ofl . Consider the element̄QλGΞ ∈ Hl+m. Due toProposition 4.4, this
element is divisible on the left byFM F̄Λ◦ . The element

αl+m(Q̄λGΞ )FM F̄Λ◦T
−1
τ = αl+m(GΞ )Q̄λT−1

τ FΛ◦ F̄M (4.18)

is non-zero, and belongs to the left idealW ⊂ Hl+m. Further, the element (4.18) belongs
to the irreducible component of theHl+m-moduleW equivalent toVξ . Thus (4.18) is an
eigenvector of the operatorJ : W→ W with the eigenvaluerξ (z, w). On other hand, due
to Proposition 4.1the image of (4.18) under the operatorJ equals

αl+m(GΞ )Q̄λ ·
←−∏

i=1,...,l

z−1w − q2ci (Λ) X̄i X
−1
i+m

z−1w − q2ci (Λ)
· FM F̄Λ◦

= αl+m(GΞ )Q̄λ ·
∏

i=1,...,l

z−1w − q4ci (Λ)X−1
i+m

z−1w − q2ci (Λ)
· FM F̄Λ◦ . (4.19)

To obtain the latter equality we used the relations (3.4), the divisibility of the element
αl+m(GΞ )Q̄λ on the right byĒΛ◦ , and the commutativity of the elementX̄i with the
Murphy elementsXi+m+1, . . . , Xl+m for any i = 1, . . . , l . Here ĒΛ◦ denotes the image
of the elementEΛ◦ ∈ Hl under the embeddingHl → Hl+m : Ti 
→ Ti+m. The factors
in the product (4.19) corresponding to the indicesi = 1, . . . , l pairwise commute; hence
their ordering is irrelevant.

Due to Theorem 3.3, the vectorQ̄λGΞ ∈ Vξ is a linear combination of the vectors
QΞ̃ where Ξ̃ is any standard tableau of shapeξ , obtained fromΞ by a permutation
τ−1στ ∈ Sl+m such thatσ ∈ Sλ∗ ⊂ Sl ⊂ Sl+m. Now the expression (4.19) for theJ-image
of (4.18) shows that the eigenvaluerξ (z, w) is multiplicative relative to the columns of the
tableauΛ◦. That is, by usingTheorem 4.5consecutively for the partitions ofλ∗1, λ∗2, . . .
with each non-zero part being equal to 1, we get

rξ (z, w) =
λ1∏

b=1

λ∗b∏
a=1

z−1w − q−2(µia+λ∗b−ia−b+1)

z−1w − q2b−2a
(4.20)

as required. According to (4.19), the numerator in (4.20) is obtained from the numerator in
(4.14) by changingl , µia to λ∗b, µia +b−1 respectively, and by increasing the exponential
by 4(b− 1) = 4ck(Λ◦) wherek = Λ◦(1, b). �

Our next theorem is essentially a reformulation ofTheorem 4.5. Choose any sequence
j1, . . . , jλ1 ∈ {1, 2, . . .} of pairwise distinct indices; this sequence needs not to be
increasing. Consider the partitionµ∗ conjugate toµ. Define a sequenceη∗ = (η∗1, η∗2, . . .)

by
η∗jb = µ∗jb + λ∗b, b = 1, . . . , λ1;
η∗j = µ j , j �= j1, . . . , iλ1.

Suppose we have the inequalitiesη∗1 � η∗2 � . . . , so thatη∗ is a partition ofl + m.
Then defineη as the partition conjugate toη∗. The Hl+m-moduleW has exactly one
irreducible component equivalent toVη; this follows from the Littlewood–Richardson
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rule [13, Section I.9]. Consider the corresponding eigenvaluerη(z, w) of the operator
J : W→ W.

Theorem 4.6. We have the equality

rη(z, w) =
∏
(a,b)

z−1w − q
2(λa+µ∗jb−a− jb+1)

z−1w − q2b−2a

where the product is taken over all nodes(a, b) of the Young diagram(2.5).

