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a b s t r a c t

This paper dealswith the existence of positive solutions for some second-ordermulti-point
boundary value problem on the half-line. Our approach is based on the fixed point theorem
and the monotone iterative technique. Without the assumption of the existence of lower
andupper solutions,we obtain not only the existence of positive solutions for the problems,
but also establish iterative schemes for approximating the solutions.
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1. Introduction

In this paper, we are concerned with the positive solutions to the following second-order multi-point boundary value
problem

x′′(t)+ q(t)f (t, x(t)) = 0, t ∈ J+,

x(0) =
m−2∑
i=1

αix(ξi), x′(∞) = x∞ ≥ 0,
(1)

where J = [0,+∞), J+ = (0,+∞), αi ∈ J and ξi ∈ J+ with 0 < ξ1 < ξ2 < · · · < ξm−2 < +∞, 0 <
∑m−2
i=1 αi < 1.

Throughout this paper, we always assume that the following conditions are satisfied.

(H1) f ∈ C(J × J, J), f (t, 0) 6≡ 0 on any subinterval of J and, when u is bounded, f (t, (1+ t)u) is bounded on J;
(H2) q(t) is a nonnegative measurable function defined in J+ and q(t) does not identically vanish on any subinterval of J+

and

0 <
∫
+∞

0
q(t)dt < +∞, 0 <

∫
+∞

0
tq(t)dt < +∞.

Boundary value problems on a half-line arise quite naturally in the study of radially symmetric solutions of nonlinear elliptic
equations and models of gas pressure in a semi-infinite porous medium; see [1–5], for example. In the past few years, the
existence and multiplicity of positive solutions to nonlinear differential equations on the half-line have been studied by
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using several different techniques; we refer the reader to [1–7] and references therein. For example, using a fixed point
theorem of cone expansion and compression of norm type, Liu [5] investigated the existence of solutions of the following
second-order two-point boundary value problems on the half-line:{

x′′(t)+ f (t, x(t)) = 0, t ∈ J+,
x(0) = 0, x′(∞) = y∞ ≥ 0,

where f ∈ C[J+ × J+, J]. Most of these papers only considered the existence of positive solutions of various boundary value
problems. A natural question which arises is ‘‘How can we find the solutions when they are known to exist?’’ More recently,
Ma, Du and Ge [8], and Sun and Ge [9,10] proved the existence of positive solutions for some second-order p-Laplacian
boundary value problems which are defined on finite intervals by virtue of the iterative technique.
To the best of our knowledge, up until now, no results in the literature are available for the computation of positive

solutions for boundary value problems on the half-line. On the other hand, themulti-point boundary value problems arising
from applied mathematical and physical problems have been studied extensively in the literature and there are many
excellent results about the existence of positive solutions for multi-point boundary value problems (see, for instance, [11–
16] and references therein). Motivated by the above-mentioned papers, the purpose of this paper is to fill this gap. As we
know, it is very important to check the compactness of the corresponding operator when we use the monotone iterative
technique, and the Ascoli–Arzela theorem plays a very important role. However, the Ascoli–Arzela theorem is not suitable
for operators on the half-line. So, we need to list some new conditions to meet the requirement of compactness.

2. Preliminaries and several lemmas

In this section, we give some preliminaries and definitions.

Definition 1. Let E be a real Banach space. A nonempty closed set P ⊂ E is said to be a cone provided that:

(1) au+ bv ∈ P for all u, v ∈ P and all a ≥ 0, b ≥ 0;
(2) u,−u ∈ P implies u = 0.

In this paper, we will use the following space E which is denoted by

E =
{
x ∈ C[0,+∞) : sup

t∈J

|x(t)|
t + 1

<∞

}
,

to study BVP (1). Then E is a Banach space equipped with the norm ‖x‖ = supt∈J
|x(t)|
t+1 . Let E+ = {x ∈ E|x(t) ≥ 0}. Define

the cone P ⊂ E by

P = {x ∈ E+|x is concave and nondecreasing on [0,+∞) and lim
t→+∞

x′(t) = x(∞)}.

