
J. Math. Pures Appl.80, 6 (2001) 627–667

 2001 Éditions scientifiques et médicales Elsevier SAS. All rights reserved

S0021-7824(01)01220-X/FLA

UNITARIZING PROBABILITY MEASURES FOR
REPRESENTATIONS OF VIRASORO ALGEBRA

Hélène AIRAULT a, Paul MALLIAVIN b

a Insset, Université de Picardie, 48 rue Raspail, 02100 Saint-Quentin, France
b 10 rue Saint Louis en l’Isle, 75004 Paris, France

Manuscript received 2 May 2001

ABSTRACT. – Determination of a formula of integration by part insuring the unitarity. 2001 Éditions
scientifiques et médicales Elsevier SAS

Keywords:Probability, Teichmuller space, Virasoro algebra

Introduction

André Weil has shown [9] that the realm of invariant integration on a groupG is the class of
locally compact groups; it seems therefore that the realization on a space of square integrable
functions of representations ofG has to be limited to the case whereG is locally compact.
Nevertheless the classical theory of Segal and Bargmann shows that the infinite-dimensional
Heisenberg group has anL2 representation on a space holomorphic functions defined on an
Hilbert space and square integrable for a Gaussian measure. An analogous Gaussian realization
for representations of Loop groups has been established in [3].

The purpose of this work is to get out of the Gaussian circle of ideas; we show that holomorphic
square integrable realization is equivalent to the construction of aunitarizing probability measure
satisfying an a priori given formula of integration by part, fully determined by the automorphy
factor of the representation. The purpose of this paper is to work out quite explicitly this
correspondance in the framework of some highest weight representation of Virasoro algebra;
this paper is a preliminary work in the sense that the construction of the measure satisfying the
prescribed formula of integration by part will not be treated here.

The Virasoro algebra depends upon the choice of the cocycle defining the central extension.
The most general cocyle depends upon two parameters. We shall limit ourselves to a one-
parameter family which is directly linked with theuniversal Teichmuller space, that is the
quotient of the group of diffeomorphisms of the circle by the group of Möbius transformations
of the unit disk.

A given representation has several realizations which appear isomorphic through intertwinning
operators. It is not clear that intertwinning between two realizations implies transference for the
corresponding unitarizing measures.
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For this reason we shall discuss below unitarizing measures for two distinct realizations of the
discrete series, the first based on Neretin polynomials in the context of the Kirillov homogeneous
spaceM of univalent functions and the second based on an infinite-dimensional version of
Berezin quantization scheme. We hope that the algebraic meaning of unitarizing measures will
appear more clearly by confrontation of its developpements in these two different realizations.

The Appendix is for us a key step in proving the effectiveness of Neretin formulas; we find
here explicitly the generating functions associated to representation commutation rules; on these
computations rely all the new results of our paper.

Part I: Resolution of a ∂̄-problem on the space of univalent functions

1. Kirillov action of Virasoro on the manifold of univalent functions

1.1. The Lie algebra diff(S1)

The group ofC∞, orientation preserving diffeomorphisms of the circleS1 will be denoted by
Diff (S1), its Lie algebra by diff(S1). We shall identify diff(S1) with the real valuedC∞ functions
φ onS1, the infinitesimal action beingθ �→ θ + εφ(θ); more geometrically we associate toφ the
vector fieldφ(θ) d

dθ . Under this identification the Lie bracket in diff(S1) is the the bracket of the
corresponding vector fields given by:

[φ1, φ2] = φ1φ̇2 − φ2φ̇1.(1.1.1)

The infinitesimal rotationθ �→ θ + ε corresponds to the constant function equal to 1; we shall
denote bye0 this function.

We denote:

U
φ
t←0(θ0) := u(t) the flow defined bẏu(t) = φ

(
u(t)

)
, u(0)= θ0.

The Jacobian(1 × 1)-matrix associated to this flow is obtained by solving the linearized
differential equation, solution which can expressed as:

J
φ

t←0 = exp

( t∫
0

φ̇
(
u(s)ds

)
.

We deduce that

∂2

∂t1∂t2 t1=t2=0

(
U

φ1
t1←0 ◦Uφ2

t2←0 −U
φ2
t2←0 ◦Uφ1

t1←0

)= −[φ1, φ2].(1.1.2)

Therefore diff(S1) with the bracket defined in (1.1.1) has to be considered as the space of left
invariant vector fields on Diff(S1).

The Lie bracket has the following expression in the trigonometric basis:

2[cosjθ,coskθ ] = (j − k)sin(j + k)θ + (j + k)sin(j − k)θ,

2[sinjθ,sinkθ ] = (k − j)sin(j + k)θ + (j + k)sin(j − k)θ,

2[sinjθ,coskθ ] = (k − j)cos(j + k)θ − (j + k)cos(j − k)θ.
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1.2. The fundamental cocyle

We define on diff(S1) the bilinear antisymmetric form:

ω(f,g) := −
∫
S1

(
f ′ + f (3))g dθ

4π
.(1.2.1)

LEMMA. –

ω
([f1, f2], f3

)+ω
([f2, f3], f1

)+ω
([f3, f1], f2

)= 0.(1.2.2)

Proof. –We remark that[f1, f2]′ = f1f̈2 − f2f̈1. As the wanted identity is linear relatively to
the bracket, it is sufficient to check it for the two following cases:

in the first case the first term of the identity isf1f̈2f3 − f2f̈1f3 and this term cancelled with
the others terms obtained by circular permutation;

in the second case we make an integration by part to replace the third derivative in the
expression ofω by a second derivative; then the first term of the wanted identity can be written
asf1f̈2f̈3 − f2f̈1f̈3 and we get again cancellation by circular permutation.✷

Fixing a positive constantc, called thecentral charge, theVirasoro algebraVc is defined as
vector spaceVc :=R ⊕ diff(S1); we denote byκ the central element and define the bracket by:

[ξκ + f,ηκ + g]Vc
:= c

12
ω(f,g)κ + [f,g](1.2.3)

and according (1.2.2) the Jacobi identity is satisfied and we get a structure of Lie algebra.

LEMMA. – The fundamental cocyle is invariant under the adjoint action bye0:(
Ad(expte0)

)∗
ω = ω.(1.2.4)

Proof. –We have

[e0, f ] = f ′ therefore
(
Ad(expte0)f

)
(θ)= f (θ + t)

and it is clear thatω is invariant. ✷
We denote byS1 the vector space of constant vector field which constitutes the Lie algebra of

the groupS1 of rotations; we denote by diff0(S
1) the quotient of diff(S1)/S1.

We have〈e0 ∧ ζ,ω〉 = 0 ∀ζ , therefore it is possible to quotientω and we get a well defined
2-differential form on diff0(S1) which will be by abuse of notations still be denoted byω.

Sometimes we shall identify diff0(S
1) with the functions having mean value zero; using

Fourier series this identification leads to writeφ ∈ diff0(S
1) as:

φ(θ)=
∞∑
k=1

ak coskθ + bk sinkθ,

whereak, bk are rapidly decreasing sequences of real numbers. We define:

J (φ)=
∞∑
k=1

−ak sinkθ + bk coskθ.(1.2.5)



630 H. AIRAULT, P. MALLIAVIN / J. Math. Pures Appl. 80 (2001) 627–667

ThenJ 2 = −Identity and we get a complex structure on diff0(S
1). On diff0(S1)⊗C, the operator

J diagonalizes; we call vector of type(1,0) (resp. of type(0,1)) the eigenvectors associated to
the eigenvalue

√−1 (resp.−√−1). A vector of type(1,0) is of the form:

φ = f − √−1J (f )=
∑
k>0

(ak − ibk)coskθ + (bk + iak)sinkθ =
∑
k>0

(ak − ibk)exp(ikθ),

which means thatφ has a prolongation inside the unit disk as an holomorphic function.
We take for basis of diff(S1) ⊗ C the complex exponentialek(θ) := exp(ikθ), k ∈ Z; in this

basis the Lie bracket is:

[em, en] = √−1(n−m)em+n + √−1δn−m

(
c

12

(
m3 −m

))
κ.(1.2.6)

The expression ofω can be written on forf1, f2 ∈ diff0(S
1)⊗C as:

ω(f1, f2) =
√−1

2

∑
k∈Z

(
k3 − k

)
ck(f1)c−k(f2)

=
√−1

2

∑
k>0

(
k3 − k

)〈f1 ∧ f2, dζk ∧ dζ̄k〉,
(1.2.7)

wheref =∑
k∈Z ck(f )ek and wheredζk denotes theR-linear map of diff0(S1) �→ C defined by

f �→ ck(f ), k > 0; in the same way〈f,dζ̄k〉 := c−k(f ).
We have

〈dζk, Jf 〉 = √−1〈dζk, f 〉; 〈dζ̄k, Jf 〉 = −√−1〈dζ̄k, f 〉, k > 0;
therefore

ω(f,Jf )=
∑
k>0

(
k3 − k

)∣∣ck(f )∣∣2.(1.2.8)

The positivity of (1.2.8) leads to impose the positiveness of the central chargec.

1.3. The manifold of univalent functions

We denote byF the vector space of functionsf which are holomorphic in the unit disk
D := {z; |z|< 1} andC∞ on its closureD̄ and such thatf (0)= 0; we denote byF0 the subspace
of functions off satisfyingf ′(0)= 0. We denote:

M := {
f ∈ F;f ′(0)= 1 andf injective onD̄, f ′(z) �= 0 ∀z ∈ D̄

}
.

ThenM is an open set of the affine spacef0 + F0 wheref0(z) = z, ∀z ∈ D. As F0 is a
complex vector space,M inherits of an infinite-dimensional structure of complex manifold.
The embedingM �→ CN defined by writting

f (z)= z

(
1+

+∞∑
n=1

cnz
n

)
(1.3.1)

introduces the affine coordinatesf �→ {c∗}. Granted De Branges Theorem,M is identified to an
open subset of{|cn|< n+ ε}.
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LEMMA 1.3.2. –M is a contractible manifold.

Proof. –We define fort ∈ ]0,1] andf ∈ M the functionft (z) := t−1f (tz); thenft ∈M and
limt→0ft = f0. ✷
1.4. Kirillov identification of Diff (S1)/S1 with M

THEOREM 1.4.1. –There exists a canonic identification ofM with Diff (S1)/S1. As a
consequenceM is an homogeneous space under the left action ofDiff (S1). Furthermore there
exists a global sectionσ :M �→ Diff (S1).

Proof. –Givenf ∈ M, we denoteΓ = f (∂D). ThenΓ is a smooth Jordan curve which splits
the complex plane into two connected open sets:Γ + which contains 0 andΓ − which contains
the point at infinity of the Riemann sphere (the mapz �→ z−1 sendsΓ − onto a bounded domain
countaining 0).

By the Riemann mapping theorem there exists an holomorphic mapφf :Dc �→ Γ̄ − such that
φf (∞)= ∞, φ being holomorphic nearby∞.

A diffeomorphismgf ∈ Diff (S1) is defined by:

gf (θ) := (
f−1 ◦ φf

)(
eiθ).

We remark thatφf is uniquely defined up to a rotation ofDc , which means up to an element
of S1; therefore we get a canonic map:

K :M �→ Diff
(
S1)/S1.

In fact it has been proved by Kirillov [6] thatK is bijective. The stabilizer of the left action ofS1

is the identity functionf0(z)= z.
We obtain the sectionσ by choosingφ0

f such thatu(z) := φ0
f (z

−1) satisfy thatu′(0) is real
and positive. ✷

THEOREM 1.4.2. –The fundamental cocycle(1.2.1)defines a2-differential closed formΘ on
M. This form is invariant under the action ofDiff (S1).

Proof. –Given f ∈ M denoteSf := {g ∈ Diff (S1) such thatgf0 = f }; define Θf =
(g−1)∗ω for some g ∈ Sf ; if γ also belongs toSf we haveγ = gu with u ∈ S1; then
(u−1g−1)∗ω = (g−1)∗(u−1)∗ω expression equal, according (1.2.4) to(g−1)∗ω; therefore our
definition is independent of the choice ofg ∈ Sf andΘ is a well defined 2-differential form on
M, which is closed according (1.2.2).

