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1. The purpose of this paper is to demonstrate the geometrical (and 
consequently topological) approach to global problems in linear differential 
equations by solving two problems proposed by J. M. Dolan in [2]. It was 
used in [4] for linear differential equations of the 2nd order, and in [5 and 61 
for linear differential equations of the nth order. The approach makes 
possible to see globally the whole situation in behavior of solutions. 

Consider 

L(y) z ym + PZY” + P,Y’ + PoY = 0 

and its formal adjoint 

(1) 

L*(z) = ((2’ - pg) + p,z)’ - p&.2 = 0, cl*) 

both on [a, b), b < CO, pi E CO[a, b) for i = 1, 2, 3, a being a real number. 
It follows from the general theory [6] that for oscillation problems there 
is no essential, whether b < 00 or b = cc. 

Following the definitions in [2], a nontrivial solution of (1) (or (1 *)) is 
said to be oscillatory if it has infinitely many zeros on [a, 6); otherwise it is 
nonoscillatory. Let Y(Y*) denote the three-dimensional real vector space 
of solutions of (1) ((l*)), Y;(Y;*) subspace of 9’(9’*). 

Y;(Y;*) is called (i) nonoscillatory, if every nontrivial solution of Y;(Y;*) 
is nonoscillatory; (ii) weakly oscillatory, if yl(Yi*) has both oscillatory and 
nonoscillatory nontrivial solutions; (iii) strongly oscillatory, if every nontrivial 
solution of (YIYr*) is oscillatory; (iv) oscillatory, if (ii) or (iii) holds. 

Equation (l)(( 1 *)) is called nonoscillatory, weakly oscillatory, strongly 
oscillatory, or oscillatory, according to .9’(9’*). 

The negative answer to the first proposed problem is given by proving: 

THEOREM 1. There does not exist a linear differential equation (1) with 
the property that every two-dimensional subspuce of its solution space is weakly 
oscillatory. 
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The affirmative answer to the second problem is given by constructing 
an example of a strongly oscillatory equation (1) whose adjoint (I *) is also 
strongly oscillatory. 

2. Here we introduce only some necessary notions and relations from [6]. 
Let E, denote an Euclidcan real n-dimensional vector space with the norm 
j x 1 (~~=, xi2)‘p of its vectors x =: (xi ,..., x,). For c = (q ,..., c,) E E,, , 
c f 0, H(c) = {x E E, ; c . x = xy=, ciq .= 0} is a hyperplane passing 
OEE,. Hyperplanes H(q),..., H(q) arc called independent if the rank of 
the matrix (ci ,..., cj) is j. 

Let Cj[c, d) denote the set of all functions having continuous derivatives 
up to and including the order j on [c, d). A curve u(s) :--: (z+(s),..., U,,(S)), 
s E [c, d), is of the class Cj[c, d), if ui E Cj[c, d) for i = I ,..., n. W[U](S) 

denotes the Wronski determinant det(u(s), u’(s),..., u(“- i)(s)). 

In [6] Theorem 1 was proved: 

To every L,(y) 7 0 on [a, 6) there correspond a curve u E CY[c, d), 
a mapping s: [a, b) -+ [c, d), and a linear correspondence h between all 
solutions of L,(y) : 0 and all hyperplanes H(c) E E, such that I u(s); I, 
ds/dt > 0. To linearly independent solutions y, and y2 there correspond 
linearly independent hypcrplancs h(y,) and h( y2). Moreover, t, E [a, h) is a 
K (0 :<.I k ,.:I n - I) multiple zero of a solution y iff the curve u has a contact 
of the (k - I)st order with h(y) at s(t,) E [c, d). 

And property 8 from [6] states: 

If a curve u(s) E C?[c, d) corresponds to L,(y) = 0 on [a, b) in the above 
sense, then the normalized vector product 

u*(s) = u(s) x u’(s) x ... x u’“-2’(s),l u(s) x u’(s) x ... x dn-ys); 

on [c, d) corresponds to L*(y) =: 0 on [c, d), adjoint to L(y) = 0 on [a, b). 
From this moment, we restrict ourselves to n :- 3. However, since no 

other properties such as the compactness of the unit sphcrc S, i C E, 
and its main circles, the continuity of u(s) and the disconnectness of any 
two open opposite half-spaces E, / and L?; are used, all notions and theorems 
in the next paragraphs can be generalized for n > 2. 

