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Abstract

It is known algebraically that any abelian group is a direct sum of a divisible group and a re
group (see Theorem 21.3 of [L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New
London, 1970]). In this paper, conditions to split off rational parts in homotopy types from a
space are studied in terms of a variant of Hurewicz map, sayρ : [Sn

Q
,X] → Hn(X;Z) and generalised

Gottlieb groups. This yields decomposition theorems on rational homotopy types of Hopf s
T -spaces and Gottlieb spaces, which has been known in various situations, especially for
with finiteness conditions.
 2005 Elsevier B.V. All rights reserved.
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Introduction

The Gottlieb group is introduced by Gottlieb [6,7] and the generalised Gottlieb
introduced by Varadarajan [18]. Dula and Gottlieb obtained a general result on spli
Hopf space off from a fibration as Theorem 1.3 of [5].

In this paper, we work in the category of spaces having homotopy types of CW
plexes with base points and pointed continuous maps. A relationf ∼ g indicates a pointed
homotopy relation of mapsf andg and a relationX � Y indicates a homotopy equiva
lence relation of spacesX andY . We also denote by[X,Y ] the set of pointed homotop
classes of maps fromX to Y .

We adopt some more conventional notations:XQ stands for the rationalisation of a spa
X, K(π,n) for the Eilenberg–Mac Lane space of type(π,n), G(V,X) for the generalised
Gottlieb subset of[V,X] andHn(X) for Hn(X;Z). We introduce a variant of Hurewic
mapρ : [Sn

Q
,X] → Hn(X) by ρ(α) = α∗([Sn]⊗1) for α ∈ [Sn

Q
,X], whereα∗ is the homo-

morphism given byα∗ :Hn(S
n) ⊗ Q = Hn(S

n
Q
) → Hn(X). Our main result is described a

follows:

Theorem 2.2. Let R = ⊕
λ∈Λ Q be aQ-vector space of dimension#Λ � ∞. Let X be

0-connected andR ⊂ ρ(G(Sn
Q
,X)) ⊆ Hn(X), n � 2. ThenX decomposes as

X � Y × K(R,n).

Theorem 2.2 gives unified proof to the splitting phenomena on rationalG-space,
T -space and Hopf space without assuming any finiteness conditions, which are
under various situations by a number of authors: Scheerer [16] obtained decomp
theorems of rational Hopf spaces without assuming the finite type assumptions. Opr
obtained decomposition theorems by using minimal model method in rational hom
theory. Aguadé [2] obtained a decomposition theorems on rationalT -spaces of finite type

1. Preliminaries

We regard the one pnoint unionX ∨ Y of spacesX and Y as a subspaceX × ∗ ∪
∗ × Y of the product spaceX × Y with the inclusion mapj :X ∨ Y → X × Y . For any
collection of a finitely or infinitely many spacesXλ (λ ∈ Λ), we denote thewedge sum(or
one point union) by

∨
λ∈Λ Xλ and thedirect sum(or weak product) by

⊕
λ∈Λ Xλ = {(xλ) ∈∏

λ∈Λ Xλ | xλ = ∗ except for finitely manyλ}. Then we have
∨

λ∈Λ Xλ ⊂ ⊕
λ∈Λ Xλ, where⊕

λ∈Λ Xλ is a dense subset of the product space
∏

λ∈Λ Xλ and has the weak topology wi
respect to finite products ofXλ’s.

Let X∞ be the James reduced product space of a 0-connected spaceX of finite type,
so thatX∞ � Ω(ΣX) by James [10]. ThenX∞ is a nice CW approximation of a spa
ΩΣX to work in the category of spaces having homotopy types of CW complexes.

We apply rationalisation orQ-localisation to any 0-connected nilpotent spacesor any
nilpotent groups(see [4,9] or [13] for the precise definition of the rationalisation of a sp
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or a nilpotent group). The rationalisation�Q :X → XQ, or simplyXQ does exist for such
spacesX such that�Q induces the following isomorphisms:

πn(XQ) ∼= πn(X) ⊗ Q and Hn(XQ) ∼= Hn(X) ⊗ Q

for any integern � 1, whereG ⊗ Q denotes the rationalisation of a nilpotent groupG (cf.
[4,9] or [13]). Moreover the universality of rationalisation yields a bijection

�∗
Q: [XQ, YQ] ∼= [X,YQ]

for any such spacesX andY . The rationalisation enjoys the following fact.

Fact 1.1.

(1) S2m+1
Q

� K(Q,2m + 1) for any integerm � 0.

