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Introduction

André Weil has shown [9] that the realm of invariant integration on a g@upthe class of
locally compact groups; it seems therefore that the realization on a space of square integrable
functions of representations @ has to be limited to the case whetkis locally compact.
Nevertheless the classical theory of Segal and Bargmann shows that the infinite-dimensional
Heisenberg group has ai? representation on a space holomorphic functions defined on an
Hilbert space and square integrable for a Gaussian measure. An analogous Gaussian realization
for representations of Loop groups has been established in [3].

The purpose of this work is to get out of the Gaussian circle of ideas; we show that holomorphic
square integrable realization is equivalent to the constructiomipitarizing probability measure
satisfying an a priori given formula of integration by paftilly determined by the automorphy
factor of the representation. The purpose of this paper is to work out quite explicitly this
correspondance in the framework of some highest weight representation of Virasoro algebra;
this paper is a preliminary work in the sense that the construction of the measure satisfying the
prescribed formula of integration by part will not be treated here.

The Virasoro algebra depends upon the choice of the cocycle defining the central extension.
The most general cocyle depends upon two parameters. We shall limit ourselves to a one-
parameter family which is directly linked with theniversal Teichmuller spacdhat is the
quotient of the group of diffeomorphisms of the circle by the group of Mobius transformations
of the unit disk.

A given representation has several realizations which appear isomorphic through intertwinning
operators. It is not clear that intertwinning between two realizations implies transference for the
corresponding unitarizing measures.
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For this reason we shall discuss below unitarizing measures for two distinct realizations of the
discrete series, the first based on Neretin polynomials in the context of the Kirillov homogeneous
spaceM of univalent functions and the second based on an infinite-dimensional version of
Berezin quantization scheme. We hope that the algebraic meaning of unitarizing measures will
appear more clearly by confrontation of its developpements in these two different realizations.

The Appendix is for us a key step in proving the effectiveness of Neretin formulas; we find
here explicitly the generating functions associated to representation commutation rules; on these
computations rely all the new results of our paper.

Part I: Resolution of a 3-problem on the space of univalent functions
1. Kirillov action of Virasoro on the manifold of univalent functions

1.1. The Lie algebra diff(St)

The group ofC, orientation preserving diffeomorphisms of the cirsfewill be denoted by
Diff (S1), its Lie algebra by diffs™). We shall identify diff S1) with the real valued”* functions
¢ on §1, the infinitesimal action being— 6 + £¢ (9); more geometrically we associategdhe
vector fieldg (9)%. Under this identification the Lie bracket in diff!) is the the bracket of the
corresponding vector fields given by:

(1.1.1) [$1, 2] = P12 — P21

The infinitesimal rotatio® — 6 + ¢ corresponds to the constant function equal to 1; we shall
denote byeg this function.
We denote:

U?_(60) := u(r) the flow defined byi (1) = ¢ (u(r)), u(0) =

The Jacobian(1 x 1)-matrix associated to this flow is obtained by solving the linearized
differential equation, solution which can expressed as:

(_O_exp(/¢ u(s) ds)

We deduce that

82
3f13l2 t1=t=0

(1.1.2) (U oo U o= UR goU o) = —[¢1. ¢2l.

Therefore diffS1) with the bracket defined in (1.1.1) has to be considered as the space of left
invariant vector fields on Diffs1).
The Lie bracket has the following expression in the trigonometric basis:

2[cosjH, coskd] = (j —k)sin(j + k)0 + (j + k) sin(j — k)0,
2[sinj6, sinkd] = (k — j)sin(j + k)6 + (j + k) sin(j — k)6,
2[sinj#,coskd] = (k — j)coqj + k)0 — (j + k)cogj — k)b.
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1.2. The fundamental cocyle

We define on diffs1) the bilinear antisymmetric form:

do
(1.2.2) w(f, g) = _/(f/+f(3))gE.
Sl
LEMMA. —
(1.2.2) o(Lf1, f2l, £3) + o(Lf2, fal, f1) +o([f3 fil, f2) =0.

