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Abstract

Let I:|\| be the affine Hecke algebra corresponding to the gi@ly over a p-adic field with
residue field of cardinalityg. We will regard | as an associative algebra over the fi€ldy).
Consider theﬁ|+m-modulew induced from the tensor product of the evaluation modules over the
aIgebrasI:ﬁ and Hm. The modulew depends on two partitions of | and © of m, and on two
non-zero elements of the field(q). There is a canonical operatdracting onW; it corresponds
to the trigonometricR-matrix. The algebraﬁprm contains the finite dimensional Hecke algebra
H+m as a subalgebra, and the operatamommutes with the action of this subalgebrawnUnder
this action,W decomposes into irreducible subspaces according to the Littlewood—Richardson rule.
We compute the eigenvalues df corresponding to certain multiplicity-free irreducible components
of W. In particular, we give a formula for the ratio of two eigenvalueslptorresponding to the
“highest” and the “lowest” components. As an application, we derive the well knpamalogue of
the hook-length formula for the number of standard tableaux of shape
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In this article we will work with the affine Hecke algebra corresponding to the general
linear groupG L, over a local non-Archimedean field. Lgte a formal parameter. Lét,
be the finite dimensional Hecke algebra over the fi&{d) of rational functions irg, with
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the generator%s, ..., Tj_; and the relations
T - +9H=0 (1.1)
TiTiyaTi = TipaTiTigas (1.2)
TT, =TT, j#Ei,i+1 (2.3)
for all possible indices and j. Theaffine Hecke algebr&ﬁ is theC(q)-algebra generated
by the elementdy, ..., T,—1 and the pairwise commuting invertible elemeMis. . ., Y,
subject to the relationd (1)—(1.3) and
TiYiTi = VYipw (1.4)
TY; =YT, j#Ei, i+ 1 (1.5)

By definition, the affine algebral, containsH, as a subalgebra. There is also a
homomorphismrz; : H — H identical on the subalgebitd; C H; it can be defined
[1, Theorem 3.4] by setting1(Y1) = 1. Indeed, then byl(4) we have

m1(Yi)=Ti_1...TiT1... Tj_1 (1.6)

for everyi = 1,...,1. Denote byX; the right hand side of the equalit§.@). Using the
relations (.2) and (L.3), one can check that

T X = X;T, j#Ei,i+1

and that the elementsy, ..., X| are pairwise commuting. These elements are invertible
in Hi, because the generatdrs ..., Tj_1 are invertible: we have
-1 _
T '=Ti-q+q! (1.7)

due to (L.1). The element«y, ..., X| are called theMurphy element§l4] of the Hecke
algebraH,; they play an important role in the present article.

More generally, for any non-zem € C(q), one can define a homomorphism :
I—Ah — H, also identical on the subalgebia C ﬁ| by settingr;(Y1) = z. Itis called the
evaluation homomorphisat z. By pulling any irreducibleH;-moduleV back through the
homomorphismr, we obtain a module over the algeh’f\la, called anevaluation module
atz and denoted by (z). By definition, theFﬂ-moduIeV(z) is irreducible.

Throughout this articld is a positive integer. For any indéx= 1,...,1 — 1 let
oi = (ii + 1) be the adjacent transposition in the symmetric gr§ufake any element
o € § and choose a reduced decompositiog oj, - - - i, . As usual pully; =Ty, --- Tj ;
this element of the algebtd; does not depend on the choice of reduced decomposition of
o due to (L.2) and (L.3). The element of maximal length 8 will be denoted bysg. We
will write Tg instead ofT,, for short. The elementg, form a basis oH, as a vector space
over the fieldC(q). We will also use the basis iH| formed by the elemenfﬁ(;l.

The C(q)-algebraH, is semisimple; seeb[ Section 4] for a short proof of this well
known fact. The simple ideals ¢, are labelled by partitions of |, like the equivalence
classes of irreducible representations of the symmetric ggoup Section 3of the present
article, for any partitionr of | we will construct a certain left idedV, in the algebra
H,. Under the action of the algebid via left multiplication, the subspacé, c H is
irreducible; seeCorollary 3.5 The H;-modulesV, for different partitions\. are pairwise
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non-equivalent; se€orollary 3.6 At g = 1, the algebraH,(q) specializes to the group
ring CS. The Hp(g)-moduleV,, then specializes to the irreducible representatios pf
corresponding18] to the partitionix. Our construction of/;, employs a certain limiting
process callefusion procedurgl]; seeSection 2for details, cf. [, 9].

Using this definition of theH;-moduleV,, consider the evaluation modwé (z) over
the affine Hecke algebrﬁlﬁ Take a partitionu of a positive integem and a non-zero
elementw € C(Qq), then also consider the evaluation modJ]gw) over the algebrdrlm
The tensor produdt ® Hn is naturally identified with the subalgebrafth..m, generated
by the elements

Teooo o, Ticg, Yo, o0 Y and  Tiya, ..., Tiem-1, Vi1 oo Yiem.

Let us denote by be theH|+m -module induced from the modul, (z) ® V. (w) over
the subalgebr&h ® Hm C H|+m Identify the underlying vector space of the modWe
with the left ideal inH|+m generated by, ® V, C H ® Hm, so that the subalgebra
Him C H|Jrm acts onW via left multiplication. Further, denote bW be theH|Jrm
module induced from the modulé, (w) ® V;.(z) over the subalgebrblm ® H C H|Jrm
The underlying vector space W’ is identified with the left ideal irH,+m generated by
V., ® Vi C Hm ® Hi. Note that then due to4(5 and @.6) we have the equality of left
idealsW' = W T;, wherer is the element of the symmetric gro§p.m permuting

@....mm+1...,l+m=—=d+1,....,1+m1...,0D. (1.8)

Suppose that 1w ¢ g%£. Then theH,,m-moduleswW and W’ are irreducible and
equivalent; see for instanc2(, Remark 8.7]. Hence there is a unique, up to a multiplier
from C(q), non-zero intertwining operator ¢, m-modulesl : W — W'. The existence
of this operator does not depend on the choice of realization dfithg-modulesw and
W’. For our choice ofV andW’, we will give an explicit formula for the operatdr, see
Proposition 4.2This formula fixes the normalization of in particular.

LetJ : W — W be the composition of the operatér : W — W, and the
operatoNv/ — W of multiplication by the elemer,~* on the right. Since the subalgebra
Hiim C H|Jrm acts on the left ideal/ andW’ in H|Jrm via left multiplication, the operator
J commutes with this action dfl|. . Under this action, the vector spa@eé splits into
irreducible components according to the Littlewood-Richardson re $ection 1.9].
On every irreducible component appearing with multiplicity one, the opethiacts as
multiplication by a certain element @ (q). In this article, we compute these elements
of C(q) for certain multiplicity-free components &/; seeTheorems 4.%nd 4.6. Note
that without affecting the eigenvalues of the operakpone can replac¥, andV, in our
definition of W by any left ideals in the algebr&$ andHn, respectively, equivalent td,
andV, as modules over these two algebras.

Let us give an example of applying oliheorems 4.and4.6. Write

A= (A1, 22,...) and A= (u1,pu2,...),

where the parts of andu are as usual arranged in the non-increasing order. Consider also
the conjugate partitions

= (A1, 25, ... and  u* = (ui, uy, ...



1348 M. Nazarov / European Journal of Combinatorics 25 (2004) 1345-1376

There are two distinguished irreducible components of Hing,-module W which are
multiplicity free. They correspond to the two partitiond 6f m

At = @1+ p1, A2+ p2,...) and  (AF+puH*

Let us denote byh,,(z, w) the ratio of the corresponding two eigenvalues of the
operatorJ; this ratio does not depend on the normalization of this operator.

Corollary 1.1. We have
2w l_[ 71y — q2atri-a=b+d
s, W) = 1 71y — qz(xa+ug—a—b+l)

(1.9)

where the product is taken over allla= 1, 2, ... such that b< A, ua.

We will derive this result fromTheorems 4.5and 4.6, using Proposition 4.7 Now
consider the Young diagrams afand . For the partition, this is the setZ.5). The
conditionb < Aa, ua in Corollary 1.1means that the noda, b) belongs to the intersection
of the diagrams correspondingiaand.. Recall that the number, + 1) —a—b+1is
thehook-lengthcorresponding to the noda, b) of the Young diagram of. The numbers
appearing in1.9),

lat+up—a—b+1 and  pat+Aj—a—b+1,

may be called thenixed hook-lengthsf the first and second kind respectively. Both these
numbers are positive for any noda, b) in the intersection of the Young diagramsJof
andu; hence there are no cancellations of factorsli)(

According to the famous formula fron8], the product of the hook-lengths of the
Young diagram o is equal to the ratid!/ dimV,. We call the equalityX.9) the mixed
hook-length formula. Its counterpart for the degenerate, or graded affine Hecke algebras
[2, 12] which does not involve the parametghas appeared irlp]. Theg-analogue of the
hook-length formula3] is also known; see for instanc&3, Example 1.3.1]. As another
application of ourTheorem 4.5ve give a new proof of thig|-analogue; see the end of
Section 4

2. Fusion procedurefor the algebra H;

In this section, for any standard tabledwf shape. we will construct a certain non-
zero element~, € H,. Under left multiplication by the elements &f;, the left ideal
H F4 c H is an irreducibleH;-module. The irreducibléd;-modules corresponding to
two standard tableaux are equivalent if and only if these tableaux have the same shape. The
idea of this construction goes back th Bection 3] were no proofs were given however.
The elemenf, is related to thej-analogue of the Young symmetrizer in the group ring
C§ constructed in%]; see the end of next section for details of this relation.
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Foreach = 1,...,| — 1 introduce theH,-valued rational function in two variables
x,y € C(q)
q-q°*
Fx,y) =T R 2.1
i (X, y) iy 1 (2.1)
As a direct calculation usind.(2) and (L.2) shows, these functions satisfy
Fi (X, Y Fi+1(X, 2)Fi(y, 2) = Fita(y, 2)Fi (X, 2 Fiy1(X, y). (2.2)
Due to (L.3) these rational functions also satisfy the relations
Fi (X, Y)Fj(z, w) = Fj(z, w)Fi (X, y); AL T+ (2.3)
Using (L.1) once again, we obtain the relations
@—9 H>xy
F F =1-—= 2.4
] (Xa y) I(ya X) (X _ y)z ( )

Our construction of the elemeiity € H, is based on the following simple observation.
Consider the rational function of y, z defined as the product on either side 4. The
factor Fi+1(X, z) on the left hand side 0f2(2), and the factofF (x, z) on the right hand
side have singularities at= z. However,

Lemma 2.1. Restriction of the rational functioff2.2) to the set of(x, y, z) such that
x = q*2y, is regular at x= z 0.

