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Abstract 

We continue to investigate various diagonalization properties for sequences of open covers 
of separable metrizable spaces introduced in Part I. These properties generalize classical ones of 
Rothberger. Menger, Hurewicz, and Gerlits-Nagy. In particular, we show that most of the properties 
introduced in Part I are indeed distinct. We characterize two of the new properties by showing 
that they are equivalent to saying all finite powers have one of the classical properties above 
(Rothberger property in one case and in Menger property in the other). We consider for each 
property the smallest cardinality of a metric space which fails to have that property. In each case 
this cardinal turns out to equal another well-known cardinal less than the continuum. We also 
disprove (in ZFC) a conjecture of Hurewicz which is analogous to the Bore1 conjecture. Finally, 
we answer several questions from Part I concerning partition properties of covers. 

Keywords: Rothberger property C”; Gerlits-Nagy property y-sets; Hurewicz property: Menger 
property; y-cover: w-cover; Sierpidski set; Lusin set 

AMS classification: 03E05: 04A20; 54D20 

0. Introduction 

Many topological properties of spaces have been defined or characterized in terms 

of the properties of open coverings of these spaces. Popular among such properties 

are the properties introduced by Gerlits and Nagy [6], Hurewicz [7], Menger [12], and 
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sfi”(a, 0 - Sli”(~,fq - 

Fig. 1. Basic diagram for Fitin. 

Rothberger [ 141. These are all defined in terms of the possibility of extracting from a given 

sequence of open covers of some sort, an open cover of some (possibly different) sort. 

In Scheepers [ 161 it was shown that when one systematically studies the definitions 

involved and inquires whether other natural variations of the defining procedures produce 

any new classes of sets which have mathematically interesting properties, an aesthetically 

pleasing picture emerges. In [ 161 the basic implications were established. It was left open 

whether these were the only implications. 

Let X be a topological space. By a “cover” for X we always mean “countable open 

cover”. Since we are primarily interested in separable metrizable (and hence Lindelof) 

spaces, the restriction to countable covers does not lead to a loss of generality. A cover U 

of X is said to be 

(i) large if for each x in X the set {U E U: x E U} is infinite; 

(ii) an w-cover if X is not in U and for each finite subset F of X, there is a set 

U E U such that F c U; 
(iii) a y-cover if it is infinite and for each x in X the set {U E U: z $ U} is finite. 

We shall use the symbols 0, A, 0 and r to denote the collections of all open, large, 

w and y-covers, respectively, of X. Let A and B each be one of these four classes. We 

consider the following three “procedures”, Si, SE, and Us,, for obtaining covers in a 

from covers in A: 

(i) Si (A, B): for a sequence (&: n = 1,2,3, . . .) of elements of A, select for each n 

a set U, E U, such that {Un: n = 1,2,3,. . .} is a member of ,13; 

(ii) Ssn(d,L3): for a sequence (Z&: n = 1,2,3,. . .) of elements of A, select for 

each n a finite set V, c U, such that lJF=, V, is an element of 8; 

(iii) Ue,(d, B): for a sequence (Z&: n = 1,2,3,. .) of elements of A, select for 

eachnafinitesetV,~U,suchthat{UV,: n=1,2,3,...}isamemberofZ3 

or 4 there exists an n such that U V, = X. 

4 This is similar to the * convention of [ 161. 
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For G one of these three procedures, let us say that a space has property G(d, a) 

if for every sequence of elements of A, one can obtain an element of t3 by means of 

procedure G. Letting A and a range over the set {U, A, 0, r}, we see that for each G 

there are potentially sixteen classes of spaces of the form G(d, a). Each of our properties 

is monotone decreasing in the first coordinate and increasing in the second, hence we 

get the diagram in Fig. 1 for G = Sh,. 

It also is easily checked that &,(A, 0) and Shn(O, A) are impossible for nontrivial X. 

Hence the five classes in the lower left corner are eliminated. The same follows for the 

stronger property Sr . In the case of U sn note that for any class of covers a, US,(O, !3) 

is equivalent to lJti,(r, a) because given an open cover {Un: n E w} we may replace 

it by the y-cover, {lJi<, Vi: n E w}. This means the diagram of Ue, reduces to any of 

its rows. Now clearly Sr implies Sh,. Also it is clear that 

Stin(r,d) + Uti,(r,d) 

for JI = r, Q, 0. The implication 

sti”(r, A) -+ Uti”(r, A) 

is also true, but takes a little thought since when we take finite unions we might not 

get distinct sets. To prove it, assume U, are y-covers of X with no finite subcover. 

Applying Sti, we get a sequence of finite V, C L& such that for any x there exists 

infinitely many n such that x E U V,. But since the Urn’s have no finite subcover we 

can inductively choose a finite W, with 

and IJW, # U W, for any m < n. Hence U{Wn: n = 1,2,3,. .} is a large cover 

of x. 

In the three-dimensional diagram of Fig. 2 the double lines indicate that the two prop- 

erties are equivalent. The proof of these equivalences can be found in either Scheepers 

[16] or Section 1 of this paper. After removing duplications we obtain Fig. 3. 

For this diagram, we have provided four examples {C, S, H, L} which show that 

practically no other implications can hold. C is the Cantor set (29, S is a special 

Sierpinski set such the S + S can be mapped continuously onto the irrationals, L is a 

special Lusin set such that L + L can be mapped continuously onto the irrationals, and 

H is a generic Lusin set. Thus the only remaining problems are: 

Problem 1. Is Uti,(r, 0) = Ssn(r, a)? 

Problem 2. And if not, does &,(r, r) imply Se,(r, a)? 

All of our examples are subsets of the real line, but only one of them (the Cantor set) is 

a ZFC example. Thus, the following problem arises: 

Problem 3. Are there ZFC examples of (Lindeliif) topological spaces which show that 

none of the arrows in Fig. 3 can even be consistently reversed? 
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Hurewicz Menger 

sfi”(r,r) - Slin (r, Q) - Slin(r, n) = slin(r, 0) 

/I /i /iI / 
s1 (C r) - Sl(C f4 - s,(r, A) = Sl(C 0) 

, I I I 
1 II 1 

Sfin(f2, r) - + Slin(Q7n) - + S,j,(L?,A) = = Sti”(f2,U) 

/ / /* I/ / 
SI(fi, r) -sl(n,fq- Sl(f4A) = sI(Q,q 

y-set Gerlits-Nagy I/ 
%“(A, A) = = sli”(4q 

/ / 

%(A A) ~ SI(A,O) 

Sli”(~, 0) 

/ 
Sl(U,O) 

C” Rothberger 

Fig. 2. Full 3D diagram. 

The paper is organized as follows: In Section 1, we prove the equivalences of our 

properties indicated in Fig. 2. We prove that Sl(r, r) = Shn(r, r) and &(A, A) = 

SC, (r, _4). The other equivalences are either trivial or were proved in Scheepers [ 161. In 

Section 2 we present the four examples C, S, H, L indicated in Fig. 3. In Section 3 

we study the preservation of these families under the taking of finite powers and other 

operations. 

In Section 4 we study for each of these eleven families the cardinal 

non(P) := the minimum cardinality of a set of reals that fails to have property P. 