3. With respect to the results mentioned in Par. 2 and applied for n = 3, 
Theorem 1 will be proved iff we show the following. 

THEOREM 2. There is no curoe u EC~[C, d), W[u](s) #- 0, 1 u(s)1 =-- I 
(i.e. u C S, C E3) with the property that for ezery point p E S, there exist 
two planes passing the origin (or twv muin circles) containing p, and one of 
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them intersects u (on [c, d)) only in a finite number of points whereas the second 
plane intersects u in infinite number of points. 

ib’ote. In fact, we shall prove Theorem 2 under weaker assumptions, 
namely not assuming W[u](s) + 0 and supposing u E C”[c, d) instead of 
u E C3[c, d). 

It is not essential if d = 00 or d < KI. 

4. Topology on S, is the topology of E3 induced by the norm 1 x I. 
According to Par. 2, H(c) denotes a plane in ,?Z3 passing the origin. Let 
C(c) ldt S, n H(c) d enote a main circle. The angle +(c, , c,), 

is defined as 

Ic1l.I c-2 j # 0, 

arccos(cl . C-J/( i cl I . I c2 I) E LO, 4. 

The distance 6(H(c,), H(c2)) of two planes H(c,), H(c2) (or ~(C(C,), C(C,)) 

of two main circles) is defined as the angle Q(c, , c2). 

Evidently, 0 < 6(H(c,), H(c,)) < r. Define: 

E+(c) ::= {x E E3 ; x . c > 0}, E+(c) == E+(c) u H(c), 

E..(c) =I- {x E E3 ; x . c < 0}, E(c) 2: E-(c) u ff(c), 

S+(c) A- E+(c) n s, ) S+(c) == S+(c) u C(c), 

S-(C) -.- E-(C) n S, , S-(c) = s .(c) u C(c). 

For a non-empty set MC S, define its circular radius r(M) as 

Evidently r(M) = 0 iff M is a point. Define r(a, a) xdr{x E S, ; +(a, x) < a}. 
Since supXGM +f(x, c), c E Sa , is a continuous function of c defined on the 
compact set S, , we have for every nonempty MC S, such c,, E S, that 
SUP,,~ 4(x, c,,) = r(M) (hence +(x, c,,) < r(M) for all x E M). This ca 
is uniquely determined, since for two different c,,*, c$* (with the same r(M)), 
we get the contradiction with the definition of r(M). 

Let M be a nonempty set, MC s+(c,) for some c,, . Define the angular 
diameter p of M as 

p(M) !f inf@(H(c,), H(c2)); M C s+(q) n S+(G), cl E 4 , c2 E 41. 

Evidently p(M) = 0 iff M is a subset of a main hemicircle on S, (i.e., of 
the length <n). 
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For u E CO[c, d), u C S, , define its limit set Q(u) as 

-Q(u) 2 n b(s); s E [4 41, 
ts1c.d) 

where ri/r denotes the closure of M. Each p E Q(u) is called a limit point 
of u. Compare similar notions in dynamical systems in [3] or [7J Remember 
that our curve u may intersect itself even infinitely many times. However, 
it holds for the following. 

LEMMA 1. For each u ECO[C, d), c < d < co, u C S, , the limit set 
Q(u) is nonempty, connected, and closed. 

Proof. It is essentially the same as in [3, p. 358-3621 due to the com- 
pactness of S, . The self-intersections of u do not play any role here. 

LEMMA 2. Let u E CO[c, d), u C S, . For every p E S, , let there exist two 
planes H&c) and l&c’), both containing p, such that {s E [c, d); u(s) E H&C)} 
is finite and {s E [c, d); u(s) E H(,c’)} is infinite. Then p(Q(u)) = 0. 