Proof. Letus expand the product on the left hand side2d®)(in the factorF1(X, z). By
the definition 2.1) we will get the sum

_n-1
FOOTaRi(y, 2+ - L R YR (Y. 2),

Here the restriction ta = q*2y of the first summand is evidently regulanat= z. After
the substitutiory = q¥2x, the second summand takes the form

9-9* \_ a-q*
g¥2x-1z -1 X

_ 1
e LA (Ti +

1 z(qileTi)-

The rational function ok, z at the right hand side of the last displayed equality is also
evidently regularak = z. O

Let 4 be any standard tableau of shapéiere we refer to th&oung diagram
{@bezZ?|1<a 1<b< ) (2.5)

of the partitionA. Any bijective function on the se(5) with values 1...,I is called a
tableau The values of this function are tleaitriesof the tableau. The symmetric gro§p

acts on the set of all tableaux of given shape by permutations of their entries. The tableau
Ais standard ifA(a, b) < A(a+ 1, b) andA(a, b) < A(a, b+ 1) for all possible integers

a andb. If A(a, b) =i then putc; (4) = b — a. The differencé — a here is thecontent
corresponding to the noda, b) of the Young diagram2.5).
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Now introducel variableszy, ...,z € C(q). Equip the set of all pairé , j), where

1 <i < j <, with the following ordering. The paifi, j) precedes another pdii’, j’)
if j < j/,orif j =’ buti <i’. Take the ordered product

[TFi-i@ Wz, g*iVz) (2.6)

(%))
over this set. Consider the produ2t®) as a rational function taking values k, of the
variablesy, ..., z. Denote this function b¥ 4 (z1, . . ., ). Let Z 4 be the vector subspace
in C(q)*! consisting of all tuplegz, ..., z) such thaz; = zj whenever the numbeis
and j appear in thesame columrof the tableaud, that is whenever = A(a, b) and
j = A(c, b) for somea, b andc. Note that the pointl, ..., 1) € C(q)* belongs to the
subspacez 4.

Theorem 2.2. The restriction of the rational function fz, ..., z) to the subspace
Z4 C (C(q)x' is regular at the point3, ..., 1).

Proof. Consider any standard tableal] obtained from the tablead by an adjacent
transposition of its entries, say oy € §. Using the relations2.2) and @.3), we derive
the equality of rational functions in the variablas. . ., z

FAa. ... 2) Rk (@D 7y, q?* Dz
= F(@®* Dz, ?% Dz ) Fp (7. ... 7). (2.7)
where the sequence of variablgs, . . ., z)) is obtained from the sequenea. ... ., z) by

exchanging the terne andzx 1. Observe that
(Zy,....Z) € Zy & (71,...,2) € Z4.

Also observe that heriex (1) — ck+1(A)| = 2 because the tableauixand A’ are standard.
Therefore the functions

F@®* Dz g1 Dz ) and  F_g(@@ Dz, gDz

appearing in the equality2(7), are regular atx = zx+1 = 1. Moreover, their values at
Zx = Zx+1 = 1 are invertible in the algebrH; see the relation.4). Due to these two
observations, the equalit® (/) shows thaffheorem 2.2s equivalent to its counterpart for
the tableaw!’ instead of/.
Denote byA° the column tableawf shapei. By definition, we havel®°(a + 1, b) =
A°(a, b) + 1 for all possible nodega, b) of the Young diagram2.5). There is a chain
A, A ..., A° of standard tableaux of the same shapsuch that each subsequent tableau
in the chain is obtained from the previous one by an adjacent transposition of the entries.
Due to the above argument, it now suffices to prolieorem 2.2nly in the casel = A°.
Note that

(Mk—P2=(—q—-q H(T—-q fork=1...,1 -1 (2.8)
Consider the ordered produ@. ) whenA = A°. Suppose that the factor
Fi-i @™z, g% "z)) (2.9)



M. Nazarov / European Journal of Combinatorics 25 (2004) 1345-1376 1351

in that product has a singularity & = z; = 1. Thenci(4°) = c¢j(4°). If here
i = A°(a, b) theni + 1= A°(a+ 1, b) < j. The next factor after,9) is

Fioi—1(q%9z,4, g% 107)) (2.10)

whereci;+1(A4°) = ¢ (4°) — 1. Due to the relation®2(2) and @.3), the product of all the
factors beforeZ.9) is divisible on the right by

Fi_i—1(q%a 1z, g2 ). (2.11)

Note that the restriction of2(11) to zy = z;1 equalsTj_i_1 — g. Also note that the
restriction toz; = z,1 of the ordered product of three facto&a9—(2.11) is regular at
zi =zj = 1duetoLemma2.1

Now for every pair(i, j) such that 2.9 is singular azy = z; = 1, insert the factor
(2.17) divided by(—q — q~1) immediately before the two adjacent facta2s9f and @.10
in the product2.6) with 4 = A°. These insertions do not alter the values of restriction of
the entire product tc€ 4. due to @.8). But with these insertions, restriction of the product
to Z 4. is evidently regular. O

Due toTheorem 2.2an element, € H; can now be defined as the value at the point
(1,...,1) of the restriction taZ 4 of the functionF,(z1, ..., z). Note that fol = 1 we
haveF, = 1. Foranyl > 1, take the expansion of the elemént € H, in the basis of the
elementsl, whereo is ranging ovelS.

Proposition 2.3. The coefficientin fr € H; of the elementlis 1.

Proof. Expand the product2(6) as a sum of the elemeni, with coefficients from
the field of rational functions ofy, ..., z; these functions take values ii(q). The
decomposition ir§ with ordering of the pairsi, j) asin .6)

N
o = l_[ Oj—i
@)
is reduced, hence the coefficienifat= T, in the expansion ofd.6) is 1. By the definition
of F4, the coefficient offg in F4 must also be 1. J

In particular,Proposition 2.3&hows thatF, # 0 for any standard tableat. Denote
by «; the involutive antiautomorphism of the algela over the fieldC(q), defined by
settingo (Tj) = T; for every indexi = 1,...,1 — 1. Note that each of the Murphy
elementsXy, ..., X| of the algebraH is o -invariant.

Proposition 2.4. The element ETO_l is oy -invariant.

Proof. Any element of the algebrd, of the formF; (x, y) is o -invariant. Hence applying
the antiautomorphisim@ to an element oH, the form @.6) just reverses the ordering of the
factors corresponding to the paiis j). Using the relations2.2) and @.3), we can rewrite
the reversed product as

.
[]F-i+i @z, g%z
((3))



1352 M. Nazarov / European Journal of Combinatorics 25 (2004) 1345-1376

where the pairsi, j) are again ordered as i8.¢). But due to {..2) and (.3), we also have
the identity in the algebré

F-i(X,y)To = ToF (X, y).

This identity along with the equality (To) = To implies that every value of the function
Fa(za, ..., z|)T0_1 is o -invariant. So is the elemeﬂ?cATO_1 eH. O

Proposition 2.5. If k = A(a,b) and k+ 1 = A(a + 1, b) then the element fFe H is
divisible on the left by I'— q.

Proof. Using the relations4.2) and @.3), one demonstrates that the prodcé) is always
divisible on the left by the function

= (qZCk(A) Z, q20k+| (A) Zki1).

If herek = A(a, b) andk + 1 = A(a + 1, b) then restriction of this functiontg = z 1
equalsTk — q. Hence the required property of the elemént < H; immediately follows
from the definition of this element.[

Fix any standard tablead of shapei. Let p € § be the permutation such that
A= p-A° thatisA(a, b) = p(A°(a, b)) for all possiblea andb. For anyj = 1,...,|
take the subsequence of the sequen¢B, ..., p(l) consisting of alli < | such that
o~ L) > p~1(j). Denote byA; the result of reversing this subsequence. |4t be the
length of sequencelj. We have a reduced decomposition in the symmetric g@®up

p= 1 ( I1 a,-_k). (2.12)
' I \k=1,..., 4]

Letoj, ---oi, be the product of adjacent transpositions at the right hand si&Xs) (For
each tailoj, - - - oj; of this product, the image - - - gi, - A° is a standard tableau. This can

easily be proved by induction on the lendéh= L, ..., 1 of the tail; see also the proof of
Proposition 2.@elow. Note that for any € Aj andk € {1, ..., | — 1} the elements of the
algebraH;,

Fk(qZCi (/1)7 qZCj (/1)) and Fk(qZCj (/1)7 qZCi (/1))’

are well defined and invertible. Indeedj i A(a, b) andj = A(c, d) for somea, b and
c,d thena < candb > d. Socj(4) —cj(4) =b—a—-d+4c > 2 here.

