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BSTRACT

 

Triggering of the antigen-specific T cell receptor (TCR)
can lead to various functional outcomes, such as acti-
vation and proliferation, anergy or cell death. This dif-
ferential signaling is mainly determined by the quality
and quantity of TCR signals, the nature of accessory
signals and the differentiation/maturation status of the
T cell. In this regard, T cell development and differenti-
ation of the two major T helper (Th) subsets, namely
Th1 and Th2 cells, can also be viewed as examples of
differential signaling. In the present report, we review
two T cell-selective signaling molecules (protein kinase
C (PKC) 

 

θ

 

 and SLAT), which we have studied exten-
sively and that appear to play important roles in the
process of differential signaling. The novel PKC isoform
PKC

 

θ

 

 is selectively expressed in T lymphocytes and is
essential for TCR-triggered activation of mature T cells
via activation of the nuclear factor-

 

κ

 

B and activator
protein-1 pathways. Productive engagement of T cells
by antigen-presenting cells (APC) results in recruitment
of PKC

 

θ

 

 to the T cell–APC contact area, the immuno-
logical synapse (IS), where it interacts with several
signaling molecules to induce activation signals essen-
tial for productive T cell activation and interleukin-2
production. These events are associated with PKC

 

θ

 

translocation to membrane lipid rafts, which also
localize to the IS. The Vav/Rac pathway promotes the
recruitment of PKC

 

θ

 

 to the IS or lipid rafts as well as
its activation. SLAT is a novel adapter protein, which
we isolated recently. It is selectively expressed in Th2
lineage cells, where it is found associated with the

TCR-coupled protein tyrosine kinase ZAP-70. Our
initial characterization of SLAT indicates that, by regu-
lating the overall strength of TCR signaling, it may play
an important role in differential signaling processes,
which promote the differentiation and activation of
allergy promoting and anti-inflammatory Th2 cells.
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I

 

NTRODUCTION

 

An effective immune response depends on the ability of
specialized immunocytes to identify foreign molecules
and respond by differentiation into mature effector cells.
This tightly regulated process is mediated by a cell surface
antigen recognition apparatus and a complex intra-
cellular receptor-coupled signal-transducing machinery,
which operate at high fidelity to discriminate self from
non-self antigens.

The T cell receptor (TCR) is composed of two covalently
bound polymorphic subunits, which provide antigen spe-
cificity, in association with at least four different types of
invariant chains, which are essential for signal transduc-
tion. Activation of T lymphocytes requires sustained phys-
ical interaction of the TCR with a major histocompatibility
complex (MHC)-presented peptide antigen. This inter-
action results in a temporal and spatial reorganization of
multiple cellular elements at the T cell–antigen-presenting
cell (APC) contact region, a specialized region referred to
as the immunological synapse (IS)

 

1

 

 or the supramolecular
activation cluster (SMAC).

 

2

 

T cell receptor engagement by a peptide/MHC
complex is one essential signal (‘signal 1’) for T cell acti-
vation. However, productive T cell activation depends on
an additional signal (‘signal 2’), which can be provided
by a number of costimulatory receptors. The major
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costimulatory signal for T cell activation is provided by
interaction of the T cell surface molecule CD28 with its
CD80/CD86 (B7-1/B7-2) ligands on APC.

 

3–6

 

 This inter-
action plays an essential role in TCR-mediated interleukin
(IL)-2 production. The nature of the CD28 costimulatory
signal is relatively poorly defined. It may result from
unique biochemical signals, such as activation of phos-
phatidylinositol 3-kinase (PI3K), and/or its ability to
enhance, in a relatively non-specific manner, TCR sig-
nals, perhaps by facilitating formation of the IS and stabil-
izing it via its positive effect on lipid raft clustering.

 

7

 

Studies during the past two decades revealed and
characterized many types of effector molecules that play
a role in the TCR-linked signal transduction machinery.