The invariance under the action of Diff(S1) results of the invariance of Maurer–Cartan
differential form or more elementary from the identities

Θγg(f0) = (
g−1γ−1)∗ω = ((

γ−1)∗Θ)
γg(f0)

. ✷
1.5. Kirillov infinitesimal action of diff (S1) on M

THEOREM. – Givenv ∈ diff(S1), and givenf ∈M we defineKv(f ) ∈F0 by the formula:

Kv(f )(z) := f 2(z)

2π

∫
∂D

[
tf ′(t)
f (t)

]2
v(t)

f (t)− f (z)

dt

t
,(1.5.1)

thenKv is the infinitesimal expression of the Kirillov action at the pointf .
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Proof. –We follow [5]; givenv ∈ diff(S1) we consider the infinitesimal action

exp(εv)
(
f−1 ◦ φf

)
.

Denote by∂v the first-order differential operator associated tov; then we have the intertwinning
formula ∂vf

−1 = f−1∂w where wτ = if ′(t)tvt , with t ∈ ∂D and τ = f (t) ∈ Γ ; we can
split w := w+ + w− wherew+ has an holomorphic prolongementw++ to Γ + satisfying
0 = w++(0) = (w++)′(0) andw− is meromorphic onΓ − with a unique pole at infinity which
is simple; the Cauchy formula gives:

w++(ζ )= ζ 2

2π i

∫
Γ

w(τ)

τ2(τ − ζ )
dτ.

Doing again an intertwinning by definingfε := exp(εw++) ◦ f = f ◦ exp(εw∗), w∗ defined by
the relationf ′(z)w∗(z) = w++(ζ ), we get then exp(εv)f � f−1

ε ◦ exp(εw−)φf which implies
Kfε � exp(εv)K(f ). ✷

THEOREM 1.5.2. –Fixingg0 ∈ Diff (S1) the mapf �→ g0f is an holomorphic mapM �→M.

Proof. –We prove this fact wheng0 = exp(v0); introducinghτ := exp(τv0)f , we have that

d

dτ
hτ =Kv0(hτ ), h0 = f.

As the solution of an holomorphic differential equation depends holomorphically of its initial
condition, we have only to prove that the map

M �→ F0 defined byf �→Kv0(f )

depends holomorphically uponf , fact which results from the formula given in (1.5.1).

PROPOSITION 1.5.3. –

(Ke0f )(z)= √−1
(
zf ′(z)− f (z)

)
.

Proof. –A residue calculus of (1.5.1) forv = 1. ✷
Remark1.5.4. – The operatorK1 is a real vector field onM; this means that it defines a map

of M �→ F0; it is indeed legitimate to use on the targetF0 the multiplication by
√−1.

From another hand thereal vector fieldK1 is of a different nature from thecomplexvector
fieldLc

0 introduced in (1.6.1)! The beginning of next section emphasizes this distinction between
complex and real vector fields.

1.6. Kählerian structure on M

We denote byT (M) the vector space ofreal first-order differential operators onM (a real
differential operator transforms real functionals into real functionals). We call also the elements
of T (M) thereal vector fieldsonM.

Then the complex structureJ onM induces the splitting:

T (M)⊗C = T (1,0)(M)⊕ T (0,1)(M).
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We have a map̃J :T (M)⊗C �→ T (M) defined by(X+√−1Y ) �→X+J (Y ); thenT (0,1)(M)

can be characterized as the kernel ofJ̃ ; furthermore for an holomorphic functionnalΨ we have
Z.Ψ = (J̃ (Z)).Ψ .

THEOREM. – Define

Lc
k := −√−1Kcoskθ +Ksinkθ , ∀k �= 0; Lc

0 := −√−1Ke0;(1.6.1)

Lk := J̃
(
Lc
k

)
,(1.6.2)

then

Lk(f )= f ′(z)zk+1, k > 0; L0 = f ′(z)z− f (z);(1.6.3)

Lc
k(f0) ∈ T

(1,0)
f0

(M) for k > 0;(1.6.4) [
Lc
j ,L

c
k

]= (j − k)Lc
j+k, ∀j, k ∈ Z,(1.6.5)

[Lm,Ln] = (m− n)Lm+n, ∀m,n ∈ Z.(1.6.6)

DefineLh
k as the(1,0) component of the real vector fieldLk , then∀k ∈ Z,

Lh
kΦ = Lc

kΦ ∀Φ holomorphic; [
Lh
m,L

h
n

]= (m− n)Lh
m+n ∀m,n ∈ Z.(1.6.7)

Proof. –The identity (1.6.3) results from the computation of the integral (1.5.1) by residue
calculus.

Denote vl the right invariant vector field associated tov ∈ diff(S1); in particular to
ek = exp(ikθ) is associatedelk, and by (1.1.2) we have[

elm, e
l
n

]= √−1(m− n)elm+n,

therefore [
Lc
j ,L

c
k

]= −√−1 (j − k)elj+k = (j − k)Lc
j+k.

We have the fact that the complex structure onM is invariant under the left action of Diff(S1);
therefore denotingLφ the Lie derivative associated to the left action ofφ ∈ diff(S1) we have

Lφ

(
J̃
(
Lc
k

))= J̃
(
Lφ

(
Lc
k

))
.

Therefore

LφLk = J̃
([
φ,Lc

k

])
which byC-linearity implies (1.6.6).

Denote byJ −1 the linear map identifyingTf0(M) with diff0(S
1) on which we put the

complex structure defined in (1.2.5). To prove thatJ is holomorphic is equivalent to verify
that the mapv �→Kv(f0) isC-linear or that∀k > 0 Lk̄(f0)= 0; indeed

2π

z2 Lk̄(f0)=
∫
∂D

t−k

z− t

dt

t
= −

∑
s�0

zs
∫
∂D

dt

ts+k+1 = 0.



634 H. AIRAULT, P. MALLIAVIN / J. Math. Pures Appl. 80 (2001) 627–667

DenoteLa
n = Ln − Lh

n the antiholomorphic component ofLn which is equal toL̄h
n. As we shall

see in (1.8) the operatorsLh
n in affine coordinates have holomorphic coefficients which imply

that[Lh
n,L

a
m] = 0; therefore([Lm,Ln]

)h= [
Lh
m,L

h
n

]
which establish (1.6.7). ✷

Remark. – Forf �= f0, (1.6.4) is not true.

Remark. – In the Appendix, as in [5],Lh
k will be shorthanded asLk .

THEOREM. – The2-differential form

Θ defined in(1.4.2)is of type(1,1), positive definite(1.6.8)

and

Θf0

(
Lc
n(f0), L̄

c
m(f0)

)= √−1δmn γn, whereγn = (
n3 − n

)
.(1.6.9)

Proof. –As Θ is defined by transport through the holomorphic action of Diff(S1), it is
sufficient to check (1.6.8) atf0, which will result from (1.6.9).

ω
(−i exp(inθ), i exp(−imθ)

)= ω
(
exp(inθ),exp(−imθ)

)= −i
(
n− n3)δmn . ✷

Remark. – 〈
Θg(f0), vg(f0)∧ w̄g(f0)

〉= 〈
ω, g−1vg ∧ g−1w̄g

〉 �= 〈
ω, v ∧ w̄

〉
.

1.7. The vector fieldsLn, n > 0, in affine coordinates

The formula (1.3.1) gives a global chartM �→ CN in terms of the Taylor coefficients
f �→ {c∗(f )}. We want to express the vector fieldsLh

n in this chart.

Realization of the flow associated toLh
n, n > 0

Firstly we remark that the vector fieldLc
n, Lh

n are not real vector fields; this fact has been
already discussed at the beginning of Section 1.6; we can also refer to Kirillov [5], page 738,
ten lines before the end where this fact is underlined. Flows of complex vector fields need to be
defined by analytic prolongation; when there exist they are very singular. It will be indeed our
case.

Consider on a neighborhood of 0 the following holomorphic function:

M
(k)
t (z)= z

(1− tkzk)1/k
,(1.7.1)

wheret is a smal real parameter. Then forz small enough we have(
M

(k)
t ◦M(k)

t ′
)
(z)=M

(k)

t+t ′(z).(1.7.2)

Then givenf ∈ M the compositionf ◦M(k)
t /∈ M but it is an holomorphic function defined for

t small enough on an arbitrarily large disk contained in the unit disk.

THEOREM. – We have∀z0, |z0|< 1 the following identity:

lim
t→0

f (M
(k)
t (z0))− f (z0)

t
= f ′(z0)z

k+1
0 .
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We call cylindrical functional a mapΦ :M → R such thatΦ(f ) = φ(. . . , f (zi), . . .) where
φ :Dr �→R, φ being smooth, andi ∈ [1, r], |zi |< 1. Then

(
Lh
kΦ
)
(f )= d

dt

∣∣∣∣
t=0

Φ
(
f ◦M(k)

t

)
, k > 0.(1.7.3)

Proof. –As the vector fieldLh
k is of type(1,0) it is sufficient to check the identity assuming

furthermore thatφ is holomorphic, then

M
(k)
t (z)= z+ tzk+1 + o(t). ✷

LEMMA. –

f
(
M

(k)
t (z)

)= (
z+ tzk

)(
1+

∞∑
n=1

cnz
n
(
1+ ntzk

))+ o(t).(1.7.4)

THEOREM. – Denote by ∂k the holomorphic partial derivative relatively to the affine
coordinateck (if ck = ξk + √−1ηk then2∂k = ∂

∂ξk
− √−1 ∂

∂ηk
), then

Lk = ∂k + ∂̄k +
+∞∑
n=1

(n+ 1)(cn∂k+n + c̄n∂̄k+n), k > 0.(1.7.5)

Proof. –Consider a cylindrical functionΦ, which is assumed furthermore to be holomorphic,
which means thatφ is an holomorphic mapDr �→ C. Then all ∂̄ vanishes on suchΦ. Any
holomorphic cylindrical funtional can be approximated by polynomial in thec∗. We take
Ψ := c

q

k0
. By (1.7.4) we have:

Ψ
((
M

(k)
t

)∗
f
)=


ck0(f ) if k > k0;(
t + ck0(f )

)q + o(t), if k = k0;(
ck0(f )+ (k0 − k + 1)tck0−k(f )

)q + o(t) if k < k0.

Differentiating relatively tot and makingt = 0 we obtain respectively 0 orqcq−1
k0

or

q(k0− k+1)[ck0(f )]q−1ck0(f ), relations which prove the theorem for holomorphic functionals.
The left-hand side of (1.7.5) can be written as the sum of a(1,0) vector fieldZ plus a(0,1)
vector fieldY ; asLk is a real vector field we haveY = Z̄ relation which proves the theorem.✷

Using the definition ofLh∗ made in (1.6.7) we obtain:

Lh
k := ∂k +

+∞∑
n=1

(n+ 1)cn∂k+n, k > 0, Lh
0 =

∑
n�1

ncn∂n.(1.7.6)

1.8. Analyticity of the holomorphic action

THEOREM. – For all k ∈ Z there exist holomorphic polynomialsϕk,s(c) such that denoting

Lh
k =

+∞∑
s=1

ϕk,s∂s
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then for every holomorphic functionalΦ onM we haveLc
kΦ = Lh

kΦ.

Proof. –This result is a consequence of(1.7.6) for k � 0; the casek < 0 is proved in the
Appendix. ✷

2. Unitarizing measure for the Neretin representation

2.1. Representation associated to Neretin polynomials

In the affine coordinates{ck} on M, Neretin introduced [8] (see also [5]) the sequence of
polynomialsPn defined by the following double indices recurrence relations:

Lh
kPn = (n+ k)Pn−k + γkδ

n
k , whereγk = c

12

(
k3 − k

)
, P0 = P1 = 0, Pn(0)= 0,(2.1.1)

where the central chargec has been fixed.

LEMMA. –

The polynomialPn is of weightn.(2.1.1)a

Proof. –The weightw(P) :=∑
k k× (degree ofP relativelyck). Then the recurrence implies

thatLh
1Pn = (n+ 1)Pn−1; the lemma will result of the identities:

w
(
Lh

1c
α
1

)= α − 1 =w
(
cα1
)− 1; w

(
Lh

1c
α
k

)= k(α − 1)+ (k − 1)=w
(
cαk
)− 1. ✷

THEOREM. – DenoteH(M) the vector space of holomorphic functionals defined onM; we
associate toΦ ∈ H(M)

ρ(κ)Φ = √−1
c

12
Φ, ρ(e0)= √−1L0Φ,

ρ
(
exp(ikθ)

)
Φ = √−1Lc

kΦ, ρ
(
exp(−ikθ)

)= √−1
(
Lc

−k + Pk

)
Φ ∀k > 0.

(2.1.2)

Thenρ is an anti-representation ofVc ⊗C onH(M) which means that[
ρ(v1), ρ(v2)

]= −ρ
([v1, v2]Vc

)
,(2.1.3)

the Lie bracket in the right-hand side have been defined in(1.2.3).