Proposition 2.6. We have the equality in the algebra H

Fa- [] ( I1 F|_j+k(q2°i“‘),q2°‘“‘)))
j I \k=1

= 1] ( [1 Fj—k(qzci(m,qzc”m))'FAO where i= A; (k).
=10 \k=1
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Proof. We will proceed by induction on the length= | A;| + - - - + | 4] of the element
p € §. Letn be the minimal of the indice$ such that the sequencé; is not empty.
Then we haved, (1) = n — 1. Indeed, ifAn(1) < n — 1 thenp=1(An(1) > p~1(n — 1).
ThenAn (1) € Ap—1, which would contradict the minimality of. The tableaw,_1 - A is
standard; denote it by’. In our proof ofTheorem 2.2ve used the equality2(7). Setting
k = n — 1in that equality and then usifictheorem 2.2tself, we obtain the equality il

FAF-n1(q20@, gZn1Dy — (@1 g2y, (2.13)

For each indexj = 1,...,| denote byA/j the counterpart of the sequengy for
the standard tablead’ instead ofA. Each of the sequenced;,..., A , and A} is
empty. The sequencd;,_, is obtained from the sequengh, by removing its first term
An(1) = n — 1. By replacing the terma — 1 andn, whenever any of them occurs,
respectively byn andn — 1 in all the sequencedn.1, ..., A we obtain the sequences

g Al

nj&}ssume tlhat th@roposition 2.6s true forA’ instead ofA. Write the product on the left
hand side of the equality to be proved?noposition 2.@&s

—

FARnea (@@ g?n 1) T Aonp@® @, g2t D)
k=2,...,|An|
— —
< 1 [T FA-ja@® g
j=n+1,..,0 \k=1,...,|Aj]

where in the first liné = 4, (Kk), while in the second liné = A; (k). Using the equality
(2.13 and the description of the sequencés ..., Al as given above, the latter product
can be rewritten as

Fro1 <q2cn71</1>’ qzcnm)) Fu

—_ —
y 1—[ 1—[ Fi_j (@2, g2 A0y wherei = Aj (k).
P=Ll \ k=L A |

By the inductive assumption, this product equals

— —

Fn—l(q2°"—1““,q20"</1>). I [T Fow@®, gz,
=L \k=1,..., | 4]

times F ., where we keep to the notatidn = A’j (k). Using the description of the
sequencesl], ..., A once again, the last product can be rewritten as on the right hand
side of the equality to be proved Rroposition 2.6 [

Proposition 2.7. If k = A(a, b) and k+ 1 = A(a, b + 1) then the element fFe H; is
divisible on the left by 7+ g~
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Proof. Given a pair of indicesa, b) such that.a > b, it suffices to prové’roposition 2.7
for just one standard tablealof shape.. Indeed, let1 be another standard tableau of the

same shape, such thata, b) = kandA(a, b+ 1) = k+ 1 for somek € {1,...,1 — 1}.
Let o be the permutation such that= o - A. There is a decompositian = oj - - - 0j,
such that for eackK = 1,..., N — 1 the tableaulx = oj, ---0j, - 4 is standard. Note

that this decomposition is not necessarily reduced. USheprem 2.2we get

1_[ FIK (qzciK(AK)’ qZCiK+1(AK)) . FA

K=1,..,N
=F;- 1—[ Fiig (qZCiK+1(AK)’ q20iK (AK)) (2.14)
K=1,...,N
whereAn = A. Note that here for everlt =1, ..., N the factor

Fioic (qZCiKH(AK)’ qZCiK (AK))

is invertible. Further, we have the equalityx = opo by the definition of the permu-
tationo . Using the relations.2) and @.3), we obtain the equality

-
1—[ Fiq (q2CiK (AK)’ qZCiK+1(AK)) . Fk(q2Ck(/1)’ q20k+1(/1))

K=1,..,N
_ - <
— FR(QZCR(A), q20;z+1(/1)) . l_[ Floix (qzCiK+1(/1K)’ q2CiK (AK))‘
K=1,..,N

The last equality along with the equalit?.(4 shows, thatProposition 2.7mplies its
counterpart for the tablealiand the indexk, instead ofA andk respectively. Here we also
use the equalities

Fi(@®*, g2ty = Ty 4+ q 77,
FR(QZCR(/I), qZCR+1(/i)) = TIZ + q_l
Let us consider the column tableal? of shapex. Putm = A°(a, b). Also put

n = A°(Af, b); thenA°(a,b + 1) = n + a. We will prove that the elemerf . € H,
is divisible on the left by the product

<« —

[ [T Feiona@, g2 | (2.15)
i=m,...,n j

ThenProposition 2.7will follow. Indeed, putk = m+ a — 1; this is the value of the index

i+j—n—1in(2.19 wheni = mandn = n + a. Let A be the tableau such thdf is
obtained from the tableaiy - A by the permutation
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The tableaul is standard. Moreover, thet(a, b) = kandA(a, b+ 1) = k+ 1. Note that
the rightmost factor in the produ@.(L5, corresponding to = mandn = n + a, is

Fnsa-1(q?n7, q%nat9) = T+ q 7%,

Denote byF the product of all factors in2.15 but the rightmost one. Further, denote by
G the product obtained by replacing each factoFin
Fisj-n-1(@*“, g2 1)
respectively by
Fioi—jans1 (@2, g ¢0).
The elemenE € H is invertible, and we have F4, = F 4. G. Therefore the divisibility of
the elemenf 4. on the left by the produc®(15 will imply the divisibility of the element
F, on the left byT, +q~L.

Take the tableau obtained fron? by removing the entries +a + 1,...,1. This is
the column tableau corresponding to a certain partitiom-9fa; let us denote this tableau
by T°. The proof ofTheorem 2.Zhows that the elemeft,. € H; is divisible on the left
by the elemenFy. € Hnia. Here we use the standard embeddithyg.a — H; where
T — T foreachi = 1,...,n— a — 1. Hence it suffices to prove the divisibility of the
elementFy. € Hnta On the left by the produc2(15. Therefore it suffices to consider
only the case whene+ a = |. We will actually prove thafF 4. is divisible on the right by

[1 ( [1 Fl_i—j+n+1(q2q(Ao),qzcj(Ao)))- (2.16)

i=m,....,n \ j=n+1,..1|

The divisibility of F4. on the left by the produc®(19 wheren + a = | will then follow
by Proposition 2.4

The element-4. € H, is the value at the pointl, ..., 1) of the restriction to the
subspaceZ 1o C (C(q)x' of the rational functiorF4-(z1, ..., z). This function has been
defined as the ordered produ2t) whereA = A°. Let us change the ordering of the pairs
(i, j) in (2.6) to thelexicographicalone, so that now the paii, j) precedes another pair

(i’,jHifi <i’,orifi =i’ butj < j’. This reordering does not alter any value of the
function F 4. (z1, . . ., z)) due to the relations2(3). Using the new ordering, we can once
again prove that the restriction Bfi- (z1, . . ., ) to the subspacg 4. is regular at the point

(1, ..., 1. Indeed, take any factoR(9) in the product 2.6) such thaftcj (4°) = c¢j(4°).
If herej = A°(a, b) thenj —1 = A°(a—1, b) > i. The factor in 2.6) immediately before
(2.9 is now

Fi_i-1(q% "z, g2z ) (217)

wherecj_1(A4°) = ¢j(A4°) + 1. Due to the relations2(2) and @.3), the product of all the
factors after2.9) is divisible on the left by

Fj—i—1(@%i-117z_1, g%z, (2.18)

The restriction tazj_; = z; of the ordered product of the three facto?sd, (2.17 and
(2.18 isregular az; = zj = 1; cf.Lemma 2.1
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With the new ordering, consider the product of all those factor2i (vherei > m.
Any such factor is regular a = z; = 1, because we are considering only the case
n+a = I. At the point(z,...,2) = (1,..., 1), the product of these factors takes the
value

[1 ( I1 Fj—i(qzci(A°’,q2"J(A°’)). (2.19)
J=1 \'j

The argument given in the previous paragraph not only shows that the restriction of
Fae(z1, ..., 2) tothe subspacg 4. is regular a1, . . ., 1), it also shows that the element

F 10 is divisible on the right by the produc2(19. Using @.2) and @.3), the product2.19

is equal to .16 multiplied on the left by

ﬁ [] Fi-i@ 4, q%i49)
n-1

i=m,..., j=i+1,...,n

x 1_[ ( . l_[ Fi —itn-m+1(q% “, q° (AO))) . O
J

i=n+1,...1-1
Let us now regard=, as an element of the algebtd 1, by using the standard

embeddingH; — Hjy1 whereT; — T, foranyi =1,...,1 — 1.

Proposition 2.8. We have equality of rational functions in z, valued in.H

- T---T—zT 1.1t
[1 F@ gD Fy= —
|

1-2z

- Fgp.