 

8

 

This work has led to the recognition of the critical role of
multiple enzymes and adapter proteins in the early signal-
ing events downstream of the engaged TCR. During the
past 12 years, much work was centered on the role of
reversible tyrosine phosphorylation and the related
enzymes (i.e. protein tyrosine kinases and phosphatases)
in regulating T cell activation. However, historically, the
earliest studies on T cell activation have focused on
the regulatory role of inositol phospholipid turnover and
the resulting second messengers. These early studies

 

9

 

revealed that TCR engagement leads to phospholipase
C (PLC)-

 

γ

 

1-mediated hydrolysis of membrane inositol
phospholipids and subsequent production of inositol phos-
phates and diacylglycerol (DAG). These two second mes-
sengers stimulate, in turn, an elevation in intracellular
Ca

 

2+

 

 concentration ([Ca

 

2+

 

]

 

i

 

) and activation of protein
kinase C (PKC). Further support for the importance of
these events in T cell activation was obtained using a
combination of Ca

 

2+

 

 ionophore and phorbol ester tumor
promoters (such as phorbol myristate acetate (PMA)),
which mimicked TCR signals leading to full T cell activa-
tion resulting in IL-2 production and proliferation.

 

10–13

 

The discovery of PKC as a lipid- and Ca

 

2+

 

-dependent
serine/threonine kinase, which serves as a cellular recep-
tor for tumor-promoting phorbol ester,

 

14

 

 implicated PKC
in activation and mitogenesis of T cells. This was further
substantiated by demonstrating that cellular depletion of
PKC by prolonged treatment with phorbol esters, or PKC
inhibitory drugs, significantly inhibited T cell activation.

 

15

 

During the same period, progress has been made in iso-
lating the cDNA encoding different PKC enzymes.

 

16

 

 This
work revealed that PKC constitutes a family of multiple
enzymes encoded by different genes, which have distinct
biochemical properties, expression profiles and physio-
logic functions. However, the specific contribution of

distinct PKC isoforms to TCR-coupled signaling pathways
has not been resolved until very recently. This gap in our
knowledge was largely due to the relatively slow progress
in identifying specific physiologic substrates and functions
of distinct PKC isoenzymes in T cells.

Recent studies have started to fill this gap by providing
new information on PKC

 

θ

 

, which is now known to selec-
tively mediate several essential functions in TCR-linked
signaling leading to cell activation, differentiation and
survival.

 

Properties and function of PKC

 

θ

 

The discovery of PKC and its initial isolation and character-
ization revealed that this enzyme family is ubiquitously
expressed and is also abundant in lymphoid tissues,
peripheral blood mononuclear cells and leukemic cell
lines.

 

17,18

 

 Later studies demonstrated that PKC is the
cellular receptor for phorbol ester tumor promoters,

 

19–21

 

providing a long sought after explanation for the observed
effects of PMA on T cell mitogenesis.

 

22,23

 

 In addition,
both PKC-interacting phorbol esters and T cell proliferation-
inducing agents (such as mitogenic lectins or antireceptor
antibodies) induced a similar redistribution of PKC in
T cells, characterized by its translocation from the cytosol
to the particulate fraction.

 

24–30

 

 Together with the obser-
vation that PMA binding upregulates PKC activity,

 

16

 

these results were consistent with the idea that PKC plays
a key role in the activation response of T cells.

Cloning of several 

 

PKC

 

 genes led to the realization
that these enzymes represent a large family encoded by
distinct genes. Analysis of their tissue distribution demon-
strated that different isoenzymes are expressed within
individual cells and that many isoenzymes are expressed
in a wide range of cell types and tissues. The finding that
PKC activity is essential for TCR/CD3-induced T cell
activation

 

15

 

 led us to initiate a search for PKC isoforms
that may play a specific role in T cell development and/or
activation. These efforts led to the identification of a new
member of the Ca

 

2+

 

-independent novel PKC subfamily
termed PKC

 

θ

 

.

 

31

 

 Other investigators also cloned the cor-
responding mouse and human cDNA.

 

32,33

 

 Chromosomal
mapping located the human 

 

PKC

 

θ

 

 gene to the short arm
of chromosome 10 (10p15),

 

34

 

 a region prone to muta-
tions leading to T cell leukemia and lymphomas and
T cell immunodeficiencies.