Note. The assumptions of Theorem 2 are stronger than that of Lemma 2. 

Proof. Let p E S, . Since {s E [c, d); u(s) E H(,c)} is finite, there exists ,s 
such that either {u(s); s E [OS, d)} C S+(,c), or {u(s); s E L.Y, d)} C S-(,c). 
Without loss of generality, let pc be always oriented such that 

144; s E LA 4 C S.+ (4 for every p E S, . 

Hence we have Q(u) C S&c) for every p E S, . 

(i) If r@(u)) == 0, then .Q(u) is a point and &2(u)) = 0. 

(ii) Hence let r(Q(u)) = B > 0 and p(Q(u)) ~7 A. Suppose A > 0. It 
is possible to choose e such that r(e, B) 3 R(u), Q(u) C s&c). Hence 
Q(u) C (y(e, B) n S+(,c)). Take arbitrarily f E int(r(a, B) n S+(,c)). If 
C(rc) n (int r(e, B) n C(,c)) + o or if S&c) 3 (de, B) n C(,c)), then 
there exists a y(e’, B’) r> Q(u) with B’ < B, that contradicts to r(Q(u)) = B. 
Hence we get: 

Q(u) C Me, B) n S+(,c)), B < 42, and for every p E int(y(e, B) n S&c)) 
the hemisphere S+(,c) contains (de, B) n C(,c)). Since p can be chosen 
arbitrarily close to r(e, B) n C(,c), and Q(u) C (s+Lc) n s+dc) n r(e, 4) 
where B > 0, the value p((S+(,c) n s+(,,c)) = Q(H(,c), H&c)) can be 
arbitrarily small. Hence p(Q(u)) = 0. 
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LEMMA 3. Under the assumptiotls of Lemma 2, Q(u) is a closed arc of a 
main circle of S, of the length 2+2(u)) < T, i.e. either 

lo Q(u) is a point (r&?(u)) = 0); or 
20 Q(u) is a closed arc of the positive length <P; or 
30 Q(u) is a closed hemicircle (r(fTI(u)) = 42). 

Proof. Lemma 3 is a direct consequence of Lemmas 1 and 2. 

5. Now we prove Theorem 2 by showing that each of the cases 10-30 
leads to a contradiction. 

ad lo. Let p = a(u) and q E C&c), q # p. Consider a plane Q, 0 E Q, 
SEQ. 

If p g Q, then {s E [c, d); u(s) EQ} is finite, since Q n Q(u) = 0. 
If p EQ, then Q = C&c) by the choice of q, and {s E [c, d); u(s) EQ} is 

finite by the definition of ,,c. 
Hence we have a contradiction with the assumption concerning planes 

through the point q. 
ad 20. Let Q(u) C C(k), h be its length (0 < h < rr), p and q its end- 

points. 

a. Let {s E [c, d); u(s) E C(k)} be infinite. Choose w E Q(u), w # p, 
w # q. Let Q denote a plane, Q 3 w, Q 3 0, Q 5 p. Then {s E [c, d); u(s) E Q} 
is infinite, since p E Q(u), q E a(u), and their suitable neighborhoods N(p) 
and N(q) lie on opposite sides of Q, and hence u(s) goes infinitely many 
times from N(p) to N(q) and back. 

We have seen that every plane containing w and 0 (i.e. containing also 
p and hence coinciding with C(k), or not containing p and being denoted 
by Q), has an infinite number of intersections with u(s); that is a contradiction. 

b. Let {s E [c, d); u(s) E C(k)} be finite. Choose w E C(k), w E Q(u), 
{(w, x) < 7r for each x E Q(u). Every plane containing the origin and w 
has only a finite number of intersections with u since either it coincides 
with C(k), or it does not contain any point from n(u). But this is a con- 
tradiction, since the assumptions are not satisfied at w. 

ad 30. Let Q(u) C C(k) be a hcmicircle, p and q its endpoints. Consider 
C&c’). Since G(u) is a hemicircle, we have also q E C&c’). Let w E C(,c’), 
w z p, w f q. If Q is a plane, Q 3 0, Q 3 w, Q 5 p, then Q intersects u(s) 
infinitely many times, since suitable neighborhoods of p and q lie on opposite 
hemispheres with respect to Q n S, . We use the same argument as in 2a. 
We see that every plane containing 0 and w either coincides with C&c’) 
or is denoted by Q. However, in both cases, it has infinitely many intersections 
with u(s), which contradicts the existence of C(,c). 