Proof. –Granted the holomorphy ofΦ we can replace byLc
n by Lh

n; asLh
n are operators with

holomorphic coefficients we deduce thatLc
v send an holomorphic functional into an holomorphic

functional; asPn is holomorphic we obtain that the operatorρ operates onH(M).
The vector fieldsLc

v realize an anti-representation of diff(S1); this proves (2.1.3) whenv1, v2
are two exponential with positive frequencies.

Consider the case ofv1 of positive frequency andv2 of negative frequency:[
ρ
(
exp ikθ)

)
, ρ(exp−isθ)

]= −(Lh
kPs + (k + s)Lc

k−s

) := Bk,s .

Fork > s we deduce from(2.1.1)a and (1.7.6) thatLh
kPs = 0.

Fork = s we have

Bk,k = ρ(γkκ + 2ke0).
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Fork < s we have

Bk,s = (k + s)
(
Ps−k +Lc

k−s

)= ρ
(
(k + s)ek−s

)
.

Finally it remains to compute, fork, s > 0 the expression:

[
ρ
(
exp(−ikθ)

)
, ρ
(
exp(−isθ)

)]− [
Lh
ek
,Lh

es

]
= Ak,s :=Lh

−kPs −Lh−sPk = (s − k)Pk+s ∀s, k � 0
(2.1.4)

basic identity which is proved in the Section A.7 of the Appendix.✷
2.2. Differential form on Diff (S1) associated to Neretin polynomials

We associate tov ∈ diff(S1) the right invariant tangent vector field to Diff(S1) defined by
(vl)g = exp(εv)g; in particular toe2k = coskθ, e2k+1 = sinkθ, e0 = 1 ∈ diff(S1) we associate
the right invariant vector fieldsel∗ := exp(εe∗)g. We consider the following first-order differential
operator with complex coefficient defined on Diff(S1): L̃c

n := −√−1el2s + el2s+1, s �= 0, and

L̃0 = −√−1el0. Denoteψ−s is the dual basis of̃Lc
n, that is〈

L̃c
n,ψs

〉= δ0
n+s .(2.2.1)

It results from the duality that the differential of a functionΨ defined on Diff(S1) has for
expression

dΨ =
∑
k∈Z

(
L̃c−kΨ

)
ψk.(2.2.2)

Furthermore the{ψs} satisfy the structural equation:〈
dψk, L̃

c
q ∧ L̃c

r

〉= (r − q)
〈
ψk, L̃

c
q+r

〉= (r − q)δ−k
q+r

or finally

dψk = −1

2

∑
s∈Z

(k + 2s)ψ−s ∧ψk+s .(2.2.3)

A complex valued 1-differential formΩ on Diff(S1) will be built from Neretin polynomials by
the formula:

Ω =
∑
k>0

(Pk ◦ π)ψk,(2.2.4)

whereπ is the projection map Diff(S1) �→ Diff (S1)/S1.

THEOREM. – 〈
vl,Ω

〉
g

= 1

2π

∫
∂D

Sf (t)v(logt)t2
dt

t
,(2.2.5)

whereg = f−1 ◦ φf and whereSf is the Schwarzian derivative:

Sf := f (3)

f ′ − 3

2

(
f ′′

f ′

)2

.(2.2.6)
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Proof. –It is possible to find in the Appendix the following Neretin generatrix function:∑
n>0

tnPn = t2Sf (t).

As L̃c
n = −√−1(exp(inθ))l we getψs(exp(inθ)) = √−1δ0

n+s and finally the formula reduce to
prove

Pn = 1

2π
√−1

∫
∂D

t2Sf (t)t
−n dt

t
. ✷

THEOREM. – Denote byΘ̃ the image of the symplectic form defined onG by the transforma-
tion g �→ g−1, then

Θ̃ = −
√−1

2

∑
s>0

γsψ−s ∧ψs,(2.2.7)

whereγs is defined in(2.1.1);we have

dΩ = √−1 Θ̃.(2.2.8)

Proof. –The formΘ is left invariant. ThereforẽΘ is right invariant. The forms{ψq} constitute
a basis of right invariant differential forms; therefore there exists constantsck,s such that:

Θ̃ = 1

2

∑
s,k∈Z

ck,sψ−k ∧ψ−s .

In order to compute the constantsck,s we look at this identity at the pointf0. Then by (1.6.9) we
have, fors > 0: 〈

Θ̃,Lc
s ∧ L̄c

s

〉
f0

= √−1γs = cs,−s

〈
L̄c
s ,ψs

〉
f0

= −cs,−s .

DefineP ∗
s = Ps ◦ π for s > 0 andP ∗

s = 0 for s � 0; with these notationsΩ = ∑
s P

∗
s ψs .

Using (2.2.2)

dΩ =
∑
k,s∈Z

(
L̃c−kP

∗
s

)
ψk ∧ψs +R,

whereR, granted (2.2.3), has the following expression:

R = −1

2

∑
r,t∈Z

P ∗
r (r + 2t)ψ−t ∧ψr+t = −1

2

∑
k,s∈Z

P ∗
s+k(s − k)ψk ∧ψs.

Therefore

dΩ = 1

2

∑
k,s∈Z

Bk,sψk ∧ψs,

where

Bk,s := L̃c−kP
∗
s − L̃c−sP

∗
k − (s − k)P ∗

s+k.(2.2.9)

Fork > 0 ands > 0 we obtain, granted (2.1.4),Bk,s = 0.
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Fork < 0 ands < 0 we obtain that all theP ∗ vanish andBk,s = 0.
Consider the last casek < 0 ands > 0; if −k > s the polynomialPs being of weights do not

depend the variablescj for j > s, thereforeL−kPs = 0; for −k � s the defining relations (2.1.1)
proves thatB−k,s = γ−kδ

s
−k . ✷

2.3. Unitarizing measure

DEFINITION. – A probability measureµ onM is anunitarizing measure for the representation
ρ of Vc ⊗C in HL2

µ if and only if for allv real (i.e.v ∈ Vc) the operatorρ(v) is anti-Hermitian:

ρ(v)+ (
ρ(v)

)∗ = 0.(2.3.1)

The relation (2.3.1) is equivalent to:(
ρ
(
exp(ikθ)

))∗ = −ρ
(
exp(−ikθ)

)
.(2.3.2)

In fact denoteAs = ρ(exp(isθ), then 2ρ(cosθ)=As +A−s ; its adjoint is−A−s −As ; finally
2(ρ(sinsθ)∗ = i(−A−s +As)= −ρ(sinsθ).

THEOREM. – A probability measureµ is unitarizing if it satisfies the following relation:

divµ
(
Lc
k

)= P̄k, k � 0, or equivalently

divµ(Kcoskθ )(f )= !Pk, divµ(Ksinkθ )= "Pk.

(2.3.3)

Proof. –The unitarity condition (2.3.2) is given in terms of theLc
k through the formu-

las (2.1.2); then the appearance in those formulas of a factor
√−1 changes the sign of (2.3.2)

which finally can be written as follows:∀k > 0 we have∫
M

[(
Lc
kΦ
)
Ψ̄ −Φ

((
Lc−k + Pk

)
Ψ
)∗]dµ= 0,(2.3.4)

where the∗ above the parenthesis indicate that we take the imaginary conjugate.
Firstly we replaceLc

k �→Lh
k , L

c
−k �→ Lh

−k and we use the identitiesLh
k(ΦΨ̄ ) = (Lh

kΦ)Ψ̄ and
ΦL̄h

−kΨ̄ = L̄h
−k(ΦΨ̄ ); then (2.3.4) takes the shape:∫

M

[(
Lh
k − L̄h

−k − P̄k

)
(ΦΨ̄ )

]
dµ= 0 or divµ(Zk)= P̄k,(2.3.5)

whereZk = Lh
k − L̄h

−k . The operatorLc
k = Lh

k + La
k whereLa

k is a vector field of type(0,1).
Using the fact thatLc

−k = −L̄c
k we get by conjugation that̄Lh

−k = −La
k , thereforeZk = Lc

k and
finally divµ(Lc

k)= P̄k .
We explicit the differential operators in terms of real differential operators: the decomposition

Lc
k = −√−1Kcoskθ +Ksinkθ

implies, as the divergence of a probability measure is a real operator, that the second part
of (2.3.3) holds true. ✷
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THEOREM 2.3.6. –The differential formΩ is invariant under the left action ofS1.

Proof. –We shall prove the infinitesimal invariance under the action ofL0. Applying (2.1.1)
with k = 0, we get

L0Ps = sPs .(i)

The linear forms{ψ−s} are defined as the dualizing base of the{Lc
k}; we have by (1.6.5)[

L0,L
c
s

]= −sLc
s; by duality L0ψ−s = −sψs;(ii)

it results from (i) and (ii) thatL0(Psψs)= 0. ✷
THEOREM 2.3.7. –Every unitarizing measureµ is invariant under the action on the left

exp(θe0).

Proof. –The unitarity conditionρ(e0) + (ρ(e0))
∗ = 0 together with (2.1.2) imply the

invariance. ✷
2.4. Resolution of a∂̄ problem on M

THEOREM. – DenoteI the endomorphism ofDiff (S1) defined byI(g) := g−1. Then there
exists a unique differential formΩ1 defined onM such that:

I∗Ω = π∗Ω1.(2.4.1)

FurthermoreΩ1 for the complex structure onM is of type(0,1) and satisfies

∂Ω1 = √−1Θ, ∂̄Ω1 = 0.(2.4.2)

Proof. –The endomorphismI changes differentiation on left into differentation on the right.
Using (2.3.6) we obtain thatI∗Ω is invariant under theright action of S1. Therefore it defines
a differential formΩ1 on Diff(S1) invariant under the right action ofe0 therefore coming byπ∗
of a formΩ1 onM.

As I∗ commutes with the coboundary operator, we deduce that dΩ1 = Θ which by bidegree
splitting proves (2.4.2). ✷

Part II: Symplectic embedding and Kähler potential

3. Embedding of the diffeomorphism group into the Siegel disk

3.1. Symplectic action of the diffeomorphism group

We consider the spaceV of real valuedC1-functions defined on the circle with mean value
equal to 0. OnV we define a bilinear alternate form:

ω(u, v) = 1

π

2π∫
0

uv′ dθ.

THEOREM. – If g is an orientation preserving diffeomorphism ofS1 then

ω(g∗u,g∗v) = ω(u, v).(3.1.1)
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Proof. –

(g∗v)′ = (
g∗(v′)

)
g′,

2π∫
0

(
g∗(uv′)

)
g′ dθ =

2π∫
0

uv′ dθ. ✷

We define an action of Diff(S1) onV by:

Ug−1(u)= g∗u− 1

2

2π∫
0

(g∗u)dθ.(3.1.2)

Then

ω
(
Ug(u),Ug(v)

)= ω(u, v).(3.1.3)

We have in this way defined an embedding of Diff(S1) into the automorphism ofV which
preserves the symplectic formω. We introduce onV a complex structure defined by the Hilbert
transform:

J : sin(kθ) �→ cos(kθ), cos(kθ) �→ −sin(kθ).

We define onV an Hilbertian metric:

‖u‖2 = −ω(u,J u).

We have ∣∣∣∣∑
k>0

ak cos(kθ)+ bk sin(kθ)

∣∣∣∣2 =
∑
k>0

k
(
a2
k + b2

k

)
.

ThenJ is an orthogonal transformation ofV .
We consider the complex Hilbert spaceH = V ⊗ C; thenH can be identified with complex

valued function defined on the circle having mean value 0; onH the operation of conjugation
f �→ f̄ is well defined.

The orthogonal transformationJ can be diagonalized inH ; asJ 2 = −1 only appears the
eigenvalues

√−1 and −√−1. We denoteH+ the eigenspace associated to the eigenvalue√−1; then we can identifyH+ to the vectors of type(1,0) that is the vectors of the form
v − √−1J (v), v ∈ V . We can also identifyH+ with the functions having an holomorphic
extension inside the unit disk. Then defineH− = H̄+; thenH− can be identified with the
functions on the circle which possess an holomorphic extension ouside the unit disk, regular
at the point at∞ of the complex plane. The bilinear formω extends to a bilinear form̃ω defined
onH and we have:

ω̃(w,w′)= 0 if w,w′ ∈H+ orw,w′ ∈ H−.