Proof. Denote byF (2) the rational function with the values H 1, defined as the product
of the left hand side of the equality to be proved. Note that

FO=Ti---TiF4 and F(oo) =Tt TRy

due to (L.7). It remains to show thdt (z) may have a pole only &= 1 and that this pole
is simple. Sincecy(A) = 0 the factorF1(z, qzcl(/”) in the product defining-(z) has a
simple pole az = 1. Take anyzg € C(q). Suppose there is an indgxe {2,...,1} such
thatzg = q%%D. The factorFj (z, g% ) has a pole at = zg. We shall prove that when
we estimate the order of the polelfz) atz = zp from above, any factor withh > 1 does
not count.

Leti € {1,..., j — 1} be the maximal index such tha (1) — cj(4)| = 1. Note that
i = A(a, b); then eitherj = A(a+ 1,b) or j = A(a, b + 1). Consider the sequence of
tableaux of shapg,

N=oj1-A, AN =cj-A,... ATV =g . 407172,
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Each of these tableaux is standard. Using this sequence, we obtain the relation

Fi- ] Fx@®@, g?*@)
k=i+1,...,j—1
= [] F@*D. %) Fyginy (2.20)
k=i+1,...,j—1

in the algebra;; cf. the proof ofProposition 2.6Each of the factors
Fi-k(@ ™, g?*D)

in (2.20 is invertible. The entries andi + 1 of the tableaul/ ="~V correspond to the
same nodes of the Young diagratng) as the entriesandj of the tableaul respectively.
Using eitherProposition 2.%r 2.7, the element 4(j-i-y is divisible on the left by

Fi(@ ™. q®1h) =T £ .

The relation 2.20 now shows that the elemeRt; is divisible on the left by
[ F@®@. q?).

Using the relations2.2) and @.3), we obtain an equality in the algebira 1

—_ <
[I @ a®>®) - T FR@®*?.g*)
k=1,...,| k=i,...,j—1
= [l A@a®*® . T[]  Faa@*?,¢%)
k=1,..,i—1 k=i+1,...,j—1
x Fi(z. 9% W) Fi (2. g% )R (g%, g )
x JI Fa@e®™>®). J] F@g®*W). (2.21)
k=i+1,...,j—1 k=j+1

The product in the linex.21) above is regular a = g2 D; cf. Lemma 2.1

Now take any other indek’ # j such that; (A1) = cj/(4). We assume thgt’ > 1. Let
i”e{1,..., ] — 1} be the corresponding maximal index such tltat 1) — cj/(4)| = 1.
If j/ > |, then alsoi’ > | because the tablead is standard. Thus the two sets of
indices{i’, ..., j’} and{i, ..., j} are always disjoint. Therefore we can apply the above
argument to both factors; (z, g% ) and Fj(z, g%'™) in the product defining" (2)
simultaneously, and so on. In this way we show that when estimating from above the order
of the pole of the functioffF (z) atz = z, all the factorsFj (z, % D) wherezg = g2 (D
butj > 1, do not count. [

Now denote by the embeddindgd; — H+1 defined by setting(Ti) = Ti+1.
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Proposition 2.9. We have the equality

[T A a®>D) Fa=uFp- ] Fokeslz g?).
|

k=1,..., k=1,....l
Proof. Take the variableg;, ...,z € C(qg). Using the relations2.2) and @.3) and
the definition .6) of F,(z1, ..., z) we obtain the equality of rational functions in the
variablesz, z3, .. ., 7

Restricting, in the above displayed equality, the functof(z, ..., z) to Z,, and then
evaluating the restriction at the poi(t, ..., 1) € Z,, we deriveProposition 2.9%rom
Theorem2.2 O

3. Young symmetrizersfor thealgebra H;

For every standard tableauof shape. we have defined an elemehy; of the algebra
H. Let us now assign td another element dfl|, which will be denoted b5 4. Letp € §
be the permutation such that= p- A°, as it was ifSection 2Foranyj = 1, ...,| denote
by Bj the subsequence of the sequepcd), ..., p(l) consisting of alli < j such that
o~ L) < p~1(j). Note that we have a reduced decomposition in the symmetric gioup

— —>
poo=[] [T o«
j=1..1 \k=1....,|Bj]

where|Bj| is the length of sequendsy; cf. the reduced decompositioB.(2. Consider

the rational function taking values i, of the variablegy, ..., z
— —
I1 [] Fi«@ Wz, gDz wherei = Bj (k).
j=1...1 \k=1,...|5]]
Denote this rational function b 4(z1, ..., 7). Using induction on the length of the

elemento € S as in the proof oProposition 2.60ne can prove that

Fa(za,...,2) =Gyp(za,...,2)

<« <«

X l_[ 1_[ F|_j_;.k((i]2Ci (A)Zi , q2cJ- (A)Zj) wherei = Aj (k).
j=1l \k=1,....|Aj|
Therefore, restriction 06 4(z1, . .., z) to the subspac€, c C(q)*' is regular at the

point (1,...,1) due toTheorem 2.2 The value of that restriction &tl, ..., 1) is our
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elementG 4 € H by definition. Moreover, thelr 4 equals

Gi [1 [T F-jw@D, g% wherei = Aj (k).
i I \k=1,....|4j|

Using the relation Z.4), this factorization ofF, implies that the left hand side of the
equality inProposition 2.@&lso equal$s 4 times

(q — q~1)2q20 (A)+20;(4)

) 1—[ I (k: 1—[ (1 (qZCi(/l) _qZCj(A))z >) wherei = Aj k).

Rewriting the factors of the last displayed prodiriipposition 2.6/ields

Corollary 3.1. We have the equality in the algebra H

1—[ 1—[ 1_ q-qghH? G
ELTA LR (@S D=6 (D) _ gei(D—a(4))2 A

= |1 ( I1 Fj_k<q2°i<A>,q2°i<A>>)-FAo where i= A; (k).
j I \k=

Yet arguing like in the proof oProposition 2.3the definition ofG 4 implies

Proposition 3.2. The element G equals T4, plus a sum of the elements With certain
non-zero coefficients frofd(q), where the length of each € § is less than that oboyp.

Note thatG . = F4. by definition. Denote by, the left ideal in the algebr#,
generated by the elemeRt;.. Due toCorollary 3.1we haveG , € V, for any standard
tableau/ of shapei. Proposition 3.Zhows that the elemenG, € H, for all pairwise
distinct standard tableaukof shape. are linearly independent. The next theorem implies,
in particular, that these elements also span the vector 3fhace

Foranyk =1, ..., — 1 use the notatiodk(A4) = cx(A) — ck4+1(A). If the tableawy A
is not standard, then the numbé&randk + 1 standhext to each othein the same row or in
the same column af; thatisk+1 = A(a,b+1)ork+1= A(a+1,b) fork = A(a, b).
Then we havali (A1) = —1 ordk(A) = 1 respectively. But if the tableaik A is standard,
then we havedyk(A)| > 2.

Theorem 3.3. For any standard tablead and any k=1, ...,| — 1 we have:
(@ _|aGy if de(4) = -1,
TGa = —q71G,  ifdk(M) =1;
(b) _ gq-qt
TGy = 1— o™ G4+ Gpa

-2,
2.

—1y2
X[l— Q-9 if dy (4

(qdk(A) — q—dk(A))z ) <
if dx(4) >
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Proof. The elemenG, € H, is obtained by multiplyingF4 on the right by a certain
element ofH,. Hence Part (a) ofheorem 3.3mmediately follows fromPropositions 2.5
and2.7. Now suppose that the tableaw/ is standard. Moreover, suppose that1) > 2;
in this case we have € Ax1. UsingCorollary 3.1along with the relations2.2) and .3),
one can get the equality

L @—-ghH?
(qdk(A) — q—dk(/l))2

) Gj= Fk(qzck(/l), q2Ck+l(A))GakA- (3.1)

Using the relationZ.4), we obtain from 8.1) the equality
Fk(qzck“(/”, qZCk(/l))GA = Gy -

The last equality implies Part (b) dtheorem 3.3n the case whel(4) > 2; see the
definition 2.1). Exchanging the tableaukandok 4 in (3.1), so that the resulting equality
applies in the case whedg(4) < —2, we prove Part (b) ofheorem 3.3n this remaining
case. [J

Thus the element& 4 € H, for all pairwise distinct standard tableauxof shapex
form a basis in the vector spa®g. This basis is distinguished due to

Proposition 3.4. We have XG4 = g2 G, foreachi=1,...,1.

Proof. We will proceed by inductionon= 1, ..., . By definition,X; = 1. On the other
hand,c1(4) = 0 for any standard tableatt ThusProposition 3.4s true fori = 1. Now
suppose thaProposition 3.4s true fori = k wherek < |. To show that it is also true
fori = k+ 1, we will useTheorem 3.3Note thatXx 1 = Te Xk Tk. If dx(A) = £1, then
Tk Xk TkG 4 equals

:Fq:FlTkaGA — :FqZCk(/l):FlTkGA — qZCk(/l):FZGA — q20k+1(/1)GA

respectively. Ifdg(A) > 2, then the produclx Xk TkG 4 equals
-1
g-—q
Tka (me/l + GO‘k/l)

= q2Ck+1(/1)Tk q_iq_lG 4G
q—2dk(/1) -1 A ok /A
201 (A) a-q ag—q
- (q_de(A) -1 (1 — g2k G+ Goa
-1 —1y2
= @-a7) _ g%
+ WGUM + (1— (qa — q—dk(/l))2> GA) = g%,

In the case wherey (1) < —2, the proof of the equalitXx11G 4 = q2+1(DG 4 is similar
and is omitted here.