 

35,36

 

Protein kinase C 

 

θ

 

 displays several unique properties
that distinguish it from other T cell-expressed PKC enzymes
and attest to its important role in T cell activation.

 

37,38
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First, it selectively activates the transcription factors acti-
vator protein-1 (AP-1) and nuclear factor-

 

κ

 

B (NF-

 

κ

 

B).

 

39–42

 

These actions require integration of signals generated by
the antigen-specific TCR and CD28, the major costimu-
latory receptor on T cells. These signals result in activa-
tion of the CD28 response element (RE) in the 

 

IL-2

 

 gene
promoter.

 

40

 

 Induction of CD28 RE is essential for produc-
tive T cell activation and secretion of IL-2, the major T cell
growth factor. Indeed, in the absence of a CD28 costim-
ulatory signal (and the resulting CD28 RE activation),
T cells enter a stable state of unresponsiveness termed
anergy.

 

43

 

 Consistent with the important role of PKC

 

θ

 

 in
CD28 RE activation, the mature T cells of 

 

PKC

 

θ

 

 gene-
knockout mice display a severe defect in TCR/CD28-
induced proliferation and IL-2 secretion, which can be
traced to deficient NF-

 

κ

 

B and AP-1 activation.

 

42

 

 Impor-
tantly, PKC

 

θ

 

 does not play any apparent role in thymic
development.

 

42

 

Second, PKC

 

θ

 

 synergizes with calcineurin (Cn), a
Ca

 

2+

 

-activated phosphatase, to activate the transcription
factor nuclear factor of activated T cells (NFAT) and the

 

IL-2

 

 gene.

 

44,45

 

 Third, PKC

 

θ

 

, but not other PKC isoforms,
translocates to the site of cell contact between antigen-
specific T cells and APC, the so-called IS,

 

35

 

 where it colo-
calizes with the TCR in the central core of the T cell
SMAC.

 

2,26

 

 This event correlates with productive T cell acti-
vation leading to IL-2 production. Fourth, antigen stimu-
lation induces translocation of PKC

 

θ

 

 to specialized
membrane microdomains or lipid rafts,

 

29

 

 which are known
to play an important role in T cell activation.

 

22,24

 

 Further-
more, the lipid raft translocation of PKC

 

θ

 

 is essential for
its proper function during T cell activation.

 

29

 

 Fifth, PKC

 

θ

 

also activates the c-Jun NH

 

2

 

-terminal kinase (JNK) in
T cells and synergizes with Cn to induce maximal activa-
tion.

 

44–47

 

 However, the biologic significance of this
pathway is unclear because JNK is not required for IL-2
production by naïve activated T cells

 

48

 

 and JNK activation
is intact in T cells from PKC

 

θ

 

-knockout mice.

 

42

 

 These
special properties of PKC

 

θ

 

 are largely specified by a
unique mechanism that regulates its cellular localization
and activation (see below).

 

Protein kinase C

 

θ

 

 and the T cell synapse

 

T cell activation requires sustained TCR interaction with
MHC-bound peptide antigen at the T cell–APC contact
region. Productive interaction results in biochemical
changes and reorganization of specific membrane
domains, which lead to the formation of a highly ordered

signaling complex at the contact site, the so called IS,

 

1

 

a term originally coined in reference to the polarized
cytokine secretion by antigen-stimulated T cells.

 

17

 

 Forma-
tion of a functional IS also involves the assembly of
signaling complexes consisting of TCR, costimulatory
accessory receptors (such as CD28, CD4/CD8 or lym-
phocyte function-associated antigen (LFA)-1) and intra-
cellular signaling effector proteins,

 

1,2,18

 

 reorganization of
the actin cytoskeleton

 

18–20

 

 and clustering of specialized
membrane microdomains or lipid rafts.

 

21–24

 

 A more detailed
analysis of the T cell–APC contact region revealed com-
partmentalization of molecules in at least two distinct
identifiable areas of the synapse, the so-called central
SMAC (cSMAC) and peripheral SMAC (pSMAC).