We show that each is equal to either 6, D, p, or the covering number of the meager 

ideal cov(A4). We also show that r = non(Split(A, A)) and u = non(Split(0, 0)). 
(Split(d, B) holds iff every infinite cover from A can be split into two covers from B). 

In Section 5 we give a ZFC counterexample to a conjecture of Hurewicz by showing 

that there exists an uncountable set of reals in lJh”(r, r) which is not g-compact. We 

also show the any Uhn(r, r) set which does not contain a perfect set is perfectly meager. 
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Fig. 3. After removing equivalent classes. 

In Section 6 we consider other properties from Scheepers [ 161 and settle some questions 

about Ramsey-like properties of covers that were left open in [ 161. We show that St (0, L’) 

implies Q(L’, L?) and hence 

SI (f2,O) = P(f2, 0) + Q(n, .n). 

We also show that 0 + [fll z is equivalent to &(fi, fi) (see Section 6 for the defini- 

tions). 

1. Equivalences 

In this section we show St (r, r) = Se,(r, r) and Sc,(P, A) = %,(A, A). 

The equivalence St (0, r) with the y-set property (every w-cover contains a y-cover) 

was shown by Gerlits and Nagy [6]. But it is easy to see that S,,(n, r) implies the y-set 

property and hence St (L’, r) = Sh, (L?, r). In Scheepers [ 16, Corollary 61 it was shown 

that St (r, A) = St (r, 0). 

All of the other equivalences are either to the Rothberger property C” or the Menger 

property. For the Menger property, in Scheepers [ 16, Corollary 51 it was shown that 

Stin(T,A) = Uhn(r,O). &(r,A) = Shn(A,A) by Theorem 1.2 and note also that 

Sfi,(U, 0) easily follows from llfi”(r, 0) and hence all nine classes (see Fig. 2) are 
equivalent to the Menger property. In [ 16, Theorem 171 it was shown that all five classes 

(see Fig. 2) are equivalent to the Rothberger property (C”). 

Theorem 1.1. S1 (r, r) = Sh,(r? r). 
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Proof. Note that the class Sr(T,r) is contained in the class S,,(r,r). The difficulty 

with showing that these two classes are in fact equal is as follows: when we are allowed 

to choose finitely many elements per y-cover, we are allowed to also pick no elements; 

for St (p, r) we are required to choose an element per r-cover. 

Let X be a space which has property Sti,(r, r), and for each n let ZA, be a y-cover 

of X, enumerated bijectively as (UY_, UT, UF, . .). 

For each n define U, to be {I$“, Vzn, V;2, . .}, where 

For each n, V, is a -y-cover: For fix n. For each 2, and for each i E { 1,. . , n} 

there exists an Ni such that z is in UA for all m > N,. But then z is in VG for all 

m>max{IVi: i=l,...,n}. 

Now apply &,(r, r) to (Vn: n = 1,2,. . .). We get a sequence (Wn: n E w) such 

that Wn is a finite subset of V, for each n, and such that lJz=, W, is a y-cover of X. 

Choose an increasing sequence nr < n2 < < nk < . such that for each j, 

W? \ Ui<j J%* is nonempty. This is possible because each W, is finite, while the 

union of these sets, being a y-cover of X, is infinite. For each j, choose rnj such that 

Vz is an element of W,, \ Uicj W,, . Then {V,$ : k = 1,2,. . .} is a y-cover of X. 

For each n in (nk, nk+l] we define U, = 15Jz~+, . Then {Un: n = I, 2,. .} is a y-cover 

OfX. 0 

Theorem 1.2. Scn(r, A) = &,(A, A). 

Proof. Since r C -4, it is clear that &(A, A) implies Stin(r, A). We prove the other 

implication. 

Assume Sh,(r, A) and let (Z&: n E w) be a sequence of large covers of X. Without 

loss of generality we may assume that for every finite F 2 lJ7LEWU,, we have that 

U, n F = 0 for all but finitely many Ic. (This can be accomplished by throwing out 

finitely many elements from each I&.) 

For each n enumerate U, bijectively as (UC: k E w), and define 

v; = U{vl”: i < m}. 

Since each V, = (Vz: m E w) is a nondecreasing open cover of X, either there 

exists m, such that VG, = X or V, is a y-cover. So there must be an infinite A for 

which one or the other always occurs. Suppose V, is a y-cover for every n E A. Apply 

&(r, A) to obtain W, a finite subset of V, such that U{Wn: n E A} is a large cover 

of X. Let P, be a finite subset of U, such that every element of W, is a union of 

elements of P,. Since P, is disjoint from all but finitely many of the &, it follows that 

l_{Pn: n E A} . IS a large cover of X. In the case that Vg, = X for every n f A just 

take P, = {Uy: i < m,} and the same argument works. 0 
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2. Examples 

The Cantor set C 

We shall check that every g-compact space (the union of countably many compact 

sets) belongs to Uh,(r, r) and &(Q, a). We also show that the Cantor set, 2”, is not 

in the class St (r, A). 

For the sake of conciseness, let us introduce the following notion. An open cover U 

of a topological space X is a k-cover iff there is for every k-element subset of X an 

element of ZA which covers that set. 

Lemma 2.1. Let k be a positive integer Every w-cover of a compact space contains a 

finite subset which is a k-cover for the space. 

Proof. Let U be an w-cover of the compact space X and let Ic be a positive integer. 

Then the set V = {U”: U E U} of k-th powers of elements of U is a collection of open 

subsets of X”. and it is a cover of XL since U is an w-cover of X. Since X is compact, 

so is X”. Thus there is a finite subset of V which covers X”, say {U,“, . , Ut}. But 

then {Ut,...,Un} isa&coverofx. 0 

Theorem 2.2. Every o-compact topological space is a member of both the class 

Sc,(fl, ~2) and &(r, T). 

Proof. Let X be a g-compact space, and write X = UnEw K, where 

is a sequence of compact subsets of X. 

Let (&: n E w) be a sequence of w-covers of X. For each n apply Lemma 2.1 to 

the w-cover U, of the space K,, to find a finite subset V, of U, which is an n-cover 

of K,. Then UnEw V, is an w-cover of X. This shows that X has property S,,(G’, 0). 

Now suppose that (Z&: n E w) is a sequence of y-covers of X. Since any infinite 

subset of a y-cover is a y-cover, we may assume that our covers are disjoint. Since 

each K, is compact we may choose V, E [Un]<w so that K, C UVn. Either there 

exists n such that U V, = X or {U V,: n E w} is infinite and hence a y-cover of X. It 

follows that X has property Ufi, (r, r). 0 

Theorem 2C of [3] shows that if X is not compact, then X” is not in the class 

&(O, 0). For compact X we have the following. 

Theorem 2.3. For every nontrivial compact space X, the product X” is not in the class 

Sl (C 0). 
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Proof. If 1x1 > 2, then the Cantor set 2” embeds as a closed subset of Xw. Therefore 

it suffices to prove the theorem for 2”. There exists an w x w-matrix (Ar: m, n < w) 

of closed subsets of the Cantor set such that 

(1) for each fixed m E w the sets AZ for n < w are pairwise disjoint and 

(2) whenever ml < m2 < .. < mk and nt,n2, ,rzk are given, then A;’ fY ... n 

AT; # 0. 
To see that such a matrix exists think of the Cantor set as the homeomorphic space 

2” xw instead. 