Let us now consider the left ides), C H; as theH,-module. Here the algebitd, acts
via left multiplication.
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Corollary 3.5. The H-module VY is irreducible.

Proof. The vectorsG, € V, where A is ranging over the set of all standard tableaux
of the given shapé, form an eigenbasis for the action &fi of the Murphy elements
X1,..., X; € H. Moreover, the ordered collections of the corresponding eigenvalues
g% g2 are pairwise distinct for all different tableauk On the other hand,

by Corollary 3.1any basis vectofs 4 € V, can be obtained by acting on the element
G 4o € V; with a certain invertible element ¢f). O

Corollary 3.6. The H-modules Y for different partitionsi of | are pairwise non-
equivalent.

Proof. Take any symmetric polynomiaf in | variables over the fieldC(qg). For all
standard tableauxt of the same shape the values of this polynomial

f(q?a™, ..., gDy e C(q) 3.2)

are the same. Hence ®roposition 3.4the elementf (X3, ..., X|) € H, acts onV,,
via multiplication by the scalar3(2). On the other hand, the partitiogncan be uniquely
restored from the value8 @ where the polynomialf varies. Thus theH;-modulesV;
with different partitions. cannot be equivalent.Od

Remark. The centre of the algebrélﬁ consists of all the Laurent polynomials in the
generators, ..., Y, which are invariant under permutations of these generators; see for
instance 12, Proposition 3.11]. In particular, the elemeintXy, ..., X|) € H is central,

as the image of a central elementtéfunder the homomorphism. Moreover, the centre

of the algebraH, coincides with the collection of all elemenfg X4, ..., X|) where the
symmetric polynomialf varies; cf. B]. However, we do not use any of these facts in this
section. [

Foranyk = 1,...,|1 — 1 consider the restriction of thd-moduleV,, to the subalgebra
Hx C H;. We use the standard embeddiHg — H,, whereT, — T; for each index
i=1,...,k—1.

Corollary 3.7. The vector G € V, belongs to the Kinvariant subspace in ,
equivalent to the kkmodule \ where the patrtitionc is the shape of the tableau obtained
by removing from the entries k- 1, .. ., .

Proof. It sufficesto considerthe cake=1—1 only. For each indea suchthatg > Aay1,
denote byV, the vector subspace iX, spanned by the all those vecto®, where
A(a, Aq) = |. By Theorem 3.3the subspac¥; is preserved by the action of the subalgebra
Hi—1 € H; onV,. Moreover,Theorem 3.3hows that théd|_1-moduleV, is equivalent to

V., where the partitiom of | — 1 is obtained by decreasing thth part ofA by 1. O

The properties of the vect@ 4 given byCorollary 3.7fork =1,...,1 — 1, determine
this vector inV, uniquely up to a non-zero factor frofi(q). These properties can be
restated for any irreducibld,-moduleV equivalent tov,. Explicit formulas for the action
of the generator$;, . . ., Tj_1 of H; on the vectors itV determined by these properties are
known; cf. [14, Theorem 6.4].
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Settingq = 1, the algebrad, specializes to the symmetric group rifig . The element
T, € H then specializes to the permutatiene § itself. The proof ofTheorem 2.2
demonstrates that the coefficients in the expansion of the elefyentH, relative to the
basis of the elemenik,; are regular atj = 1 as rational functions of the parameteThus
the specialization of the elemeRf; € H; atq = 1 is well defined. The same is true for
the elemenG 4 € H; seeCorollary 3.1 The specializations & = 1 of the basis vectors
G4 € V, form theYoung seminormal basis the corresponding irreducible representation
of the groupS. The action of the generatoss, ..., 0—1 of § on the vectors of the latter
basis was first given bylp, Theorem IV]. For the interpretation of the elemefRtg and
G, using representation theory of the affine Hecke algdhrasee [, Section 3] and
references therein.

Let ¢, be the character of the irreducibitg-moduleV, . Determine a linear function
§ : H — C(q) by setting

-1, J1 ife=1,
8,7 = {O otherwise.

It is known that the functior is central; see for instancd,[Lemma 5.1]. Atq = 1,
this function specializes to the character of the regular representation of the alifg¢bra
normalized so that the value of the character at 15 is 1. This observation implies
that each of the coefficients in the expansion of the funciioglative to the basis of the
charactersp, in the vector space of central functions bip is non-zero. Thus for some
scalarsh, (q) € C(q),

5= h @ e (3.3)
A

For any standard tableatiof shape, denote byE 4 the eIemenFATO‘1 € H. Recall
that the elemerf, € H| can be obtained by multiplyinG 4 on the right by some element
of H. It follows from Proposition 2.4and Theorem 3.3that the elemenE  belongs to
the simple two-sided ideal of the algebih corresponding to the equivalence class of
irreducibleH;-moduleV,. FurtherPropositions 2.4nd3.4imply the equalities

XiEg=E X =@ WE,  for i=1...,1. (3.4)
Proposition 3.8. Here Efl =h,(q)E, for any standard tablead of shapei.

Proof. The proofs ofCorollaries 3.5and 3.6 show that the equalitie8(4) determine the
elementE ; € H, uniquely, up to a multiplier fron€(q). HenceEf1 =h,(q)E, for some
h,(g) € C(qg). Note that byProposition 2.3the coefficient of 1 in the expansion of the
elementE 4 € H relative to the basis of the eIemeﬁT;s1 is 1.

To prove thath,(g) = h,(q), we will employ an argument from5[ Section 3].
At g = 1, the elemenE, specializes to the diagonal matrix element of the irreducible
representation of parametrized by the partition, corresponding to the vector of the
Young seminormal basis parametrized by the tabldalAs a linear combination the
elements of the grouf§, this matrix element is normalized so that its coefficient at
is 1. Thereforén 4(q) # 0.
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The elemenh;ll(q)EA € H, is an idempotent, so for any partitien of | the value
ww(h;ll(q)EA) is an integer. In particular, this value does not depend on the parameter
and can be determined by specializingjte- 1. Thus we get

-1 I o=,
o (N (EL) = {0 otherwise.

Applying the functions at each side of the equal®y3 to the eIementh(q)EA € H,
we obtain the equalith,*(q) = h;(q). O

Several formulas are known for the scalaysq). Two different formulas for eadh, (q)
were given in 17]; see also’, Section 3]. Another formula reads as

h@ =[]

(a,b)

1 — qRGatip—a—b+l)

1-g?

. qu(l—A1)+)»2(l—)»2)+~“ (3.5)

where the product is taken over all nodasb) of the Young diagram2.5). At q = 1,
the rational function ofj on the right hand side of3(5) specializes to the product of the
hook-lengths.a + A}, —a — b+ 1 corresponding to the nodés, b) of the Young diagram
(2.5). We will give a new proof of§.5) by usingTheorem 2.2ndProposition 3.8see the
end ofSection 4for the proof.

From now on until the end of this section, we will assume thas therow tableau
of shaper. By definition, here we havd(a, b + 1) = A(a, b) + 1 for all possible nodes
(a, b) of the Young diagram?.5). According to the notation dection 2letp € § be the
permutation such that the row tabledu= p - A°. Let S, be the subgroup i§ preserving
the collections of numbers appearing in every row of the tabledtis called theYoung
subgroup Following [5], consider the elemem, = P)LTpt]i.Q)LTp—l of the algebraH;,

where
P)\ = Z q—l(a)Ta—l and QA = Z (—q)K(J)TU_l. (36)
oeS, UE&*

Here{(o) is the length of a permutation. At g = 1, the elemenf, € H, specializes
[18] to the Young symmetrizen CS corresponding tol.

Proposition 3.9. If A is the row tableau of shape then GATp‘1 = A,.

00

Proof. LetU be the vector subspace Ity formed by all element8 such that

TkB=qB if oxeS, (3.7)
BTk=—-q B if oxe S~ (3.8)

Then dimU = 1; see for instances] Section 1]. Using the definition &, , we can verify
thatAATp_,l1 € U. On the other hand, consider the element

B= GAij,tTp__ll =G, Tyt (3.9)
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It satisfies the conditiorB(7) thanks to Part (a) ofheorem 3.3because herd is the row
tableau of shapg. By Proposition 2.7we also have

TkFgo = —q 7 Fge  if ok € Sis.
Due toCorollary 3.1 the element3.9) can be obtained by multiplying 4. TO‘1 on the left

by a certain element afi;. But the element:AoTO‘1 is oj-invariant. Hence the element
(3.9 also satisfies the conditioB.§). ThusGATO_1 e U.
To complete the proof dProposition 3.9it suffices to compare the coefficientsTat,
in the expansions of the elemeds andA, T4, of H relative to the basis of the elements
T,. For G4 this coefficient is 1 byProposition 3.2Let S_be the subgroupeS.<oo C §.
Observe that it € S, ando’ € S, then
L(opooa’) = L(pag) — L(a) — £(a).

