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SUMMARY

Transfer RNAs (tRNAs) contain a wide variety of post-
transcriptional modifications that are important for
accurate decoding. Mammalian mitochondrial tRNAs
(mt-tRNAs) are modified by nuclear-encoded tRNA-
modifying enzymes; however, the physiological roles
of thesemodifications remain largely unknown. In this
study, we report that Cdk5 regulatory subunit-associ-
ated protein 1 (Cdk5rap1) is responsible for 2-methyl-
thio (ms2) modifications of mammalian mt-tRNAs for
Ser(UCN), Phe, Tyr, and Trp codons. Deficiency in
ms2 modification markedly impaired mitochondrial
protein synthesis, which resulted in respiratory de-
fects in Cdk5rap1 knockout (KO) mice. The KO mice
were highly susceptive to stress-induced mitochon-
drial remodeling and exhibited acceleratedmyopathy
and cardiac dysfunction under stressed conditions.
Furthermore, we demonstrate that the ms2 modifica-
tions of mt-tRNAs were sensitive to oxidative stress
and were reduced in patients with mitochondrial
disease. These findings highlight the fundamental
role of ms2 modifications of mt-tRNAs in mitochon-
drial protein synthesis and their pathological conse-
quences in mitochondrial disease.

INTRODUCTION

Transfer RNA (tRNA) is a key molecule in the translational appa-

ratus to decode genetic information into proteins. A unique

feature of tRNAs is the presence of a variety of chemical modifi-

cations of their nucleotides (Machnicka et al., 2013). Thesemod-

ifications are critical for efficient and accurate decoding (Agris,

2004; Suzuki, 2005). To date, more than 100 modified nucleo-
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tides have been identified in tRNAs from the three domains of

life, indicative of the universal importance of tRNA modifications

(Machnicka et al., 2013).

Given the critical roles of tRNA modifications in cells, it is not

surprising that tRNAmodification deficiencies have been associ-

ated with human diseases (Torres et al., 2014). Genetic varia-

tions in the gene encoding Cdk5 regulatory subunit associated

protein 1-like-1 (CDKAL1), which inserts a 2-methylthio (ms2)

group into theN6-threonylcarbamoyl adenosine (t6A) of cytosolic

tRNALys(UUU), have been associated with the development of

type 2 diabetes (Steinthorsdottir et al., 2007; Arragain et al.,

2010). A deficiency in the ms2 modification of tRNALys(UUU) re-

sulted in aberrant proinsulin synthesis, which ultimately led to

impaired glucose metabolism and insulin secretion in Cdkal1

knockout (KO) mice and in human subjects carrying T2D-associ-

ated alleles of CDKAL1 (Wei et al., 2011; Xie et al., 2013).

In mitochondrial tRNAs (mt-tRNAs), 15 species of modified

nucleotides at 118 positions have been identified in bovine (Su-

zuki and Suzuki, 2014). Some of these modifications have been

associated with the development of mitochondrial diseases,

such asMitochondrial myopathy, encephalopathy, lactic cidosis,

stroke-like episodes (MELAS), and myoclonus epilepsy with rag-

ged-red fibers (MERRF) (Suzuki et al., 2011). mt-tRNALeu and

mt-tRNALys contain 5-taurinomethyl (tm5) and 5-taurinomethyl-

2-thio (tm5s2) modifications, respectively, at U34 (Yasukawa

et al., 2001; Suzuki et al., 2002), and both of these modifications

are critical for decoding their cognate codons (Kirino et al., 2004;

Yasukawa et al., 2001). The absence of these modifications has

been observed in MELAS patients carrying the A3243Gmutation

inmt-tRNALeu and inMERRF patients carrying the A8344Gmuta-

tion in mt-tRNALys (Yasukawa et al., 2001). These results suggest

a critical role for mt-tRNA modifications in the pathogenesis of

human diseases. Nevertheless, knowledge regarding the physio-

logical roles of tRNAmodifications is incomplete, and a complete

investigation of the individual types of mt-tRNA modifications is

required to fully understand the physiological function and mo-

lecular pathology of tRNA modifications in human diseases.
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In mammalian mt-tRNAs, 2-methylthio-N6-isopentenyl adeno-

sine (ms2i6A) is a unique modification that is conserved in all

three domains of life (Machnicka et al., 2013). In bacteria, the

ms2 modification of ms2i6A contributes to accurate decoding

by improving tRNA binding to codons (Urbonavicius et al.,

2001; Jenner et al., 2010). However, the physiological impor-

tance of ms2 modifications in mammals is unknown. We have

previously shown that Cdk5rap1 might be responsible for the

ms2 modification of ms2i6A because of its homology to Cdkal1,

which catalyzes ms2t6A modification (Arragain et al., 2010).

Recently, Cdk5rap1 was proposed to catalyze ms2 group inser-

tion in both cytosolic RNAs and mt-tRNAs; however, the exact

substrate tRNA of Cdk5rap1 in mammalian cells remains unclear

(Reiter et al., 2012).

Given the exclusive mitochondrial localization of ms2i6A in

mammals and the implication of this localization in the decoding

process, we hypothesize that Cdk5rap1 might specifically cata-

lyze the ms2 modification of mt-tRNAs and contribute to mito-

chondrial function in vivo. In this study, we validated this hypoth-

esis through a thorough investigation of the physiological

function of the ms2 modification in Cdk5rap1 KO mice. Further-

more, we investigated the pathological implication and the mo-

lecular mechanism of the ms2 modification in MELAS patients.

RESULTS

Cdk5rap1 Catalyzes the Conversion of i6A to ms2i6A in
Mitochondrial tRNAs
Based on the high homology between mammalian Cdk5rap1

and bacterial MiaB, we and another group previously showed

that Cdk5rap1 might be a mammalian methylthiotransferase

that catalyzes the conversion of N6-isopentenyl adenosine

(i6A) to 2-methylthio-N6-isopentenyl adenosine (ms2i6A) (Fig-

ure 1A and see Figure S1A available online; Arragain et al.,

2010; Reiter et al., 2012). To investigate this hypothesis, we

transformed Cdk5rap1 in MiaB-deficient bacteria (DMiaB),

which do not contain ms2 modifications. As expected, the trans-

formation of Cdk5rap1 restored ms2 modifications (Figure 1B).