Proof. —~We remark thaf /1, f2]' = f1f> — f2f1. As the wanted identity is linear relatively to
the bracket, it is sufficient to check it for the two following cases:

in the first case the first term of the identity fs /> f3 — f2 f1 f3 and this term cancelled with
the others terms obtained by circular permutation;

in the second case we make an integration by part to replace the third derivative in the
expression ofv by a second derivative; then the first term of the wanted identity can be written
as f1f2f3 — f2f1f3 and we get again cancellation by circular permutation.

Fixing a positive constant, called thecentral chargethe Virasoro algebra), is defined as
vector spac®’. := R @ diff (51); we denote by the central element and define the bracket by:

(1.2.3) Ex + fink +gly, == 1£2w(f’ &k +1f. 8l

and according (1.2.2) the Jacobi identity is satisfied and we get a structure of Lie algebra.

LEmMMA. — The fundamental cocyle is invariant under the adjoint actiordy
(1.2.4) (Ad(expteo))*a) =w.
Proof. ~We have
leo. f1=f' therefore (Ad(expreo)f)(®)= f(0+1)

and it is clear thaw is invariant. O

We denote bys? the vector space of constant vector field which constitutes the Lie algebra of
the groups? of rotations; we denote by difts?) the quotient of diffst)/s2.

We have(eg A ¢, w) = 0 V¢, therefore it is possible to quotientand we get a well defined
2-differential form on dif§(S*) which will be by abuse of notations still be denotedday

Sometimes we shall identify diffs') with the functions having mean value zero; using
Fourier series this identification leads to wrtes diffo(S1) as:

]

d©6) = Zak cosko + by sinko,
k=1

whereay, by are rapidly decreasing sequences of real numbers. We define:

o0

(1.2.5) J(@) = —axSinkd + by cosko.
k=1
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ThenJ? = —Identity and we get a complex structure on gliff'). On diffy(S) ® C, the operator
J diagonalizes; we call vector of tyg&, 0) (resp. of typg0, 1)) the eigenvectors associated to
the eigenvalue/—1 (resp.—+/—1). A vector of type(1, 0) is of the form:

¢=f—~=1I(f) =) (ar—iby)coskd + (bx +iax) SinkO =Y " (ar — ibr) eXp(iko),

k>0 k>0

which means thap has a prolongation inside the unit disk as an holomorphic function.
We take for basis of diffS}) ® C the complex exponentiak (0) := exp(ik8), k € Z; in this
basis the Lie bracket is:

(1.2.6) [em, en]l = —1(n — m)epin +—18", (j-iz(m3 - m))ic
The expression ab can be written on forfy, f» € diffo(S1) ® C as:

V=1
o(fi f) = 5= (kK = K)a(foe(f2)
(1.2.7) kez
/—1 -
=5-) (K=K fo,dti ndEy),

k>0

wheref =3, ., cx(f)er and wherelg; (_Jlenotes the&R-linear map of dif§(S1) — C defined by
f = c(f), k> 0;inthe same wayf,d) :==c_x (f).
We have

(doe, Jf) =~=Ndek, f); (db, Jf) = —v/—Lde, f), k>0

therefore

(1.2.8) o(f. 1) =D (K= k)|ee(H].
k>0
The positivity of (1.2.8) leads to impose the positiveness of the central charge

1.3. The manifold of univalent functions

We denote byF the vector space of functiong which are holomorphic in the unit disk
D :={z; |z] < 1} andC® on its closureD and such thaf (0) = 0; we denote by the subspace
of functions of f satisfying f/(0) = 0. We denote:

M:={feF; f(0)=1andf injective onD, f'(z) #0Vz € D}.

Then M is an open set of the affine spage + Fo where fo(z) =z, Vz € D. As Fp is a
complex vector spaceM inherits of an infinite-dimensional structure of complex manifold.
The embeding\t — CV defined by writting

+00
(1.3.1) 1@ =z(1+ chz">

n=1

introduces the affine coordinat¢s— {c,}. Granted De Branges Theorei is identified to an
open subset ofic,| < n + €}.
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LEMMA 1.3.2.-M is a contractible manifold.