Proof. For any positive integerl , the C(q)-algebraHl may be also regarded as an
algebra over the fieldC ⊂ C(q). The assignmentsq 
→ q−1 and Ti 
→ −Ti for
i = 1, . . . , l − 1 determine an involutive automorphism ofHl as aC-algebra. Denote
by βl this automorphism. For the minimal central idempotentZλ of the semisimpleC(q)-
algebraHl we haveβl (Zλ) = Zλ∗ ; this can be proved by specializingHl at q = 1 to
the symmetric group ringCSl . Further, for any standard tableauΛ of shapeλ, define the
standard tableauΛ∗ of shapeλ∗ by settingΛ∗(b, a) = Λ(a, b) for all nodes(a, b) of the
Young diagram (2.5). Then

βl (FΛ) = (−1)l(l−1)/2FΛ∗ .

Indeed, the counterparts of the equalities (3.4) for FΛ∗ instead ofFΛ determine the element
FΛ∗ ∈ Hl uniquely up to a factor fromC(q), while ci (Λ∗) = −ci (Λ) andβl (Xi ) = Xi for
i = 1, . . . , l . We also useProposition 2.3and the equality

βl (T0) = (−1)l(l−1)/2T0.

Now consider the automorphismβl+m of theC-algebraHl+m. Both sides of the equality
to be proved inTheorem 4.6depend onz , w as rational functions ofz−1w. Hence it
suffices to prove that equality only whenβl+m(z−1w) = z−1w. Our argument will be
somewhat simpler then. By using (4.8), we then get

βl+m(SΛM (z, w)) = (−1)lmSΛ∗M∗(z, w).

Note that we also haveβl+m(T−1
τ ) = (−1)lmT−1

τ . For any standard tableauxΛ andM of
shapesλ andµ respectively, by definition we have the equality

Zη FΛ F̄M SΛM (z, w)T−1
τ = rη(z, w)Zη FΛ F̄M .

By applying the automorphismβl+m to both sides of this equality, we get

Zη∗FΛ∗ F̄M∗SΛ∗M∗(z, w)T−1
τ = βl+m(rη(z, w))Zη∗FΛ∗ F̄M∗ .

Hence by usingTheorem 4.5for the partitionsλ∗, µ∗ and η∗ instead ofλ,µ and ξ

respectively, we get

βl+m(rη(z, w)) =
∏
(a,b)

z−1w − q−2(µ∗ja+λb− ja−b+1)

z−1w − q2b−2a

where the product is taken over all nodes(a, b) of the Young diagram ofλ∗. Equivalently,
this product may be also taken over all nodes(b, a) of the Young diagram ofλ. Exchanging
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the indicesa andb in the last displayed equality, we then obtainTheorem 4.6due to the
involutivity of the mappingβl+m. �

Let us now deriveCorollary 1.1as stated in the beginning of this article. We will use
Theorems 4.5and4.6 in the simplest situation wheni a = a for everya = 1, . . . , λ′1 and
jb = j for everyb = 1, . . . , λ1. Then we have

ξ = λ+ µ and η = (λ∗ + µ∗)∗.

By Theorems 4.5and4.6, the ratiorξ (z, w)/rη(z, w) = hλµ(z, w) equals the product of
the fractions

z−1w − q−2(µa+λ∗b−a−b+1)

z−1w − q2(λa+µ∗b−a−b+1)
(4.21)

taken over all nodes(a, b) of the Young diagram (2.5) of λ. Consider those nodes of (2.5)
which do not belong to the Young diagram ofµ. Those nodes form theskew Young diagram

{(a, b) ∈ Z
2 | 1 � a, µa < b � λa}. (4.22)

To obtainCorollary 1.1, it now suffices to prove the following:

Proposition 4.7. The product of the fractions(4.21) over all the nodes(a, b) of the skew
Young diagram(4.22) equals1.