(2) Ω(S2m+1
Q

) � (ΩS2m+1)Q � K(Q,2m) for any integerm � 1.
(3) (X∞)Q � (XQ)∞ for X a 0-connected nilpotent space of finite type.

Proof. (1) and (2) are well-known. We give here a brief explanation for (3): The sus
sion functorΣ and the loop functorΩ enjoys the propertiesΣ(XQ) � (ΣX)Q for any
0-connected spaceX andΩ(XQ) � (ΩX)Q for any 1-connected spaceX. Then it follows
that(X∞)Q � (Ω(ΣX))Q � Ω(Σ(XQ)) � (XQ)∞. �

We state two propositions to be used in the proof of the main theorem.

Proposition 1.2. Let X be a 0-connected space of finite type andf :X → Y a map. If
f ∈ G(X,Y ), then there is an extensionf :X∞ → Y of f such thatf ∈ G(X∞, Y ).

Proof. We may assume that there is a mapµ :Y ×X → Y such thatµ|Y ×{∗} = 1Y :Y →
Y andµ|{∗} × X = f :X → Y . We putµ1 = µ and, for anyn we define

µn = µ ◦ (µn−1 × 1X) :Y × Xn = (
Y × Xn−1) × X → Y × X → Y

by induction onn. Then we observe thatµn factors throughY × Xn → Y × Xn, where
Xn denotes the set of products of at mostn elements ofX in the James reduced produ
spaceX∞ (cf. James [10]). SinceX∞ has a weak topology with respect toXn, we have
done. �
Proposition 1.3. Let αλ :Xλ → Z be a map for anyλ ∈ Λ. If αλ ∈ G(Xλ,Z) for each
λ ∈ Λ, then the mapα :

∨
λ∈Λ Xλ → Z defined byα|Xλ = αλ :Xλ → Z can be extende

to a mapα :
⊕

λ∈Λ Xλ → Z with α ∈ G(
⊕

λ∈Λ Xλ,Z).

Proof. Since eachXλ has a homotopy type of a CW complex, we may assume that th
a mapµλ :Z×Xλ → Z such thatµλ|{∗}×Xλ = αλ :Xλ → Z andµλ|Z×{∗} = 1Z :Z →
Z for eachλ ∈ Λ. For anyn andλ1, λ2, . . . , λn, we define

µλ ,...,λn = µλn ◦ (µλ ,...,λ × 1Xλ ) :Z × (Xλ × · · · × Xλ × Xλn) → Z
1 1 n−1 n 1 n−1
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by induction onn. For any index setΛ, we assume thatΛ is totally-ordered. Since⊕
λ∈Λ Xλ has a weak topology with respect toXλ1 × · · · × Xλn , λ1, . . . , λn (n � 0), the

collection of mapsµλ1,...,λn defines a pairingµ :Z × (
⊕

λ∈Λ Xλ) → Z with axes(1Z,α)

(cf. [14]). �

2. Proof of the main result

Proposition 2.1. Let P be an idempotent endomorphism ofHn(X), n � 2. Suppose
that R = imP ⊆ Hn(X) is a rational vector space and is inimρ. Then we have map
α :Sn(R) → X andβ :X → K(R,n) such that

β ◦ α ∼ ιnR :Sn(R) → K(R,n), and

P = α∗ ◦ (
ιnR ∗

)−1 ◦ β∗ :Hn(X) → Hn

(
K(R,n)

) ∼=← Hn

(
Sn(R)

) → Hn(X),

whereSn(R) denotes the Moore space of type(R,n) and ιnR corresponds to the identit
element inHom(R,R) = Hom(πn(S

n(R)),πn(K(R,n))) ∼= [Sn(R),K(R,n)].

Proof. Let {ρ(αλ) | λ ∈ Λ} be a basis ofR = imP , and henceR ∼= ⊕
λ∈Λ Q. Since

Sn(R) = ∨
λ∈Λ Sn

Q
, we defineα :Sn(R) → X by its restrictions to all factors:

α|Sn
Q

= αλ :Sn
Q → X.

Sinceα∗ is an isomorphism ontoR ⊆ Hn(X), we have its inverseφ :R → Hn(S
n(R)) so

thatφ ◦ α∗ = idHn(Sn(R)) andα∗ ◦ φ = idR . Now we define a homomorphisms :Hn(X) →
imP ∼= Hn(S

n(R)) by s = φ ◦ P : Since imα∗ is in the image of an idempotent endom
phismP , we haves ◦α∗ = φ ◦P ◦α∗ = φ ◦α∗ = id. Also we haveα∗ ◦ s = α∗ ◦φ ◦P = P .
Thuss satisfies the following formulae:

s ◦ α∗ = id :Hn

(
Sn(R)

) → Hn

(
Sn(R)

)
,

α∗ ◦ s = P :Hn(X) → Hn(X).