In particular, then we havepogo’ = pog only foro = o’ = 1. Therefore

ATooo=| D a7 T3 D T, To

o€eS, oceSx
— Z q—f(a')To-—l Tpo‘o Z (_q)f(a')Tajl
o€, o'e§
= Z Z q_aa)(_q)l(a)Taflpaoa’*l‘
0€S 0'eY

The coefficient ofT ,,, in the sum displayed in the last line above is 1]

Remark. One can give another expression for the elenfgnt H, defined via 8.6), by
using the identities

Z q—Z(a)TU—l _ ql(l—l) Z ql@T,,

ceg o€
Z(_q)l(J)TU—l — (_q)|(|—1) Z(_q)—@(a)TU' |:|
0€S o€

4. Eigenvalues of the operator J

Take any partitiorh of |. For any standard tableatiof shape\ denote by, the left
ideal in the algebr#&l|, generated by the elemeh}; defined inSection 21f A = A° then
V.1 = V4 in the notation ofSection 3 Recall that the elemer, € H, can be obtained
by multiplying F4. on the left and on the right by certain invertible elementsHpf
seeProposition 2.6HenceV, is equivalent tov, as theH;-module. The algebr#é, acts
on any left ideaV, C H, via left multiplication. Also recall that the elemeh{; can be
obtained by multiplyinds 4 by certain element dfl; on the right. Thus byProposition 3.4

XiFgq = qZCi(/l) Fa foreach i =1,...,1. (41)
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For any non-zer@ € C(q), consider the evaluatiohT|—moduIeVA(z). This is the
pullback of theH;-moduleV, back through the homomorphismy; seeSection 1 As
a vector spac¥ 4 (2) is the left idealV4 C H,, and the subalgebrd, c Hi acts on this
vector space via left multiplication. By (1), in the Hj-moduleV, (z) we have

Y- Fy=zYE,  foreach i=1,...,1I. (4.2)
Note that any element ofl can be written as a sum of certain Laurent monomials in
Y1, ..., Y multiplied by some elements dfii on the left. Therefore the action of the

generatoryy, ..., Yy on theH;-moduleV (z) is determined by4.2).

Take a partitionu of m, and any standard tabledu of shapeu. Also take any non-zero
elementw € C(q). Let us realize théd, . m-moduleW induced from theH; ® Hm-module
V4(2)®Vwm (w) as the left ideal irH| . m generated by the produEty Fy . HereFy denotes
the image of the elemeftyy € Hy under the embeddingm — Hizm : Tj = Ti4j. The

action of the generator¥s, ..., Yiom € Hiym on this left ideal is then determined by
setting
Yi - FAFm = Zqzci(A) FiFm foreach i =1,...,1; (4.3)
YiijFiFm = wg@®MF, Fy  foreach j=1,...,m.

Further, consideH| .m-moduleW’ induced from thely, ® Hi-moduleVy (w) ® V4 (2).
Let us realizeW’ as the left ideal inH|.m generated by the produ€iy F,, whereF,
denotes the image df4 € H; under the embeddingly — Hiim : Ti = Tixm. The
generatoryi, ..., Y.1m act onW’ so that

Yiim- FMFp = 28NV EYWE,  foreach i =1,...,1; (4.4)
Yj - FMF4 = wg®i™MFyF,  foreach j=1,...,m.

Consider the elementof the symmetric grouf§.+m, which was defined as the permutation
(1.8). We will use one reduced decomposition of this element,

<« —
r= [] | JI oivia
i=1,....|
The corresponding element of the algebraH, ., satisfies the relations
TiT: = T: Tixm foreach i=1,...,1 —1; (4.5)
Ti4jTe = T, T, foreach j=1,...,m—-1 (4.6)
In particular, these relations imply the equalityHi
FAFMT, = T.FmF4. 4.7)
Now introduce two elements of the algelﬁmm,

—

Simzw) = [] [T Femoioiti@ @z, g M) |, (4.8)
i=1.... \ j=1..m
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<« —
Simzw =[] [T Fii-1@® @z g% M)
=1l \ j=L..m

We have assumed thatlw ¢ q?Z so that these two elements are well defined; 8e8.(
Using the relations2.2) and @.3) together with the definitions of the elemerig € H,
andFy € Hp, we obtain the relation in the algebira, m

FAFMSAM(Z, w) = Sy (Z, w)Fm Fa. (4.9)

We will use one more expression for the elementpf,, appearing on either side of
the equality 4.9). For eachi = 1,...,| denote byX; the image of the Murphy element
Xi € H; under the embedding; — Hj1m: Ti = T

Proposition 4.1. The element of the algebra Hy in (4.9 equals T times
Tzl — g g XL

1+m -
]‘[ -FmF4.
—1,,, _ q2¢ci(A)
i1 ZTw—a™

Proof. UsingPropositions 2.&nd2.9repeatedly, for the standard tabldduinstead ofA
and for the elemergc MDzp=1 ¢ C(q) instead ofzwherei = 1,...,l, one shows that
the element of the algebtd ., on the right hand side o#(9) equals the product

«— 1,7 . 26 (A)T-1 -1
zZ7wTi - Tigm-1 — QT T _
-FmF4. (4.10)
—1,, — g2c (A
i1 27w — gD
The ordered product of the factors ¥k {0 correspondingto =1, ..., 1 can be rewritten
asT,, multiplied on the right by the productovee1, ..., 1 of

[T e Tm™

-1 26 (AT -1 -1+-1 -1
7w — g2l )Ti+m—1"'Ti T T

< J1 T Tigm-1)
k=1,....i—1
= TmetTmeae [] T Toam) ™
k=1,...,i—1

-1 26 (M) T -1 —1r-1 -1
L2 w—a T T Tima

71w — g2a ()

T (e Tomd Ta Toha
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We can now complete the proof Bfoposition 4.y using the definitions oX; € H; and

Xm+i € Hi+m, along with the relations forall = 1,..., m
[T T Tem™ T35 [ TG Tam=T71 O
k=1,...,i—1 k=1,...,i—1

It follows from the relation 4.9) that the right multiplication inH,+m by the element
Sim (z, w) determines a linear operatbr W — W',

Proposition 4.2. The operator I: W — W is an I:|]+m-intertwiner.

Proof. The subalgebrdHdj 1, C |:|\|+m acts onW, W’ via left multiplication; so the
operatorl commutes with this action by definition. The left id&lin Hi+nm is generated
by the element, Fy ; therefore it suffices to check that

Y - 1(FyFm) = 1(Y; - FqFy)  foreach i=1,...,1+m.
Firstly, consider the case whereg |. In this case by usingi(3), (4.4) and @.9)
Yi - 1(FAFM) = Yi - (Syy(z w)FMFA) = Sy (Z w)
x (Ymsi - FuFa) = 2?4 VS) 2 w)FmFa = 1(Yi - FaFw).

Here we also used the defining relatiods4{ and (1.5 of the algebraH| m; for more
details of this argument se&§, Section 2]. The cade> | can be considered similarly.(]

Consider the operator of the right multiplicationkti;m by the element
Ram (z. w) = Sam (2, w) T, L,

Because of the relationd.(/) and @.9), this operator preserves the subsp@te- Hm.
Restriction of this operator to the subspagewill be denoted byJ. The subalgebra
Him C H|+m acts on theH|+m -module W via left multiplication, so the operator

J : W — W commutes with this action. Now regakl as aH;1m-module only. Let

v be any partition of + m such that theH, . .n,-moduleW has exactly one irreducible
component equivalent td,. The operatod preserves this component, and acts thereon as
multiplication by a certain element @f(q). Denote this element by, (z, w); it depends

on the parameters andw as a rational function of~1w, and does not depend on the
choice of the tableauXd andM of the given shapes and . In this section, we compute
the eigenvalues, (z, w) of J for certain partitions.

Choose any sequencg. . ., iq € {1, 2, ...} of pairwise distinct indices; this sequence
needs not to be increasing. Recall thaafs the number of non-zero parts in the partitian
Consider the partitiop as an infinite sequence with finitely many non-zero terms. Define
an infinite sequence = (&1, &2, ...) by

&ia = Mia T Aas a=1...,1;
& = ui, i;ﬁil,...,i)\s{.

Suppose we get the inequalities > & > --- so thaté is a partition ofl + m. Then
the Hi-m-moduleW has exactly one irreducible component equivaleioT his follows
from the Littlewood—Richardson ruldB, Section 1.9]. We will compute the eigenvalue
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re(z, w) by applying the operatad to a certain vector in that irreducible component. For
the purposes of this computation, assume tha the column tableau®; the tableauM
will remain arbitrary.

The image of the action of the elemefy; F 4- in the irreducibleH| m-moduleV; is a
one-dimensional subspace. Let us describe this subspace explicitly. hetthe tableau
of shapez, defined as follows. Firstly, put(c, d) = M(c, d) for all nodes(c, d) of the
Young diagram ofx. Further, for any positive integgrconsider all those parts afwhich
are equal tg . These are the paris where the index belongs to the sequence

Myt LA +2.0,45. (4.11)

The length\* — ATH of this sequence is the multiplicity of the pgrin the partition; let
us denote this multiplicity by for short. Rearrange the sequendéel() to the sequence
ai, ..., a8y such that the inequalitigg, < --- < ia, hold. Then for every terma = ay of
the rearranged sequence put

E(ia,uia+b)=m+A°(A]-‘+l+k, b) whereb=1,..., Aa.
Proposition 4.3. The tablealu= is standard.