Lemma 1. Let conditions (H1) and (H2) be satisfied; then x ∈ E+ ∩ C2[J+, J] is a solution of BVP (1) if and only if x ∈ C[J, E] is
a solution of the following integral equation

x(t) =
1

1−
m−2∑
i=1

αi

[(
m−2∑
i=1

αiξi

)
x∞ +

m−2∑
i=1

αi

∫ ξi

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds

]

+

∫ t

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds+ tx∞. (2)

Proof. Suppose that x ∈ E+ ∩ C2[J+, J] is a solution of BVP (1). For t ∈ J , integrating (1) from t to+∞, we have

x′(t) = x∞ +
∫
+∞

t
f (s, x(s))ds. (3)

Integrating (3) from 0 to t , we get

x(t) = x(0)+ tx∞ +
∫ t

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds. (4)

Thus, we obtain

x(ξi) = x(0)+ ξix∞ +
∫ ξi

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds,
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which together with the boundary value condition implies that

x(0) =
1

1−
m−2∑
i=1

αi

[(
m−2∑
i=1

αiξi

)
x∞ +

m−2∑
i=1

αi

∫ ξi

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds

]
. (5)

Substituting (5) into (4), we have

x(t) =
1

1−
m−2∑
i=1

αi

[(
m−2∑
i=1

αiξi

)
x∞ +

m−2∑
i=1

αi

∫ ξi

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds

]
+

∫ t

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds+ tx∞.

Next, we show that the integrals
∫ ξi
0

∫
+∞

s q(τ )f (τ , x(τ ))dτds and
∫ t
0

∫
+∞

s q(τ )f (τ , x(τ ))dτds are convergent.
Since x ∈ E+, then there exists r0 such that ‖x‖ < r0. Set Br0 = sup{f (t, (1 + t)u)|(t, u) ∈ J × [0, r0]}, and we have by

interchanging the order of integration∫ t

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds ≤

∫
+∞

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds ≤

∫
+∞

0
sq(s)ds · Br0 . (6)

By (H2), we know that
∫ t
0

∫
+∞

s q(τ )f (τ , x(τ ))dτds is convergent. Since
∫ ξi
0

∫
+∞

s q(τ )f (τ , x(τ ))dτds ≤ ξi
∫
+∞

0 q(τ )dτ · Br0 ,
by (H2), we know that

∫ ξi
0

∫
+∞

s q(τ )f (τ , x(τ ))dτds is also convergent. Thus, we have proved that the right term in (2) is
well defined.
Conversely, if x is a solution of the integral equation, then direct differentiation gives the proof. �

Now, we define an operator A : P → C[0,+∞) by

(Ax)(t) =
1

1−
m−2∑
i=1

αi

[(
m−2∑
i=1

αiξi

)
x∞ +

m−2∑
i=1

αi

∫ ξi

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds

]

+

∫ t

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds+ tx∞. (7)

To obtain the complete continuity of A, the following lemma is still needed.

Lemma 2 (See [5]). Let W be a bounded subset of P. Then W is relatively compact in E if {W (t)/(1+ t)} are equicontinuous on
any finite subinterval of [0,+∞) and for any ε > 0, there exists N > 0 such that∣∣∣∣ x(t1)1+ t1

−
x(t2)
1+ t2

∣∣∣∣ < ε,

uniformly with respect to x ∈ W as t1, t2 ≥ N, where W (t) = {x(t)|x ∈ W }, t ∈ [0,+∞).

Lemma 3. Let (H1) and (H2) be satisfied. Then A : P → P is completely continuous.

Proof. It is clear that (Ax)(t) ≥ 0 for any x ∈ P, t ∈ J . By (7), we have

(Ax)′(t) =
∫
+∞

t
q(s)f (s, x(s))ds+ x∞ ≥ 0, (8)

and

(Ax)′′(t) = −q(t)f (t, x(t)) ≤ 0. (9)

(8) and (9) imply that (AP) ⊂ P . Now, we prove that A is continuous and compact respectively. Let xn → x as n→∞ in P;
then there exists r0 such that supn∈N\{0} ‖xn‖ < r0. Let Br0 = sup{f (t, (1+ t)u)|(t, u) ∈ J × [0, r0]}. By (H2), we have∫ t

0

∫
+∞

s
q(τ )|f (τ , xn(τ ))− f (τ , x(τ ))|dτds ≤

∫
+∞

0

∫
+∞

s
q(τ )|f (τ , xn(τ ))− f (τ , x(τ ))|dτds

≤ 2Br0 ·
∫
+∞

0
sq(s)ds < +∞. (10)
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By (7), (10) and the Lebesgue dominated convergence theorem, we get