Let (G, n < w) be a sequence of pairwise distinct elements of 2”. Also, for each m, 

let 

n-m. 
.2”X” + 2” 

be defined so that for each y in 2”xw and for each m, Gus = y(m,n). Then 7rm 

is continuous. We now define our matrix. 

For each m and n we define 

A; = {y E 2”‘“: 7rm(y) = z,}. 

Each row of the matrix is pairwise disjoint since the z,‘s are pairwise distinct. Each 

entry of the matrix is a closed set since each 7r, is continuous. We must still verify 

property (2). Thus, let (ml ,ni), , (mk, nk) be given such that ml < . . < mk. Let 

the element y of 2”x” be defined by y(mi, j) = z,%(j) for i E w and for each j E w. 

Then y is a member of the set AZ’ n . . . n A:>, whence this intersection is nonempty. 

For each m put U, = {2w \ A;: n < w}. Then by property (1) we see that each U, 

is a y-cover of 2”. 

For each m choose a U, from IA,. Then U, = 2” \ ATm. By the property (2) and the 

fact that all the AT’s are compact, we see that the intersection nrncw Arm is nonempty. 

But then {Urn: m < w} not a cover of 2”x”. 0 

It follows from Theorems 2.2 and 2.3 that the Cantor set C must lie exactly in those 

classes indicated in Fig. 3 in our introduction. 

Theorem 2.4. No uncountable F, set of reals is in S1 (r, r). 

Proof. Such a set contains an uncountable compact perfect set. The Cantor set is a 

continuous image of such perfect sets. 0 

The special Lusin set L 

Recall that a set L of real numbers is said to be a Lusin set iff it is uncountable but 

its intersection with every first category set of real numbers is countable. Sierpinski [17] 

showed that assuming CH there exists a Lusin set L such that L + L is the irrationals 

(see also Miller [13, Theorem 8.51). 

We will construct similarly a Lusin set L 2 Z” with the property that L + L = 2’. 

Here Z” is the infinite product of the ring of integers and addition is the usual pointwise 
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addition, i.e., (x + y)(n) = x(n) + y(n). 0 UT construction is based on the following 

simple fact: 

Lemma 2.5. If X is a comeager subset of Z”, then for every x E Zw there are elements 

aandbofXsuchthata+b=x. 

Proof. Since multiplication by -1 and translation by 5 are homeomorphisms, the set 

x-X=(x-y: YEX} 

is also comeager. But then X n (z - X) is nonempty. Let z be an element of this 

intersection. Then z = a for some a in X, and z = 2 - b for some b in X. The lemma 

fo1lows. 0 

Lemma 2.6 (CH). There is a Lusin set L & Zw such that L + L = Z”. 

Proof. Let (IMa: LY < WI) bijectively list all first category F,-subsets of Z”. Let 

(ra: Q < WI) bijectively list Z”. Using Lemma 2.5, choose elements xa,ya from Z” 

subject to the following rules: 

(i) for each cr, T, = 5, + yol. and 

(ii) x, and ya are not elements of Up<, MD U{zp, yy~: p < o}. 

Letting L be the set { x,: cy < wt} U {ya: Q < WI} completes the proof. q 

For a proof of the following result see Rothberger [14]. 

Theorem 2.7 (Rothberger). Every Lusin set has property St (0,0) = C”. 

Theorem 2.8. If L is our special Lusin set (i.e., L + L = P), then L does not satisfy 

Uli”(C Q). 

Proof. Let {Z&: n E w} be the sequence of open covers defined by 

U, = {U,+: k E w}, 

where 

u n,k = {f t z”: If(n)1 < k}. 

Then each U, is a -y-cover of L. Let {I/n: n E w} be a sequence such that V, E [z&]<~, 

and let h E ww be such that 

h(n) > 2. max{k: un,k E vn} 

for all n E w. Let f,g E L be such that h = f + g. Then 

max{lf(n)l, \g(n)l} 3 ih(n) 

for all R. E w, and hence {f, g} 9 IJ V, for any n E w. q 
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The special Sierpin’ski set S 

A Sierpidski set is an uncountable subset of the real line which has countable intersec- 

tion with every set of Lebesgue measure zero. In Theorem 7 of Fremlin and Miller [4] 

it was shown that every Sierpinski set belongs to the class Uh,(r,r). Sets with the 

property that every Bore1 image in the Baire space is bounded were called AZ-sets in 

Bartoszynski and Scheepers [ 11. 

Theorem 2.9. Every Sierpin’ski set is an AZ-set. 

Proof. Let X be a subset of the unit interval, and assume that X is a Sierpinski set. We 

may assume that X has outer measure one (else, replace it with the set of points in the 

unit interval which are rational translations of elements of X). Let a Bore1 function !P 

from X to “‘w be given. Extend it to a Bore1 function r from the unit interval to ww. 

For each m and n, define Sz = {z: r(z)(,j) < n whenever j < m}. Then each SF 

is a Bore1 set and thus Lebesgue measurable. Moreover, for each m, if j < k then 

Sj” C_ S;Cm, and [0, l] = lJT=, Sr. 

Choose for each m an n, such that the measure of [0, l] \ S’cm is at most ( l/lO)m 

Then the set Sk = n:,, ,S’nm_ has measure at least 1 - 9. (l/10)“. Consequently the set 

S = UT’“=, Sk has measure 1. Then X \ S is a countable set. For each 5 in X n S, for 

all but finitely many m, P(z)(m) < n,. For the remaining countable set X \ S we can 

find a single sequence g such that for all m, n, < g(m), and for each z E X \ S, for 

all but finitely many m, P(z)(m) < g(m). Then g witnesses that @[Xl is bounded. •I 

Theorem 2.10. Every AZ-set (hence every Sierpifiski set) belongs to the class S1 (I’, r). 

Proof. Let X be an AZ-set, and let (Z&: n E w) be a sequence of y-covers of it. 

Enumerate each U, bijectively as (Ug: m E w). 

Define a function !P from X to ww so that for each II: E X and for each n, 

P(z)(n) = min {m: (‘dk 3 m) (Z E UF)}. 

Then 9 is a Bore1 function. Choose a strictly increasing function g from ww which 

eventually dominates each element of P[X]. Then the sequence (Usn(n,: n E w) is a 

y-cover of X. 0 

Clearly no Sierpinski set is of measure zero. Since every St (0, (3) set is of measure 

zero, X fails to be Si (0,0). Therefore we have established the following theorem: 

Theorem 2.11. If X is a Sierpin’ski set of reals, then X is Si (r, r) but not S, (O,(3). 

We call a Sierpidski set S special iff S + S is the set of irrationals. (Here we are using 

ordinary addition in the reals.) Using an argument similar to Lemma 2.6 one can show 

that assuming CH there exists a special Sierpinski set. 

Theorem 2.12. A special Sierpin’ski set is not in the class Shn(f2, fl). 
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Proof. By Theorem 3.1 all our classes are closed under continuous images. Note that 

S + S is the continuous image of S x S. Also ww is not in Usn(r, 0) (see proof of 

Theorem 2.8). Hence ww is not in Sc,(n, 0) and therefore S x S is not in Ss, (a, Q). 