We can express̃ω in term of the Hilbertian structure

ω̃(h+, h−)= √−1 (h+|h̄−), ∀h+ ∈ H+, h− ∈ H−,

identity which is proved by checking onh+ = einθ , h− = eimθ , n > 0, m < 0.
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We define a symmetricC-bilinear form onH ×H by:

〈h1, h2〉 = (h1|h̄2), then (h1|h2)= 〈h1, h̄2〉.(3.1.4)

Then

ω̃(h1, h2)= √−1
(〈h+

1 , h
−
2 〉 − 〈h−

1 , h
+
2 〉).(3.1.5)

The restriction toH+ ×H− of the bilinear form(∗) defines a duality coupling:

〈h+, h−〉 := (h+|h̄−).(3.1.6)

GivenA ∈ End(H) we denoteAT the transposed defined by:

〈Ah1, h2〉 = 〈
h1,A

Th2
〉
.

Givena ∈ End(H+), then the matrix
(
a 0
0 0

)
makes possible to identify End(H+)⊂ End(H); then

aT ∈ End(H) is well defined; furthermore we have through the duality coupling (3.1.6)

〈ah+, h−〉 = 〈
h+, aTh−〉;

which means thataT ∈ End(H+). The adjointa† ∈ End(H+) is defined by:

(aw1|w2)= (w1|a†w2), ∀w1,w2 ∈H+.

The conjugation operator sendsH+ �→H− thereforeā ∈ End(H−) and we have the fact that the
adjoint is obtained by conjugation followed by transpostion

a† = (ā)T = āT.

The automorphismUg of V extends to an endomorphism̃Ug of H . Denotingπ+,π− the
projection ofH onH+,H− we introduce:

a(g) := π+Ũgπ
+; b(g) := π+Ũgπ

−.

As the endomorphism̃Ug commutes with the conjugation it is represented by the matrix

Ũg =
(
a b

b̄ ā

)
.(3.1.7)

3.2. The Siegel disk in infinite dimension

The conservation of the symplectic form (3.1.5) is equivalent to:

(ā)T(a + b)− bT(ā + b̄) = π+, (b̄)T(a + b)− aT(ā + b̄)= π−

we remark that the first relation is the conjugate of the second. Therefore we have only to take
care of the second relation which by splitting on the componentsH+,H− gives:

aTā − b†b = π−,(3.2.1)
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aTb̄ − b†a = 0.(3.2.2)

We call Symplectic Group of infinite order, let Sp(∞), the collection of bounded, invertible,
operatorsa ∈ End(H+), b ∈L(H−;H+) satisfying the relations (3.2.1), (3.2.2); then Sp(∞) is
a group for the composition of matrices.

We consider the infinite-dimensional Siegel diskD∞ consisting of operatorsZ ∈L(H−,H+)
such that:

ZT =Z, 1−Z†Z > 0, trace(Z†Z) <∞; its based point is the matrixZ0 = 0.(3.2.3)

We shall identifyZ ∈D∞ to Ẑ ∈ End(H) through the matrixẐ := (
0 Z
0 0

)
.

THEOREM. – The groupSp(∞) operates onD∞ by

Z �→ Y = (aZ + b)(b̄Z + ā)−1.(3.2.4)

Remark. – In the above formulaa, b are identified with the corresponding elements of
End(H).

Proof. –We have firstly to show thatY ∈ L(H−;H+): we have ā ∈ End(H−),
b̄Z ∈ End(H−); therefore(b̄Z + ā)−1 ∈ End(H−).

We have secondly to show thatY T = Y :

Y T = (Zb† + a†)−1(ZaT + bT),
therefore the identityY T = Y is equivalent to:

0= (
ZaT + bT)(b̄Z + ā)− (Zb† + a†)(aZ + b)

=Z
(
aTb̄ − b†a

)
Z + (

bTb̄ − a†a
)
Z +Z

(
aTā − b†b

)+ bTā − a†b,

the first coefficient vanishes accordingly (3.2.2); by conjugating (3.2.2) we obtain the vanishing
of the fourth coefficient; using (3.2.1) and its conjugation we obtain= π−Z +Zπ+; these two
terms are zero according the fact thatZ is in fact the matrix

(
0 Z
0 0

)
.

We have to check thatJ := Y †Y − π− < 0. We denoteD := (b̄Z + ā) then:

D†JD = (Z†a† + b†)(aZ + b)− (
Z†bT + aT)π−(b̄Z + ā)

=Z†(a†a − bTb̄
)
Z +Z†(a†b − bTā

)+ (
b†a − aTb̄

)
Z

+ (
b†b − aTā

)=Z†Z − π−;
π− − Y †Y = (

D−1)†(π− −Z†Z)D−1,

(3.2.5)

as the conjugation of a positive operator stay positive we getY ∈D∞. ✷
The orbit through Sp(∞) of the based pointZ0 defined in (3.2.3) is the space of matrices of

the form

Z = b
(
ā−1).(3.2.6)

We remark that(a,0) ∈ Sp(∞) iff a ∈ U(H+) the unitary group ofH . Therefore the orbit ofZ0
can be identified to Sp(∞)/U(H+).
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We remark thata ∈ u(H+) implies ā−1 = ā† = aT; therefore the action ofU(H+) can be
describe by:

Z �→ aZaT and Z̄Z �→ cZ̄Zc†,

with c = ā; therefore det(1−Z†Z) is invariant under the action ofU(H+).
The Kähler potential onD∞ is defined as:

K(Z)= − logdet(1−Z†Z)= −trace log(1−Z†Z),

the last equality is intrinsic and does not depend upon a basis; it will be proved using a basis
diagonalizingZ†Z. As by (3.2.3) the operatorZ†Z has a trace, the determinant is well defined.

THEOREM 3.2.7. –Associating to the complex structure ofD∞ the corresponding∂∂̄
operator, we have that∂∂̄K is invariant under the left action ofSp(∞).

Proof. –Using (3.2.5) we get, assuming thatb is a trace class operator and that
a = Identity+ trace class operator, that

K(Y )−K(Z)= 2" trace log(b̄Z + ā)

as the right-hand side is the real part of a function holomorphic inZ we get that its∂∂̄ vanishes.
The general case is deduced by density.✷

THEOREM. – Using the identification(3.2.6)we have

K(Z)= trace log(1+ b†b).(3.2.8)

Proof. –We have

Z = bā−1, Z† = ((
aT)−1)

b†,

therefore

det(1−Z†Z)= det
(
1− (

aT)−1
b†bā−1);

then we get

= det
((
aT)−1(

aTā − b†b
)
ā−1)= (

det
(
aTā

))−1
,

and using (3.2.1) we get the result.✷

4. Kähler potential and Berezinian representation

4.1. Kähler potential

To the mapUg defined in (3.1.7) we associate a mapΨ : Diff (S1) �→ D∞ defined by:

Ψ (g) =Ug(Z0) whereZ0 is the based point defined in (3.2.3).(4.1.0)
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By abuse of notations we shall denoteK ◦ Ψ still by K. Giveng ∈ Diff (S1), we define the
kernel:

Bg(z, ζ )=
∑
j,k>0

cj,k(g)z
j ζ k,

wherecj,k(g) = 1

2π

2π∫
0

exp
(−√−1

(
jθ + kg−1(θ)

))
dθ.

(4.1.1)

THEOREM. – The operatorbg has the following expression:

(
bg(φ)

)
(z)= 1

2π

∫
S1

Bg(z, ζ )φ(ζ )
dζ

ζ
, φ ∈H−.(4.1.2)

In the same spirit

(
b†
gbg(φ)

)
(z̄)= 1

2π

2π∫
0

Cg(z̄, ζ )φ(ζ )
dζ

ζ
, Cg(z̄, ζ ) :=

∑
j,l>0

z̄j ζ l
√
j l
∑
k

1

k
c̄k,j ck,l.(4.1.3)

Then

trace(b†
gbg) =

∑
j,k>0

j

k
|cj,k|2.(4.1.4)

We have the invariance properties:

K(g)=K
(
g−1), K(gγ ) =K(g), γ ∈ S1,(4.1.5)

in particularK(g) defines a function onDiff (S1)/S1.

Proof. –We consider the orthonormal basisαk exp(ikθ), whereαk = k−1/2. Consider the
coefficients of the operatorUg in this basis:̂cj,k = αjαk(exp(ijθ)|Ug(exp−ikθ))); then

ĉj,k = αk

αj
cj,k.

The operatorb†b has coefficients in this orthonormal basis:

1

αjαl

∑
k

αkc̄j,kαkcl,k.

By an integration by part

ck,l(g) = i

l

∫
exp

(−i
(
lθ + kg−1(θ)

))(−ik
(
g−1)′(θ))dθ = k

l
cl,k
(
g−1),(4.1.6)

the last equality is obtained by making the change of variableg−1(θ)= φ.
Therefore ∑ l

k

∣∣ck,l(g)∣∣2 =
∑ k

l

∣∣cl,k(g−1)∣∣2,
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relation which is the first order term of the expansion nearbyb = 0 of trace(log(I + b
†
gbg)). For

‖bg‖ < 1 we develop the logarithm in entire series which has for second term:

−1

2
trace

(
(b†

gbg)
2)= −1

2

∑
j,k,l,m>0

jk

lm
c̄l,j (g)c̄m,j (g)cl,k(g)cm,k(g),

using (4.1.6) we prove the invariance of this last quantity wheng �→ g−1. Proceeding along the
same lines we prove the same equality for all the coefficients of the power series and we get
(4.1.5)a for ‖bg‖ < 1 and by analytic prolongation for allg.

Finally we want to prove theS1 invariance.

ck,l(gγ ) =
2π∫
0

exp
(−i

(
kθ − lγ + lg−1(θ)

))
dθ = exp(ilγ )ck,l(g),

which implyK(gγ )=K(g). ✷
The functionalK is relatively settled. It is of interest to knowa priori some case where it is

finite as this is done in the next theorem.

THEOREM 4.1.7. –Given M and ε > 0, consider the classDM,ε of all diffeomorphisms
satisfying‖g‖C3 � M and g′(θ) � ε > 0, ∀θ ∈ S1. Then there existsM ′ < ∞ which can be
computed fromM,ε such thatK(g)� M ′ for all g ∈ DM,ε.

Proof. –

ck,l
(
g−1)=

2π∫
0

exp
(−i(k + l)ψk,l(θ)

)
dθ,

whereψk,l is defined as the convex combination

ψk,l(θ)= l

k + l
θ + k

k + l
g(θ).

If we assumeε < 1 andM > 1 thenψk,l ∈ DM,ε . We denoteχ the diffeomorphism inverse of
ψk,l . Then making the change of variableθ = χ(θ ′),

ck,l(g) =
∫

exp
(−i(k + l)θ ′)χ ′(θ ′)dθ ′.

Making a double integration by part

|ck,l|(k + l)2 �
∫ ∣∣χ(3)(θ ′)

∣∣dθ ′ � M2,

whereM2 is a constant depending only uponM andε which comes from classical computation
of derivatives of the implicit functionχ . Then

K(g)� M2
2

∑
k,l>0

l

k

1

(k + l)4
:=M1 <∞. ✷
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LEMMA. – The differential ofK is given by:

dK = trace(1+ b†b)−1((db)†b + b†db
)
.

Proof. –Denotec := b†b, then

d(c− c0)
n = dc(c− c0)

n−1 + (c− c0)dc(c− c0)
n−2 + · · · + (c − c0)

n−1 dc,

trace
(
d(c− c0)

n
)= trace

(
n(c− c0)

n−1 dc
)
.

Developpingc �→ log(1+ c) in Taylor series around the pointc0 we get the result. ✷
PROPOSITION. – Denote∇s the variation along the plane generated bycossθ,sinsθ , then:

(∇ l
sck,l

)
(g) = −il

2π

2π∫
0

exp
(−ikg(φ)− ilφ

)(
es
(
(0,1)

)
cos
(
sg(φ)

)− es
(
(1,0)

)
sin
(
sg(φ)

))
dφ.

(4.1.8)

Proof. –Let z ∈ diff(S1) then denote by∂lz the derivative on the left associated toz, then:

(
∂lzck,l

)
(g) = −il

2π

2π∫
0

exp
(−i

(
kθ + lg−1(θ)

))(
g−1)′(θ)z(θ)dθ.

Making the change of variablesφ = g−1(θ), we get the result. ✷
THEOREM 4.1.9 (Hong and Rajeev [4]). –The function6K is the Kählerian potential of the

left invariant pseudo-Kählerian metric defined onDiff (S1) by (1.2.8).

Proof. –Givenh ∈ diff(S1) the differentiation on the left

∂lhcj,k = d

dε|ε=0

2π∫
0

exp
(−ilθ − ik

(−εh(θ)+ g−1(θ)
))

dθ

= ik

2π∫
0

exp
(−ilθ − ikg−1(θ)

)
h(θ)dθ.