Proof. —We define forr € 10, 1] and f € M the functionf;(z) := =1 f(tz); then f; € M and
lim;—~ofi = fo. O

1.4. Kirillov identification of Diff (§1)/8* with M

THEOREM 1.4.1. -There exists a canonic identification g¥/ with Diff (S1)/S1. As a
consequencd is an homogeneous space under the left actioifif(S1). Furthermore there
exists a global sectios : M — Diff (S1).

Proof. —Given f € M, we denotd” = f(d D). ThenI" is a smooth Jordan curve which splits
the complex plane into two connected open s&ts:which contains 0 and™~ which contains
the point at infinity of the Riemann sphere (the map z~* sends/"~ onto a bounded domain
countaining 0).

By the Riemann mapping theorem there exists an holomorphicgpap* — "~ such that
¢ r(00) = 00, ¢ being holomorphic nearbyo.

A diffeomorphismg s € Diff (81 is defined by:

gr(0):=(fopy)(€).

We remark that  is uniquely defined up to a rotation @, which means up to an element
of §1; therefore we get a canonic map:

K: M+ Diff (%) /s,

In fact it has been proved by Kirillov [6] th&t is bijective. The stabilizer of the left action 6t
is the identity functionfy(z) = z.

We obtain the section by choosingzp? such thatu(z) := ¢? (z™1) satisfy thatu’(0) is real
and positive. O

THEOREM 1.4.2. -The fundamental cocyc(é.2.1)defines &-differential closed forn® on
M. This form is invariant under the action Biff (S1).

Proof. -Given f € M denote Sy := {g € Diff (§1) such thatgfo = f}; define Or =
(g Y*w for someg € Sy; if y also belongs toS; we havey = gu with u € S%; then
wlg™H*ew = (gH*(wH*w expression equal, according (1.2.4) (9 1)*w; therefore our
definition is independent of the choice 9k Sy and® is a well defined 2-differential form on
M, which is closed according (1.2.2).

The invariance under the action of Oiff!) results of the invariance of Maurer—Cartan
differential form or more elementary from the identities

—1  —1\* N
Opstir=(8 v ) o=((r") @)yg(fo)' o
1.5. Kirillov infinitesimal action of diff (S1) on M

THEOREM. —Givenu e diff (S1), and givenf € M we definek, (f) € Fo by the formula

2 / 2
(1.5.1) Ko(f)(2) i= f27(rZ)_/|:tf (t)] u(r)  dr
D

fo ] fo—-f@ 1’

thenKk, is the infinitesimal expression of the Kirillov action at the pofnt
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Proof. —We follow [5]; givenu € diff (S1) we consider the infinitesimal action

expev)(f Lo ¢y).

Denote byd, the first-order differential operator associated tothen we have the intertwinning
formula d, f~1 = 19, wherew, = if’(t)tv;, with r € 3D andt = f(r) € I'; we can
split w := wt + w~ wherew™ has an holomorphic prolongement'* to I't satisfying
0=w""(0) = (w™)’(0) andw™ is meromorphic o™~ with a unique pole at infinity which
is simple; the Cauchy formula gives:

¢2 w(r)

NN S IO
wr ) = 2ri ) t2(t —¢)
r

Doing again an intertwinning by defining :=explsw*™") o f = f o explew™), w* defined by
the relationf’(z)w*(z) = w**(¢), we get then ex@v) f =~ f.”1 o explew™)¢ s which implies
Kfe ~explev)IC(f). O

THEOREM 1.5.2. —Fixing go € Diff (1) the mapf — gof is an holomorphic map/ — M.