But by Theorem 3.5 the class Ss,(Q, 0) is closed under finite products and therefore S 

is not in the class Se,(R, Q). •I 

These results show that the special Sierpinski set (denoted S) is in exactly the classes 

indicated in Fig. 3 of the introduction. 

The generic Lusin set H 

The fact that no Lusin set satisfies &(r, r) follows from Theorem 4.3. 

Theorem 2.13 (CH). There exists a Lusin set H which is S1 (fl, f2). 

Proof. To construct an Si (0,0) Lusin set in the reals enumerate all countable sequences 

of countable open families as { (Z4~)n<w: p < WI}. Also enumerate all dense open subsets 

of the reals as (Da)a<w,. We construct X recursively as {zcp: /I < wi} as follows. At 

stage cy of the construction we have 

{~a: P < a> and { (Q!)n<w: P < o} 

satisfying for each p < cr: 

(i) xfl E n(D6: 6 < P}, 
(ii) {Uf: n < w} is an w-cover of (~6: b < a} U Q, 

(iii) if (Z4f)1L<w was a sequence of w-covers of (x6: 6 < p} U Q, then Uf E Uf for 

every n. 

To see how to choose x, and (UE)n<w consider the crth sequence of open families: if 

(Y%l<w is a sequence of w-covers of (56: S < a}UQ first extract an w-cover (U;)n<w 

so that Uz E Uz for each n < w (countable sets are Si(fl, Q)). If (UE)n<w is not a 

sequence of w-covers of {zg: 6 < cz} U Q let UE = IF! for each n < w. 

Enumerate the finite subsets of (x6: b < a} U Q as {Ak: k < w}. For each Ic and 

each ,D < LY let 

Then 0 k,o is dense and open. We choose 

5, E n D0 n ok$ 

6<a k<w$<a 

different from all x6 with 6 < cr. To see that (U,“)n,, is an w-cover of {xg: 6 < a}uQ 

for each 0 < a: it suffices to show that each A,, U {xca} is covered by some U{ for some 

n < w. But x, E Ok,p implies that there is an n such that x, E Ut and Ak C U+f. We let 

H = (x6: 6 < wl}UQ. To see that H is Si (0, G’), fix a sequence of w-covers (U,),,,. 

There is an LY such that (U,),,, = (@)n<w. Then at stage (Y of the construction we 
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extracted an appropriate w-cover of (26: 6 6 cr} and inductive hypothesis (ii) assures 

that it is also an w-cover of H. 0 

The proof of Theorem 2.13 only requires that the covering number of the meager ideal 

is equal to the continuum (cov(M) = c). This requirement is equivalent to Martin’s axiom 

for countable posets. Adding Cohen reals over any model yields an St (Q, 6)) Lusin set 

and hence our name-generic Lusin set. 

3. Preservation of the properties 

Each of the properties in the diagram is inherited by closed subsets and continuous 

images. The preservation theory is more complicated for other topological constructions. 

Theorem 3.1. Let G be one of S1, S. hn, or Uh, and let A and I3 range over the set 

(0, 62, A, T}. If X has property G(d, t3) and C IS a closed subset of X, then C has 

property G(A, B). If f : X + Y is continuous and onto and X has the property G(d, B), 

then so does Y. 

Proof. The closure under taking closed subspaces is clear since if U is a cover of C in 

one of the classes (0, R, A, P} for C, then 

V={UU(X\C): UEU} 

is in the same class for X. 

To prove the closure under continuous images use that if U is a cover of Y in one of 

the classes {U, 0, A, r} for Y, then 

v = {f_‘(U): u E U} 

is in the same class for X. 0 

Finite powers 

We show that the classes St (a, 0). &(Q, a), and St (Q, P) are the only ones closed 

under finite powers. 

Lemma 3.2. Let X be a space and let n be a positive integer: If U is an w-cover of X, 

then {Un: U E U} is an w-cover of X”. 

Proof. Observe that if F is a finite subset of X”, then there is a finite subset G of X 

such that F c G”. 0 

Lemma 3.3. Let X be a topological space and let n be a positive integer If U is an 

w-coverfor Xn, then there is an w-cover V of X such that the open cover {P: V E V} 

of X” refines IA. 
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Proof. Let U be an w-cover of X”. Let F be a finite subset of X. Then Fn is a 

finite subset of X”. Since U is an w-cover of X, choose an open set U E LA such that 

Fn c U. For any n-tuple (~1,. . . , z,) in F”, find for each i E { 1,. . . , n} an open 

set U,(zr , . . . (2,) c X such that 2, E Ui(zrr,. . . ,x,), and nr=‘=, Uz(zr,. . . , z,) c U. 

Then, for each z in F, let U, be the intersection of all the Ui(zl, . . . , z,) which have 

5 as an element. Finally, choose VF to be the set UzEF U,, an open subset of X which 

contains F, and which has the property that F” C V; C U. Put 

V = {I+: F E [Xl-}. 

Then V is as required. 0 

While Lemma 3.2 is also true of y-covers, Lemma 3.3 is not. The latter follows from 

the proofs of Theorems 3.4 and 3.7. 

Theorem 3.4. Let n be a positive integer If a space X has property S1 (f2, f2), so 

does Xn. 

Proof. Let n be a positive integer and let (Urn: m = 1,2,3, .) be a sequence of w- 

covers of X”. By Lemma 3.3 for each m, we can choose V, an w-cover of X such that 

{Vn: v E Vm} IS an w-cover of X” which refines U,. 

Now apply the fact that X is in Sr(R, Q) to select from each V, a set V, such that 

{I&: m= 1,2,3,...}isanw-coverofX.Then,sinceforeachmtheset{Vn: VEV,} 

refines U,, we see that we can select from each IA, a set U, such that Vz C U,. But 

then theset {Un: n= 1,2,3,...} isanw-coverforx. 0 

Theorem 3.5. Let n be a positive integer and let X be a space. If X has propert) 

Shn(fI, Q), then X” also has this property. 

Proof. Let (ZA,: m = 1,2,3, .) be a sequence of w-covers of X”. For each m, choose 

an w-cover V, of X such that {V”: V E Vm} refines U,. Now apply the fact that 

X satisfies Sc,(Q, Q): For each m we find a finite subset W, of V, such that the 

collection (Jz=, W, is an w-cover of X. For each m, choose a finite subset 2, of l&,, 

such that there is for each W in I%‘, a 2 in 2, such that W” C 2. Then U,“=, 2, is 

an w-cover of X”. n 

Theorem 3.6. Let n be a positive integer and let X be a space. If X has property 

Shn(f2, r), then X” also has this property. 

Proof. This is similar to the last two proofs. 0 

Theorem 3.7 (CH). None of the other classes (see Fig. 3) are closed underJinite powers. 

Proof. Note the examples L and S are such that their sums L + L and S + S are 

homeomorphic to the irrationals. 



The function 4 from L x L which assigns to (xc, 1~) the point 4(x, y) = z + y is con- 

tinuous. But the space of irrationals does not have property Ue,(F, 0). Since Uh,(r, U) 

is closed under continuous images (see Theorem 3.1) L x L does not have property 

Uti”(r, 0). 
Similarly, 5’ x 5’ does not have property U,,(r, (3). So none of the classes containing 

either one of them is closed under finite powers. 0 

We have seen that the inclusion S1 (Q, 0) C Sr (U, S) may be proper, e.g., the spe- 

cial Lusin set L is in SI (U, U) but not in St(Q, Q). The following theorem, which 

characterizes St (a, a) as a subset of St ((3, U), is due to Sakai [15]. 