Proof. For any integerc, let us write〈c〉 instead ofz−1w− q2c for short. We will proceed
by induction on the number of nodes in the skew Young diagram (4.22). When the set
(4.22) is empty, there is nothing to prove. Let(i , j ) be any node of (4.22) such that by
removing it from (2.5) we again obtain a Young diagram. Thenλi = j andλ∗j = i . By
applying the inductive assumption to this Young diagram instead of (2.5), we have to show
that the product

〈 j − µi − 1〉
〈µ∗j − i + 1〉

i−1∏
a=µ∗j+1

〈a+ j − µa − i − 1〉
〈a+ j − µa − i 〉

j−1∏
b=µi+1

〈 j + µ∗b − i − b〉
〈 j + µ∗b − i − b+ 1〉

equals 1. Denote this product byp. Note that hereµi < λi andµ∗j < λ∗j .
Suppose there is a node(c, d) in (4.22) with µi < d < λi andµ∗j < c < λ∗j such that

by adding this node to the Young diagram ofµ we again obtain a Young diagram. Then
we haveµc = d − 1 andµ∗d = c− 1. The counterpart of the productp for the last Young
diagram, instead of that ofµ, equals 1 by the inductive assumption. The equalityp = 1
then follows, by using the identity

〈 j + c− i − d − 1〉
〈 j + c− i − d〉

〈 j + c− i − d + 1〉
〈 j + c− i − d〉

× 〈 j + c− i − d〉
〈 j + c− i − d + 1〉

〈 j + c− i − d〉
〈 j + c− i − d − 1〉 = 1.

It remains to consider the case where there is no node(c, d) in (4.22) with the properties
listed above. Then we haveµ∗b = i − 1 for all b = µi + 1, . . . , j − 1 andµa = j − 1 for
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all a = µ∗j + 1, . . . , i − 1. The productp then equals

〈 j − µi − 1〉
〈µ∗j − i + 1〉

〈0〉
〈 j − µi − 1〉

〈µ∗j − i + 1〉
〈0〉 = 1. �

Finally, let us show how the formula (3.5) can be derived fromTheorem 4.5. The
elementhλ(q) ∈ C(q) on the left hand side of (3.5) will be determined by the relation
E2

Λ = hλ(q)EΛ in Hl , whereΛ is any standard tableau of shapeλ. Below we actually
prove another formula forhλ(q) which is equivalent to (3.5).

Corollary 4.8. We have the equality

hλ(q) =
∏
(a,b)

1− q−2(λa+λ∗b−a−b+1)

1− q−2 · qλ∗1(λ∗1−1)+λ∗2(λ∗2−1)+··· (4.23)

where the product is taken over all nodes(a, b) of the Young diagram(2.5).

Proof. We will use induction onλ1, the longest part of the partitionλ. First, suppose that
λ1 = 1. Then each non-zero part ofλ equals 1, and there is only one standard tableauΛ of
shapeλ. In this case, let us writehl (q) andEl instead ofhλ(q) andEΛ respectively. Using
(2.1) andTheorem 2.2,

El =
−→∏
(i, j )

(
Tj−i + q − q−1

q2i−2 j − 1

)
· T−1

0

where the pairs(i , j ) with 1 � i < j � l are ordered lexicographically. By
Proposition 2.5, we haveTkEl = −q−1El for each indexk = 1, . . . , l − 1. So

hl (q) =
∏
(i, j )

(
q− q−1

q2i−2 j − 1
− q−1

)
· (−q)l(l−1)/2 = ql(l−1)

l∏
k=1

1− q−2k

1− q−2
.

Thus we now have the induction base. To make the induction step, suppose that (4.23) is
true for some partitionλ of l . Take any positive integerm such thatm � λ∗b for every
b = 1, . . . , λ1. Let us show that then the counterpart of the equality (4.23) is true for the
partition ofl +m

θ = (λ1 + 1, . . . , λm + 1, λm+1, λm+2, . . .).