Proof. —We prove this fact whego = exp(vo); introducingh, := exp(tvg) f, we have that

d
Ehrszo(hr)» hO:f'

As the solution of an holomorphic differential equation depends holomorphically of its initial
condition, we have only to prove that the map

M+ Fo defined byf + Ky (f)

depends holomorphically upofy fact which results from the formula given in (1.5.1).

PrRoOPOSITION 1.5.3. —
(Keo /) (@) =v=1(zf'2) — £(2)).

Proof. —A residue calculus of (1.5.1) far=1. O

Remark1.5.4. — The operatdk; is a real vector field ooM; this means that it defines a map
of M — Fo; itis indeed legitimate to use on the targ&f the multiplication byy/—1.

From another hand theeal vector field K is of a different nature from theomplexvector
field Lg introduced in (1.6.1)! The beginning of next section emphasizes this distinction between
complex and real vector fields.

1.6. Kahlerian structure on M

We denote byl' (M) the vector space akal first-order differential operators o (a real
differential operator transforms real functionals into real functionals). We call also the elements
of T (M) thereal vector fieldon M.

Then the complex structurte on M induces the splitting:

TIM)®C=TEOM)® TODM).
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We have amap : T(M) ® C - T (M) defined by(X + +/=1¥) > X 4 J (Y); thenT @D (M)
can be characterized as the kerneVofurthermore for an holomorphic functionnél we have
ZW=J(2).V¥.

THEOREM. —Define

(1.6.1) L = —+/—1Kcosko + Ksinko, Vk#0; 6= —v—1K.;
(1.6.2) Li:=J(L§),

then

(1.6.3) L(fH)=f @ k>0 Lo=f(z— f);
(1.6.4) Li(fo) e TirO(M)  fork > 0;

(1.6.5) [LS Li) =G =Ly, VikeZ,

(1.6.6) Ly, Ly)=m —n)Lyy,, VYm,neZ.

DefineL,’; as the(1, 0) component of the real vector field,, thenvk € Z,

(1.6.7) L}@ =L@ Y& holomorphic  [L!, L!]=(m —n)L! Vm,neZ.

m—+n

Proof. —The identity (1.6.3) results from the computation of the integral (1.5.1) by residue
calculus.

Denote v/ the right invariant vector field associated toe diff(S); in particular to
er = exp(ikd) is associated., and by (1.1.2) we have

[e,ln, 651] =+/=1(m — n)e,lnHl,
therefore
(LS, Li]=—v-1( — k)e§+k = — kLS.

We have the fact that the complex structure/etis invariant under the left action of Dif§1);
therefore denoting the Lie derivative associated to the left actiorypoé diff (s1) we have

Ly(T(LF)) =T (L4 (LF))-
Therefore

Lol =T (9. L))

which by C-linearity implies (1.6.6).

Denote by 7?1 the linear map identifyingl'r,(M) with diffo(S) on which we put the
complex structure defined in (1.2.5). To prove tliatis holomorphic is equivalent to verify
that the map — K, (fo) is C-linear or thatvk > 0 L;( fo) =0, indeed

2r =k dr
?LE(fO)Z —___Z /t5+k+1

aD 520 3p
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DenoteL? = L, — L" the antiholomorphic component &f, which is equal ta.". As we shall
see in (1.8) the operatods! in affine coordinates have holomorphic coefficients which imply
that[L!, L% ] = 0; therefore

(ILm, La1)"=[L, L"] which establish (1.6.7) O

Remark— For f # fo, (1.6.4) is not true.
Remark— In the Appendix, as in [5]L,’; will be shorthanded a&;.

THEOREM. — The2-differential form

(1.6.8) © defined in(1.4.2)is of type(1, 1), positive definite
and
(1.6.9) O 1o (LE(fo), LE,(f0)) = v—18"yn,  wherey, = (n* —n).