Theorem 3.8. Let X be a space. Then the following are equivalent: 

(1) X satisjies S1 (fl, 0). 

(2) Every jinite power of X satisjies St (U, 0) (Rothberger property C”). 

The Bore1 Conjecture, that every strong measure zero set is countable, implies that 

the two classes Sr(Q, Q) and SI(U,U) coincide. The Bore] Conjecture was proved 

consistent by Laver. 

Problem 4. Is it true that if there is an uncountable set of real numbers which has 

proper0 Sl(O, a), then there is a set of real numbers which has property S1 (U, 0) but 

does not have property S*(6), Q)? 

We shall now prove the analogue of Theorem 3.8 for &(U, U) and Stin(R, 0). 

Theorem 3.9. For a space X the following are equivalent: 

(1) Every jnite power of X has property $,(U, 0). 

(2) X has property Shn(Q, Q). 

Proof. The implication (2) 3 (1): this follows from Theorem 3.5. 

We now work on the implication (1) 3 (2). Let (Un: n E w) be a sequence of 

w-covers of X. Let (Yk: Ic E w) be a partition of the set of positive integers into infinite 

sets. For each m and for each k in Y,, put vk = {Urn: U E uk}. Then for each m. 

Lemma 3.3 implies that the sequence (Vk: k E Y,) is a sequence of w-covers of Xm. 

Applying (1) for each m, we find for each m a sequence (k&I k E Ym) such that 

- foreach k l Y,, WI, is a finite subset Of &, and 

- UkEY {U”: U E W,} is an open cover of X”. 

But then cr=r wk is an w-cover of X. 0 

None of our classes are closed under finite products. TodorEeviE [ 191 showed that there 

exist two (nonmetrizable) topological spaces X and Y that satisfy S1 (c, r) (y-set), but 

whose product does not satisfy &(P, 0) (Menger). Thus none of our properties are 

closed under finite products. 



U! Just et al. / Topology and its Applications 73 (1996) 241-266 255 

If we restrict our attention to separable metric spaces it also is the case assuming CH 

that none of our classes are closed under finite products. For the class St (0, r) note that 

Galvin and Miller [S] using a result of TodorEeviE showed that there are y-sets whose 

product is not a y-set. For the classes St (R, 6’) and Sh, (0, 0) construct a pair of generic 

Lusin sets Ho and Hi such that HO + Hi = Z”. 

Remark 3.10. The special Lusin set L gives a partial answer to a problem of Lelek 

(see [ 1 I]). It shows that it is relatively consistent with ZFC that there exists a separable 

metrizable space L that has property Uh,(r, 0), but does not have property lJc”(r, U) 

in each finite power. In Lelek, Uhn(r, 0) IS referred to as the “Hurewicz property” in 

contrast to our naming it the “Menger property”. 

Remark 3.11. It is relatively consistent with ZFC that for every n 3 1 there exists a 

separable metric space X such that X” has property &(r, O), but Xnf’ does not have 

property Uhn(r, 0) (see Just [lo] and Stamp [ 181). 

Remark 3.12. It was shown in Just [9] that preservation of Uh,(r, a) under direct sums 

is independent of ZFC. 

Finite or countable unions 

It is well known and easy to prove that each of the classes 

- Sh, (U, 0) (Rothberger property C”), 

- Uen(r, r) (Hurewicz property), and 
- Uh, (r, 0) (Menger property) 

are closed under taking countable unions. It also easy to prove that St (r, A) is closed 

under taking countable unions. The class St (Q, r) (y-sets) is not closed under taking 

finite unions (see Galvin and Miller [6]). 

Problem 5. Which of the remaining classes are closed under taking jnite or countable 

unions? 

4. Cardinal equivalents 

We now consider the connection between the properties and some well known cardi- 

nal invariants of P(w)/Fin. See Vaughan [20] for the definitions, but briefly: p is least 

cardinality of a family of sets in [w]” with the finite intersection property but no pseu- 

dointersection; 3 is the minimal cardinality of a dominating family in 0; b the minimal 

cardinality of an unbounded family in ww; and cov(M) is the minimal cardinality of a 

covering of the real line by meager sets. 

In particular, if P is one of the eleven properties in the diagram (Fig. 3) or is one of 

the splitting properties Split(R, 0) or Split(A, A), we will determine: 

non(P) := the minimum cardinality of a set of reals that fails to have property P. 
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5 car) 
P 

Sli”(R, 0) 

/ 

a 

_ Sl(fAf4 c sI(c3,q 
cov(M) cov(M) 

Fig. 4. Cardinals non(P). 

Note obviously that if P + Q, then non(P) < non(Q). Some of these cardinals are well 

known and we simply state the results and refer the reader to the appropriate sources. 

Theorem 4.1 (Galvin and Miller [5]). non(St (L’, r)) = p. 

Theorem 4.2 (Fremlin and Miller [4]). non(S1(0,0)) = cov(M). 

Theorem 4.3 (Hurewicz [8]). A set X is Uen(r, r) ifand only if every continuous image 

of X in ww is bounded. Hence non(Uh,,(r, r)) = 6. 

Theorem 4.4 (Hurewicz [8]). A set X is Utjn(r, 0) ifand only ifevery continuous image 

of X in ww is not dominating. Hence non(Utin(r, 0)) = 9. 

Next we determine non(P) for all the other properties in Fig. 3 in the introduction. 

Theorem 4.5. non(St (r, 0)) = a. 

Proof. Since St(r, L?) C Ucn(r, 0) we have that 

non(St(r,fi)) < non(Uti,(r,o)). 

Also by Theorem 4.4 we have non(l.Jti,(r, 0)) = 3, so non(St (r, L’)) < 0. 

Conversely, suppose that X is a set of reals that fails to be Sr (r, fl). Fix a sequence of 

y-covers (U, Lew witnessing the failure of St (r, L’). Fix an enumeration of each cover 

U, = {UA: i E w}. For each finite set F c X define fF E ww by 

fF(7L) = min{i: Vj > i, F C Ui}. 
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As each U,, is a y-cover, if i > fF(n), then F C VA. Therefore, 

{f~: F E [Xl<w} 

must be a dominating family. Otherwise there is a g not dominated by any such f~. for 

each finite F C X, there is an integer n such that g(n) > fF(n). This implies that 

{U$n): n E w} 

is an w-cover, contradicting the failure of St(r, 0). So non(Sr(r, 65’)) 3 a. 0 

Theorem 4.6. non(Ss,,(n, 0)) = D. 

Proof. Identical to the proof of Theorem 4.5. One only needs to modify the definition 

of fF to 

f~(r~) = min{i: F C UA} 

and take V, = {VA: i 6 g(n)}. 0 

Theorem 4.7. non(St (r, r)) = 6. 

Proof. Using Sr (r, r) C Uh,(r, r) and Theorem 4.3 it follows that 

non(St(r,r)) < 6. 

Conversely, suppose that X is a set of reals and that (Un)nEw is a sequence of y-covers 

witnessing the failure of St (r, r). For each x E X define fz E ww by 

fz(n) = min {i: Vj 3 i, x E Vi}. 