‖Axn − Ax‖ = sup
t∈J


1
1+ t

∣∣∣∣∣∣∣∣∣
1

1−
m−2∑
i=1

αi

[
m−2∑
i=1

αi

∫ ξi

0

∫
+∞

s
q(τ )(f (τ , xn(τ ))− f (τ , x(τ )))dτds

]

+

∫ t

0

∫
+∞

s
q(τ )(f (τ , xn(τ ))− f (τ , x(τ )))dτds

∣∣∣∣∣∣∣∣∣


≤ sup

t∈J


1
1+ t

·
1

1−
m−2∑
i=1

αi

[
m−2∑
i=1

αi

∫ ξi

0

∫
+∞

s
q(τ )|f (τ , xn(τ ))− f (τ , x(τ ))|dτds

]

+

∫ t

0

∫
+∞

s
q(τ )|f (τ , xn(τ ))− f (τ , x(τ ))|dτds

→ 0, n→∞. (11)

Therefore, A is continuous.
LetΩ be any bounded subset of P . Then, there exists r > 0 such that ‖x‖ ≤ r for any x ∈ Ω . Therefore, we have

‖Ax‖ = sup
t∈J

1
1+ t

∣∣∣∣∣∣∣∣∣
1

1−
m−2∑
i=1

αi

[(
m−2∑
i=1

αiξi

)
x∞ +

m−2∑
i=1

αi

∫ ξi

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds

]

+

∫ t

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds+ tx∞

∣∣∣∣∣∣∣∣
≤

1

1−
m−2∑
i=1

αi

(
m−2∑
i=1

αiξi

)
x∞ +

1

1−
m−2∑
i=1

αi

(
m−2∑
i=1

αiξi

)∫
+∞

0
q(τ )dτ · Br +

∫
+∞

0
q(τ )dτ · Br + x∞

=

1+
m−2∑
i=1

αiξi

1−
m−2∑
i=1

αi

 x∞ +
 1

1−
m−2∑
i=1

αi

(
m−2∑
i=1

αiξi

)
+ 1


∫
+∞

0
q(τ )dτBr .

So, TΩ is bounded. Notice that the integral
∫
+∞

0

∫
+∞

s q(τ )dτds is convergent. So, for any T ∈ J+ and t1, t2 ∈ [0, T ], by the
absolute continuity of the integral, we have∣∣∣∣ (Ax)(t1)1+ t1

−
(Ax)(t2)
1+ t2

∣∣∣∣ ≤ 1

1−
m−2∑
i=1

αi

[(
m−2∑
i=1

αiξi

)
x∞ +

m−2∑
i=1

αi

∫ ξi

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds

]
·

∣∣∣∣ 1
1+ t1

−
1

1+ t2

∣∣∣∣
+

∣∣∣∣ 1
1+ t1

∫ t1

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds−

1
1+ t2

∫ t2

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds

∣∣∣∣
+

∣∣∣∣ t1
1+ t1

−
t2
1+ t2

∣∣∣∣ x∞
≤

1

1−
m−2∑
i=1

αi

[(
m−2∑
i=1

αiξi

)
x∞ +

m−2∑
i=1

αi

∫ ξi

0

∫
+∞

s
q(τ )dτdsBr

]
·

∣∣∣∣ 1
1+ t1

−
1

1+ t2

∣∣∣∣
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+
1

1+ t1

∣∣∣∣∫ t2

t1

∫
+∞

s
q(τ )dτdsBr

∣∣∣∣+ ∫ t2

0

∫
+∞

s
q(τ )dτdsBr ·

∣∣∣∣ 1
1+ t1

−
1

1+ t2

∣∣∣∣
+

∣∣∣∣ t1
1+ t1

−
t2
1+ t2

∣∣∣∣ x∞ → 0, uniformly as t1 → t2.

Thus, we have proved that TΩ is equicontinuous on any finite subinterval of [0,+∞).
Next, we prove that for any ε > 0, there exists a sufficiently large N > 0 such that∣∣∣∣ (Ax)(t1)1+ t1

−
(Ax)(t2)
1+ t2

∣∣∣∣ < ε for all t1, t2 ≥ N, ∀ x ∈ Ω. (12)

For any x ∈ Ω , we have

lim
t→∞

∣∣∣∣ (Ax)(t)1+ t

∣∣∣∣ = limt→∞ 1
1+ t

∫ t

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds+ x∞. (13)

Similarly to (6), we get∫ t

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds ≤ Br

∫
+∞

0
τq(τ )dτ < +∞,

which shows that

lim
t→∞

1
1+ t

∫ t

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds = 0. (14)

It follows from (13) and (14) that
∣∣∣ (Ax)(t)1+t

∣∣∣ tend to x∞ uniformly as t →∞. So, for any ε > 0, x ∈ Q there exists N > 0 such
that ∣∣∣∣ (Ax)(t)1+ t

− x∞

∣∣∣∣ < ε

2
, ∀ t ≥ N.