The conserved cysteine residues in the UPF domain and the

radical SAM domain of MiaB are critical for ms2 modification

through their interaction with two [4Fe-4S] clusters (Forouhar

et al., 2013). Similar to MiaB, the mutation of cysteine residues

in the UFP domain or the radical SAM domain of Cdk5rap1

completely abolished the ms2 modification (Figure 1B).

To prove that Cdk5rap1 is a mitochondrial methylthiotransfer-

ase and to identify its exact substrates, we generated Cdk5rap1

KO mice (Figures S1B–S1D). As expected, the ms2 modification

was completely abolished in KO mice (Figures S1E and S1F).

Cdk5rap1 colocalized with Mitotracker in HeLa cells (Fig-

ure S2A). Cdk5rap1 with a deletion of mitochondrial localization

signal at the N terminus exhibited cytosolic localization but re-

tained its enzyme activity (Figures S2A and S2B). However, no

ms2 modification was detected in Cdk5rap1-deficient mouse

embryonic fibroblast (MEF) cells expressing the cytosolic form

of Cdk5rap1 (Figures S2C and S2D). These results indicate

that Cdk5rap1 localizes on mitochondria and specifically mod-

ifies mt-tRNAs. To identify the exact substrate of Cdk5rap1,

individual mt-tRNA was isolated fromWT and KOmice and sub-

jected to mass spectrometric analysis. The ms2 modification
Ce
was completely absent at A37 in mt-tRNAPhe, mt-tRNATrp, mt-

tRNATyr, and mt-tRNASer(UCN) isolated from KO mice (Figures

1C–1F). The absence of an ms2 modification did not affect the

nearby tm5 modification at U34 in mt-tRNATrp (Figure S1F).

These results clearly demonstrate that Cdk5rap1 is a two [4Fe-

4S] cluster-containing mitochondrial methylthiotransferase that

specifically converts i6A to ms2i6A at A37 of mt-tRNAPhe, mt-

tRNATrp, mt-tRNATyr, and mt-tRNASer(UCN) in mammalian cells.

The ms2 Modification Controls Codon-Specific
Decoding Fidelity in a Translation Rate-Dependent
Manner
A previous study demonstrated that the ms2 group of 2-methyl-

thio-N6-hydroxyisopentenyl adenosine (ms2io6A) is critical for

the accurate decoding of Tyr and Phe codons (Urbonavicius

et al., 2001). To thoroughly investigate the role of ms2 modifica-

tions of tRNAs during the decoding of their cognate codons, we

utilized a luciferase-based reporter and transformed the plasmid

into aWT strain or the DMiaB strain to detect frameshifting in the

presence or absence of the ms2 modification. The firefly lucif-

erase gene was properly translated only when frameshifting

occurred at the cognate codons read by tRNAPhe, tRNATrp,

tRNATyr, or tRNASer(UCN) (Figure S2E). A deficiency in ms2 modi-

fication induced frameshifting at Phe(TTT) and Tyr(TAT) codons

(Figure 1G). Induction of protein translation by isopropyl-beta-

D-thiogalactopyranoside (IPTG) exaggerated the overall frame-

shifting rate in both the WT and DMiaB strains. In addition

to the Phe(TTT) and Tyr(TAT) codons, there was a significant

increase in ms2-dependent frameshifting at the Tyr(TAC),

Ser(TCT), Ser(TCC), and Ser(TCG) codons, for which frameshift-

ing was not observed without IPTG induction (Figures S1G–S1I).

Importantly, these results show that ms2-dependent frameshift-

ing specifically occurred during the translation of wobble co-

dons, such as Phe(TTT), Tyr(TAT), Ser(TCT), Ser(TCC), and

Ser(TCG), with the exception of the Tyr(TAC) codon, but not

the cognate codons, such as Phe(TTC), Ser(TCA), and Trp(TGG)

(shown in red in Figures S1F–S1I). Furthermore, the ms2-defi-

ciency-evoked frameshifting was fully reversed by transforma-

tion with active Cdk5rap1, but not dominant-negative Cdk5rap1

(Figure 1G). These results demonstrate that ms2 modification is

critical for the accurate decoding of wobble codons correspond-

ing to tRNAPhe, tRNATyr, or tRNASer(UCN) in a translation rate-

dependent manner.

Deficiency of the Mitochondrial ms2 Modification
Attenuates Mitochondrial Translation
To examinemitochondrial protein synthesis, WT or KOMEF cells

were labeled with 35S-methionine for 1 hr and subjected to pulse

chase. The mitochondrial protein synthesis was substantially

decreased in KO MEF cells (Figure 2A). Furthermore, MEF cells

were radioactively labeled and subjected to blue native PAGE

to examine the formation of respiratory complexes. The incorpo-

ration of mitochondrial proteins into complexes I, III, and IV was

substantially decreased in KO MEF, whereas complex V was

unaffected (Figures 2B and 2C). These results suggest that the

deficiency in ms2 modification greatly attenuated mitochondrial

protein synthesis, resulting in impaired complex assembly.

Themaintenance ofmitochondrial OXPHOS subunits is critical

for the electron transport chain, which maintains the resting
ll Metabolism 21, 428–442, March 3, 2015 ª2015 Elsevier Inc. 429



Figure 1. Cdk5rap1 Is The Mammalian mt-tRNA Methylthiotransferase

(A) Structures of N6-isopentenyladenosine (i6A) and 2-methylthio-N6-isopentenyladenosine (ms2i6A) and the correspondingm/z values are shown. Thems2 group

(S-CH3) is shown in red.

(B) GST-Cdk5rap1 or GST-Cdk5rap1 with Cys-to-Ala mutations (3CA) was transformed into the MiaB-deficient strain (DMiaB). The arrows and arrowhead

indicate the peaks corresponding to i6A and ms2i6A, respectively.

(C–F) Examination of the ms2i6A modification in mt-tRNAPhe (C), mt-tRNATrp (D), mt-tRNATyr (E), and mt-tRNASer(UCN) (F) isolated from WT and KO mice by mass

spectrometry. The mass chromatograms show the peaks corresponding to fragments containing i6A or ms2i6A.