Proof. —As @ is defined by transport through the holomorphic action of @, it is
sufficient to check (1.6.8) gfp, which will result from (1.6.9).

w(—iexp(ing), iexp(—im)) = w(exp(ing), exp(—im0)) = —i(n — n®)sr. ]
Remark—

(Og(s0)> v8(fo) Ag(f0)) = (w, g7 vg A g tibg) # (w, v AW).
1.7. The vector fieldsL,, n > 0, in affine coordinates

The formula (1.3.1) gives a global chatt — CV in terms of the Taylor coefficients
f > {cs(f)}. We want to express the vector fielll in this chart.

Realization of the flow associated td.”, n > 0

Firstly we remark that the vector fieltlS, L! are not real vector fields; this fact has been
already discussed at the beginning of Section 1.6; we can also refer to Kirillov [5], page 738,
ten lines before the end where this fact is underlined. Flows of complex vector fields need to be
defined by analytic prolongation; when there exist they are very singular. It will be indeed our
case.

Consider on a neighborhood of 0 the following holomorphic function:

Z

1.7.1 MP () = —_—,
( ) t (Z) (1—tkzk)1/k

wherer is a smal real parameter. Then tosmall enough we have
(1.7.2) (M* oMY @) =M, 2).

Then givenf € M the compositionf o Mt(k) ¢ M but it is an holomorphic function defined for
¢t small enough on an arbitrarily large disk contained in the unit disk.

THEOREM. —We havevzo, |zo| < 1 the following identity

f(M(k) (Zo)) — f(z0)

t—>0

— f ( )Zk+1~
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We call cylindrical functional a ma@ : M — R such that®(f) = ¢(..., f(zi),...) where
¢: D" — R, ¢ being smooth, ande [1,r], |z;| < 1. Then

(1.7.3) (L) (f) = d o(foM”), k>o.
dr =0

Proof. —As the vector fieIdL,i' is of type (1, 0) it is sufficient to check the identity assuming
furthermore thap is holomorphic, then

Mt(k) (2) =z + X 4 0(r). O

LEMMA. —

(1.7.4) f(M,(k)(z)) = (z +12%) (1 + chz" (1+ nlzk)) +0(t).

n=1

THEOREM. —Denote by d; the holomorphic partial derivative relatively to the affine

coordinatecy, (if cx = & + ~/—1nx then2d; = % - N/—1%), then

+00
(1.7.5) L=+ 0+ Y (0 +1)(Cndirn + Endisn). k>0,
n=1

Proof. —Consider a cylindrical functio®, which is assumed furthermore to be holomorphic,
which means thap is an holomorphic ma@” > C. Then all3 vanishes on suckb. Any
holomorphic cylindrical funtional can be approximated by polynomial in the We take
¥ :=c{ . By (1.7.4) we have:

Cko (f) if k> ko;
w((MP)* £) =1 (1 + () +0(0), if & = ko;
(cko(f) + (ko — k + Dicky—i () +0(1) if k <ko.

Differentiating relatively tor and makingsr = 0 we obtain respectively 0 oazc,zo_l or

q(ko—k+ 1)[cko(f)]‘1*1ck0(f), relations which prove the theorem for holomorphic functionals.
The left-hand side of (1.7.5) can be written as the sum ¢, &) vector fieldZ plus a(0, 1)
vector fieldY; asLy is a real vector field we havié = Z relation which proves the theoremo

Using the definition of.” made in (1.6.7) we obtain:

+o00
(1.7.6) Ly =0+ Y (n+Deadhsn. k>0, L= ncady.
n=1 n>1

1.8. Analyticity of the holomorphic action

THEOREM. —For all k € Z there exist holomorphic polynomiajls ;(c) such that denoting

400
LZ = Z‘pk,s Os
s=1
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then for every holomorphic functioneéd on M we haveL;® = Lﬁqﬁ.

Proof. —This result is a consequence (.7.6) for k > 0; the casek < 0 is proved in the
Appendix. O

2. Unitarizing measure for the Neretin representation
2.1. Representation associated to Neretin polynomials

In the affine coordinate&} on M, Neretin introduced [8] (see also [5]) the sequence of
polynomialsP, defined by the following double indices recurrence relations:

(2.1.1) LIPy = +k) Pox + o', wherey, = 1iz(k3 —k), Po=P1=0, P,(0) =0,

where the central chargehas been fixed.
LEMMA. —
(2.1.1) The polynomialP, is of weightn.