Consequently, for any t1, t2 ≥ N , we have∣∣∣∣ (Ax)(t1)1+ t1
− x∞

∣∣∣∣ < ε

2
,

∣∣∣∣ (Ax)(t2)1+ t2
− x∞

∣∣∣∣ < ε

2
. (15)

Therefore, (12) can be easily seen from (15). In conclusion, by Lemma 2 we know that A : P → P is completely
continuous. �

3. Main results

For notational convenience, we denote

m =

1+
m−2∑
i=1

αiξi

1−
m−2∑
i=1

αi

 x∞, n =

m−2∑
i=1

αiξi

1−
m−2∑
i=1

αi

∫
+∞

0
q(τ )dτ +max

{∫
+∞

0
q(τ )dτ ,

∫
+∞

0
τq(τ )dτ

}
.

We will prove the following existence results.

Theorem 1. Assume that (H1) and (H2) hold, and there exists a > 2m such that:
(S1) f (t, x1) ≤ f (t, x2) for any 0 ≤ t < +∞, 0 ≤ x1 ≤ x2 ≤ a;
(S2) f (t, (1+ t)u) ≤ a

2n , (t, u) ∈ [0,+∞)× [0, a].

Then the boundary value problem (1) has two positive nondecreasing on [0,+∞) and concave solutions w∗ and v∗, such that
0 < ‖w∗‖ ≤ a, and limn→∞wn = limn→∞ Anw0 = w∗, where

w0(t) =
a
2
+

m−2∑
i=1

αiξi

1−
m−2∑
i=1

αi

x∞ + tx∞, t ∈ J,

and 0 < ‖v∗‖ ≤ a, limn→∞ vn = limn→∞ Anv0 = v∗, where v0(t) = 0, t ∈ J.
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Proof. By Lemma 3, we know that A : P → P is completely continuous. For any x1, x2 ∈ P with x1 ≤ x2, from the definition
of A and (S1), we can easily get that Ax1 ≤ Ax2. We denote

Pa = {x ∈ P|‖x‖ ≤ a}.

Then, in what follows, we first prove that A : Pa → Pa. If x ∈ Pa, then ‖x‖ ≤ a. By (2), (S1) and (S2), we get

‖Ax‖ = sup
t∈J

1
1+ t

∣∣∣∣∣∣∣∣∣
1

1−
m−2∑
i=1

αi

[(
m−2∑
i=1

αiξi

)
x∞ +

m−2∑
i=1

αi

∫ ξi

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds

]

+

∫ t

0

∫
+∞

s
q(τ )f (τ , x(τ ))dτds+ tx∞

∣∣∣∣∣∣∣∣
≤

 1

1−
m−2∑
i=1

αi

(
m−2∑
i=1

αiξi

)
+ 1

 x∞ +
 1

1−
m−2∑
i=1

αi

(
m−2∑
i=1

αiξi

)
+ 1


∫
+∞

0
q(τ )dτ ·

a
2n

= m+ n ·
a
2n
≤ a.

Hence, we have proved that A : Pa → Pa.

Let w0(t) = a
2 +

∑m−2
i=1 αiξi

1−
∑m−2
i=1 αi

x∞ + tx∞, 0 ≤ t < +∞; then w0(t) ∈ Pa. Let w1 = Aw0, w2 = A2w0; then by Lemma 3,

we have that w1 ∈ Pa and w2 ∈ Pa. We denote wn+1 = Awn = Anw0, n = 0, 1, 2, . . . . Since A : Pa → Pa, we have
wn ∈ A(Pa) ⊂ Pa, n = 1, 2, 3, . . . . It follows from the complete continuity of A that {wn}∞n=1 is a sequentially compact set.
By (2) and (S2), we get

w1(t) =
1

1−
m−2∑
i=1

αi

[(
m−2∑
i=1

αiξi

)
x∞ +

m−2∑
i=1

αi

∫ ξi

0

∫
+∞

s
q(τ )f (τ , w0(τ ))dτds

]

+

∫ t

0

∫
+∞

s
q(τ )f (τ , w0(τ ))dτds+ tx∞

≤
1

1−
m−2∑
i=1

αi

(
m−2∑
i=1

αiξi

)
x∞ +


m−2∑
i=1

αiξi

1−
m−2∑
i=1

αi

∫
+∞

0
q(τ )dτ +

∫
+∞

0
τq(τ )dτ

 a
2n
+ tx∞

=
a
2
+

m−2∑
i=1

αiξi

1−
m−2∑
i=1

αi

x∞ + tx∞ = w0(t), 0 ≤ t < +∞. (16)

So, by (16) and (S1)we have

w2(t) = Aw1(t) ≤ Aw0(t) = w1(t), 0 ≤ t < +∞.