(G) Frameshifting assay. WT and DMiaB bacteria were transformed with Cdk5rap1 or inactive Cdk5rap1 (Cdk5rap1-3CA). The relative ratio of firefly luciferase

activity to renilla luciferase activity (F/R) represents the decoding error. n = 4. Data are mean ± SEM. **p < 0.01, ***p < 0.0001.
mitochondrial membrane potential and drives respiration. We

thus investigated the mitochondrial membrane potential in WT

and KO MEF cells. There was a marked increase in cell popula-

tions with very low membrane potential in KO MEF cells (Fig-

ure 2D). Consequently, the oxygen consumption rate in KO cells

was significantly lower than that in WT MEF cells (Figure 2E).

Furthermore, the KO cells quickly lost their mitochondrial mem-

brane potential after treatment with very low doses of rotenone

and FCCP, which had little effect on WT cells (Figures 2F and
430 Cell Metabolism 21, 428–442, March 3, 2015 ª2015 Elsevier Inc.
2G). These results thus demonstrate that ms2 modifications

of mt-tRNAs are critical for maintaining efficient mitochondrial

translation and respiratory chain.

Deficiency of Mitochondrial ms2 Modification Impairs
OXPHOS in Skeletal Muscle and Heart Tissue without
Affecting Basal Metabolism
To investigate the physiological role of mitochondrial ms2 modi-

fication, we examined the phenotype of KOmice in vivo. Despite



Figure 2. Deficiency in the ms2 Modifications Impaired Mitochondrial Protein Synthesis and Mitochondrial Functions

(A) WT and KOMEF cells were labeled with 35S-Met/Cys and chased for 0 or 24 hr in the presence of emetine for measurement of mitochondrial protein synthesis

(left panels). MEF cells were labeled with 35S-Met/Cys for 1 hr, and total protein synthesis was measured (right panels). CBB staining of gel was used as loading

control.

(B and C) The autoradiogram of blue native PAGE shows a decrease in the incorporation of mitochondrial proteins in complexes I, III, and IV in KO MEF cells (B).

The relative intensity of complex I, III, and IV versus complex V was quantified (C).

(D) The histogram and inserted graph show that KO MEF cells contain a number of mitochondria with low membrane potentials; n = 110 each.

(E) KO cells showed a significant decrease in the oxygen consumption rate (OCR); n = 10 each.

(E–G) Cells were stained with TMRM for measuring membrane potential. The relative membrane potential in the presence of rotenone (F) or FCCP (G) was

analyzed; n = 66 for WT and n = 30 for KO (F); n = 43 for WT and n = 32 for KO (G). Data are mean ± SEM. *p < 0.05.

Cell Metabolism 21, 428–442, March 3, 2015 ª2015 Elsevier Inc. 431



Figure 3. The Deficiency in ms2 Modification Impaired Mitochondrial Function In Vivo

(A) Steady-state levels of complex I (CI), complex II (CIII), complex IV (CIV), and complex V (CV) in mitochondria isolated from skeletal muscle and heart tissues

were examined by BN-PAGE.

(B) Steady-state levels of representative proteins of CI-CIV were examined by western blotting. CBB staining was used as loading control.

(C) The activities of CS, CI-CIV in skeletal muscle (left panel), and heart (right panel) of WT and KO mice were examined. n = 4–5.

(D and E) Respiratory couplingwas decreased in Cdk5rap1-deficientmitochondria isolated from skeletal muscle and heart tissuewhen examined using XF24 Flux

Analyzer; n = 4–5.

(F) The steady-state levels of ATP in the skeletal muscle and heart tissue of WT and KO mice were examined; n = 4 each. Data are mean ± SEM. *p < 0.05.
themitochondrial dysfunction in KO cells, the Cdk5rap1 KOmice

developed normally without obvious morphological changes in

major tissues (Figures S3A and S3B). The energy expenditure

and glucose metabolism in KOmice were compatible with those

ofWTmice (Figures S3C–S3E). Furthermore, there was no differ-

ence in neurological behaviors between KO and WT mice (Fig-

ures S3F–S3I).

Of all tissues, skeletal muscle and heart tissue are the most

susceptible tissues to mitochondrial dysfunction (DiMauro and

Schon, 2003). We therefore closely examined these two tissues

in KO mice. Substantial decreases in the steady-state levels of

complex I and IV were observed in both skeletal muscle and

heart tissues of KO mice compared with WT mice, with complex

I being markedly affected (Figure 3A). Accordingly, the steady-

state levels of complex I and IV proteins, such as NDUFB8 and
432 Cell Metabolism 21, 428–442, March 3, 2015 ª2015 Elsevier Inc.
MTCO1, respectively, weremarkedly decreased in skeletal mus-

cle and heart tissues of KO mice compared with WT mice (Fig-

ure 3B). As a result, complex I activity was significantly impaired

in KO mice (58.6% of WT for skeletal muscle and 51.5% of WT

for heart tissue) (Figure 3C). There was a mild but significant

decrease in complex III and complex IV activity in KOmice (mus-

cle: complex III, 88.8% of WT; complex IV, 80.5% of WT; heart:

complex III, 80.7% ofWT, complex IV, 79.8% of WT) (Figure 3C).

The decrease in mitochondrial activity in the skeletal muscle of

KO mice was also confirmed by cytochrome oxidase (COX)

staining (Figure S3J). Accordingly, the oxygen consumption eli-

cited by ADP and FCCP in Cdk5rap1-deficient mitochondria

was significantly lower than that in WT mitochondria, indicating

that electron transport and respiratory coupling were impaired

in the skeletal muscle and heart tissue of KO mice (respiratory



control ratio of the hearts of WT and KO: 4.9 and 3.2, skeletal

muscles of WT and KO: 9.4 and 6.5, respectively; Figures 3D

and 3E). Consequently, the steady-state ATP level in skeletal

muscle and heart tissue of KO mice was lower than that in WT

mice (Figure 3F).