If g were to dominate each fz, then (U$n))lLEw would be a y-cover, a contradiction. 

Therefore {fz: x E X} is an unbounded family. Hence non(St (r, r)) 2 6. 0 

Theorem 4.8. non(Sr (0, 6’)) = cov(M). 

Proof. The inclusion Sr (L’, L’) C St (0,0) and Theorem 4.2 give us the inequality 

non(Sr (0, L?)) 6 cov(M). 
Conversely fix X a set of reals and (Un)nEw a sequence of w-covers witnessing the 

failure of Si (0, L?). For each finite F c X let 

KF = {f E ww: (Vn E w) (F @ UL(“))}. 

Since for each f E ww there is a finite F & X such that F @ Unfcn), we have that 

ww = U{KF: F E [X]<W}. Furthermore, each KF is closed and nowhere dense. Hence 

non(St (0, L’)) 3 cov(M). 0 

Our results are summarized in Fig. 4. Classical results about the relationships between 

the cardinals p, 6, D and cov(M) give alternative proofs that many of the implications 

in our diagram cannot be reversed. 
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Split(A, A) and Split(R, 0) 

These properties were defined in Scheepers [ 161: for classes of covers A and 13, a 

space has property Split(d, B) iff every open cover U E A can be partitioned into two 

subcovers Ua and .L!I both in B. Recall that a family R C [WI“’ is said to be a reaping 

funnily if for each z E [w]” there is a y E R such that either y C* z or y C* w \ 5. The 

minimal cardinality of a reaping family is denoted by r, and the minimal cardinality of a 

base for a nonprincipal ultrafilter is denoted by u. In the proofs of the next two theorems 

we will use the families 

u = {BA: n E w} and lJ= {Bi: now}, 

where 

B; = {z E [w]“: n E z} and Bz = {z E [w]“: n $ z}. 

Note that U and V are large covers of any subset of [wlw and U U V is a subbase for the 

topology. We will refer to 2A as the canonical large cover. 

Theorem 4.9. non(Split(A, A)) = r. 

Proof. Suppose that X c [w] w is a reaping family. Therefore the cover 24 cannot be 

partitioned into two large subcovers. Conversely, suppose that X is a set of reals and 

{U& nE } 1 g w 1s a ar e cover of X that cannot be split. For each 5 E X let 

A, = (n E w: z E Un}. 

If 3 is the collection of all such AZ’s, then J= is a reaping family. For if A C w is such 

that for all z E X both A, n A and A, \ A are infinite, then 

{Un: n E A} u {Un: n $ A} 

is a splitting of {Un: n E w} into disjoint large subcovers. 0 

The proof yields a bit more. 

Theorem 4.10. A set of reals X is Split(A, A) +vith respect to clopen covers if and only 

if every continuous image of X in [wlw is not a reaping family. 

Proof. Suppose that X is a set of reals, f : X t [w]” is continuous and that f(X) 

is a reaping family. The canonical large cover is in fact a clopen family. Therefore 

the collection f-‘(u) = {f-‘(BA): n E w} is a large clopen cover of X. Suppose 

f-‘(u) = vauv 1 IS a partition. Then we have the corresponding partition of w = AaUAi 

where Vi = {f-‘(U,): n E Ai}. As f(X) IS a reaping family, there is an z E X such 

that for either i = 0 or 1, f(z) C* Ai. Then Vi is not large at 2. Therefore X is not 

Split(A, A) with respect to the clopen cover f-’ (U). 

Conversely, suppose that X is not Split(A, A) with respect to some large clopen cover 

{Un: n E w}. For each z E X define fz E [wlw by n E fz iff x E U,. Since the cover is 
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large, each fZ is infinite. As above, since {Un: 7~ E w} cannot be split, {fZ: 2 E X} is a 

reaping family. Therefore it suffices to check that the mapping f : z -+ fz is continuous. 

But the collection of {Bi: n E w, i = 0, 1) forms a subbase for [w]“, and clearly 

f-l (BA) = U,, and f-‘(Bz) = X \ U,, therefore f is continuous (this is the only place 

where we need the restriction to clopen covers). 0 

Theorem 4.11. non(Split(R, L’)) = u. 

Proof. Suppose that X C [w] w is a filter-base. Then the canonical large cover in [w]” 

is in fact an w-cover of X. If X is a base for an ultrafilter, then this cover cannot be 

partitioned into two w-subcovers. 

Conversely, suppose that X is a set of reals and W is an w-cover of X. For each 

z E X let 

w, = {U E w: Z E U}. 

If F is the collection of all such WZ’s, then F forms a filterbase on W and if W cannot 

be split into two w-covers, then F generates a nonprincipal ultrafilter. 0 

Analogously to Theorem 4.10 we can prove: 

Theorem 4.12. A set of reals X is Split(R, 0) with respect to clopen covers ifand only 

if every continuous image of X in [w]” does not generate an ultrajilter 

Note that a base for an ultrafilter is a reaping family, and therefore t < u. In [2] it is 

proven consistent that this inequality may be strict. Therefore Split(A, A) + Split(0, L’). 

Similarly neither r nor u are comparable to 3, therefore there are no implications between 

either Split(A, A) or Split(R, 0) and any of the six classes in Fig. 4 whose ‘non’ is 

equivalent to D. In Scheepers [16] it is shown that 
_ Uh,,(r, P) + Split(A, A) (Corollary 29), and 
- Si (O,c?) 3 Split(A, A) (Theorem 15). 

Note that while both b 6 1: and cov(M) < r, it is consistent that these inequalities are 

strict (see Vaughan [20]). So neither of these implications can be reversed. 

Problem 6. Does Split(R, L’) + Split(A, A)? 

5. The Hurewicz conjecture and the Bore1 conjecture 

Every a-compact space belongs to Uhn(r, r). It is also well-known that not every space 

belonging to Uh,,(r, r) need be a-compact. We now look at the traditional examples of 

sets of reals belonging to &(r, r), and show that some of these belong to Si (r, r), 

while others do not. Since Si (r, r) is contained in Si (r, A), and the unit interval is not 

an element of Si (r, A), we see that the a-compact spaces do not in general belong to 

the class Si (r, r). 

In [7, p. 2001 Hurewicz conjectures: 
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Conjecture (Hurewicz). A set of real numbers has property Ue,(r, r) if and only if it 

is u-compact. 5 

The existence of a Sierpifiski set violates this conjecture. As we have seen earlier, 

Sierpiliski sets are elements of SI (r, r). 

The following result shows that Hurewicz’s conjecture fails in ZFC. 

Theorem 5.1. There exists a separable metric space X such that 1x1 = WI, X is not 

a-compact and X has proper@ Uh,(r, r). This X also has properties S1 (r, Q) and 

Sti”(fl, 0). 

Proof. Case 1. b > WI. In this case every X of size WI is in .Sl(r,r) and &(L?, L?). 

hence in both Uhn(r, r) and S1 (r, A) (by Theorems 4.6 and 4.7). 

Case 2. b = WI. In this case we will use a construction similar to one in [5]. Build an 

wl-sequence (z,: Q < WI) of elements of [ti]” such that LY < 0 implies x~ C* 5, and 

if fa. . w + z, is the increasing enumeration of 2,. then for every g E ww there exists 

cy such that for infinitely many n we have g(n) < f,(n). 