 

2

 

 While
the cSMAC is characterized by clustering of TCR and
MHC molecules on the T cell and APC surfaces, respec-
tively, the pSMAC in these two cell types is enriched with
LFA-1 integrins and their intercellular adhesion molecule-1
(ICAM-1) counterreceptors, respectively. The spatial organ-
ization and stability (or duration) of the IS determine the
functional outcome of TCR engagement and underlie
the fundamental phenomenon of differential T cell sig-
naling.

 

25

 

The initial findings linking PKC

 

θ

 

 to the IS demon-
strated that engagement of antigen-specific T cells by
APC led to a rapid, stable and high-stoichiometry locali-
zation of PKC

 

θ

 

, but not other T cell-expressed PKC (

 

β

 

I, 

 

δ

 

,

 

∈

 

, 

 

η

 

 and 

 

ζ

 

), to the T cell–APC contact site

 

26

 

 and, more
specifically, to the cSMAC.

 

2

 

 This clustering correlated
with the catalytic activation of PKC

 

θ

 

 and it only occurred
upon productive activation of T cells (i.e. upon exposure
to APC that were fed with optimal antigen concentrations
leading to efficient proliferation). In contrast, altered
peptide ligands or low peptide concentrations that induced
weak or no detectable proliferation did not promote
PKC

 

θ

 

 recruitment to the cSMAC.

 

26

 

 Coclustering of talin
and tubulin, and formation and reorientation of the
microtubule-organizing center (MTOC), were also observed
under these conditions. Subsequently, it became clear
that signaling molecules on the inner side of the cell
membrane also segregate into two non-overlapping
regions characterized by PKC

 

θ

 

 and Lck at the cSMAC,
just below the TCR, and talin molecules in the peripheral
zone, where they can directly interact with the LFA-1 cyto-
plasmic tail.

 

1,2

 

The plasma membrane of many cell types, including
T cells, contains glycosphingolipid-enriched membrane
microdomains (GEM) or detergent-insoluble glyco-
lipid (DIG) fractions, which are enriched in multiple
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glycosyl-phosphatidylinositol (GPI)-anchored proteins.
Because of their distinct biochemical and physical prop-
erties, these microdomains are relatively resistant to non-
ionic detergents, characterized by low buoyant density,
and, therefore, can be isolated by sucrose gradient cen-
trifugation. They can also be identified 

 

in vitro

 

 or in intact
cells by their selective ability to associate with the cholera
toxin B (Ctx) subunit, which binds selectively to the lipid
raft-enriched glycosphingolipid, GM1. These membrane
microdomains are likely to correspond to the lipid rafts,
which function as ‘floating’ platforms for the assembly of
signaling complexes, following the engagement of spe-
cific cell surface receptors.

 

27,28

 

 Distinct receptors or intra-
cellular signaling molecules associate with lipid rafts in
T cells either constitutively or following T cell activation
and lipid raft integrity is important for productive T cell
activation.

 

21–24

 

A recent study addressed the relationship between
lipid rafts and the IS with respect to the subcellular locali-
zation of PKC

 

θ

 

.

 

29

 

 Anti-CD3 stimulation induced recruit-
ment of a small amount of PKCθ to lipid rafts, an effect
that was augmented by CD28 costimulation.29 More-
over, TCR/CD28 costimulation of primary human T cells
induced a simultaneous translocation of endogenous
inhibitor of kappa B factor kinase (IKK) to the lipid rafts,
where physical interaction with PKCθ was observed.30

