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Abstract

It is known algebraically that any abelian group is a direct sum of a divisible group and a reduced
group (see Theorem 21.3 of [L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New York—
London, 1970]). In this paper, conditions to split off rational parts in homotopy types from a given
space are studied in terms of a variant of Hurewicz mapﬁs%, X]1— H,(X;Z)and generalised
Gottlieb groups. This yields decomposition theorems on rational homotopy types of Hopf spaces,
T-spaces and Gottlieb spaces, which has been known in various situations, especially for spaces
with finiteness conditions.
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Introduction

The Gottlieb group is introduced by Gaottlieb [6,7] and the generalised Gottlieb set is
introduced by Varadarajan [18]. Dula and Gottlieb obtained a general result on splitting a
Hopf space off from a fibration as Theorem 1.3 of [5].

In this paper, we work in the category of spaces having homotopy types of CW com-
plexes with base points and pointed continuous maps. A relgtiory indicates a pointed
homotopy relation of mapg andg and a relationX >~ Y indicates a homotopy equiva-
lence relation of space¥ andY. We also denote byX, Y] the set of pointed homotopy
classes of maps fro to Y.

We adopt some more conventional notatiakig: stands for the rationalisation of a space
X, K (7, n) for the Eilenberg—Mac Lane space of type n), G(V, X) for the generalised
Gottlieb subset of V, X] and H,,(X) for H,(X; Z). We introduce a variant of Hurewicz
mapp : [S{é, X]— Hy(X) by p(a) =, ([S"]® 1) fora € [S(’é, X1, whereq, is the homo-
morphism given by, : H,(S") @ Q = H,,(S(’é) — H,(X). Our main result is described as
follows:

Theorem 2.2. Let R = @, ., Q be aQ-vector space of dimensighd < co. Let X be
O-connected an® C E(G(S&, X)) € H,(X),n > 2. ThenX decomposes as

X~Y x K(R,n).

Theorem 2.2 gives unified proof to the splitting phenomena on ratichapace,
T-space and Hopf space without assuming any finiteness conditions, which are proved
under various situations by a number of authors: Scheerer [16] obtained decomposition
theorems of rational Hopf spaces without assuming the finite type assumptions. Oprea [15]
obtained decomposition theorems by using minimal model method in rational homotopy
theory. Aguadé [2] obtained a decomposition theorems on ratibigaces of finite type.

1. Preliminaries

We regard the one pnoint uniaki v Y of spacesX andY as a subspac& x x U
x x Y of the product spac& x Y with the inclusion map: X vY — X x Y. For any
collection of a finitely or infinitely many spaces, (1 € A), we denote thevedge sungor
one point union) by/, . , X, and thedirect sum(or weak product) byp, . , X5 = {(x) €
[Lca X | x5 = = except for finitely many}. Then we have/, . , X, C D, 4 X», where
P, 4 X is adense subset of the product sppEe , X, and has the weak topology with
respect to finite products df,’s.

Let X be the James reduced product space of a 0-connected ¥pafcknite type,
so thatX , >~ (X' X) by James [10]. TheX», is a nice CW approximation of a space
£2 X X to work in the category of spaces having homotopy types of CW complexes.

We apply rationalisation of-localisation to any &onnected nilpotent spaces any
nilpotent groupgsee [4,9] or [13] for the precise definition of the rationalisation of a space
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or a nilpotent group). The rationalisatidg : X — Xq, or simply X¢ does exist for such
spacesX such thatg induces the following isomorphisms:

7 (XQ) Emn(X) ® Q and H,(XQ) = H,(X)® Q

for any integem > 1, whereG ® Q denotes the rationalisation of a nilpotent gratigcf.
[4,9] or [13]). Moreover the universality of rationalisation yields a bijection

¢ [Xq. Yol Z (X, Yol

for any such space¥ andY . The rationalisation enjoys the following fact.
Fact 1.1.

(1) Sé"“ ~ K(Q, 2m + 1) for any integenn > 0.
(2) Q(S(ZQT“) ~ (257" ~ K(Q, 2m) for any integenn > 1.
(3) (Xx0)p =~ (Xg)e for X a 0-connected nilpotent space of finite type.

Proof. (1) and (2) are well-known. We give here a brief explanation for (3): The suspen-
sion functorX and the loop functor2 enjoys the propertie¥' (Xg) >~ (¥ X)g for any
0-connected spack and$2(Xq) =~ (£2X)q for any 1-connected space Then it follows

that (X))o =~ (2(Z X))o =~ 2(X (X)) = (X0)eo- O

We state two propositions to be used in the proof of the main theorem.

Proposition 1.2. Let X be a0-connected space of finite type affd X — Y a map. If
f € G(X,Y), then there is an extensiof: Xo, — Y of f such thatf € G(X, Y).