We shall prove the identity at the identity elemente; thencj,k(e)= 0; furthermore(∂hcj,k)(e)= 0
if h is antiholomorphic; therefore

〈
∂∂̄K,einθ ∧ e−inθ 〉=∑

k,l

l

k
k21(k + l = n) =

∑
k+l=n

kl = 1

6

(
n3 − n

)
.

In order to prove the theorem at every point of Diff(S1) we shall proceed using homo-
geneity argument. On the Siegel infinite-dimensional diskD∞ the (1,1) form ∂∂̄K is in-
variant under the left action of symplectic group as shown in (3.2.7); using (4.1.0) we have
Ψ (g0g)=Ug0(Ψ (g)). ✷
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4.2. Berezinian representation

We recall the notion ofBerezinian representationon a finite-dimensional complex symmetric
spaceM := G/H admitting a Kähler potentialK. Then Berezin introduced on the trivial line
bundle overM the metric

exp(−cK) and the corresponding measureνc := exp(−cK)dm,

where dm is the Riemannian volume ofM; for c large enoughνc is of finite mass. Berezin
constructed a unitary representationσ onHL2

νc
(M) by

σ(v)Φ = LvΦ + 〈Lv,Ω2〉Φ, v ∈ G, the Lie algebra ofG,(4.2.1)

whereΩ2 is a 1-differential form defined onM, of type(0,1), which will uniquely determined
below in (4.2.3). The unitarity condition following the line of the proof of (2.4.1) can be written
as:

divνc (Lv) = 2"(〈Lv,Ω2〉
)
.(4.2.2)

Then it is possible to show that relation (4.2.2) implies that

Ω2 = ∂̄K.(4.2.3)

THEOREM 4.2.4. –The Neretin representation is Berezinian; more precisely the differential
formΩ1 constructed in(2.5.1)satifies the identity

6∂̄K1 =Ω1,(4.2.5)

whereK =K1 ◦ π , π : Diff (S1) �→ Diff (S1)/S1.

Proof. –Consider the(0,1) form Γ = −6∂̄K1 + Ω1; then ∂Γ = ∂̄Γ = 0 which implies
dΓ = 0; therefore asM is contractible, there exists a functionχ such thatΓ = dχ . As Γ is
of type(0,1) we must haveχ = h̄ with h holomorphic onM.

Furthermore by (4.1.5), we have∂̄K1 is invariant under the infinitesimal action ofL0.
The differential formΩ =∑

ψ−s (Ps ◦ π) has its coefficientsPs ◦ π invariant under the right
action ofer0. The diffferential formsψk are right invariant and in particular invariant under the
action ofer0; thereforeΩ1 is invariant underL0. Finally Γ is invariant underL0. Using Cartan
formula (where we denote byi(∗) the interior product),

0 = d
(
i(L0)(Γ )

)+ i(L0)dΓ which implies that〈L0,dh〉 = constant.(4.2.6)

We expand in Taylor series the holomorphic functionh nearby the origin and we split this
expansion in polynomials homogeneous in weight:

h =
∑
s�0

Qs, weight(Qs)= s;

then

〈L0,dh〉 =
∑
s�0

sQs(4.2.7)

combining (4.2.6) with (4.2.7) we obtainQs = 0 for s > 0. ✷
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Appendix

We prove identity (2.1.4) of Part I. As it is nota priori known that Neretin construction gives
rise to a representation, we give a direct proof of this fact (Section A.6 and A.7). With the
embeddingM �→ CN which sendsf (z) = z(1 +∑+∞

n=1 cnz
n) to (cn)n�1, following Kirillov,

we express the vector fields(Lk)k∈Z in terms of the(ci)i�1. With this approach, we compute
in Section A.4 the components of theLk as homogeneous polynomials in the(ci)i�1 and
obtain generating functions for these polynomials. In Section A.5, we deduce more asymptotic
expansions related to the operators(Lk)k∈Z and to the representation. Moreover, in Section A.7,
we calculate the action ofL−k , k � 0, on the Neretin polynomials.

A.1. Polynomials associated to a univalent function

Consider:

f (z)= z

(
1+

∞∑
n=1

cnz
n

)
= z+

∞∑
n=1

cnz
n+1.(A.1.0)1

We have

zf ′(z)= z+
∞∑
n=1

(n+ 1)cnzn+1.(A.1.0)2

Forn � 0, k ∈ Z, j ∈ Z, we consider the homogeneous polynomialsPn+k
n ,Q

j
n in the variables

(ci)i�1 defined by:

z2
(
f ′(z)
f (z)

)2(
f (z)

z

)k

= 1+
∑
n�1

Pn+k
n zn and

f (z)2+j

z2+j
=
∑
n�0

Q
j
nz

n(A.1.1)

then (
z
f ′(z)
f (z)

)(
f (z)

z

)k

= 1+
∑
n�1

Pk
n

(
f (z)

)n
.(A.1.2)

We obtain (A.1.2) after making the change of variableξ = f (z) with the function

h(ξ) = (z
f ′
f
)(

f (z)
z

)k in the integral contour1
2iπ

∫
γ h(ξ)

dξ
ξj+1 .

If k � 0, (A.1.2) can be rewritten as:

z1−kf ′(z)=
∞∑
j=0

Pk
1+j+kf (z)

j+2 +
k∑

j=0

Pk
k−j f (z)

1−j .(A.1.3)1
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We denote

φk = −
k∑

j=0

Pk
k−j f (z)

1−j = −
(

1

f k−j
+ · · · + Pk

k f

)
.(A.1.4)

If we write (A.1.2) with−k, (A.1.2) yields

z1+kf ′(z)=
∞∑

j�k−1

P−k
1+j−kf (z)

j+2.(A.1.3)2

If we expandf (z)j in sum of powers ofz in (A.1.2) or (A.1.3), then match the coefficients ofzn,
we get

k+n∑
j=0

Pk
j Q

j−1−k

n+k−j = (n+ k + 1)cn+k.(A.1.5)

The polynomialsQj
n are given by the expansion:

1

f (z)p
= 1

zp

[
1−pc1z+

(
p(p + 1)

2
c2

1 −pc2

)
z2

+
(
p(p + 1)c1c2 − pc3 − p(p + 1)(p + 2)

3! c3
1

)
z3 + V4z

4 + V5z
5 + · · ·

]
,

(A.1.6)

where

V4 = p(p + 1)c1c3 − pc4 + p(p + 1)

2
c2

2 − p(p + 1)(p + 2)

2
c2

1c2 + p(p + 1)(p + 2)(p + 3)

4! c4
1,

V5 = p(p + 1)c2c3 + p(p + 1)c1c4 − pc5 − p(p + 1)(p + 2)

2
c1c

2
2 − p(p + 1)(p + 2)

2
c2

1c3

+ p(p + 1)(p + 2)(p + 3)

3! c3
1c2 − p(p + 1)(p + 2)(p + 3)(p + 4)

5! c5
1.

We compute thePk
n with the expansion ofz2(

f ′(z)
f (z)

)2(
f (z)
z

)j in powers ofz, we obtain:

P
p

0 = 1,

P
p

1 = (p + 1)c1,

P
p

2 = (p + 2)c2 + p2 −p − 4

2
c2

1,

P
p

3 = (p + 3)c3 + (
p2 − p − 8

)
c1c2 + (p − 3)(p − 5)(p + 2)

6
c3

1,

P
p

4 = (p + 4)c4 + (
p2 − p − 14

)
c1c3 + p2 − p − 12

2
c2

2(A.1.7)

+ (p − 6)(p2 − p − 10)

2
c2

1c2 + (p − 6)(p − 7)(p2 − p − 8)

24
c4

1,

P
p

5 = (p + 5)c5 + (
p2 − p − 22

)
c1c4 + (p − 7)(p2 − p − 14)

2
c1c

2
2

+ (p − 7)(p2 − p − 16)

2
c2

1c3 + (p − 7)(p − 8)(p + 3)(p − 4)

6
c3

1c2
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+ (p − 7)(p − 8)(p − 9)(p2 − p − 10)

120
c5

1 + (
p2 − p − 18

)
c2c3.

For the(φk)k�0, it gives:

φ0 = −f,

φ1 = −1− 2c1f,

φ2 = − 1

f
− 3c1 − (

4c2 − c2
1

)
f,(A.1.8)

φ3 = − 1

f 2 − 4c1
1

f
− (

c2
1 + 5c2

)− P 3
3 f,

φ4 = − 1

f 3 − 5c1
1

f 2 − (
4c2

1 + 6c2
) 1

f
− P 4

3 −P 4
4 f,

P 0
0 = 1,

P 1
1 = 2c1, P 1

0 = 1,

P 2
2 = 4c2 − c2

1, P 2
1 = 3c1, P 2

0 = 1,

P 3
3 = 6c3 − 2c1c2, P 3

2 = c2
1 + 5c2, P 3

1 = 4c1,

P 4
4 = 8c4 − 2c1c3 − 2c2

1c2 + c4
1, P 4

3 = −c3
1 + 4c1c2 + 7c3, P 4

2 = 4c2
1 + 6c2,

P 5
5 = 10c5 − 2c1c4 − 6c1c

2
2

− 4c2
1c3 + 8c3

1c2 − 2c5
1 + c2c3,

(A.1.9)

A.2. The algebra of operatorsLk

For a functionφ(z, c1, c2, . . . , cn, . . .), we denote by∂nφ = ∂
∂cn

φ the partial derivative ofφ
with respect to the variablecn and by′ = ∂z the derivative with respect toz. Forn � 1,

∂n
[
f (z)

]= zn+1, ∂1
[
f ′(z)

]= 2z.(A.2.1)

In the same way∂n[zf ′(z)] = (n + 1)zn+1, then∂n[zk+1f ′(z)] = (n + 1)zn+k+1 and for any
n� 1,

∂n∂z = ∂z∂n.(A.2.2)

For anyn� 2, f (z) is satisfies:

∂n∂z
[
f (z)

]= (n+ 1)∂n−1
[
f (z)

]
.(A.2.3)

Remark. – Because of (A.2.3) and the second relation in (2.1), we put∂0 = 1
2∂1∂z and

∂−1 = ∂0∂z. We have∂0[f (z)] = z and ∂−1[f (z)] = 1. We see that∂0∂z = ∂z∂0 and ∂−1∂z =
∂z∂−1. Moreover∂−1∂z[f (z)] = 0.

Fork � 1, we define the first-order differential operators:

Lk = ∂k +
∞∑
n=1

(n+ 1)cn∂n+k.(A.2.4)
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From (A.1.0)2 and (A.2.4), we see thatf (z) is solution of the partial differential equation:

Lk

(
f (z)

)= zk+1f ′(z) for k � 1.(A.2.5)

Since∂n∂z = ∂z∂n for anyn � 1 and since the coefficients ofLk do not depend uponz, for any
k � 1, we have

Lk∂z = ∂zLk.(A.2.6)

Thus, for any integerp, andk � 1,

Lk

(
zp

f p

)
= zk+1zp

(
1

f p

)′
= zk+1

(
zp

f p

)′
− pzk

zp

f p
,

Lk

(
zp
(
f ′

f

)p)
= zk+1

(
zp
(
f ′

f

)p)′
+ kpzkzp

(
f ′

f

)p

,(A.2.7)

Lk

[
z2
(
f ′

f

)2(
f

z

)p]
= zk+1

(
z2
(
f ′

f

)2(
f

z

)p)′
+ (2k +p)z2

(
f ′

f

)2(
f

z

)p

.

For anyk � 1,p � 1, we have

[Lk,Lp] = (k − p)Lk+p.(A.2.8)

A.3. Calculation of asymptotic expansions with recurrence formulas

1

f p
= 1

zp

(
1+

∑
n�1

V
p
n zn

)
,(A.3.1)

where V
p
n are homogeneous polynomials in the(ci)i�1 and n,p are indices. Given the

asymptotic expansion of 1/f p , we compute easily the asymptotic expansion of 1/f p+1 since

∂

∂ci

(
1

f p

)
= −p

zi+1

f p+1
.

In this way, we obtain∂
∂ci

V
p
n = 0 if n < i andV p+1

n = − 1
p

∂
∂ci

V
p
n+i if n� 0.

The operators(Lk)k�1 allow to calculate the asymptotic expansion of 1/f p independently of
that of 1/f p−1. We replace 1/f p by (A.3.1) in the first equation (A.2.7). We obtain:

Lk(Vn)=
{

0 if n < k,
(n− k − p)Vn−k if n � k.