T cell receptor/CD28 crosslinking also increased the
enzymatic activity of the lipid raft-residing PKCθ29 and its
ability to phosphorylate and activate IKKβ.30 Stimulation
of antigen-specific T cells by a peptide antigen presented
by syngeneic APC induced simultaneous translocation
and colocalization of PKCθ and Ctx-labeled membrane
rafts at the T cell synapse.29 Overexpression of truncated
versions of PKCθ revealed that its translocation to rafts
required the N-terminal regulatory domain. Neverthe-
less, the presence of functional catalytic domain of PKCθ
in the lipid rafts was essential for the activation response.
Thus, replacement of the PKCθ regulatory domain by a
short sequence (seven amino acids) derived from the Lck
amino terminus (which includes a membrane targeting
sequence with myristoylation and acylation sites) allowed
the localization of the chimeric PKCθ molecule to the
rafts of non-stimulated T cells. However, lipid raft locali-
zation of this PKCθ form was insufficient for induction of
T cell activation (as assessed by activation of NF-κB),
which occurred only following cell stimulation with anti-
CD28 antibodies plus PMA.29

Previous studies demonstrated that PKCθ is a target for
phosphorylation by Lck in activated T cells.31 Because

both PKCθ and Lck localize to membrane rafts and are
essential for the activation response, it was of interest
to analyze whether Lck also affects PKCθ recruitment to
membrane rafts. By comparing PKCθ cellular redistribu-
tion in activated wild-type versus Lck-deficient Jurkat
T cells, Bi et al. found that Lck is essential for the induc-
ible translocation of PKCθ to membrane rafts.29 Cluster-
ing of PKCθ in the rafts was also dependent on the
enzymatic activity of Lck and could be inhibited by
the Lck-specific inhibitor 4-amino-5-(4-chlorophenyl)-7-
(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Furthermore,
the lipid raft-residing PKCθ was associated with Lck, as
observed by coimmunoprecipitation studies. In addition,
the Lck-mediated tyrosine phosphorylation of PKCθ was
dependent on the integrity of lipid rafts and was neces-
sary for optimal induction of PKCθ-dependent biologic
activities, such as NF-κB activation. However, it is pos-
sible that additional raft-residing effector molecules (rather
than Lck only), which are involved in the T cell activation
process, also regulate PKCθ activity and distribution. This
notion is supported by recent findings demonstrating that
intact ZAP-70 and SLP-76 are essential for activation
of both PKCθ and its downstream effector molecule
NF-κB32 and, furthermore, that PKCθ cooperates with
Akt/PKB to activate NF-κB in T cells.33,34

Regulation of PKCθ by the Vav/Rac pathway

Cytoskeletal components play critical roles in the regula-
tion of T cell–APC contact and ensuing events leading
to T cell activation. The actin cytoskeleton drives the
assembly of large clusters of signaling molecules and
formation of the IS.18,19,35 Localization of PKCθ to the
synapse and its selective involvement in early TCR/CD28
signaling events leading to T cell activation and prolifer-
ation raises questions regarding the mechanism that
enables the selective recruitment of PKCθ to the T cell
synapse. Unlike other T cell-expressed PKC enzymes, a
fraction of cellular PKCθ associates with the cytoskeleton
upon T cell activation.35,36 In light of recent findings that
the Vav/Rac pathway plays an important role in reorgan-
ization of the T cell actin cytoskeleton and in TCR
capping,49,50 Villalba et al. studied the potential role
of the Vav/Rac pathway in regulating the recruitment of
PKCθ to the membrane and its activation. It was found
that Vav promoted the translocation of PKCθ from the
cytosol to the membrane and cytoskeleton.35 In addition,
Vav induced PKCθ activation in a CD3/CD28 costimu-
lation pathway that was dependent on Rac and actin
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cytoskeleton reorganization. Furthermore, a TCR/CD28-
coupled Vav signaling pathway that mediated the activa-
tion of JNK and the IL-2 gene and upregulated CD69
expression was dependent on intact PKCθ function,
because all these Vav-induced responses were inhibited
by a dominant negative PKCθ mutant or by a selective
PKCθ inhibitor.35 These findings reveal that the Vav/Rac
pathway promotes the recruitment of PKCθ to the T cell
synapse and its activation. However, the identity of the
protein (or lipid?) that actually carries PKCθ to the T cell
synapse remains unknown. It is possible that PKCθ
specifically binds to a cytoskeletal protein or to some
scaffold protein that is associated with a component of
the T cell cytoskeleton or synapse.