Impairment of mitochondrial function usually exaggerates

mitochondrial remodeling as a compensation mechanism. There

was an increase in the mitochondrial mass in the skeletal muscle

of KOmice as examined by electronmicroscopy andGomori Tri-

chrome staining (Figures 4A, 4B, and S3J). Strikingly, the mito-

chondrial was abnormally enlarged in heart tissue of KO mice

(Figures 4C and 4D). A progressive disruption of cristae was oc-

casionally observed in the mitochondria of the cardiac muscle of

KO mice (arrow in Figure 4C). Furthermore, there was a signifi-

cant increase in citrate synthase activity (Figure 3C) as well as

relative mtDNA content (Figure 4E) in the skeletal muscle of KO

mice.

Reactive oxygen species (ROS) are byproducts of mitochon-

drial electron transport and mainly generated from complexes I

and III (Murphy, 2009). A deficiency of complexes I and III accel-

erates the leakage of ROS from electron transport chain and

contributes to the development of mitochondrial diseases. Given

the marked decrease in complex I protein level in KO mice, we

investigated ROS production in KO mice (Figure 4F). The ROS

level was slightly but significantly higher in KO MEF cells than

that in WT MEF cells. This finding was corroborated by a moder-

ate increase in protein carbonylation (Figure 4G) aswell as oxida-

tive stress-related gene expression in both skeletal muscle and

heart tissues of KO mice (Figure 4H).

To further investigate the impact of deficiency of ms2 modifi-

cation on physiological function, we examined muscular and

cardiac function in vivo. However, the treadmill performance of

KO mice was comparable with that of WT mice (Figure S3K).

The echocardiography examination indicated that no apparent

cardiac defects were present in the KOmice (Figure S3L). Taken

together, these results demonstrate that the deficiency of ms2

modifications in mt-tRNAs impairs mitochondrial protein synthe-

sis, which leads to a reduction of respiratory activity and increase

in ROS in skeletal muscle and heart tissue. However, considering

the overall phenotypes, mice seem to tolerate an up to 50%

reduction of complex I activity due to the loss of ms2 modifica-

tions under sedentary conditions.

Loss ofms2Modifications Accelerates OXPHOSDefects
under Stressed Conditions
The mild phenotype of KO mice prompted us to challenge the

mice with a ketogenic diet (KD; very high fat and ultra-low carbo-

hydrate). Ketone bodies fromKD bypass glycolysis and generate

energy mostly through fatty acid oxidation in mitochondria (Laf-

fel, 1999). Adaptation to this metabolic pressure is accompanied

by mitochondrial rearrangement (Grimsrud et al., 2012). There-

fore, it is conceivable that the accurate regulation of mitochon-

drial protein synthesis by ms2 modification is particularly impor-

tant for mitochondrial remodeling under stressed conditions.

As expected, KD treatment accelerated OXPHOS defects in

the skeletal muscle and heart tissue of KO mice (Figures 4A

and 4B). Complex I activity was significantly impaired in KD-

fed KO mice (48.6% of the KD-fed WT for skeletal muscle and

47.7% of the KD-fed WT for heart tissue) (Figures 5A and 5B).
Ce
In addition, accelerated decreases in complex III and IV activities

were observed in the KD-fed KO mice (muscle: complex III,

82.9% of the KD-fed WT; complex IV, 62.9% of the KD-fed

WT; heart: complex III, 75% of the KD-fed WT; complex IV,

57.8% of the KD-fed WT).

The OXPHOS defect after KD treatment exaggerated themito-

chondrial remodeling pathway in both WT and KO mice. There

was a �3-fold and �1.5-fold increase in mtDNA content in the

skeletal muscle and heart tissue of both WT and KO mice fed a

KD, respectively (Figure 5C). However, there was no difference

in the mtDNA content in skeletal muscle and heart tissue be-

tween WT and KO mice (Figure 5C). Accordingly, subsequent

electron microscopic examination revealed a marked increase

in mitochondria mass (Figures 5D and 5F). In the skeletal mus-

cles of KO mice fed a KD, mitochondrial proliferation was

observed in both intermyofibrillar and subsarcolemmal mito-

chondria, with the latter drastically increased (Figure 5D). Impor-

tantly, KD-fed KO mice exhibited a considerable population of

mitochondria with disrupted cristae in the skeletal muscle tissue

(arrowheads in Figure 5D). The enlargement of mitochondria and

the disruption of cristae were even more prominent in the heart

tissue of KO mice fed a KD (arrows in Figure 5D). These results

demonstrate that Cdk5rap1-dependent ms2 modification is

crucial for the maintenance of OXPHOS activity and mitochon-

drial morphology under stress.

The acceleration of theOXPHOSdefect in KOmicemaybedue

to the indirect lipotoxicity from the very high-fat diet. However,

the body weight and serum metabolic profiles of KO mice fed a

KD were the same as those of WT mice fed a KD (Figures S4A–

S4C). There was no difference in the locomotor activity or energy

expenditure between theWT and KOmice fed a KD (Figures S4D

and S4E). Interestingly, the glucose level in the KD-fed KO mice

was somewhat lower than that in the KD-fed WT mice (Fig-

ure S4F). Taken together, these results indicate that the progres-

sive OXPHOS defects andmitochondrial degeneration in KD-fed

KO mice directly resulted from a deficiency in Cdk5rap1-depen-

dent ms2 modification during mitochondrial remodeling.

Loss of ms2 Modification Accelerates Muscular and
Cardiac Dysfunction under Stress
The KD-induced OXPHOS defect markedly accelerated the

dysfunction of skeletal muscle and heart tissue in the KO

mice. In a treadmill test, KO mice fed a KD showed a significant

increase in the number of falls and became exhausted as early

as 30 min into the test (Figure 5G). The KO mice also showed

moderate cardiac hypertrophy, as indicated by an increase in

heart volume, heart weight, and left ventricle posterior wall

thickness (Figures S5A–S5C). The percentage of fractional

shortening (FS%) in KO mice fed a KD was significantly lower

than that in WT mice fed a KD (WT, 43% versus KO, 34%; Fig-

ure 5H). In addition to a KD-induced stress model, we utilized a

transverse aortic constriction (TAC) model, which is a standard

model for inducing cardiac dysfunction by pressure overload.