(A.3.2)

We haveV1 = −pc1, we determineV2 = αc2
1 + βc2 with the conditionsL2(V2) = −p

and L1(V2) = (1 − p)V1. We find V2 = p(p+1)
2 c2

1 − pc2. In the same way, we calculate

V3 = p(p + 1)c1c2 − pc3 − p(p+1)(p+2)
6 c3

1 . . . .
To compute the polynomialsPP

n , n � 0, p ∈ Z, we replace in the third equation (A.2.7) the

functionz2(
f ′
f
)2(

f
z
)p by its asymptotic expansion in powers ofz and we match the coefficients,

we obtain fork � 1:

Lk

(
P

j
n

)=
{
(k + j)P

j−k

n−k if n� k,
0 if n < k.

(A.3.3)
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With the homogeneity conditions on the polynomials, we deduce fromP
p

0 = 1 the other
polynomialsPp

1 ,P
p

2 , . . . .

A.4. The operatorsL−p for p � 0

We aim to define sequence of operatorsL−p for p � 0 such thatL−p is of the form:

L−p =
∞∑
n=1

A
p
n∂n,(A.4.1)

whereAp
n are functions of the(ci)i�1 and depend uponp.

Thus, we shall have:

L−p

(
f (z)

)=
∞∑
n=1

A
p
n∂n

[
f (z)

]=
∞∑
n=1

A
p
nz

n+1(A.4.2)

and forp � 0,

A
p
n = 1

2iπ

∫
∂D

L−p[f (z)]
zn+2 dz= L−p(cn).(A.4.3)

Expanding (A.4.2) in powers off (z), we see thatL−p(f (z)) is of the form:

L−p

(
f (z)

)=
∑
n�0

Bn

(
f (z)

)n+2
,(A.4.4)

whereBn is a homogeneous polynomial in the(ci)i�1.

PROPOSITION. – For p � 0, assume that(see(A.1.3)1)

L−p

(
f (z)

)=
∞∑
j=0

P
p
1+j+pf (z)

j+2(A.4.5)1

thenAp
n is uniquely determined in(A.4.1);we have

L−p = P
p

p+1
∂

∂c1
+ (

2c1P
p

p+1 + P
p

p+2

) ∂

∂c2

+ ((
c2

1 + 2c2
)
P

p

p+1 + 3c1P
p

p+2 +P
p

p+3

) ∂

∂c3
(A.4.5)2

+ (
(2c1c2 + 2c3)P

p

p+1 + (
3c2

1 + 3c2
)
P

p

p+2 + 4c1P
p

p+3 + P
p

p+4

) ∂

∂c4
+ · · · .

For anyj � 1, we have

[Lj ,L−p] = (j + p)Lj−p.(A.4.6)

Proof. –We determineAp
n in order that:

L−p

(
f (z)

)=
∞∑
j=0

P
p
1+j+pf (z)

j+2 = z1−pf ′(z)−
p∑

j=0

P
p
p−j f (z)

1−j
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= z1−pf ′(z)− 1

f p−1 −
(

P
p

1

f p−2 + P
p

2

f p−3 + · · · + P
p
p f

)
(A.4.5)3

= z1−pf ′(z)+ φp.

For that purpose, we replacef (z)j in (A.4.5)3 by its asymptotic expansion in powers ofz and
we find:

A
p
n = (n+ 2p)cn+p + homogeneous polynomial of degreen+ p

in the variablesc1, c2, . . . , cn+p−1.

(A.4.7)

If we consider the polynomialsQj
n defined by (A.1.1), then

A
p
n = (n+ p + 1)cn+p −Q

−1−p
n+p −

p∑
j=1

P
p

j Q
j−1−p

n+p−j

=Q0
n−1P

p

p+1 +Q1
n−2P

p

p+2 + · · · +Qn−1
0 P

p
p+n,

(A.4.8)

where the second equality in (A.4.8) comes from (A.1.5). Letp � 0, with the choice (A.4.7) of
A
p
n , we prove (A.4.6) as follows: Consider two operatorsJ1 = ∑

n�1B
1
n∂n and

J2 =∑
n�1B

2
n∂n, the conditionJ1[f (z)] = J2[f (z)] gives

∑
n�1B

1
nz

n+1 =∑
n�1B

2
nz

n+1, thus

by the unicity of the asymptotic expansion, we deduceB1
n = B2

n for anyn� 1 andJ1 = J2. Con-
sequently, to prove (A.4.6), it is enough to verify:

[Lj ,L−p](f (z))= (j + p)Lj−p

(
f (z)

)
.(A.4.9)

We compute the left side of (A.4.9),

Lj

[
L−k

(
f (z)

)]= Lj [z1−kf ′(z)+ φk] = z1−k
(
zj+1f ′(z)

)′ +Lj [φk].

We have

Lj [φk] = ∂φk

∂f
Lj

[
f (z)

]− k∑
s=0

Lj

[
Pk
s

] 1

f k−s−1

= zj+1φ′
k −

k∑
s=j

Lj

[
Pk
s

] 1

f k−s−1
.

(A.4.10)

On the other hand

L−k

[
Lj

(
f (z)

)]= z1+j
(
L−k

[
f (z)

])′ = z1+j
(
z1−kf ′(z)

)′ + z1+jφ′
k.(A.4.11)

Thus, using (A.3.3), we obtain:

Lj

[
L−k

(
f (z)

)]−L−k

[
Lj

(
f (z)

)]= (k + j)z1+j−kf ′(z)−
k∑

s=j

Lj

[
Pk
s

] 1

f k−s−1

= (k + j)z1+j−kf ′(z)+ (k + j)φk−j = (k + j)Lj−k

[
f (z)

]
.

This proves (A.4.9).
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We see that the knowledge ofL0 and the condition, for anyk � 0,

[Lk,L−p] = (k + p)Lk−p

determines completly the coefficientsAp
k . We have:

LkL−p −L−pLk = Lk

(
A
p

1

) ∂

∂c1
+Lk

(
A
p

2

) ∂

∂c2
+ · · · − 2Ap

1
∂

∂c1+k

− 3Ap

2
∂

∂c2+k

+ · · ·

=
{
(k +p)A

p−k
1

∂
∂c1

+ (k +p)A
p−k
2

∂
∂c2

+ · · · if p � k,

(k +p)
(

∂
∂ck−p

+ 2c1
∂

∂ck−p+1
+ · · · + (n+ 1)cn ∂

∂ck−p+n
· · ·) if k > p.

By identifying the coefficients of∂
∂cn

, we obtain:

Lk

(
A
p
n

)=
{
(n− k + 1)Ap

n−k + (k + p)A
p−k
n if p � k,

(n− k + 1)Ap
n−k + (k + p)(n− k + p + 1)cn−k+p if p < k

(A.4.12)

with the conventionA−j = 0 if j � 0, c0 = 1, c−j = 0 if j > 0. In this way, we find (compare
with (A.4.5)2):

L0 = c1
∂

∂c1
+ 2c2

∂

∂c2
+ 3c3

∂

∂c3
+ · · · + ncn

∂

∂cn
+ · · · ,

L−1 = (
3c2 − 2c2

1

) ∂

∂c1
+ (4c3 − 2c1c2)

∂

∂c2
+ · · · + (

(n+ 2)cn+1 − 2c1cn
) ∂

∂cn
+ · · · ,

L−2 = (
5c3 + 2c3

1 − 6c1c2
) ∂

∂c1
+ (

6c4 − 5c2
2 − 2c1c3 + 4c2

1c2 − c4
1

) ∂

∂c2

+ (
7c5 − 6c2c3 + 3c1c

2
2 − 2c1c4 + 4c2

1c3 − 4c3
1c2 + c5

1

) ∂

∂c3
+ · · · ,

L−3 = (
7c4 − 3c2

2 − 8c1c3 + 6c2
1c2 − c4

1

) ∂

∂c1

+ (
2c5

1 − 8c3
1c2 + 4c2

1c3 − 2c1c4 + 10c1c
2
2 − 12c2c3 + 8c5

) ∂

∂c2
+ · · · ,

L−4 = (
9c5 − 6c2c3 − 10c1c4 + 3c1c

2
2 + 6c2

1c3 − c5
1

) ∂

∂c1
+ · · · .

(A.4.13)

PROPOSITION. – Let

Lk = ∂k +
∞∑
n=1

(n+ 1)cn∂n+k for k � 1,

L−k =
∑
n�1

Ak
n∂n for k � 0,

(A.4.14)

whereAk
n the homogeneous polynomial of degreen+ k in the(ci)i�1 given by(A.4.7), then for

anym,n ∈ Z:

[Lm,Ln] = (m− n)Lm+n.(A.4.15)

Proof. –We did the proof form ∈ Z, n� 1. We extend to all values ofn ∈Z using the Jacobi
identity on the vector fieldsLk , and a recursion argument.
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For the polynomialsAk
n, k � 1, n � 0, we have generating functions:

PROPOSITION. – For j � 1 andn � 0, letL−n =∑
j�1A

n
j

∂
∂cn

whereAn
j are the polynomials

defined by(A.4.7). We consider the polynomialsQj
n defined by(A.1.1), then

zn+2 (f
′)2

f 2

(
Q0

n−1

f
+ Q1

n−2

f 2 + Q2
n−3

f 3 + · · · + nc1

f n−1 + 1

f n

)
= 1+ 2c1z+ 3c2z

2 + 4c3z
3 + · · · + ncn−1z

n−1 +
∑
p�0

A
p
nz

p+n.
(A.4.16)

In particular, we have

z3 (f
′)2

f 3
= 1+

∑
n�1

An−1
1 zn,

z4 (f
′)2

f 2

(
2c1

f
+ 1

f 2

)
= 1+ 2c1z+

∑
p�0

A
p

2z
p+2,

z5 (f
′)2

f 2

(
c2

1 + 2c2

f
+ 3c1

f 2
+ 1

f 3

)
= 1+ 2c1z+ 3c2z

2 +
∑
p�0

A
p

3z
p+3,

z6 (f
′)2

f 2

(
2c3 + 2c1c2

f
+ 3c2 + 3c2

1

f 2 + 4c1

f 3 + 1

f 4

)
(A.4.17)

= 1+ 2c1z+ 3c2z
2 + 4c3z

3 +
∑
p�0

A
p

4z
p+4,

z7 (f
′)2

f 2

(
c2

2 + 2c4 + 2c1c3

f
+ 3c3 + 6c1c2 + c3

1

f 2
+ 4c2 + 6c2

1

f 3
+ 5c1

f 4
+ 1

f 5

)
= 1+ 2c1z+ 3c2z

2 + 4c3z
3 + 5c4z

4 +
∑
p�0

A
p
5z

p+5.

Proof. –We put, forn � 1,

ψn = zn+2 (f
′)2

f 2

(
Q0

n−1

f
+ Q1

n−2

f 2 + Q2
n−3

f 3 + · · · + nc1

f n−1 + 1

f n

)
and as conventionψ−n = 0, if n� 0. Fors � 1, we verify that:

Ls(ψn) = z1+sψ ′
n + (2s − n)zsψn + (n− s + 1)zsψn−s .(A.4.18)

On the other hand, the asymptotic expansion ofψn is of the form:

ψn = 1+
∑
p�1

β
p
n z

p,(A.4.19)

where β
p
n is a homogeneous polynomial of degreep. The system of partial differential

equations (A.4.18) determines completelyψn whenψn has the form (A.4.19) andψ1 is known.
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Thus, to obtain (A.4.16), it is enough to prove that

ψ̃n = 1+ 2c1z+ 3c2z
2 + 4c3z

3 + · · · + ncn−1z
n−1 +

∑
p�0

A
p
nz

p+n

satisfies also (A.4.18). This comes from (A.4.12).

Remark. – We can also deduce (A.4.16) directly form the identity (A.1.5)–(A.4.8). The left
side of (A.4.16) can be expressed with a integral contour.

PROPOSITION. – We put:

In = 1

2iπ

∫
∂D

f (t)2

t2

1

(f (t)− f (z))

dt

tn
(A.4.20)

then

ψn = zn+2 (f
′)2

f 2

(
Q0

n−1

f
+ Q1

n−2

f 2 + Q2
n−3

f 3 + · · · + nc1

f n−1 + 1

f n

)
= f ′(z)− zn+2 (f

′)2

f 2 In.

(A.4.21)

Proof. –A residue calculus of the integralIk .

A.5. Asymptotic expansions related to[L−k,L−p] = (p − k)L−(p+k)

The condition

[L−k,L−p] = (p − k)L−(p+k)(A.5.1)

for k � 0, p � 0, is equivalent to

φk
∂φp

∂f
− φp

∂φk

∂f

=
p∑

j=0

L−k

(
P

p

j

) 1

f p−j−1 −
k∑

j=0

L−p

(
Pk
j

) 1

f k−j−1 − (p − k)

p+k∑
r=0

P
p+k
r

1

f p+k−r−1 .