Choose any standard tableauΛ of shapeλ. Put µ = (1, . . . , 1, 0, 0, . . .) so that
θ = λ + µ. In this case, there is only one standard tableauM of shapeµ. Let Θ be
the unique standard tableau of shapeθ agreeing withΛ in the entries 1, . . . , l ; the numbers
l+1, . . . , l+m then appear in the columnλ1+1 of the tableauΘ . Consider the eigenvalue
rθ (z, w) of the operatorJ. We have

EΘ FΛ F̄M SΛM (z, w) = rθ (z, w)EΘ FΛ F̄M Tτ . (4.24)

By using Theorem 2.2and its counterpart for the tableauΘ instead ofΛ, the element
FΘ ∈ Hl+m is divisible on the left by the elementFΛ. Therefore the elementEΘ ∈ Hl+m

is divisible on the right by the elementEΛ. Similarly, EΘ is divisible on the right by the
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image ĒM of the elementEM ∈ Hm under the embeddingHl → Hl+m : Ti 
→ Ti+m.
So the right hand side of (4.24) equals

hλ(q)hm(q)rθ (z, w)FΘ .

But, by again usingTheorem 2.2and its counterpart for the tableauΘ instead ofΛ, the left
hand side of (4.24) takes atz= 1 andw = q2λ1 the value

EΘ FΘ = hθ (q)FΘ .

Hence the equality (4.24) of rational functions inz andw implies that

hθ (q) = hλ(q)hm(q)rθ (1, q2λ1). (4.25)

The factorrθ (1, q2λ1) in (4.25) can be computed by usingTheorem 4.5when i a = a
for eacha = 1, . . . , λ∗1. The rational functionrθ (z, w) of z andw can then be written as
the product overb = 1, . . . , λ1 of the functions

m∏
a=1

z−1w − q2(a+b−λ∗b−2)

z−1w − q2(b−a)

λ∗b∏
a=m+1

z−1w − q2(a+b−λ∗b−1)

z−1w − q2(b−a)
. (4.26)

After changing the running indexa toλ∗b−a+1 in both denominators in (4.26), the product
overa = m+ 1, . . . , λ∗b in (4.26) cancels. Therefore

rθ (z, w) =
m∏

a=1

λ1∏
b=1

z−1w − q2(a+b−λ∗b−2)

z−1w − q2(a+b−λ∗b−1)
.

Using (4.25) together with the last expression for the functionrθ (z, w) we get

hθ (q) = hλ(q)hm(q)

m∏
a=1

λ1∏
b=1

1− q−2(λ1+λ∗b−a−b+2)

1− q−2(λ1+λ∗b−a−b+1)

=
∏
(c,d)

1− q−2(θc+θ∗d−c−d+1)

1− q−2 · qθ∗1 (θ∗1−1)+θ∗2 (θ∗2−1)+···

where(c, d) is ranging over all nodes of the Young diagram of the partitionθ . Here we used
the expression forhm(q) provided by the induction base, and the formula (4.23) for hλ(q)

which is true by the inductive assumption. Thus we have made the induction step.�

Remark. Corollary 1.1shows that theHl+m-moduleW is reducible, if

z−1w = q−2(µa+λ∗b−a−b+1) or z−1w = q2(λa+µ∗b−a−b+1)

for some node(a, b) in the intersection of the Young diagrams ofλ and µ. The
irreducibility criterion for theĤl+m-moduleW was given in [10]. That is, theĤl+m-
moduleW is reducible if and only ifz−1w ∈ q2S for some finite subsetS ⊂ Z explicitly
described in [11]. It would be interesting to point out for eachz−1w ∈ q2S a partitionν of
l +m, such thatW as theHl+m-module has exactly one irreducible component equivalent
to Vν , and that the rational function valuerλ+µ(z, w)/rν(z, w) is either 0 or∞. �
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