By induction, we get

wn+1 ≤ wn, 0 ≤ t < +∞, n = 0, 1, 2, . . . .

Thus, there exists w∗ ∈ Pa such that wn → w∗ as n → ∞. Applying the continuity of A and wn+1 = Awn, we get that
Aw∗ = w∗.
Let v0(t) = 0, 0 ≤ t < +∞; then v0(t) ∈ Pa. Let v1 = Av0, v2 = A2v0; then by Lemma 3, we have that v1 ∈ Pa and

v2 ∈ Pa. We denote vn+1 = Avn = Anv0, n = 0, 1, 2, . . . . Since A : Pa → Pa, we have vn ∈ A(Pa) ⊂ Pa, n = 1, 2, 3, . . . . It
follows from the complete continuity of A that {vn}∞n=1 is a sequentially compact set.
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Since v1 = Av0 ∈ Pa, we have

v1(t) = (Av0)(t) = (A0)(t) ≥ 0, 0 ≤ t < +∞.

So, we have

v2(t) = Av1(t) ≥ (A0)(t) = v1(t), 0 ≤ t < +∞.

By induction, we get

vn+1 ≥ vn, 0 ≤ t < +∞, n = 0, 1, 2, . . . .

Thus, there exists v∗ ∈ Pa such that vn → v∗ as n→∞. Applying the continuity of A and vn+1 = Avn, we get that Av∗ = v∗.
If f (t, 0) 6≡ 0, 0 ≤ t <∞, then the zero function is not the solution of BVP (1). Thus, v∗ is a positive solution of BVP (1).
It is well known that each fixed point of A in P is a solution of BVP (1). Hence, we assert thatw∗ and v∗ are two positive,

nondecreasing on [0,+∞) and concave solutions of the BVP (1). �

Remark 1. The iterative schemes in Theorem 1 arew0(t) = a
2 +

∑m−2
i=1 αiξi

1−
∑m−2
i=1 αi

x∞+ tx∞, wn+1 = Awn = Anw0, n = 0, 1, 2, . . .

and v0(t) = 0, vn+1 = Avn = Anv0, n = 0, 1, 2, . . . . They start off with a known simple linear function and the zero
function respectively. This is convenient for application.

4. An example

Example 1. Consider the boundary value problem of the differential equation
x′′(t)+

1
√
t(1+ t)2

f (t, x(t)) = 0, t ∈ J+,

x(0) =
1
6
x(1)+

1
6
x(3), x′(∞) = 0,

(17)

where

f (t, x) =


10−3| cos(t + 2)| +

(
x
1+ t

)4
, x ≤ 2,

10−3| cos(t + 2)| +
(
2
1+ t

)4
, x ≥ 2.

Set q(t) = 1
√
t(1+t)2

. It is clear that (H1) and (H2) hold. Let α1 = α2 = 1
6 , ξ1 = 1, ξ2 = 3, x∞ = 0. By direct computation, we

can obtain∫
+∞

0
q(t)dt =

∫
+∞

0

1
√
t(1+ t)2

dt <
∫ 1

0

1
√
t
dt +

∫
+∞

1

1
√
t · t2

dt =
8
3
, (18)

and ∫
+∞

0
tq(t)dt =

∫
+∞

0

t
√
t(1+ t)2

dt <
∫ 1

0

√
tdt +

∫
+∞

1

√
t
t2
dt =

8
3
. (19)

By (18) and (19) we havem = 0, n < 16
3 . Take a = 300. In the following we check (S2).

Since the nonlinear term f satisfies

f (t, (1+ t)x) ≤
1
103
+ 24 <

300
2 · 163

<
300
2n
, t ∈ [0,+∞), x ∈ [0, 300],

the conditions in Theorem 1 are all satisfied. Therefore, the conclusion of Theorem 1 holds.
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