(A.5.2)

We put as a conventionPp
j = 0 if j < 0 or if j > p. Then we can write the sums in (A.5.2) as

series, and matching equal powers of 1/f , we obtain the condition for 0� r � p + k,

−
∑

j,s,j+s=r

(p − k + j − s)P k
j P

p
s = L−k

(
P

p
r−k

)−L−p

(
Pk
r−p

)− (p − k)P
p+k
r(A.5.3)

with 0 � j � k and 0� s � p.
Forp + k = r, (A.5.3) reduces to

L−k

(
P

p
p

)−L−p

(
Pk
k

)= (p − k)P
p+k
p+k .(A.5.4)

To discuss (A.5.3)–(A.5.4), we shall need the following lemma:
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LEMMA. – Let k ∈ Z and lethk = z2(
f ′
f
)2(

f
z
)k = 1+∑

n�1P
n+k
n zn, we have forj � 0,

L−j (hk)= z1−jh′
k + (k − 2j)z−jhk +

[
(k − 2)

φj

f
+ 2

∂φj

∂f

]
hk.(A.5.5)

Moreover

ψj =
[
(k − 2)

φj

f
+ 2

∂φj

∂f

]
hk =

∑
n�−j

B
j
nz

n

satisfies fors � 1:

Ls(ψj ) = z1+sψ ′
j + (k + 2s)zsψj + (s + j)ψj−s(A.5.6)

with the conventionψn = 0 if n < 0. The polynomialsBj
n satisfy

Ls

(
B
j
n

)= (n+ s + k)B
j
n−s + (s + j)B

j−s
n .(A.5.7)

For (A.5.5) and (A.5.6), the proof is a verification. We deduce (A.5.7) from (A.5.6).
(A.5.4) is a consequence of the following proposition:

PROPOSITION. – Leth= z2(
f ′
f
)2, then for anyj � 1,

2h

(
∂φj

∂f
− φj

f

)
= 2z2

(
f ′

f

)2(∂φj
∂f

− φj

f

)
= 2z2

(
f ′

f

)2 ∑
0�s�j

(j − s)P
j
s

f j−s
= Lj (P

j
j )

zj−1 + Lj−1(P
j
j )

zj−1 + · · · +
∑
n�0

L−n(P
j

j )z
n.

(A.5.8)

Remark that we can also express (A.5.8) as:

L−n

(
P

j
j

)= 1

2iπ

∫
∂D

2z2
(
f ′

f

)2(∂φj
∂f

− φj

f

)
dt

tn+1 .(A.5.9)

Proof. –From (A.5.5) withk = 0,

L−j (h) = z1−jh′ − 2jz−jh− 2

[
φj

f
− ∂φj

∂f

]
h(A.5.10)

thus

ψj = 2

[
∂φj

∂f
− φj

f

]
h= 2h

(
j

f j
+ (j − 1)P j

1

f j−1 + · · · + (j − n)P
j
n

f j−n
+ · · · + 2Pj

j−2

f 2

)
= L−j (h)− z1−jh′ + 2jz−jh= H

j
−j

zj
+ H

j

−j+1

zj+1 + · · · +
∑
n�0

H
j
n z

n.

(A.5.11)

SinceLj(P
j
j ) = 2j andLj−1(P

j
j ) = 2c1(2j − 1), we verify immediately that in the asymptotic

expansion (A.5.8)–(A.5.11), we haveHj

−j = Lj(P
j

j ) andHj

−j+1 = Lj−1(P
j

j ). We prove now
(A.5.8): Fors � 1,
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Ls(ψj )= z1+sψ ′
j + 2szsψj + (s + j)ψj−s(A.5.12)

with the convention thatψj = 0 if j < 0. With (A.5.12), we deduce that the polynomialsH
j
n in

the asymptotic expansion (A.5.11) satisfy fors � 1:

Ls

(
H

j
n

)= (n+ s)H
j
n−s + (s + j)H

j−s
n .(A.5.13)

On the other hand, let

K
j
n = L−n

(
P

j

j

)
we verify thatKj

n satisfy also (A.5.13). Since the two sequences of polynomials have the same
initial data, they are equal. This proves (A.5.8).

COROLLARY. – The relation(A.5.4)holds.

Proof. –For h = z2(
f ′
f
)2, then L−j (h) = ∑

n�1L−j (P
n
n )z

n. In (A.5.9), we replace

2h(
∂φj
∂f

− φj
f
) by its asymptotic expansion given by (A.5.8). This proves (A.5.4).

The proposition (A.5.8) extends as follows:

PROPOSITION. – If 0 � u, for anyk ∈ Z, we have

z2
(
f ′

f

)2 ∑
0�s<u

(k − 2s + u)

f u−s
P k
s =

∑
−u�n

L−n

(
Pk
u

)
zn

= Lu(P
k
u )

zu
+ Lu−1(P

k
u )

zu−1
+ · · · +

∑
n�0

L−n(P
k
u )z

n.

(A.5.14)

With (A.3.3) and (A.1.7), we compute the first term in the expansion:

Lu

(
Pk
u

)= (k + u), Lu−1(P
k
u ) = (k + u− 1)(k − u+ 2)c1.

Proof. –Let

Gk,u = z2
(
f ′

f

)2 ∑
0�s<u

(k − 2s + u)

f u−s
P k
s =

∑
n�−u

Hk,u
n zn.(A.5.15)

For s � 1,

Ls(Gk,u)= zs+1(Gk,u)
′ + 2szsGk,u + (s + k)Gk−s,u−s(A.5.16)

with the convention thatGk,u = 0 if u < 0. In (A.5.16), we replace the functionGk,u by its
asymptotic expansion

∑
n�−u H

k,u
n zn. It gives the following conditions on the homogeneous

polynomialsHk,u
n . Forp � −u,

Ls

(
Hk,u

p

)= (s + p)H
k,u
p−s + (s + k)Hk−s,u−s

p .(A.5.17)

Since forn � 0, Hk,u
−u+n is a homogeneous polynomial of degreen, theH

k,u
−u+n are uniquely

determined by (A.5.17) and the initial conditionHk,u
−u = (k + u).
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With (A.5.17), we findHk,u
−u+1 = [(2− u)(k + u)+ (1+ k)(k + u− 2)]c1, . . . .

We put for 0� u � k, Kk,u
n = L−n(P

k
u ). For s � 1, we use (A.4.6) and (A.3.3) to compute

Ls(K
k,u
n ). TheK

k,u
n satisfy the system of equations (A.5.17) with the same initial condition

K
k,u
n = (k + u). ThusHk,u

n = L−n(P
k
u ). This proves (A.5.14).

COROLLARY. – Lethk = z2(
f ′
f
)2(

f
z
)k , then for0� u, k ∈ Z,

L−p

(
Pk
u

)=
∑

0�j<u

(k − 2j + u)P k
j

∫
∂D

h−(u−j)

dt

t1+p+u−j
.(A.5.18)

Proof. –In (A.5.15), the coefficientHk,u
n is given by:

Hk,u
n = 1

2iπ

∫
∂D

Gk,u
dt

tn+1
.

We have

1

2iπ

∫
∂D

Gk,u
dt

tn+1
=

∑
0�s<u

(k − 2s + u)P k
s

1

2iπ

∫
∂D

t2
(
f ′

f

)2 1

f u−s

dt

tn+1

and we find the right side of (A.5.18).
For 0� u � k, the asymptotic expansion (A.5.14) is a consequence of (A.4.15)–(A.5.1) as is

proved in the following lemma:

LEMMA. – The relation(A.5.3) is equivalent to(A.5.18).

Proof. –We shall use the residue form ofPp
r−k . For 0� r � p + k,

P
p

r−k = 1

2iπ

∫
∂D

t2
(
f ′

f

)2f p−r+k

tp+1 dt .(A.5.19)

Thus

L−k

(
P

p
r−k

) = 1

2iπ

∫
∂D

L−k

[
t2
(
f ′

f

)2
f p−r+k

tp−r+k

]
dt

tr−k+1

= 1

2iπ

∫
∂D

L−k[hp−r+k] dt

tr−k+1 .

(A.5.20)

We calculateL−k[hp−r+k] with (A.5.5)

L−k

(
P

p
r−k

)= 1

2iπ

∫
∂D

t1−kh′
p+k−r + (p − r + k − 2k)t−khp+k−r

dt

tr−k+1

+ 1

2iπ

∫
∂D

[
(p − r + k − 2)

φk

f
+ 2

∂φk

∂f

]
hp+k−r

dt

tr−k+1

= (p − k)P r+k
r +

k∑
j=0

(k − 2j − p + r)P k
j

1

2iπ

∫
∂D

t2
(
f ′

f

)2f p−r+j

tp+1 dt
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= (p − k)P r+k
r +

k∑
j=0

(k − 2j − p + r)P k
j

1

2iπ

∫
∂D

hp−r+j

dt

tr−j+1

= (p − k)P r+k
r +K,

where at the second step, we replacehp+k−r by its asymptotic expansion in the first term andφk

by φk = −∑k
j=0P

k
j

1
f k−j−1 in the second term. Ifj > r, there is no residue for the integral

1

2iπ

∫
∂D

hp−r+j
dt

tr−j+1
.

Thus

K =
inf(k,r)∑
j=0

(k − 2j −p + r)P k
j

1

2iπ

∫
∂D

hp−r+j
dt

tr−j+1

=
∑

0�j<r−p

(k − 2j − p + r)P k
j

1

2iπ

∫
∂D

hp−r+j
dt

tr−j+1

+
∑

r−p�j�inf(k,r)

(k − 2j − p + r)P k
j P

p
r−j .

With the conventionPp
j = 0 if j < 0 or if j > p as in (A.5.3), we have for the last term:∑

r−p�j�inf(k,r)

(k − 2j − p + r)P k
j P

p
r−j =

∑
0�j�k

(k − 2j −p + r)P k
j P

p
r−j

and to prove (A.5.3) is the same as to prove

L−p

(
Pk
r−p

)=
∑

0�j�r−p

(k − 2j − p + r)P k
j

1

2iπ

∫
∂D

hp−r+j
dt

t1+r−j
.

We putr = p + u, this gives (A.5.18) and proves the lemma.

A.6. More asymptotic expansions and polynomials found with the(Lk)k�1

We consider functionsφ(z, c1, c2, . . . , cn, . . .) which satisfy for anyk � 1, the partial
differential equation:

Lk(φ)= zk+1φ′ + αkz
kφ′ + βk(z),(A.6.1)

whereαk is a constant,βk(z) =∑
p�0bp,kz

p is a polynomial inz independent of the(ci)i�1,
andbp,k are constants. Thus the linear operatorZk defined by

Zkφ = zk+1∂zφ + αkz
kφ(A.6.2)

is independent of the(ci)i�1.

PROPOSITION. – Considerφ(z) =∑
n�0Pnz

n where for anyn � 0, Pn is a function of the
(ci)i�1. Assume thatφ(z) is a solution of(A.6.1) for anyk � 1, then the sequence(Pn)n�0 is
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such that

Lk(Pn)=
{
bn,k for n � k − 1,
(n− k + αk)Pn−k + bn,k for n � k.

(A.6.3)

Proof. –We identify the coefficients ofzn to obtainLk(Pn). The operatorLk is a derivation
and we obtainLk(z

f ′
f
) = z(

Lk(f )
f

)′. Then we match the coefficients ofzn in the asymptotic
expansions.

For the following asymptotic expansions:

1

f
,

zp

f p
, u= z

f ′

f
, up, v = u′

u
, z

f ′′

f ′(A.6.4)

the coefficient ofzn for n � 1 is a homogeneous polynomial in the variablesc1, c2, . . . , cn, and
we have an equation of the type (A.6.1). For example:

u= z
f ′

f
= 1+ c1z+ · · · = 1+

∞∑
n=1

Qnz
n,

Lk

(
z
f ′

f

)
= z

(
zk+1f

′

f

)′
= zk+1

(
z
f ′

f

)′
+ kzk

(
z
f ′

f

)
thusLk(Qn)= nQn−k for n� k + 1,

Lk(Qk)= k and Lk(Qn) = 0 for n� k − 1,

(A.6.5)

u′

u
= 1

z
+ f ′′

f ′ − f ′

f
= c1 +

∑
n�1

Tnz
n,

z
f ′′

f ′ = 2c1z+ (
6c2 − 4c2

1

)
z2 + · · · =

∑
n�1

Rnz
n,

Lk

(
f ′′

f ′

)
= k(k + 1)zk−1 + zk+1

(
f ′′

f ′

)′
+ (k + 1)zk

f ′′

f ′

thusLk(Rn)= nRn−k for n� k + 1,

Lk(Rk)= k(k + 1) and Lk(Rn) = 0 for n� k − 1.