Let us recall thatα induces the following commutative diagram:

[X,K(R,n)]
α∗

Ψ ′
∼= Hom(Hn(X),Hn(K(R,n)))

(α∗)∗

[Sn(R),K(R,n)] Ψ
∼= Hom(Hn(S

n(R)),Hn(K(R,n))),

(2.1)

whereΨ andΨ ′ are homomorphisms defined by taking thenth homology groups, and ar
isomorphisms by the universal coefficient theorem. SinceΨ ′ is an isomorphism, we defin
β to be the unique elementΨ ′−1

(ιnR∗ ◦ s) so thatβ∗ = ιnR∗ ◦ s.
Firstly byP = α∗ ◦ s, we haveP = α∗ ◦ s = α∗ ◦ (ιn

Q∗)−1 ◦ β∗.
Next we showβ ◦ α ∼ ιn

Q
. By the commutativity of the diagram (2.1), we have

Ψ
(
α∗(β)

) = (α∗)∗ ◦ Ψ ′(β) = (α∗)∗
(
ιnQ∗ ◦ s

) = ιnQ∗ ◦ s ◦ α∗ = ιnQ∗ = Ψ
(
ιnQ

)
.

SinceΨ is an isomorphism, we also haveβ ◦ α = α∗(β) ∼ ιn . �

Q
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Let us recall thatG(Sn
Q
,X) ⊂ [Sn

Q
,X] ρ→ Hn(X). In the following theorem, we donot

assume thatX is rationalised nor thatX is (n − 1)-connected.

Theorem 2.2. Let R = ⊕
λ∈Λ Q be aQ-vector space of dimension#Λ � ∞. Let X be

0-connected andR ⊂ ρ(G(Sn
Q
,X)) ⊆ Hn(X), n � 2. ThenX decomposes as

X � Y × K(R,n).

Proof. Since a divisible submoduleR is a direct summand ofHn(X), there is an idem
potent endomorphismP :Hn(X) → Hn(X) with ImP = R. We fix a basis ofR as
{ρ(αλ) | αλ ∈ G(Sn

Q
,X), λ ∈ Λ}.

By Proposition 2.1, there are mapsα :Sn(R) → X, β :X → K(R,n) such that

β ◦ α ∼ ιnR :Sn(R) → K(R,n),

P = α∗ ◦ (
ιnR ∗

)−1 ◦ β∗ :Hn(X) → Hn

(
K(R,n)

) ∼=← Hn

(
Sn(R)

) → Hn(X).

Then we extend the mapα onto K(R,n) ⊇ Sn(R) asα :K(R,n) → X by dividing our
arguments in two cases:

Case1: n is an odd positive integer> 1, namely,n = 2m + 1 for somem � 1. Then we
haveK(Q,2m + 1) � S2m+1

Q
, and hence by Proposition 1.3 we obtain the desired ma

Case2: n is an even positive integer, namely,n = 2m for somem � 1. Sinceασ ∈
G(S2m

Q
,X), the mapασ :S2m

Q
→ X can be extended to the James reduced product spa

Proposition 1.2, say,

ασ :
(
S2m

Q

)
∞ → X, ασ ∈ G

((
S2m

Q

)
∞,X

)
,

where we know
(
S2m

Q

)
∞ � (

S2m∞
)
Q

� (
ΩΣS2m

)
Q

� (
ΩS2m+1)

Q

� Ω
(
S2m+1

Q

) � ΩK(Q,2m+1) � K(Q,2m).

Thus we haveασ ∈ G(K(Q,2m),X). Hence by Proposition 1.3, there is a map

α :K(R,2m) =
⊕

λ∈Λ

K(Q,2m) → X

extendingα :Sn(R) → X. Then we obtainβ � α ∼ idK(R,n), since the identity map
id :K(R,n) → K(R,n) is the unique extension ofιnR :Sn(R) → K(R,n), up to homo-
topy.

Thus in either case, we obtain a mapα ∈ G(K(R,n),X) such that

β ◦ α ∼ id :K(R,n) → K(R,n).

Let Y be the homotopy fibre ofβ :X → K(R,n). Then by Theorem 1.3 of Dula and Go
tlieb [5], we obtain

X � Y ×
⊕

λ∈Λ

K(Q, n) � Y × K(R,n).