Proof. For any possible integecsandd, the condition='(c, d) < Z(c, d + 1) is satisfied
by definition, because the tablead® and M are standard. For any node, d) of the
Young diagram ofu, the condition=(c,d) < =(c + 1, d) is also satisfied by definition.
Now suppose there are two different numblesndk’ greater tharm that appear in the
same column of the tableali. Leti andi’ be the corresponding rows &f; assume that
i <i’.Herei =i andi’ =iy for certain indicesa, 8’ € {1,...,A]}. If Aa > Ay then
k < k' because the tablealf is standard. Here we also use the definition=ofNow
suppose thata < Ay. Thenui > wj/, because the assumptibr: i’ implies

i +2ra = pir + Aar-

Letb andb’ be the columns of the tablealt corresponding to its entriés— m andk’ —m.
Sincek andk’” appear in the same column of the tabléawnhile u; > ui, we haveb < b'.
Thenk < K’ by the definition ofA°. O

Using Proposition 4.3consider the vectoG = € V; as defined irSection 3 Take the
elementQ, € H as defined in3.6). Denote byQ, the image of this element under the
embeddingH| — Hitm: Ti = Titm.

Proposition 4.4. The image of the_action of the elemeny Fio € Hi;m on the Hym-
module ¥ is spanned by the vect®, G=.

Proof. PutV = FyVe. The subspac¥ C V; is spanned by all those vectdgs: where,

for every node(c, d) of the Young diagram of., the standard tableal of shapeg
satisfies the conditiox (c,d) = M(c, d). The action of the elemerft,. € Hj.m on
V; preserves the subspadec Vi, and the imagé 4.V is one-dimensional. Moreover,
we haveF 4.V = Q,V; see p, Section 1].

It now remains to check th&, Gs # 0. Due to our choice of the tabled) it suffices
to consider the case where each non-zero pait efuals 1. In this case, the element
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Q, € H is central. On the other hand, any vectonbhas the formC Gz whereC is
the image of some eleme@t € H; under the embedding; — Hiizm : Ti = Titm. SO

Q,V # {0} impliesQ, Gz # 0. O
Theorem 4.5. We have the equality

re(z, w) = l_[

(a,b)
where the product is taken over all nodes b) of the Young diagrar2.5).

Z_lu)__q_zuﬁa+X§4a—b+D

Z—lw _ q2b—2a

Proof. First consider the case where each non-zero partegfuals 1. In this casel°® is
the only one standard tableau of shapend we have; (4°) = 1—i foranyi =1,...,1.
The product displayed iRroposition 4.Xhen equals

= ozl AXXE
I1 g LM e (4.12)
i=1,....|

We will prove by induction oth = 1, 2, . .. that the product4.12 equals

[T

i=1,..l

The elementXmi1, ..., Xi+m € Hi+m pairwise commute; hence the ordering of the
factors corresponding o= 1, ..., | in the product4.13 is irrelevant.Theorem 4.5will
then follow in our special case. Indeed, &t be the minimal central idempotent in the
algebraH,+m corresponding to the partitiof. Using Proposition 4.1together with the
equality between4.12 and @.13, we get

J(ZeFpeFm) = Ze Sy (2, w)Fm Fpe T,

z 1w — g2 2

-1 2-2ly—1
Z"w—( Xiim _
7T — g2 - FmFgpeo. (4.13)

-1 22y 1
Z7w =77 Xy = —-1
=T.Z- [] T FmFAoT;
i=1,...
-1 22y 1
Z w—{(q Xi+m
=Tz 1—[ 1 2-2i
i1y 2w~
-1 2-2y—1
Z 7w —q XJ- 1
x [1 7Ty — q2-2-26; (W) FmFae T

~ly — q2-2-204m(5)

71w — 22
-1 2-21-2¢; (%)
Zw—{( ! = -1
x H 7w — g2 225 (W) FmFae T,

7w — qPa—2 -2 ) i
= ]I 7 ly—qr @ ZgFpoFm = re(z, w)ZgFpo Fu, (4.14)
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asTheorem 4.%®laims. Here we used the counterparts of the relatiéri} for the standard
tableauM and = instead of4; cf. our proof ofCorollary 3.6

Now let us prove the equality betweeh12 and @.13. We haveX; = 1 by definition;
hence that equality is obvious whén= 1. Suppose thdt > 1. The numerator of the
fraction in @.12 corresponding to the indéx= 1 equals

— -1 — — —1+-1 _
7w - X =z Tt T T (4.15)

In our special case, we have the relations in the algelpra,
TmsiFgo = —q*Fpe  for  i=1,...,1 -1
Using these relations along with the equaliyl(H, we obtain

Z'w — X b ) Fae

= (=)' M1 Tigmo1@ w — P2 X Fe. (4.16)
Further, for anyi = 2,...,| the elementdly, ..., Tj_2 commute with the Murphy

elementX; € H,. So the elementdm,1, . .., Titm—2 commute withX; € Hm; they also
commute withX;j_m. Therefore foi = 2, ..., 1 we have
Xi X Tt - Tigme1
= Tms1- - Tigm—2Xi Xi}lmTier—l “Tigm-1= Tmt1- - Tigm-2
X Tigm-1--- Tm+lTn71 o 'T1_1T1_1 o 'Ti__,_%n_lTHm—lTi 4m - Tipm-1

= Tmer - TigmotTiem—z - Tnga T T T Tk,

= Tt Tieme1 Xica X b
Therefore by using the equalitg.(L§, the product4.12 equals
= 7 lw— g AX XL

-1 i+m—-1
— Toiq e Tiam_1 - | | :
=)' " Tma l+m-1 AL 7Ly — 22

-1 2-2y—1
Z77w—qg X - B
x T P Fe = (=0 T Tamog

z7lw—-1
= zw—q
< 1
i=2,..,1

2-21y—1 -1 2-2y—1
Xi fm-1 ' zZ w—{(q X FmEge

zlw—qgz2 z7lw -1

— 1 2-2y—1

_ Zw—q -
=0 a1 Tigmer [ p—— q2_2'i+m -FmFpe. (4.17)
=1

Here we used the equality between the counterparts of the produt® gnd @.13 for
| — 1 instead ofl and for g’z 1w instead of z-lw, which we have by the
inductive assumption. We also used commutativity of the Murphy eleent with
Tm+1, ..., ll+m—2. TO establish the equality between the produetsl? and @.13
themselves, it now remains to observe that the productiowet, ..., in the line @.17)

is symmetric inXm41, . .., Xj+m and therefore commutes withy1, . . ., Tiam—1; cf. the
remark after our proof o€orollary 3.6
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Thus we have prove@iheorem 4.5vhen each non-zero part afis 1. Now letx be an
arbitrary partition ol . Consider the eleme®, G= € Him. Due toProposition 4.4this
element is divisible on the left blgy F4-. The element

Am(QGE)FMF AT, = eim(G2) Qu T, 1F 4 Fum (4.18)

is non-zero, and belongs to the left id&dl C H,1m. Further, the elemen#(18 belongs
to the irreducible component of thém-moduleW equivalent toVe. Thus @.18 is an
eigenvector of the operatdr: W — W with the eigenvaluez (z, w). On other hand, due
to Proposition 4.1he image of4.18 under the operatal equals

= 27w - gD X,

— 1+m
o1+m(G=)Q; - l_[ zTw — q2a - FuFae
i=1,..I
—1,, _ ~4Gi(A)y—1
_ 7w — qHYX =
= a12m(G=)0; - l_[ T (Al)+m - FmFe. (4.19)

i=1,..l

To obtain the latter equality we used the relatioBsly, the divisibility of the element
a1+m(G=)Q, on the right byE 4., and the commutativity of the elemeit with the

Murphy elementsXiymy1, ..., Xi+m foranyi = 1,...,1. HereE 4o denotes the image
of the elemenE& 4o € H, under the embeddingly — Hi1m : Tj = Tj1m. The factors
in the product4.19 corresponding to the indicés= 1, ...,| pairwise commute; hence

their ordering is irrelevant. }
Due to Theorem 3.3the vectorQ, Gz € Vg is a linear combination of the vectors

Q= where = is any standard tableau of shapgobtained from= by a permutation

t™lo7 € Symsuchthat € S+ € § € S4+m. Now the expressior(19 for the J-image

of (4.18 shows that the eigenvalug(z, w) is multiplicative relative to the columns of the
tableau°. That is, by usingrheorem 4.5consecutively for the partitions off, A%, . ..
with each non-zero part being equal to 1, we get

7 w _ q—2(uia+)\§—ia—b+l)

re(z, w) = ]—[ ]—[ o (4.20)
b=1la=1 w—a
as required. According tal(19, the numerator in4.20 is obtained from the numerator in
(4.19 by changind, ui, to A}, ui, + b — 1 respectively, and by increasing the exponential
by 4(b — 1) = 4cc(A°) wherek = A°(1, b). O

Our next theorem is essentially a reformulatiorifbeorem 4.5Choose any sequence
jt. .-, € {1,2,...} of pairwise distinct indices; this sequence needs not to be
increasing. Consider the partitigit conjugate tqu. Define a sequencg = (3, 13, ...)
by

nTb:/“LTb—i_)\‘*s b:17'-'1)"1;
nTZMJ’ j;éjlv‘”’i)»l
Suppose we have the inequalitigs > »3 > ..., so thatp* is a partition ofl + m.

Then definen as the partition conjugate tg*. The Hj_n-moduleW has exactly one
irreducible component equivalent ¥,; this follows from the Littlewood—Richardson
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rule [13, Section 1.9]. Consider the corresponding eigenvaly@, w) of the operator
J:W-—->W.
Theorem 4.6. We have the equality

.
1y  qR0atu], —asibtD

z
@ w =[] 71y — g2
@b

where the product is taken over all nodgs b) of the Young diagrar®.5).