Because the TAC model is also accompanied by global mito-

chondrial remodeling (Dai et al., 2012), we expected that a defi-

ciency in ms2 modification would further accelerate cardiac

dysfunction. Indeed, chronic TAC resulted in a progressive car-

diac hypertrophy, as indicated by an increase in heart weight

and left ventricle posterior wall thickness in KO mice (WT,
ll Metabolism 21, 428–442, March 3, 2015 ª2015 Elsevier Inc. 433
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7.5 mg/g body weight; KO, 11.3 mg/g body weight; Figures

S5A and S5D–S5F). In WT mice, the FS% dropped from

51.2% to 34.5% 1 week after TAC but was then maintained un-

til 10 weeks (5 weeks, 32.4; 10 weeks, 31.1; Figure 5I). In

contrast, the FS% in KO mice continuously decreased after

TAC and eventually decreased to as low as 21.7% (Figure 5I).

Further examination in isolated cardiomyocytes revealed that

the cardiac dysfunction observed in the TAC model of KO

mice was associated with a decrease in calcium influx and

contraction rate (Figures 5J and S5G). These results demon-

strate that a deficiency of the ms2 modifications in mt-tRNAs

can cause a catastrophic defect in muscle and heart tissue un-

der stressed conditions.

Deficiencies in ms2 Modification Compromise the
Quality of Mitochondria
Next, we investigated the molecular mechanism underlying the

stress-induced acceleration of OXPHOS defects and cardiomy-

opathy in KO mice. Adaptation to mitochondrial stress requires

coordinated protein synthesis (Dai et al., 2012). Because ms2

modification controls decoding fidelity in a translation-rate-

dependent manner, it is conceivable that a deficiency in ms2

modification under stressed conditions might markedly compro-

misemitochondrial quality aswell as integrity, whichwould result

in severe OXPHOS defects and ultimately lead to myopathy

and cardiac dysfunction. Indeed, a moderate increase in the

complex I level was observed in WT mice treated with KD or

TAC surgery (Figures 6A and 6B). In contrast, the steady-state

levels of complexes I and IV levels were somewhat decreased

in KD-fed and TAC KO mice when compared with NC-fed KO

mice. The mitochondrial stresses increased protein carbonyl-

taion in both WT and KO mice. As a result, the protein carbonyl-

ation level in stressed heart tissues of KO mice was moderately

higher than that in the stressed WT mice (Figure S6A). Impaired

mitochondrial proteostasis exaggerates mitochondrial unfolded

protein response (mt-UPR) (Durieux et al., 2011; Houtkooper

et al., 2013). Accordingly, proteins involved in mtUPR, such

as Yme1l1, Afg3l2, and Lonp1, were upregulated inmitochondria

isolated from the hearts of KO mice treated with KD and

TAC compared with WT mice (Figure 6C). Furthermore, a mar-

ked increase in polyubiquitinated proteins was observed in

mitochondria isolated from the hearts of KO mice under

stressed conditions (Figure 6D). Interestingly, the levels of poly-

ubiquitination were proportional to the levels of cardiac function

(FS%) in stressed KO mice (TAC > KD > NC; Figure 6D; also see

Figures 5H and 5I).

Mitophagy is the hallmark of the existence of compromised

mitochondria. Parkin, an E3 ubiquitin ligase, primes mitophagy
Figure 4. Aberrant Mitochondrial Morphology and ROS Metabolism in

(A–D) Mitochondria in skeletal muscle and heart tissue were examined by electro

and increasedmitochondrial mass (B and D). Bars in (A) and the left panels of (C), 1

n = 126; KO, n = 132 in (D).

(E) The relative contents of mtDNA in muscle and heart tissue were examined; n

(F) ROS levels were analyzed by measuring the florescent intensity of CM-H2DCF

n = 3.

(G) Protein carbonylation levels were increased in the mitochondria of skeletal m

(H) Heatmap showing the differentially regulated genes involved in oxidative stres

are mean ± SEM. *p < 0.5, ****p < 0.0001.
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by translocation to mitochondria with low membrane potentials

and ubiquitination of mitochondrial proteins (Kubli and Gustafs-

son, 2012). Because cells withms2modification deficiencies had

a low basal mitochondrial membrane potential andwere suscep-

tible to stress-induced depolarization (Figures 2F and 2G), we

hypothesized that mitochondrial stress might exaggerate the

recruitment of Parkin to mitochondria and the acceleration of mi-

tophagy in Cdk5rap1 KO cells. In KO cells treated with FCCP,

most of the Parkin translocated to the mitochondria as soon as

2 hr after treatment, whereas similar translocation was not

observed in WT cells treated with FCCP (Figure 6E; also see

the separated imaged in Figure S6B). A number of large mito-

chondrial aggregates were surrounded by the autophagosomal

membrane protein LC3 in KO cells treated with FCCP, which is

indicative of acceleration of mitophagy (Figure 6F; also see the

separated imaged in Figure S6C). Furthermore, we observed a

number of degenerated mitochondria, with some mitochondria

being degraded in autophagic vacuoles in KD-fed and TAC KO

mice, by electron microscopic examination (Figure 6G). These

results demonstrate that stress-induced mitochondrial remodel-

ing impairedmitochondrial protein synthesis and accelerated the

decomposition of respiratory complexes, which triggered the

mtUPR and mitophagy in KO mice. Thus, the accumulation of

compromised mitochondria ultimately contributes to the devel-

opment of myopathy and cardiac dysfunction.

Association of ms2 Modification with Mitochondrial
Disease
Because the pathological phenotypes of KO mice resembled

those of mitochondrial disease, we speculated that ms2 modifi-

cation might be involved in mitochondrial disease. We investi-

gated the ms2 modification level in peripheral blood cells

collected from MELAS patients who carry the A3243G mutation

(Figure S7A). Because of the limited number of clinical RNA sam-

ples, we adapted the quantitative PCR-based method (Xie et al.,

2013), which was originally developed to examine the ms2 level

of ms2t6A in cytosolic tRNALys(UUU), to sensitively examine the

ms2 modification level of ms2i6A in mt-tRNAs (Figures S7B–

S7E). Strikingly, the heteroplasmy level of mutant mt-DNA was

significantly correlated with the ms2 modification levels of four

mt-tRNAs, but not with the cytosolic tRNALys(UUU) (Figures

7A–7D and S7F). Interestingly, the mutant mtDNA level was not

correlated with the expression level of CDK5RAP1, suggesting

that the decrease in ms2 modifications was not due to a defi-

ciency in CDK5RAP1 (Figures S5D–S5G). Because the A3243G

mutation is located in the mtDNA region corresponding to mt-

tRNALeu(UUR), the decrease in thems2 levels of tRNATrp, tRNAPhe,

tRNATyr, and tRNASer(UCN) was likely not caused by the A3243G
KO Mice

n microscopy. KO mice exhibit disrupted mitochondrial morphology (A and C)

0 mm. Bars in the right panels of (C), 0.5 mm.WT, n = 100; KO, n = 112 in (B) and

= 6–9.