In this respect, it is important to note that PKCθ was
identified as the major Ser/Thr kinase that phosphorylates
moesin, a member of the ezrin-radixin-moesin (ERM)
family of membrane-cytoskeleton linking proteins.51

Phosphorylation occurred on Thr558 the in vivo phosphory-
lation site of moesin within its conserved actin-binding
domain, suggesting that PKCθ may also regulate actin-
based organization of membrane components via its
effect on moesin. This effect may be relevant to synapse
formation in APC-engaged T cells. However, overexpres-
sion of active PKCθ alone did not induce significant actin
polymerization in T cells.35 Although chemokine stimula-
tion, which induces T cell polarization, causes moesin to
translocate to the uropod (i.e. the T cell pole opposite the
IS52), the localization of moesin in antigen-stimulated
T cells has not been examined in detail.

SWAP-70-LIKE ADAPTER OF T CELLS (SLAT)
Introduction: The Th1/Th2 paradigm

T helper cells play a central role in the immune response
via direct cell–cell contact or secretion of multiple
immunoregulatory cytokines. The division of Th cells into
two subsets based on their pattern of cytokine produc-
tion was first recognized among mouse CD4+ T cell
clones53 and later among human T cells.54 Mouse Th1
cells secrete IL-2, interferon (IFN)-γ and lymphotoxin
(LT), whereas Th2 cells produce IL-4, -5, -6, -9, -10 and
-13. Human Th subsets produce similar cytokine pro-
files, usually in a less tightly restricted manner.55,56 The
Th1 and Th2 subsets are thought to derive from a single
precursor naïve T cell (Th0 subset). Cross-regulation
among Th1 and Th2 cells is mediated by cytokines,
which inhibit the differentiation and function of the

reciprocal subset. Although this simple division of Th
cells into two defined subsets underestimates the com-
plexity of the system, it is clear that many antigen-specific
T cell clones and in vivo immune responses display a
clear dichotomy between Th1- and Th2-selective cytokine
responses. This dichotomy underlies an important func-
tional division. Thus, activated Th1 cells mediate primarily
cell-mediated inflammatory responses (e.g. delayed-type
hypersensitivity). The Th2 cells function mainly as helper
cells for antibody responses (particularly IgE) and enhance
eosinophil proliferation and function.55,56

The importance of Th1 and Th2 cells in the normal
physiology and pathology of the immune system is under-
scored by many studies documenting the predominance
of a given subset in infection, autoimmune diseases,
transplant rejection and allergic diseases.56 Interleukin-4
and -5 (but not IFN-γ) are detected in late-phase cutane-
ous allergic reactions, allergen-specific T cells display a
strong Th2 bias and Th2 cytokines in bronchial lavage
fluid and eosinophilia are found in atopic asthma. These
and other findings have led to the notion that Th2-
derived cytokines play a central role in the pathophysi-
ology of allergy and asthma.57 Thus, Th2 cells and their
characteristic cytokines represent an important drug develop-
ment target for the treatment of these diseases. In this
regard, effective drug design and development require a
detailed understanding of the factors that determine both
the commitment and differentiation of Th0 cells into the
Th1/Th2 subset and the regulation/activation of the two
mature subsets.

Signaling in Th1 compared with Th2 subsets

The well-documented production of distinct cytokines by
committed Th1 and Th2 cells, which respond to the
same antigen, suggests that qualitative and/or quantita-
tive differences in signals delivered by the TCR and/or
costimulatory receptors upon engagement by peptide/
APC account for this differential cytokine production.
Thus, activation of Th1/Th2 cells, as well as their
differentiation from naïve cells, can be viewed as cases
of differential TCR signaling. The TCR affinity for its
ligand, the type of APC or the nature of the costimula-
tory signals have all been shown to influence the pattern
of Th differentiation and cytokine production. Most of
the progress in this regard was made in the area of
transcriptional regulation of cytokine production.58,59

Thus, the transcription factors GATA-3 and c-Maf are
highly expressed in Th2 cells, but not Th1 cells, and
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induce high levels of IL-4 and IL-5. Conversely, T-bet is
expressed in differentiated Th1 cells but not Th2 cells
and can transactivate the IFN-γ promoter.