Proof. For any positive integet, the C(q)-algebraH, may be also regarded as an
algebra over the fielldd c C(q). The assignment§ — g~ ' andT, — —T, for

i =1,...,1 — 1 determine an involutive automorphism bff as aC-algebra. Denote
by B this automorphism. For the minimal central idempot&nof the semisimplé€(q)-
algebraH, we haveg|(Z,) = Z,x; this can be proved by specializirtgy atq = 1 to
the symmetric group rin@€S. Further, for any standard tableduof shapeh, define the
standard tablead* of shaper* by settingA* (b, a) = A(a, b) for all nodes(a, b) of the
Young diagram2.5). Then

Bi(Fa) = (—1)'=D/2F ),

Indeed, the counterparts of the equalitiggl) for F,+ instead ofF 4 determine the element
F+ € H) uniquely up to a factor fron€(q), while ¢; (4*) = —¢; (A) andB, (X;) = X; for
i =1,...,1. We also us@roposition 2.2nd the equality

Ai(To) = (—1)!(~D/2T,,

Now consider the automorphisn,m of theC-algebraH,+m. Both sides of the equality
to be proved inTheorem 4.6depend orz, w as rational functions of~1w. Hence it
suffices to prove that equality only whetn, m(z-1w) = z-1w. Our argument will be
somewhat simpler then. By using.8), we then get

Bim(Sam (2, w) = (=DM Spey (2, w).
Note that we also havg m(T, %) = (—1)'™T~L. For any standard tableaukandM of
shapes. andu respectively, by definition we have the equality

Z,FAFMSam @z, w)T, L =1, (2, w)Z,F 4 Fu.
By applying the automorphisi)_m to both sides of this equality, we get

Zy Fpe P Spems (2, w) T, = Biim(ry (z, w) Z, Fgx P,
Hence by usingTheorem 4.5for the partitionsi*, u* and n* instead ofi, u and &
respectively, we get
71w — q—Z(MTa+Ab—Ja—b+l)

71y — q2-2a

Bam(tyzw) =[]
(a,b)

where the product is taken over all nodasb) of the Young diagram af*. Equivalently,
this product may be also taken over all nodigsa) of the Young diagram of. Exchanging
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the indicesa andb in the last displayed equality, we then obtdineorem 4.&lue to the
involutivity of the mapping8j+m. O

Let us now deriveCorollary 1.1as stated in the beginning of this article. We will use
Theorems 4.@nd4.6in the simplest situation wheig = a for everya = 1,..., ] and
jp=j foreveryb =1, ..., 1. Then we have

E=x+pu and =" +uH*
By Theorems 4.@nd4.6, the ratiorg (z, w)/ry,(z, w) = hy,(z, w) equals the product of
the fractions
771y — q2Watri-a=b+d
71w — q2(ka+uk*,—a—b+1)

(4.21)

taken over all node&, b) of the Young diagram2.5) of A. Consider those nodes &.)
which do not belong to the Young diagranyoafThose nodes form trekew Young diagram

{@b)eZ?|1<a, pa<b< i) (4.22)
To obtainCorollary 1.1 it now suffices to prove the following:

Proposition 4.7. The product of the fraction@.21) over all the nodesa, b) of the skew
Young diagran{4.22 equalsl.

Proof. For any integec, let us write(c) instead ofz~1w — g2 for short. We will proceed
by induction on the number of nodes in the skew Young diagré&u@?2. When the set
(4.22) is empty, there is nothing to prove. Lét j) be any node 0f4.22 such that by
removing it from @.5 we again obtain a Young diagram. Thgn= j and\* = i. By
applying the inductive assumption to this Young diagram instea#.6f, (ve have to show
that the product

(=i —1) ﬁ (@+j—pa—i—1

(uj—1+1) (@+]j—pa—i)

e R Rl

(J+ui—i—b+1)

a=pt+1

; b=pi+1

equals 1. Denote this product lpy Note that herey; < Aj andwj!‘ < )GJ!‘.

Suppose there is a node d) in (4.29 with uj < d < Aj andu® < ¢ < A* such that
by adding this node to the Young diagramiofive again obtain a Young diagram. Then
we haveuc = d — 1 andu = ¢ — 1. The counterpart of the produptfor the last Young
diagram, instead of that ¢f, equals 1 by the inductive assumption. The equadity: 1
then follows, by using the identity

(j+c—i—d-1(j+c—i—-d+1)
(j+c—i—d) (j+c—i—d)
(j+c—i—d) (j+c—i—d
- - - - =1
(j+c—i—d+1{(j+c—i—-d-1)

It remains to consider the case where there is no tad® in (4.22 with the properties
listed above. Thenwe hayg =i —1forallb=puj +1,...,j —landuy = j — 1 for
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alla= “]’k +1,...,i —1. The producp then equals

(j—pi—-1 (©  (wj-i+]
(Wwi—i+0(-m-21 (O

Finally, let us show how the formula3(5 can be derived fronTheorem 4.5 The
elementh; (q) € C(qg) on the left hand side of3(5 will be determined by the relation
Efl = h;(Q)E4 in Hj, where is any standard tableau of shapeBelow we actually
prove another formula fdm, (q) which is equivalent to3.5).

Corollary 4.8. We have the equality

1_
@ =[] —
(@b

—2(Aat+rf—a—b+l)

il q_2 . q)\‘i()\i—l)+)»§()\§—l)+w (423)

where the product is taken over all nodgs b) of the Young diagrar(®.5).

Proof. We will use induction on.1, the longest part of the partition First, suppose that
A1 = 1. Then each non-zero partoequals 1, and there is only one standard tabléat
shapeh. In this case, let us writky (q) andE, instead oh;, (q) andE 4 respectively. Using
(2.1) andTheorem 2.2

g =] (1 + 950 ) 7

'_1_[ AR TR B
(D)

where the pairs(i, j) with 1 < i < | < | are ordered lexicographically. By

Proposition 2.5we haveTcE; = —q~1E, for eachindekx=1,...,1 — 1. So

—1 | -2k

R R E=
@) k=1

Thus we now have the induction base. To make the induction step, supposé 23ais(

true for some partitiork of I. Take any positive integan such thatm < Aj for every

b=1,..., 1. Let us show that then the counterpart of the equadit?3 is true for the

partition ofl + m

9:()\.1+1,...,)\,m+1,)\,m+1,)\,m+2,...).

Choose any standard tableauof shapei. Putp = (1,...,1,0,0,...) so that
6 = A+ u. In this case, there is only one standard tabléawf shapeu. Let © be

the unique standard tableau of sh@pegreeing with/ in the entries 1.. ., |; the numbers
[+1,...,1+mthen appearin the columin + 1 of the tableaw®. Consider the eigenvalue
ro(z, w) of the operatod. We have

EoFAFMSAM(Z, w) =19(z, W) EgFAFMT;. (4.24)

By using Theorem 2.2and its counterpart for the tablea instead of/, the element
Fo € Hi1m is divisible on the left by the elemeRt,. Therefore the elemeiiig € Hi+m
is divisible on the right by the elemeit,. Similarly, Eo is divisible on the right by the
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imageEpy of the elemenEy € Hp under the embeddingly — Hiym : T = Titm.
So the right hand side ofl(24 equals

h. (@hm(@)ry(z, w)Fe.

But, by again usingheorem 2.2nd its counterpart for the table&uinstead of4, the left
hand side 0f4.24 takes az = 1 andw = q?1 the value

EoFo =hyg(@)Fe.
Hence the equality4(24) of rational functions ire andw implies that

ho (@) = hx (@hm(Q)ra (1, g*4). (4.25)
The factorrg (1, g21) in (4.29 can be computed by usintheorem 4.5vhenia = a
foreacha = 1,..., 3. The rational functioms (z, w) of zandw can then be written as
the productoveb = 1, ..., A1 of the functions
“1, _ q2@tb—ai-2) *b -1 2(@a+b-ii-1)
a=1 a=m+1

After changing the running indexto A —a+1 in both denominators if26), the product
overa=m+1,..., A} in (4.2 cancels. Therefore

q2@tb—i-2)

m
7 lw —
rozw) =[] H b D

a=1 b= 1

Using @.25 together with the last expression for the functig(z, w) we get

m q—2(xl+xg—a—b+2)
ho(@) = hi.(@hm(@) ] H {ZT-abTD

a—lbl
=[]

1_q—2(ec+ed c—d+1)
_q-2
(c.d) 1-q

Qi O+ 05 D

where(c, d) is ranging over all nodes of the Young diagram of the partifiodere we used
the expression fonm(q) provided by the induction base, and the formdl&@ for h; (q)
which is true by the inductive assumption. Thus we have made the induction $tep.

Remark. Corollary 1.1shows that théd; . ,-moduleW is reducible, if

1 ~2(pa+rf—a—b+1) 1

*
Z Tw= q or 7z w = qz()\a"rllb—a—b-‘rl)

for some node(a, b) in the intersection of the Young diagrams afand u. The
irreducibility criterion for the Hj.m-module W was given in L0]. That is, the A m-
moduleW is reducible if and only iz~1w € g2 for some finite subse§ c Z explicitly
described in11]. It would be interesting to point out for eagh'w € q2° a partitionv of

| +m, such thatV as theH,  m-module has exactly one irreducible component equivalent
to V,, and that the rational function valug, , (z, w)/r,(z, w) is either 0 orco. O
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