This completes the proof of the theorem.�
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3. Applications

A 0-connected spaceX is called aT -spaceif the fibrationΩX → XS1 → X is trivial in
the sense of fibre homotopy type (Aguadé [2]). IfX is a 0-connected Hopf space, thenX

is aT -space. Aguadé showed that 1-connected spaceX of finite type is a rationalT -space
if and only if X has the same rational homotopy type as a generalised Eilenberg–Ma
space, i.e., a product of (infinitely many) Eilenberg–Mac Lane spaces (Theorem 3.3 o
Woo and Yoon showed that a spaceX is aT -space if and only ifG(ΣA,X) = [ΣA,X] for
any spaceA by Theorem 2.2 of [19]. Then we have the following result by Theorem 2

Theorem 3.1. Let R = ⊕
λ∈Λ Q be a finite or an infinite dimensionalQ-vector space. Le

X be a0-connectedT -space andR ⊂ πn(X), n � 2. If ρ|R :R → Hn(X) is an injection
and[Sn

Q
,X] = G(Sn

Q
,X), thenX decomposes as

X � Y ×
⊕

λ∈Λ

K(Q, n) � Y × K(R,n), for someT -spaceY .

Proof. Firstly, we observe the image of�∗
Q

containsR: Leta be a generator of theQ-vector
spaceR ⊆ πn(X). Then we can use the telescope construction (cf. Adams [1], Sul
[17]) to obtain a mapα :Sn

Q
→ X such thatα ◦ �Q ∼ a :Sn → X. Thus we can choose

Q-vector spacēR ⊆ [Sn
Q
,X] such that

R̄

�∗
Q∼= R,

and hence we haveρ(R̄) = ρ(R) ∼= R. Then by Theorem 2.11 of [19] and Theorem 2
we obtain the result. �

Theorem 3.1 implies the following result as a direct consequence.

Corollary 3.2. Letn � 2. LetR = ⊕
λ∈Λ Q be a finite or an infinite dimensionalQ-vector

space and assume thatR ⊂ πn(X). If X is an(n − 1)-connectedT -space, thenX splits as

X � Y ×
⊕

λ∈Λ

K(Q, n) � Y × K(R,n), for someT -spaceY .

A spaceX is called aG-spaceif Gn(X) = πn(X) for all n (cf. [7]). As a special case o
Theorem 2.2, we have the following result for rationalG-space. We remark thatπn(XQ) =
Gn(XQ) implies[Sn

Q
,XQ] = G(Sn

Q
,XQ) for anyn.

Theorem 3.3. Let n � 2. Assume that a rational spaceXQ is an (n − 1)-connectedG-
space. Ifπn(XQ) ∼= ⊕

λ∈Λ Q, a finite or an infinite dimensionalQ-vector space, thenXQ

decomposes as

XQ � YQ ×
⊕

λ∈Λ

K(Q, n) � YQ × K
(
πn(XQ), n

)
,

for some rational spaceYQ ann-connectedG-space.
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Theorem 3.3 implies the following theorem (cf. [16]). For finite complexes or fi
Postnikov pieces, it is known by Haslam [8] and Mataga [12].

Theorem 3.4. If X is a 1-connected space, then the following are equivalent:

(1) XQ is aG-space.
(2) XQ is aT -space.
(3) XQ is a Hopf space.
(4) XQ has the homotopy type of a generalised Eilenberg–Mac Lane space.

Corollary 3.5. Anyk-invariant of a1-connectedG-space is rationally trivial.

We remark that Corollary 3.5 does not imply that ak-invariant of a 1-connectedG-space
is of finite order. Now,H∗(K(

⊕
λ∈Λ Q,2m+1);Q) is isomorphic to an exterior algeb

and H∗(K(
⊕

λ∈Λ Q,2m);Q) is isomorphic to a polynomial algebra as Hopf algebr
Thus we obtain a generalisation of Theorem 3.2 of Borel [3]:

Corollary 3.6. Let X be a1-connected rationalG-space, i.e., aG-space in the rationa
homotopy category. ThenX is a Hopf space and the Hopf algebraH ∗(X;Q) is isomorphic
(as an algebra) to the tensor product of the dual algebra of a polynomial algebra on e
degree generators and the dual algebra of an exterior algebra on odd degree genera

We remark thatπq(X) ⊗ Q may be infinite dimensional for eachq � 1, and hence
Hq(X;Q) and its dualHq(X;Q) ∼= Hom(Hq(X;Q);Q) may be distinct asQ-modules
for eachq � 1. For example, the dual of an exterior algebra on{αλ} is not an exterior
algebra on{αλ}, in general, whereαλ is the dual toαλ (cf. [11]).
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