Proof. We may assume thatthereisamapl x X — Y suchthay|Y x {x}=1y:Y —
Yandu|{*} x X = f: X — Y. We putus = n and, for anyz we define

fn=po(tn1Xx1x) Y x X"=(Y x X" ) x X >V xX—>7Y

by induction onn. Then we observe that, factors throught x X" — Y x X,, where
X, denotes the set of products of at mastlements ofX in the James reduced product
spaceX (cf. James [10]). Sinc& ~, has a weak topology with respect X, we have
done. O

Proposition 1.3. Let ) : X;, — Z be a map for any. € A. If o, € G(X;, Z) for each
A € A, then the mape:\/, ., X, — Z defined by| X, = ay: X, — Z can be extended
toamapa: @, ., Xo > Zwitha € G(@, 4 X1, 2).

Proof. Since eaclX; has a homotopy type of a CW complex, we may assume that there is
amapu,:Zx X, — Z such thatu”{*} XX)=ap: X —>Z7Z andu“Z x{x}=17:7Z —
Z for eachi € A. For anyn andiq, Ao, ..., A,, we define

Mg,y = My © (Uag, o ag X Ax;, )1 Z X (X X o X X,y X X)) > Z
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by induction onn. For any index setA, we assume thatl is totally-ordered. Since
D, 4 X» has a weak topology with respect¥, x --- x X;,, A1,..., A, (n > 0), the
collection of mapsuy, ..., defines a pairingu: Z x (P, .4 X») — Z with axes(1z, &)
(cf. [14]). O

2. Proof of the main result

Proposition 2.1. Let P be an idempotent endomorphism &f,(X), n > 2. Suppose
that R =im P C H,(X) is a rational vector space and is iim p. Then we have maps
a:S"(R)— X andB:X — K(R,n) such that

Boa~1p:S"(R)— K(R,n), and

P=ayo (') "o Bui Hyo(X) = Ha(K(R,n)) £ Hy (S"(R)) = Hy(X),
where $" (R) denotes the Moore space of type, n) and/; corresponds to the identity
element irHom(R, R) = Hom(r,, (8" (R)), 7 (K (R, n))) = [S"(R), K (R, n)).
Proof. Let {p(ay) | A € A} be a basis ofR =im P, and hencer = @, ., Q. Since
S"(R) = \/,ea S§» We definex : S"(R) — X by its restrictions to all factors:

a|5&:a,\:S&—> X.

Sincea, is an isomorphism ont® C H, (X), we have its inverse : R — H, (S"(R)) SO
thatg o o, = idp, (57 (r)) @Nde, 0 ¢ =idg. Now we define a homomorphism H, (X) —
imP = H,(S"(R)) by s = ¢ o P: Since imu, is in the image of an idempotent endomor-
phismP, we havesoa, = ¢po Poay, = ¢ oy, =id. Also we haver,os =a,o0po P = P.
Thuss satisfies the following formulae:

soay,=id: H,(S"(R)) = H,(S"(R)),

asos=P:H,(X)— H,(X).

Let us recall thatr induces the following commutative diagram:
[X. K (R.n)]—%——=Hom(H, (X), Hy(K (R, n)))
a*l l(oz*)* (2.1)
[S"(R), K(R,n)] i‘> Hom(H, (5" (R)), Hy,(K (R, n))),

where¥ and¥’ are homomorphisms defined by taking #tth homology groups, and are
isomorphisms by the universal coefficient theorem. Sifites an isomorphism, we define
B to be the unique elemem/_l(z’;e* os) so thatg, =, os.

Firstly by P =a, o5, we haveP =, os = a0 (}),) "L o Bs.

Next we shows o o ~ L?Q. By the commutativity of the diagram (2.1), we have

W (a*(B)) = (@) o W' (B) = (@) (i, 08) = hq 05 0 s = 1y, = ¥ (1))
SinceV is an isomorphism, we also hage o = a*(8) ~ Lf’Q. ]
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Let us recall thatG(S%, X) C [S{@, X] 2 H,(X). In the following theorem, we doot
assume thak is rationalised nor thaX is (n — 1)-connected.

Theorem 2.2. Let R = P, ., Q be aQ-vector space of dimensighd < co. Let X be
0-connected an® C p(G (S, X)) € H,(X), n > 2. ThenX decomposes as

X ~Y x K(R,n).

Proof. Since a divisible submodul® is a direct summand off,,(X), there is an idem-
potent endomorphisn? : H,(X) — H,(X) with ImP = R. We fix a basis ofR as
{Plar) | ar € G(Sp, X), A€ A}.

By Proposition 2.1, there are mapsS"(R) — X, 8:X — K (R, n) such that

Boa~ip:S"(R)— K(R,n),
P=oa,o0 (L’,;*)‘l 0 Bx i Hy(X) — Hy(K(R,n)) b= H,(S"(R)) = H,(X).

Then we extend the map onto K (R, n) 2 S"(R) asa: K(R,n) — X by dividing our
arguments in two cases:

Casel: n is an odd positive integef 1, namelyy = 2m + 1 for somen > 1. Then we
haveK (Q,2m + 1) ~ Séj"“, and hence by Proposition 1.3 we obtain the desired map.
Case2: n is an even positive integer, namely—= 2m for somem > 1. Sincew, €

G(Sé{", X), the mapy,, : S(ZQ(" — X can be extended to the James reduced product space by
Proposition 1.2, say,

& (S5") e = Xo @6 €G((SF") 0 X).
where we know

2m\ o~ (Q2m) 2m\ 2m+1
(52) = (52)g = (@752) = (252
~ .Q(SS"”) ~ QK(Q,2m+1) ~ K(Q, 2m).