Claim 5.2. For any S E [w]” there exists a < WI such that there exists infinitely man) 

n such that I[fcY(n), fa(n + 1)) f~ SI 3 2. 

Proof. To prove Claim 5.2 suppose not and let g eventually dominate all the increasing 

enumerations of sets S* such that S* =* S. Then g eventually dominates the fa’s. 

contradiction. This completes the proof of Claim 5.2. 0 

Claim 5.3. Let X = [w] <w U {za: CI < WI}. Then for every sequence (U,: n E w) of 

w-covers ofX (or even just of [WI<“) there exists an A E [w]“, (V, E U,: n E A) and 

a < WI such that for all /3 3 Q +ve huve x/j E V, for all butjnitely many n E A. 

Proof. To prove Claim 5.3 construct a sequence (k,,: n E w) in w, such that there exists 

V, E 1A, with the property that 

{x c w: x n (ICn, k,+,) = 0} c v,. 

To do this use that Z.4, is a w-cover to pick V, > [kn + llcw and then for each s E 

[kn + 11 OJ fix a basic open set V, such that s t V, C V,, and let n, be the maximum 

of the support of V,. Then &+I = max{n,: s E [b, + I]<“} suffices. It follows from 

Claim 5.2 that there exist Q < WI, A E [w]” and an increasing sequence (m.,: 71 E A) 

such that for every n E A 

{Z c W: z n (f&&Mm, + 1)) = 0} c v,. 

It follows ~0 E V, for all /3 3 cy for all but finitely many n E A. This completes the 

proof of Claim 5.3. 0 

s “Es entsteht mm die Vermutung dass durch die (wnracheinlich schsrfere) Eigenschaft E** die halbkompakten 

Mengen F,, allgemein charakterisiert sind.” 
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Now we show that our set X in this case is in both U,,(r, r) and Si (Q, 0) (and 

hence St (r, A)). First we show that it satisfies a property we might call St (r, r)“. 

Given any sequence (Z&: n E w) of y-covers of X, there exist (V, E U,: n E w) 

and a countable Y C X such that (Vn: n E w) is a y-cover of X \ Y. 

If .Sh,,(r, r)* is defined analogously, then it is easy to see using the same proof as 

for Theorem 1.1 that Sh,(r, r) * is equivalent to St (r, r)‘. Clearly Claim 5.3 implies 

Slin(K r)*. 
St (r, r)* implies Us,(r, r) b ecause we may first pick a -y-cover (V, E U,: n E w) 

of X \ Y and then pick a y-cover (W, E Z&: nEw)ofY.Then(V,UW,: n~w)is 

a y-cover of X. 0 

To see that X is in Si (Q, 0) we need the following claim: 

Claim 5.4. For every B E [wlw, sequence (I&: n E B) of w-covers of X, and countable 

Y C X there exist A E [B]“, (V, E &: n E A) and a countable Z c X such that Y 

and Z are disjoint and (V, E U,: n E A) is a y-cover of X \ 2. 

Proof. Let Y = {yn: n E w} and apply Claim 5.3 to the w-covers defined by 

u:, = {u E u,: {yi: i < n} c v} 

for n E B. This completes the proof of Claim 5.4. 0 

Using Claim 5.4, for every sequence (Un: n E w) of w-covers of X inductively 

construct Ai E [WI”, (V, E U,: n E Ai) and Yi C X countable such that 
_ AinA,=0fori#j; 
_ YiflYj=0fori#j; 

- (I&E&: n~Ai)isay-coverofX\x. 

(At stage R, take Y = U{yZ: i < n} and B = w \ (U{Ai: i < n}.) Apply Claim 5.3 and 

let Y, = Z and cut down A,, if necessary, to ensure that U{Ai: i < n} is coinfinite.) 

Since the {Yi: i < w} and the {Ai: i < w} are pairwise disjoint families, letting 

A = UiEw Ai, (K: n E A) is an w-cover of X. Hence X has property Si(O, 6?). This 

completes the proof of Theorem 5.1. 0 

Problem 7. Is the set X constructed in Case 2 of Theorem 5.1 a y-set, i.e., in Sl(O, r)? 

The Bore1 conjecture implies that every set in S1 (0,O) is countable (hence every set 

in Sl(R, 0) or Sl(L?,r) is countable). Theorem 5.1 and the Cantor set along with the 
last example rules out an analogous conjecture for all except S1 (r, r). So we ask: 

Problem 8. Is it consistent, relative to the consistency of ZF, that every set in S, (r, r) 

is countable? 
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One may also ask if all the pathological examples of sets having property Ue,(r, F) 

occur because of the presence of such sets in Si (r, r); here is one formalization of this 

question. 

Problem 9. Let X be a set of real numbers which does not contain a perfect set of real 

numbers but which does have the Hurewicz property. Does X then belong to S1 (P, P)? 

Ue,,(r, I’) and pelfectly meager sets 

We now prove a theorem which implies that the Si (r, r)-sets are contained in another 

class of sets that were introduced in the early parts of this century. Recall that a set X 

of real numbers is pelfectly meager (also called “always of first category”) if, for every 

perfect set P of real numbers, X n P is meager in the relative topology of P. 

Theorem 5.5. Zf a set of reals X is in Uti,(r, r) and contains no perfect subset, then 

X is perfectly meager 

Proof. Let P be a perfect set of real numbers. Since X contains no perfect set, P \ X 

is a dense subset of P. Let D be a countable dense subset of P which is contained in 

P \ X, and enumerate D bijectively as (d,: n = 1,2,3,. .). 

Fix Ic. For each x in X choose open intervals I,” and J,” such that 

(1) 1,” is centered at x, 

(2) J,” is centered at &, and 

(3) the closures of these intervals are disjoint. 

Let { 1& : n = 1,2,3, . .} be a countable subset of {I,“: x E X} which covers X. 

Then for each n define 1, = UjG, Ii;, and J,” = n,,, J$. Then & = {I:: n = 
3 

1,2,3, . .} is a y-cover of X. 

Apply U@, r) to the sequence (tik: Ic = 1,2,3, . .). For each /C we find an 721, such 

that (I,“,: Ic = 1,2,3,. . .) is a y-cover for X. For each j put Gj = l_lkaj J&. Then 

each Gj n P is a dense open subset of P (as it contains all but a finite piece of D). The 

intersection of these sets is a dense Gs subset of P, and is disjoint from X n P. Thus, 

X n P is a meager subset of P. 0 

Corollary 5.6. Every element of S1 (I’, I) is perfectly meager 

Proof. We have seen (Theorem 2.4) that sets in Si (r, r) do not contain perfect sets of 

real numbers. But Si (r, r) C Uti,(r, r). I3 

In Theorem 2 of Galvin and Miller [5] it was shown that if a subset X of the real line 

is in Si (0, r), then for every Gd-set G which contains X, there is an F,-set F such 

that X C F C G. In fact, this property characterizes lJe”(r, r). 

Theorem 5.7. For a set X of real numbers, the following are equivalent: 

(1) X has property Uti”(r, r); 
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(2) For every Gg-set G which contains X, there is a F,-set F such that X C F C G. 

Proof. 
(1) =+ (2). Write G = nz=, G,, where each G, is open. Fix n, and choose for each 

x in X an open interval I,” which contains x, and whose closure is contained in G,. 