DA in WT and MEF cells (left panel). The intensity was quantified (right panel);

uscle and heart tissue in KO mice. NC, negative control.

s response in skeletal muscle and heart tissue of WT and KO mice; n = 4. Data
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mutation but, rather, was due to secondary effects. Cells bearing

A3243Gmutations in mtDNA exhibit a marked reduction of mito-

chondrial protein synthesis and an increase in the oxidative

stress level (Crimi et al., 2005; Ishikawa et al., 2005). Because

Cdk5rap1 contains highly oxidation-sensitive [4Fe-4S] clusters

(Arragain et al., 2010), we speculated that the excess oxidative

stress originated from mutant mitochondria might result in a

collateral inhibition of Cdk5rap1 activity. Indeed, cells treated

with sublethal doses of H2O2 showed a rapid decrease in ms2

modification, which was completely reversed by adding 10 mM

pyruvate, which serves as an antioxidant (Figures 7E–7G). In

addition, treatment of cells with an NO donor such as SNAP

and NOC18 significantly reduced the ms2 modification level,

which was reversed by the addition of the NO scavenger PTIO

(Figure 7H). Taken together, these results suggest that oxidative

stress-induced decreases in ms2 modifications might compro-

mise the quality of the mitochondria and contribute to the pro-

gression of mitochondrial disease.

DISCUSSION

Regulation of Mitochondrial Protein Synthesis by
Cdk5rap1-Mediated ms2 Modification
In the present study, we revealed the important physiological

functions of ancient mitochondrial ms2 modifications in mice

and human. Using Cdk5rap1 KO mice, we provide direct

evidence that Cdk5rap1 catalyzes the ms2 modifications of

mt-tRNAPhe, mt-tRNATrp, mt-tRNATyr, and mt-tRNASer(UCN) in

mammalian cells. Thems2 group at the A37 of tRNA can directly

participate in crossstrand stackingwith the first nucleotideof the

codon of the mRNA to maintain the reading frame (Jenner et al.,

2010). Indeed, a deficiency in the ms2 modification of ms2i6A

impaired reading frame maintenance in bacteria and caused

defective mitochondrial protein synthesis in Cdk5rap1 KO

mice. Interestingly, nuclear-encoded mitochondrial protein,

such as NDUFB8 in complex I, was also decreased in KO

mice. The indirect decrease of NDUFB8 is most likely due to

the poorly assembled respiratory complexes in KOmice. A pre-

vious study has shown that a deficiency in a single subunit in

complex I could compromise complex formation and cause

the proteolysis of other subunits (Karamanlidis et al., 2013).

Our results thus demonstrate that the ms2 modification of mt-

tRNAs is indispensable for mitochondrial protein synthesis and

the proper assembly of respiratory complexes.
Figure 5. Mitochondrial Stresses Accelerated Myopathy and Cardiac D

(A and B)WT and KOmice at 8 weeks oldwere fed for KD for 10weeks. The relative

5–7 each.

(C) The relative mtDNA contents in skeletal muscle and heart tissue of KD-fed WT

mtDNA content in NC-fed WT mice.

(D–F) Electronmicroscopy examination of skeletal muscle and heart tissue show d

mass (E and F) in KD-fed KOmice. Arrowheads and arrows indicate mitochondria

respectively; bars, 10 mm; WT, n = 152; KO, n = 144 in (E) and n = 161; KO, n =

(G) A treadmill test performed at the end of 10 weeks of KD feeding showed tha

compared with the WT mice; n = 5 each.

(H) The fractional shortening (FS) rate in KO mice fed with KD for 10 weeks was

(I) WT and KO mice at 8 weeks old were subject to TAC surgery. The KO mice s

(J) Cardiomyocytes were isolated from WT and KO mice 10 weeks after TAC.

diomyocytes. The inserted graph shows the normalized peak amplitude of calcium

Data are the mean ± SEM. *p < 0.05. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Whereas only one transcript of Cdk5rap1 has been found

in mice, multiple splicing variants of human CDK5RAP1 are

listed in the database (Figure S1A). One transcript of human

CDK5RAP1 encodes a short form of CDK5RAP1 without a

mitochondrial localization signal (Q95SZ6-2 in Figure S1A),

which raises the possibility that CDK5RAP1 might regulate

cellular function by modifying cytosol RNAs (Reiter et al.,

2012). However, there was no detectable ms2i6A in total

RNA isolated from KO MEF cells expressing the cytosolic

form of Cdk5rap1 with the enzyme activity preserved. These

results clearly suggest that Cdk5rap1 does not modify nuclear

DNA-derived RNAs in murine cells. Furthermore, the defective

mitochondrial protein synthesis observed in Cdk5rap1 KO

mice may be directly caused by the loss of ms2 modifications

in mt-tRNAs.

Deficiency of ms2 Modification and Its Physiological
Outcome
This study revealed unique phenotypic outcomes of Cdk5rap1

KOmice in response to distinct environmental conditions. Under

sedentary conditions, the skeletal and cardiac functions of the

Cdk5rap1 KO mice were compatible with those of the WT

mice, despite the marked decrease in respiratory activities and

regardless of the increase of oxidative stress. The mitochondrial

dysfunction in KO mice might be compensated by the remodel-

ing of mitonuclear protein balance, which serves as a protective

mechanism by inducing mtUPR (Houtkooper et al., 2013).