Proof. -The weightw(P) := ), k x (degree ofP relativelyc;). Then the recurrence implies
thatLgP,, = (n + 1) P,_1; the lemma will result of the identities:

w(L&c‘i‘):a—l:w(c‘i‘)—l; w(L?c,‘f)=k(oc—1)+(k—1)=w(c,‘:)—l. O

THEOREM. —DenoteH (M) the vector space of holomorphic functionals defined\dnwe
associate tap € H(M)

012 p()D = J—_11i2¢, p(eo) = /—1Lo®.

p(expik0))® = v—1L{®,  p(exp(—ik6)) =+ —1(LS, + P )@ Vk>O0.
Thenp is an anti-representation df. ® C onH (M) which means that

(2.1.3) [p(v1), p(w2)] = —p([v1. v2ly,).

the Lie bracket in the right-hand side have been defindd.ia 3)

Proof. —Granted the holomorphy @b we can replace by.¢ by L"; asL”" are operators with

holomorphic coefficients we deduce tligt send an holomorphic functional into an holomorphic
functional; asP, is holomorphic we obtain that the operatooperates ot (M).

The vector fieldd¢ realize an anti-representation of @ift); this proves (2.1.3) wheny, v,
are two exponential with positive frequencies.

Consider the case of; of positive frequency andy of negative frequency:

[p(expid)), p(exp—is®)] = — (LI Py + (k +s)L§_,) := Bys.

Fork > s we deduce front2.1.1), and (1.7.6) thaL} P, = 0.
Fork =s we have

By i = p(yrk + 2keg).
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Fork < s we have
Bis=(k+5)(Ps—k+L;_ ) = p((k+5)ex—s).
Finally it remains to compute, fdr, s > 0 the expression:

[o(exp(—ik6)), p(exp(—isd))] — [LA , L" ]

(2.1.4)
=Apyi=L" Py —L" Py =(s —k)Peys Vs,k=0

basic identity which is proved in the Section A.7 of the Appendixi
2.2. Differential form on Diff (S1) associated to Neretin polynomials

We associate to e diff (S1) the right invariant tangent vector field to Dif) defined by
(v’)g =exp(ev)g; in particular toey; = coskd, epry1 =SiNkd, ep=1¢ diff (S1) we associate
the right invariant vector field, := exp(se.)g. We consider the following first-order differential
operator with complex coefficient defined on Diff): LS := —v/=Te} + e ;. s #0, and
Lo = —+/—1el,. Denotey_ is the dual basis of¢, that is

(2.2.1) (LS, ) =50,

It results from the duality that the differential of a functign defined on Diffs') has for
expression

(2.2.2) dw =) (L @)

keZ
Furthermore théy,} satisfy the structural equation:

(W, £ A L) = 0 = v E ) = 0 — )8,
or finally

1
(2.2.3) dyy = —ég(k—i—Zs)w_s A Vigs.

A complex valued 1-differential forn2 on Diff(S) will be built from Neretin polynomials by
the formula:

(2.2.4) 2= (Prom)yx,
k>0
wherer is the projection map Diffs) — Diff (S1)/51.
THEOREM. —
1 dr
! _ = 2=
(2.2.5) (v ,.Q)g_ 5> /Sf(t)v(logl)t =
oD

whereg = 10 ¢, and whereS; is the Schwarzian derivative

f(3) 3<f//>2
2.2.6 Sri= -—=l= .
( ) f 1 2\ 7
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Proof. —It is possible to find in the Appendix the following Neretin generatrix function:

Zt"Pn =1254(1).

n>0

As Zfl = —/—1(exp(ind))" we gety (exp(ind)) = «/—18,?+S and finally the formula reduce to
prove

P, = 1 ftZS (t)t_"dt ]
" 271\/—_13 ! r
D

THEOREM. —Denote by® the image of the symplectic form defined®ty the transforma-
tion g — g1, then

. 1
(2.2.7) C) =—gzys1ﬁﬂ A Ys,
s>0

wherey; is defined in(2.1.1);we have
(2.2.8) dR =+/-16.