Choose a countable subcover (1,“: j = 1,2,3,. . .} of X from the cover {I,“: z E X}. 

For each n and /c define 1: = UJGk 1,“. 

ThenU,={I~: k=1,2,3,...}’ is ‘a y-cover of X such that for each Ic the closure 

of I: is contained in G,. 

Apply the fact that X is a Usn(T, T)-set to the sequence 

(Un: n= 1,2,3 ,... ). 

For each n choose a k, such that (I;=: n = 1,2,3,. . .) is a y-cover of X. For each n 

let F, be the intersection of the closures of the sets I”,, m 3 n. For each n we have 

the closed set F, contained in G. But then the union of the F,‘s is an F,-set which 

contains X and is contained in G. 

(2) * (1). Let (I!&: n < w) be a sequence such that each U, is a cover of X by open 

subsets of the real line. By assumption there exist closed sets F, such that 

x c u F, c n (&). 
n<!J n<w 

Since the real line is cT-compact we may assume that the F, are compact. For each n 

choose V, E [Z&]<(“ such that (UmCn F,) 5 IJV, for each n. Either there exists n 

such that U V, = X or {U V,: n E w} is infinite and hence a y-cover of X. 0 

6. Ramseyan theorems and other properties 

Other classes of spaces motivated by diagonalization of open covers are related to 

Q-point ultrafilters, P-point ultrafilters and Ramsey-like partition relations. If A and B 

are classes of open covers, then a space has the property 

(1) Q(d, B) iff for every open cover U E A and for every partition of this cover into 

countably many pairwise disjoint nonempty finite sets &, 31, Fl, . ., there is a subset 

V C U which belongs to 13 such that IV rl FnI < 1 for each n, and 

(2) P(d, B) iff for every sequence {Z&: n E w} of open covers of X from A such 

that U n+r C U,, for each a, there is an open cover V which belongs to i3 such that 

V 5’ U, for each n. 

In Scheepers [16] the partition relation L’ -+ (0); was defined: a space X is said to 

satisfy 0 + (fi): iff for every w-cover U of X, if 

.f : [Ul’ + ((41) 

is any coloring, then there is an i E (0, 1) and an w-cover V 2 U such that f({A, B}) = i 

for all A and B from V. It is customary to say that V is homogeneous for f. 
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Also in [ 161 it was shown that for a set X of real numbers, the following statements 

are equivalent: 

(i) X is both Sr (0, a) and Q(0, fl); 

(ii) 0, the collection of w-covers of X, satisfies the following partition relation: 0 -_) 

The next theorem shows that indeed, the partition relation characterizes the property 

of being a Sr (fi, R)-set. 

Theorem 6.1. SI (0, L?) C Q(L), L?). 

Proof. Let X be a Sr (0, R)-set and let U be an w-cover of it. Let (PIL: n < w) be a 

partition of this cover into pairwise disjoint finite sets. Enumerate the cover bijectively 

as (Un: n < w) such that, letting for each n the set In be the j’s such that l_Jj E P,. 

We get a partition (Inn: n < w) of w into disjoint intervals such that if m is less than n, 

then each element of I, is less than each element of In,. For each e, let me = CjGe IIj 1. 

Now define an w-cover V of X such that V is in V iff 

v= uk,n...nukp, 

where 

(i) T = me0 and 

(ii) 4~ < . . . < e, are such that for each j, kj is in It,, and 

(iii) V is nonempty. 

Since St (fl, 0) implies Split(0, fi) ( see Corollary 22 of [16]), we may choose a 

partition (Vn: n < w) such that each V, is an w-cover of X, and V is the union of these 

sets. Then, discard from each V, all sets of the form 

where ko is an element of 10 U. . . U In; let W, denote the resulting family. Observe that 

each W, is still an w-cover. 

Since X is an St (0, fin)-set, we find for each n a IV, in W, such that the set {Wn: n E 

w} is an w-cover of X. For each n we fix a representation 

where k$ < . . . < kFcn). On account of the way W, was obtained from V,, we see that 

n < IcOn and n < r(n). Now choose recursively sets 

uk(0) > uk(1) > . . . , uk(n) > . 

so that uk(a) = Uk:, > WI. Suppose that UNTO,, . . . , Ukcn) have been chosen such that 

for i < n we have 

- k(i) E {k;, , k&)}, 

- Wi E Uk(i), and 
- the k(i)‘s belong to distinct Ij’s. 

To define uk(,+t) we consult 

W n+l - - Ukn+l 
0 

n... n ukn+, 
r(n+l) 
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Since we have so far selected only n+ 1 numbers and since r(n + 1) is larger than n+ 1, 

and since the Icy+’ come from ~(n + 1) disjoint intervals Ij, we can find one of these 

intervals which is disjoint from {k(O), , k(n)}, and select !~(n + 1) to be the Icy+’ 

from that interval. This then specifies Uk(,+i). 

Because the sequence of Wn’s refines {Uk(,,: n < w}, the latter is an w-cover of X, 

and by construction it contains no more than one element per ‘P,,. 0 

In Scheepers [ 161 it was shown that if X satisfies .&(G’, Q), then its family of w- 

covers, Q, satisfies the partition relation 

n + [nl;. 

Satisfying this partition relation means that for every w-cover Z4 of X, if 

f : [z412 + (0, 1) 

is any coloring. then there are i E (0, l}, an w-cover U 2 U and a finite-to-one function 

y : I/ t w such that for all A and B from V, if q(A) # q(B), then f({A, B}) = i. It is 

customary to say that V is eventually homogeneous for f. 

We now show that these two properties are equivalent. 

Theorem 6.2. For any space X, 0 + [filz is equivalent to E&(f2, fi’). 

Proof. It is shown in [ 161 that Sh, (0, Q) implies 0 + [Ql z. To prove the other direction 

suppose that ZA, = {Uz: m E w} is an w-cover for each n E w. Let 

u={u,Onu$ I;,~Ew} 

U is an w-cover, since given a finite F 2 X we can first pick Ic with F C UE and 

then pick 1 with F C UF. For each element of U we pick a pair as above and define 

.f : VI --t {O,l) by 

f({u.!J, nu:I,Ui, nU[l}) = 
1 

O’ if k” = “’ 
1, if Ice # Ict 

By applying R + [Ql i there exist a sequence (,&, Zi) and a finite-to-one function 

q : w + w such that 

v={u,OJlqL: SW} 

is an w-cover of X and either 

(a) q(i) # y(j) implies ki = Kj or 

(b) q(i) # q(j) implies Ici # Icj. 

In case (a), since q is finite-to-one, we get that lci = lcj for every i,j E w. This 

’ would mean that every element of V refines U,,), but this contradicts the fact that V is 

an w-cover. Thus this case cannot occur. 

In case (b), let 

w = {u;? i < w}. 
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Since I/ refines W and X $ W, W is an w-cover of X. Define 

w, = {qy : Ici = n} C U,. 

To finish the proof it is enough to see that each W, is finite. If not, there would be an 

infinite A C w such that ki = n for each i E A. Since q is finite-to-one, there would be 

i # j E A with q(i) # q(j). But ki = lcj = n contradicts the assumption of case (b). 0 

Note added in proof. Problem 6 has been solved in the negative by Just and Tanner. 
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