Hence Theorem 2 has been proved. 
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6. Figures 1 and 2. 

FIGURE I 

FIGURE 2 

If we arc not satisfied with the figures showing an approximate behavior 
of u and u*, both intersected by every plane (3 0) infinitely many times 
(accordingly to the results mentioned in Par. 2), we may follow the next 
lines (see [6]). 

Let R > T > 0, sc[O, co), 

ds) = YS + R sin S, w(s) = Y + Rcoss 
F&) = cos I&), v2(s) = sin q(s), ?&13(s) = w(s). 
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Then v := (zlr , ws , ws) is a curve lying on the cylinder zir2 + v22 = 1 in E3 , 
v E C[O, co), being intersected infinitely many times by every plane in E3 
containing the origin. Moreover, 

W[v](s) = --p”w’ + /l’WR -t- cp’3 w = -R(R + Y toss) + (Y + Rcoss)4 

that tends to - R2 + R4 cos4 s = - R*( 1 - R2 cos4 s) for Y - 0, . For every 
R E (0, 1) there exists T > 0 such that W[v](s) -/- 0 on [0, co). Hence for 
those R and Y, the curve u(s) =df v(s)/1 v(s)1 E S, , u EC[O, co), is inter- 
sected infinitely many times by every plane passing the origin, and w[u](s) = 

Wvl(s)il +)I3 # 0 on [O, a). 
Kow u*(s) 7: u(s) x u’(s) - (v(s) x v’(s))/1 v(s),~, where 

v(s) X v’(s) = (cos p, sin v, w) X (-sin v . v’, cos v . v’, w’) 

= (sin v . w’ - w . cos v . IJJ’, --w . sin y . v’ - W’ . cos v, 9’) 

for p = rs + R sin s, w =.: Y + R cos s, ’ = djds. 
Since v E C”[O, co), also u* EC”[O, co). From W[u] $; 0 we have 

W[u*] # 0. For c = (cr , cs , cs) + 0, 

c . (v(s) x v’(s)) 

= cI[-R sin s . sin(rs + R sin s) - (Y + R cos s)~ . cos(rs + R sin s)] 

+ c2[-(Y + R cos s)~ . sin(rs + R sin s) - R sin s . cos(rs + R sin s)] 

+ c3(y + R cos s). 

Let cos s,, .= -r/R, s,, E [0, rr], sk = s0 + 2Ka. Then 

c . (v(s) x v’(s)) ,sx‘I. =- -c,R sin sk . sin(rs, + R sin s,J 

-c,R sin sk . COS(YS~ T R sin sk) 

z. - R sin s, . d, . sin(rs, $ R sin s, + d2) 

for suitable constants dl and d2 . 
Hence for arbitrary R, there always exists (a sufficiently small) Y > 0 

such that for every d, and d, the last expression is either 0 for every k, or 
it changes its sign in an infinite subsequence {sk,}~~, , kj + co for i + co. 
(This subsequence of {sk} may depend on dl and d, .) 

In other words, {s E [0, co); c . u*(s) = 0} is infinite for every c + 0. 
Hence the existence of our u (and u*) established, according to the results 

in [6] mentioned here in Par. 2, the existence of a differential equation (1) 
that together with its adjoint (1 *) are strongly oscillatoric. The coordinates 
of u may be used as linearly independent solutions of (1) when (1) has to be 
written explicitly. 
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Note. After finishing the example, Dr. J. Suchomel has informed me 
about an example of (1) due to Ascoli [1] that also gives the affirmative 
answer to the second problem of J. h1. Dolan. 
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