Indeed, in contrast to the decrease of mitochondrial protein syn-

thesis, several cytosolic proteins appear to be upregulated in KO

cells (right panels in Figure 2A). This mitonuclear protein imbal-

ance might contribute to the upregulation of basal mtUPR in

muscle and heart tissues of KO mice (Figure 6C). Furthermore,

a collective increase of ROS metabolism genes, including ROS

scavenger genes such as ApoE, DHCR24, and SRXN1, might

ameliorate oxidative stress and protect themuscular and cardiac

functions in KO mice. Similar to our results, previous studies

have found no adverse phenotypes under basal conditions in

transgenic mice with respiratory defects (Karamanlidis et al.,

2013; Wenz et al., 2009). Our results thus support the current

perspective thatmitochondrial dysfunction, depending on its de-

gree, may not immediately produce a pathological phenotype

under sedentary conditions.

In contrast, under stressed conditions, Cdkrap1 KO mice ex-

hibited apparent skeletal muscle and heart dysfunctions. The
ysfunction in ms2-Deficient Mice

activities of CS, CI-CIV in skeletal muscle (A), and heart (B) were examined; n =

and KO mice were examined; n = 6–7. The dashed lines represent the relative

isrupted mitochondrial architecture (D) and amarked increase in mitochondrial

with abnormal cristae in skeletal muscle and heart tissues of KD-fed KOmice,

130 in (F).

t the KD induced a higher number of falls in the KO mice during acute excise

significantly lower than that in KO-fed WT mice; n = 10–11.

howed a significant decrease in FS after TAC surgery.

Calcium imaging revealed a decrease in the peak calcium influx in KO car-

influx in cardiomyocytes fromWT and KOmice; n = 13 forWT and n = 6 for KO.
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defective mitochondrial protein synthesis caused a marked

decrease in protein levels and activities of complexes I and IV

in KO mice under stressed conditions. The progressive disrup-

tion of respiratory complexes, which exaggerates mtUPR and

mitophagy, thus largely compromised mitochondria quality and

led to myopathy in KO mice. Recent studies have shown that

Parkin-mediated mitophagy is critical for the removal of

damagedmitochondria and thus protects cardiac function under

stressed conditions (Hoshino et al., 2013; Chen and Dorn, 2013).

However, given the observation of a number of degenerated

mitochondria in KOmice (Figures 4D and 5G), the extent of mito-

chondria damage in KOmice was likely beyond themaintenance

capacity of mitophagy, which ultimately led to catastrophic mito-

chondrial dysfunction and myopathy. In addition, the accelera-

tion of complex I defect was associated with a modest increase

of oxidative stress, which could trigger mtUPR and cause cyto-

toxicity in stressed KO mice (Runkel et al., 2013). However,

compared with the progressive impairment of mitochondria

quality, the degree of increase of ROS after mitochondrial stress

was rather small in stressed KO mice. Our results thus suggest

that ROS might also contribute to the pathogenesis, but to a

limited extent. The accumulation of malfunctioning mitochondria

is likely the primary cause of the progression of myopathy in KO

mice.

Regulation of ms2 Modification by Oxidative Stress and
Its Association with Human Disease
An important finding of this study is that the ms2 modification

levels were reduced in MELAS patients carrying the A3243G

mutation in mt-tRNALeu. This result is surprising because mt-

tRNALeu does not contain an ms2 modification. Previous

studies have shown that the deficiency of taurine modification

in mt-tRNALeu carrying the A3243G mutation is the primary

cause of MELAS (Kirino et al., 2005; Yasukawa et al., 2001).

Given the significant association of the heteroplasmy level

with the ms2 modification level in MEALS patients, our results

suggest that the myopathy in MELAS is caused not only by a

decoding error at the Leu codon but also by decoding errors

occurring at multiple codons, including Leu, Phe, Tyr, Trp,

and Ser codons.

The reason A3243G in mt-tRNALeu is associated with

decreased modifications in other mt-tRNAs remains unclear.

Although further studies are required to reveal the molecular

mechanism, our results suggest that oxidative stress may be

one of the reasons for this finding. Cdk5rap1 requires two

[4Fe-4S] clusters for ms2 group insertion (Forouhar et al.,

2013); therefore, it is conceivable that ROS, such as H2O2 or
Figure 6. The Deficiency in ms2 Modification Compromises Mitochond
(A) Steady-state levels of CI, CIII, CIV, and CV in heart tissue in WT and KO mice

(B) The steady-state levels of CI protein NDUFB8, CIV protein MTCOI, and CIII pro

surgery were examined by BN-PAGE followed by western blotting. UQCRC2 wa

(C) The protein levels of Yme1l1, Afg 3l2, and Lonp1 were examined in heart tissu

stained with CBB were used as a loading control.

(D) Enhanced polyubiquitination was observed in the mitochondria in the hearts

(E) WT and KO cells transfected with Parkin-YFP were treated with 10 mM FCCP

(F) WT and KO cells were treated with 10 mMFCCP for 2 and 4 hr. The cells were th

mitochondria surrounded by the LC3 protein and is magnified in the bottom pan

(G) Electron microscopy of mitochondria in heart tissue from WT and KO mice tr

10 mm.
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ONOO�, may oxidize these [4Fe-4S] clusters and inactivate

Cdk5rap1. In support of our hypothesis, ROS-treated cells ex-

hibited a rapid decrease in ms2 modification that was effectively

reversed by antioxidants. Thus, ROS generated by the mutation

in mt-tRNALeu might impair Cdk5RAP1-mediated ms2 modifica-

tion, which might further amplify mitochondrial dysfunction and

ultimately accelerate myopathy in MELAS patients. In addition

to mitochondrial disease, ms2 modifications might be involved

in awide variety of human diseases in which ROS have been pre-

viously implicated, such as cardiac dysfunction and cancer

(Schieber and Chandel, 2014).

In conclusion, this study reveals a unique quality control

system in mitochondria by which the ms2 modification of mt-

tRNAs dynamically regulates mitochondrial protein synthesis

and contributes to the development of myopathy in vivo. Our

findings have important physiological implications for the

basic mechanism of mitochondrial protein synthesis and pro-

vide insights into the pathological mechanism of mitochondrial

disease.

EXPERIMENTAL PROCEDURES

Please see the Supplemental Experimental Procedures for additional details.