Thus we haveé, € G(K(Q, 2m), X). Hence by Proposition 1.3, there is a map

@:K(R,2m)=EP K@, 2m) - X

reA
extendinge : S"(R) — X. Then we obtaing o @ ~ idk (., since the identity map
id:K(R,n) — K(R,n) is the unique extension of,:S"(R) — K(R,n), up to homo-
topy.
Thus in either case, we obtain a mag G(K (R, n), X) such that
Boa~id:K(R,n) — K(R,n).

Let Y be the homotopy fibre g : X — K (R, n). Then by Theorem 1.3 of Dula and Got-
tlieb [5], we obtain
X~V x @K(Q,n) ~Y x K(R,n).
reA
This completes the proof of the theorenta
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3. Applications

A 0-connected spack is called ar'-spacéf the fibration2 X — x5 = Xistrivial in
the sense of fibre homotopy type (Aguadé [2])Xlfis a 0-connected Hopf space, th&n
is aT-space. Aguadé showed that 1-connected spacEfinite type is a rational’-space
if and only if X has the same rational homotopy type as a generalised Eilenberg—Mac Lane
space, i.e., a product of (infinitely many) Eilenberg—Mac Lane spaces (Theorem 3.3 of [2]).
Woo and Yoon showed that a spakés a7 -space ifand only itG (X' A, X) = [X A, X] for
any spaced by Theorem 2.2 of [19]. Then we have the following result by Theorem 2.2.

Theorem 3.1. Let R = ), ., Q be afinite or an infinite dimension&-vector space. Let
X be a0-connectedr'-space and® C 7, (X), n > 2. If p|R: R — H,(X) is an injection
and [S{é), X]= G(S(’é, X), thenX decomposes as

X~Y x @ K(Q,n)~Y x K(R,n), forsomeT-spaceY.
reA

Proof. Firstly, we observe the image % containsR: Leta be a generator of th@-vector
spacer C 7, (X). Then we can use the telescope construction (cf. Adams [1], Sullivan
[17]) to obtain a mapy : S — X such that o £g ~ a:$" — X. Thus we can choose a

Q-vector spacek C [Sg, X1 such that
_t
RZ=R,

and hence we havg(R) = p(R) = R. Then by Theorem 2.11 of [19] and Theorem 2.2,
we obtain the result. O

Theorem 3.1 implies the following result as a direct consequence.

Corollary 3.2. Letn > 2. LetR = €, . , Q be a finite or an infinite dimension&l-vector
space and assume thRtc 7, (X). If X is an(n — 1)-connected’-space, therX splits as

X~Y x @ K(Q,n)~Y x K(R,n), forsomeT-spaceY.
reA

A spaceX is called aG-spacef G, (X) = 7, (X) for all n (cf. [7]). As a special case of
Theorem 2.2, we have the following result for ratiotabpace. We remark that, (Xq) =
G.(Xq) impIies[S{é, Xol= G(S(’é, Xq) foranyn.

Theorem 3.3. Letn > 2. Assume that a rational spacgy is an (n — 1)-connectedG-
space. Ifr,(Xq) = P, 4 Q, a finite or an infinite dimensiondD-vector space, thei g
decomposes as

Xo =Yy x P K@Q.n) > Yy x K(m,(Xg).n).
rEA

for some rational spac&gy ann-connecteds-space.
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Theorem 3.3 implies the following theorem (cf. [16]). For finite complexes or finite
Postnikov pieces, it is known by Haslam [8] and Mataga [12].

Theorem 3.4. If X is a1l-connected space, then the following are equivalent

(1) Xq is aG-space.

(2) XgisaT-space.

(3) Xq is a Hopf space.

(4) Xq has the homotopy type of a generalised Eilenberg—Mac Lane space.

Corollary 3.5. Anyk-invariant of al-connecteds-space is rationally trivial.

We remark that Corollary 3.5 does not imply that-avariant of a 1-connecte@d-space
is of finite order. Now,H..(K (P, ., Q, 2mn+1); Q) is isomorphic to an exterior algebra
and H.(K (P, .4, Q, 2m); Q) is isomorphic to a polynomial algebra as Hopf algebras.
Thus we obtain a generalisation of Theorem 3.2 of Borel [3]:

Coroallary 3.6. Let X be al-connected rationalG-space, i.e., &5-space in the rational
homotopy category. Thexiis a Hopf space and the Hopf algebks* (X ; Q) is isomorphic
(as an algebrato the tensor product of the dual algebra of a polynomial algebra on even
degree generators and the dual algebra of an exterior algebra on odd degree generators.

We remark thatr,(X) ® Q may be infinite dimensional for each> 1, and hence
H,(X;Q) and its dualH?(X; Q) = Hom(H, (X; Q); Q) may be distinct a§)-modules
for eachg > 1. For example, the dual of an exterior algebra{ap} is not an exterior
algebra or{@, }, in general, where;, is the dual tax;, (cf. [11]).
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