(A.6.6)

PROPOSITION. – Let

P(z)= hz
f ′

f
+ cz

f ′′

f ′ =
∑
n�0

Pnz
n,(A.6.7)

whereh andc are two constants, then

Lk(Pn)= nPn−k + (
ck(k + 1)+ hk

)
δk,n.(A.6.8)

Proof. –We use (A.6.5)–(A.6.6).

PROPOSITION. – Assume thatφ is a solution of:

Lk(φ)= zk+1φ′ + (k + 1)zkφ + k(k + 1)zk−1,(A.6.8)
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thenw = φ′ − 1
2φ

2 is a solution of:

Lk(w)= zk+1w′ + 2(k + 1)zkw + k
(
k2 − 1

)
zk−2.(A.6.9)

Proof. –

Lk(φ
′)= zk+1φ′′ + 2(k + 1)zkφ′ + k(k + 1)zk−1φ + k

(
k2 − 1

)
zk−2,

Lk

(
φ2)= zk+1(φ2)′ + 2(k + 1)zkφ2 + 2k(k + 1)zk−1φ.

From these two equalities, we deduce immediately (A.6.9).

COROLLARY. – Consider the Schwarzian derivativeS(f ) = (
f ′′
f ′ )′ − 1

2(
f ′′
f ′ )2. Let

Ph,c(z)= hz2 (f
′)2

f 2 + cz2S(f ) =
∑
n�0

Ph,c
n zn

= h+ 2c1hz+ [
h
(
4c2 − c2

1

)+ 6c
(
c2 − c2

1

)]
z2(A.6.10)

+ [
h(6c3 − 2c1c2)+ c · · ·]z3 + · · · ,

whereh andc are two constants; then

Lk(Pn)= (n+ k)Pn−k + (
2hk + ck

(
k2 − 1

))
δk,n.(A.6.11)

Proof. –The function z f
′′

f ′ satisfies (A.6.8), see (A.6.6). Thus the Schwarzian derivative

w1 = S(f ) satisfies (A.6.9). On the other hand, from (A.2.7), we see thatw2 = (
f ′
f
)2 satisfies:

Lk(w2) = zk+1w′
2 + 2(k + 1)zkw2.

A.7. The relation L−k(Pp) − L−p(Pk) = (p − k)Pp+k , for p � 0, k � 0

We consider the identity fork � 0, p � 0,

L−k(Pp)−L−p(Pk)= (p − k)Pp+k(A.7.1)

and sequences of homogeneous polynomials which satisfy (A.7.1). If(Un)n�0 and (Vn)n�0
satisfy (A.7.1), then for any constantsh andc, (hUn + cVn)n�0 also satisfy (A.7.1). For the
functionPh,c(z) of (A.6.10), we shall prove that the polynomialsPh,c

n satisfy (A.7.1). When
c = 0 andh �= 0, the relation (A.7.1) has been proved forPp = P

p
p in (A.5.4) (see the corollary

of (A.5.8)). In the following, we prove (A.7.1) whenh= 0 andc �= 0.

THEOREM. – The polynomialsPn defined by:

z2S(f )=
∑
n�0

Pnz
n(A.7.2)

satisfy(A.7.1).

Proof. –We haveP0 =P1 = 0. We first consider the case wherek = 1 in (A.7.1) and we prove
that for anyp � 1, the sequence of polynomialsPn satisfy:

L−1(Pp)= (p − 1)Pp+1(A.7.3)
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we computeL−1(
f ′′
f ′ ) = (

f ′′
f ′ )′, thus

L−1S(f )= (
S(f )

)′(A.7.4)

and we replace in (A.7.4) the functions by their asymptotic expansions.
To prove the theorem for anyk, we use the following lemma:

LEMMA. – Letφ = f ′′/f ′, we have:

L−k(φ)= k(k − 1)z−(k+1) + (1− k)z−kφ + z1−kφ′ + ∂2φk

∂f 2 f ′,(A.7.5)

L−k

(
S(f )

)= −k
(
k2 − 1

)
z−(k+2) + 2(1− k)z−kS(f )+ z1−k

(
S(f )

)′ + ∂3φk

∂f 3 (f ′)2.(A.7.6)

Proof. –We haveL−k(S(f ))= L−k(φ
′)− φL−k(φ)= · · · .

We prove (A.7.1) whenk = 2.

LEMMA. – Let z2S(f )=∑
n�0Pnz

n = 6(c2 − c2
1)z

2 + · · · , we have:

L−2(Pp)−L−p(P2) = (p − 2)Pp+2.(A.7.7)

Proof. –For the polynomials in (A.7.2), we have

L−p(P2) =A
p

1
∂

∂c1
(P2)+A

p

2
∂

∂c2
(P2)= −12c1A

p

1 + 6Ap

2 ,

thus we have to prove that

L−2(Pp)= (p − 2)Pp+2 + 6Ap
2 − 12c1A

p
1 .(A.7.8)

We compute

L−2
(
z2S(f )

)= −6
1

z2 + z
(
S(f )

)′ − 2S(f )+ 6z2 (f
′)2

f 4 .

We replacez2S(f ) andz2 (f ′)2
f 4 by their expansions, and we obtain (A.7.8).

LEMMA. – Let z2S(f )=∑
n�0Pn+2z

n+2, we have:

L−3(Pp)−L−p(P3)= (p − 3)Pp+3.(A.7.9)

Proof. –Since

∂3φ3

∂f 3 = 24

f 5 (1+ c1f ),

we obtain

L−3
(
S(f )

)= −24

z5 − 4

z3S(f )+ 1

z2

(
S(f )

)′ + 24

f 5 (f
′)2(1+ c1f ).(A.7.10)
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In (A.7.10), we replaceS(f ) by
∑

n�0Pn+2z
n,

∑
p�0

L−3(Pp+2)z
p

= −24

z5 − 4
∑
p�0

Pp+2z
p−3 +

∑
p�0

pPp+2z
p−3 + 24

f 5 (f
′)2(1+ c1f ).

(A.7.11)

We compute

(f ′)2

f 5
(1+ c1f )= 1

z5
+ (c2 − c2

1)

z3
+
∑
p�0

Mpz
p−2 +

∑
p�0

c1
(
A
p

2 − 2c1A
p

1

)
zp−2.

We let

Gp =Mp + c1A
p

2 − 2c2
1A

p

1 =A
p

3 − 2c1A
p

2 − 2c2A
p

1 + 3c2
1A

p

1 .(A.7.12)

From (A.7.11), we obtain∑
p�0

L−3(Pp+2)z
p =

∑
p�0

(p − 1)Pp+5z
p + 24

∑
p�0

Gp+2z
p.(A.7.13)

By matching equal powers ofz, we get for anyp � 0,

L−3(Pp+2) = (p − 1)Pp+5 + 24Gp+2.(A.7.14)

To prove (A.7.9), it is enough to show that

L−(p+2)(P3)= 24Gp+2.(A.7.15)

Since

P3 = 24
(
c3 − 2c1c2 + c3

1

)
the relation (A.7.15) is satisfied.

PROPOSITION. – Let z2S(f )=∑
n�0Pn+2z

n+2, we have:

∂3φk

∂f 3 (f ′)2 = k(k2 − 1)

zk+2 − 0× c1

zk+1 + 12(k − 1)(c2 − c2
1)

zk
+ · · · +

∑
n�0

L−(n+2)(Pk)z
n

= Lk(Pk)

zk+2 + Lk−1(Pk)

zk+1 + Lk−2(Pk)

zk
+ · · · + Lk−j (Pk)

zk+2−j
+ · · ·

(A.7.16)
and fork � 0, p � 0

L−k(Pp)−L−p(Pk)= (p − k)Pp+k.(A.7.17)

Proof. –S(f )=∑
n�0Pn+2z

n, we replace in the expression ofL−k(S(f )),∑
n�0

L−k(Pn+2)z
n = 2(1− k)

∑
m�k

Pm+2z
m−k +

∑
m�k

mPm+2z
m−k +

∑
n�0

Hk
nz

n,
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whereHk
n is the coefficient ofzn in the asymptotic expansion of∂

3φk
∂f 3 (f

′)2, i.e.

∂3φk

∂f 3
(f ′)2 = k(k2 − 1)

zk+2
− 0× c1

zk+1
+ · · · +

∑
n�0

Hnz
n.(A.7.18)

By matching equal powers ofzn in (A.7.18), we obtain:

L−k(Pn+2)= (n+ 2− k)Pn+k+2 +Hk
n .(A.7.19)

To prove (A.7.17), it is enough to prove that fork � 2,

Hk
n = L−(n+2)(Pk).(A.7.20)

We use the following lemmas:

LEMMA. – For anyj � 1,

Lj

(
∂pφk

∂f p

)
= zj+1

(
∂pφk

∂f p

)′
+ (j + k)

∂pφk−j

∂f p
(A.7.21)

with the convention thatφp = 0 if p < 0.

Proof. –We prove the relation by recurrence onp.

LEMMA. – Consider the asymptotic expansion(A.7.18), wherek is given; we have forj � 1:

Lj

(
Hk

n

)= (n+ j + 2)Hk
n−j + (j + k)H

k−j
n(A.7.22)

with the conventionalHp
n = 0 if p < 0.

Proof. –We match the coefficients of the asymptotic expansion in (A.7.21) withp = 3.

LEMMA. – We put

Kk
n = L−(n+2)(Pk)

then forj � 1,

Lj

(
Kk

n

)= (n+ j + 2)Kk
n−j + (j + k)K

k−j
n .(A.7.23)

Proof. –

Lj

(
L−(n+2)(Pk)

)= L−(n+2)
(
Lj (Pk)

)+ (j + n+ 2)Lj−(n+2)(Pk)

thus

Lj

(
Kk

n

)= (n+ j + 2)Kk
n−j +L−(n+2)

(
L−j (Pk)

)
.

SinceLj(Pk)= (j + k)Pk−j + constant, we obtain (A.7.23).

Proof of (A.7.20). – Fork fixed, the two sequencesHk
n andKk

n = L−(n+2)(Pk) follow the same
recurrence formulas (A.7.22) and (A.7.23). Since we know thatHk

n is a homogeneous polynomial
in the variables(ci), the relations (A.7.22)–(A.7.23) determine completely the sequencesHk

n
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with the conditionHk
−(k+2) = k(k2 − 1). Thus the two sequences are equal. This proves (A.7.20)

and thus (A.7.16) and (A.7.17)
With the relations (A.7.22)–(A.7.23) and the condition

Hk
−(k+2) = k

(
k2 − 1

)
(A.7.24)

we shall compute the first terms in the asymptotic expansion (A.7.16). We haveHk
−(k+1) = αc1

thusL1(H
k
−(k+1))= ∂

∂c1
(Hk

−(k+1))= α. By (A.7.22)–(A.7.23), we know that:

L1
(
Hk

−(k+1)

)= (
1+ 2− (k + 1)

)
Hk

−(k+2) + (1+ k)H
(k−1)
−(k+1),

we replaceHk
−(k+2) by (A.7.24) and also using (A.7.24) withk − 1 instead ofk, we obtain

H
(k−1)
−(k+1) = (k − 1)((k − 1)2 − 1), we findα = 0,

Hk
−(k+1) = 0.

ForHk−k = αc2
1 + βc2, we haveL1(H

k−k) = ( ∂
∂c1

+ 2c1
∂
∂c2

)(αc2
1 + βc2) = 2αc1 + 2βc1. On the

other hand, from (A.7.22)–(A.7.23),

L1
(
Hk−k

)= (−k + 1+ 2)Hk
−(k+1) + (1+ k)Hk−1

−k = 0

this givesα + β = 0. Then, we computeL2(H
k−k) = ∂

∂c2
(αc2

1 + βc2) = β ; from (A.7.22)–

(A.7.23),L2(H
k−k)= (−k + 2+ 2)Hk

−(k+2) + (k + 2)Hk−2
−k , this givesβ = 12(k − 1),

Hk−k = 12(k − 1)
(
c2 − c2

1

)
.

COROLLARY. – The residue atz = 0 of ∂3φk
∂f 3 (f

′)2 1
zn+1 is equal toL−(n+2)(Pk).
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