The majority of studies on these factors to date has
focused on their induction in response to cytokine recep-
tor signals. However, these events occur downstream of
the initial regulation of Th1 and Th2 cells, which must rely
on production of IL-4, IFN-γ and IL-12 in response to
TCR and costimulatory signals in the first place. As an
example, Th2 cells can be generated in the complete
absence of the IL-4R or its signaling intermediate signal
transducers and activators of transcription (STAT)-660–62

and Th1 cells can be generated in the absence of the
IL-12R signaling intermediate STAT-4.63 This suggests
that commitment to the Th1 or Th2 differentiation path-
ways is decided before cytokine receptor signaling occurs
and that the latter may serve primarily to amplify the
number of Th1 and Th2 cells that are generated and/or
survive. Consistent with this notion, recent studies demon-
strated that TCR signaling intensities regulate the differen-
tiation of naïve Th cells into Th1 or Th2 phenotypes.64,65

Other studies implicated a differential role for TCR proxi-
mal signaling pathways, such as non-receptor protein
tyrosine kinase (PTK), PKC, Cn and mitogen-activated
protein kinase in Th subset differentiation and activa-
tion.58,59 However, much remains to be learned about
differences in early membrane proximal TCR signals
associated with Th differentiation and/or differential cytokine
production by committed Th subsets.

SLAT
In an attempt to identify novel Th2-specific signaling
proteins, we performed a differential display analysis66

of cDNA obtained from pigeon cytochrome C (PCC)-
specific AD10 TCR-transgenic T cells, which were cul-
tured for 4 days under defined conditions leading to
polarized Th1 or Th2 cells. This polarization was con-
firmed by intracellular cytokine staining of IFN-γ and
IL-4, respectively. We focused our attention on one
cDNA, which hybridized to an approximate 1.8 kb
transcript expressed in Th2, but not Th1, cells. The rapid
amplification of cDNA ends (RACE) method was used to
extend this partial cDNA and obtain a complete reading
frame encoding a putative protein of 630 amino acids.
Sequence analysis revealed that the cDNA corresponds
to a novel gene. Sequence comparison of the putative
protein with the GenBank database revealed identities
of 45% with murine SWAP-70.67 The domain structure of

this novel protein is very similar to that of SWAP-70.
SWAP-70 is a novel protein of 70 kDa, which is expressed
only in B lymphocytes that have been induced to switch
to various Ig isotypes and in switching B cell lines.67

B cells of SWAP-70-deficient mice are more sensitive to
γ-irradiation than B cells of wild-type mice and they
display defects in CD40- and lipopolysaccharide-
dependent switching to the IgE isotype, but not to other
isotypes.68 These results suggest that SWAP-70 serves a
specific role in the CD40-dependent signaling pathway
leading to IgE production and, by inference, in regulat-
ing the allergic response. SLAT mRNA expression corre-
lated with Th2 differentiation and the corresponding
protein was preferentially expressed in Th2 membrane,
in T cell lines and in the thymus. SLAT inducibly associated
with ZAP-70 in antigen-activated Th2 cells and agonist
stimulation of antigen-specific Th2 cells induced its
translocation to the central region (cSMAC?) of the T cell
synapse. Finally, transient overexpression of SLAT in
Jurkat T cells stimulated the anti-CD3-induced activation
of an IL-4 gene and, conversely, reduced the induction
of an IFN-γ reporter reporter gene. Consistent with this
result, retrovirus-mediated SLAT expression reduced the
fraction of IFN-γ-producing (Th1) primary T cells, but
increased the number of IL-4-producing differentiated
Th2 cells. Based on these homologies and the respective
expression profiles, we named the novel cDNA and its
putative protein product SWAP-70-like adapter of T cells
(SLAT). We propose that SLAT is the T cell homolog of
B cell-specific SWAP-70. Thus, SLAT is a novel candi-
date for mediating early TCR signaling events in Th2
lineage cells.
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