Animals

Cdk5rap1 KO mice were generated by crossing transgenic mice with exon 5

and 6 of Cdk5rap1 floxed with LoxP sequence, with transgenic mice express-

ing Cre recombinase under the control of the CAG promoter. Mice were back-

crossed to C57BL6/J mice for at least seven generations to eliminate Cre

transgene and control genetic background. Littermates of WT and KO mice

(8–12 weeks old) were used for experiments unless otherwise specified. Ani-

mals were housed at 25�Cwith 12 hr light and 12 hr dark cycles. A KDwas pur-

chased from Research Diets (D12369B). All animal procedures were approved

by the Animal Ethics Committee of Kumamoto University (Approval ID, C25-

163). Detailed information on genotyping can be found in the Supplemental

Experimental Procedures.

Luciferase Assay

E. coli colonies were transformed with plasmids encoding dual luciferase

for detecting decoding error, GST-Cdk5rap1, or dominant-negative GST-

Cdk5rap1. Colonies were cultured at 37�C, and isopropyl b-D-1-thiogalacto-

pyranoside (IPTG) was added to the cultures at a final concentration of

1 mM. After 1 hr of incubation, the cultures were harvested for the luciferase

assay using the Dual-Luciferase Reporter Assay System (Promega). Detailed

procedures for detecting decoding error can be found in the Supplemental

Experimental Procedures.

Cell Culture and Transfection

Mammalian cells were grown in DMEMhigh-glucosemedium (GIBCO) supple-

mented with 10% fetal bovine serum (FBS, HyClone) at 37�C and 5% CO2.
rial Protein Quality under Stressed Conditions
treated with NC, KD, and TAC surgery were examined by BN-PAGE.

tein UQCRC2 in heart tissue in WT and KOmice treated with NC, KD, and TAC

s used as a loading control.

es from WT and KO mice treated with NC, KD, and TAC surgery. Membranes

of KO mice under each stress.

for 2 and 4 hr; bar, 10 mm.

en stained with an anti-LC3 antibody andMitotracker. The inserted box shows

els; bar, 10 mm.

eated with KD or TAC surgery. Arrows indicate the autophagic vacuoles; bar,
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Figure 7. Association of ms2 Modifications

with MELAS

(A–D) Negative correlation of the ms2 modifica-

tion level of mt-tRNATrp (A), mt-tRNAPhe (B), mt-

tRNASer(UCN) (C), or mt-tRNATyr (D) with the heter-

oplasmy level in MELAS patients; n = 18 each.

(E) Treatment with H2O2 reduced the level of ms2

modification of mt-tRNAs in HeLa cells. Cells were

treated with 10 mMor 50 mMH2O2 for 24 hr, and the

ms2 modification levels were examined by qPCR;

n = 4 each.

(F) Time-dependent decreases in ms2 modification

after H2O2 treatment in HeLa cells. Cells were

treated with 50 mM H2O2 for 6, 12, and 24 hr; n = 4

each.

(G) HeLa cells were treated with 50 mM H2O2 for

24 hr in the presence or absence of 10 mM pyru-

vate. The decrease in the ms2 modification level

was prevented by pyruvate; n = 4 each.

(H) HeLa cells were treated with NO donors,

100 mM SNAP or 100 mM NOC18 for 24 hr in the

presence or absence of PTIO. The ms2 modifica-

tion level of mt-tRNATrp was examined by qPCR;

n = 4 each. Data are the mean ± SEM. *p < 0.05.

**p < 0.01, ****p < 0.0001.
Transfection of the plasmid DNA was performed with Lipofectamine 2000

(Invitrogen).

Oxygen Consumption

The oxygen consumption rate in MEF cells and intact mitochondria was

measured using an XF24 Analyzer (Seahorse Bioscience). The oxygen con-

sumption rate was normalized to the total protein concentration for measure-

ment in cells. Detailed procedures for the respiratory assay can be found in the

Supplemental Experimental Procedures.

Gene Expression Assay

RNA was extracted from tissues using Trizol (Invitrogen) following the manu-

facturer’s instructions. Quantitative PCR (qPCR) was performed using SYBR

Premix Ex Taq (TAKARA). For examination of the expression levels of oxidative

response genes, the results were normalized to the geometricmean ofmultiple

reference genes (Hprt1, RPL13A, B2M, GAPDH, ACT). Then, a Z-transforma-

tion was applied to the results to calculate the Z score and construct a heat-
440 Cell Metabolism 21, 428–442, March 3, 2015 ª2015 Elsevier Inc.
map (Cheadle et al., 2003). The sequences of

primers used can be found in the Supplemental

Experimental Procedures.

Analysis of tRNA Modification

Total RNAswere isolated frombacteria and tissues

using Trizol reagent (Invitrogen). RNA was di-

gested with Nuclease P1 (Sigma) and subjected

to mass spectrometry (Agilent 6460). For detecting

tRNAmodification using the qPCR-basedmethod,

we adapted a protocol described previously (Xie

et al., 2013). Detailed procedures for the mass

spectrometry and qPCR method can be found in

the Supplemental Experimental Procedures. To

measure the tRNAmodification level in blood sam-

ples, blood samples were collected from MELAS

patients using standard procedures approved by

Kurume University (IRB#9715).

ATP Measurement

Small pieces of skeletal muscle and heart tissue

were immediately dissected after sacrificing mice
and snap frozen in liquid nitrogen until measurement. ATPwasmeasured using

the ATP Bioluminescence Assay Kit following the manufacturer’s protocol

(TA100, WAKO). The luminescence was measured using a Centro XS3

LB960 (Berthold) and normalized to total protein concentration.

Cardiac Function Examination

Echocardiographs were examined in M-mode while the mice were under

anesthesia using the Vevo2100 system (Fujifilm VisualSonics, Inc.) according

to the manufacturer’s instructions.

Statistical Analysis

Statistical analyses were performed using Prism 6 Software (GraphPad Soft-

ware). An unpaired Student t test was used to test the differences between

two groups. Analysis of variance (one-way ANOVA or two-way ANOVA) was

used to test the difference among multiple groups followed by a post hoc ex-

amination of the p value between two groups. A two-tailed p value of 0.05 was

considered statistically significant.
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