Proof. —The form@ is left invariant. Therefor@ is rightinvariant. The forméy, } constitute
a basis of right invariant differential forms; therefore there exists constantsuch that:

% Z Ck,sw—k AN w—m

s,keZ

f?\]

In order to compute the constamis, we look at this identity at the poinfo. Then by (1.6.9) we
have, fors > 0:

(6.8 ALE), =V Tys = s o{LE ), = —Comse

Define P} = P; ot for s > 0 and P = 0 for s < O; with these notations2 = )" P;.
Using (2.2.2)

d2 =Y (L4 PY)Yx AYs + R,
k,seZ

whereR, granted (2.2.3), has the following expression:

1 1
R==3 3 PrO+200 i A ==5 3 Pliyls = v Ads.

rteZ k,seZ

Therefore
1
de = E Z Bk,ku A WS»
k,seZ

where
(2.2.9) By =L P} — L P} — (s — k)Pl

Fork > 0 ands > O we obtain, granted (2.1.45; s = 0.
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Fork < 0 ands < O we obtain that all thé** vanish andB; s = 0.

Consider the last cage< 0 ands > 0; if —k > s the polynomialPs being of weights do not
depend the variablesg for j > s, thereforeL _; P, = O; for —k < s the defining relations (2.1.1)
provesthaB_; ; =y 6*,. O

2.3. Unitarizing measure

DEFINITION. — A probability measurg on M is anunitarizing measure for the representation
pofV.®Cin HLlZL if and only if for all v real (i.e. v € V,) the operatorp (v) is anti-Hermitian

(2.3.1) p() + (p(v))* =0.
The relation (2.3.1) is equivalent to:
(2.3.2) (p(expik0)))” = —p(exp(—ikd)).
In fact denoted; = p(exp(isd), then 2o (cosh) = A + A_y; its adjointis—A_; — Ay; finally
2(p(sins®)* =i(—A_s + Ay) = —p(sSinsh).
THEOREM. — A probability measure: is unitarizing if it satisfies the following relation

div,(LS) = P, k>0, orequivalently
(2.3.3) w10

divy, (Kcosko) (f) = S P, div, (Ksinks) = R Py.

Proof. —The unitarity condition (2.3.2) is given in terms of thg through the formu-
las (2.1.2); then the appearance in those formulas of a faétat changes the sign of (2.3.2)
which finally can be written as follow&% > 0 we have

(2.3.4) /[(L,ﬁcb)gif —®((L + P)¥) ] d =0,
M
where the® above the parenthesis indicate that we take the imaginary conjugate.
Firstly we replace.¢ — L}, L, + L", and we use the identitiels (@ ¥) = (L ®)¥ and
oL" & =L" (#¥); then (2.3.4) takes the shape:

(2.3.5) /[(L,’j —L", — P)(@¥)]du=0 or div(Z) = P,

M
whereZ, = L} — L",. The operatol.{ = L} + L{ whereL{ is a vector field of typg0, 1).
Using the fact thal.¢ , = —L¢ we get by conjugation that” , = —L¢, thereforez; = L¢ and

finally div, (L) = Px.
We explicit the differential operators in terms of real differential operators: the decomposition

L = —v/—1Kcosko + Ksinko

implies, as the divergence of a probability measure is a real operator, that the second part
of (2.3.3) holds true. O
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THEOREM 2.3.6. —The differential forms2 is invariant under the left action of?.

Proof. —We shall prove the infinitesimal invariance under the actioh.g@fApplying (2.1.1)
with k£ =0, we get

(l) LoPs =sP;.
The linear formgy_} are defined as the dualizing base of {i¢}; we have by (1.6.5)
(il [Lo. L§]=—sL§:  byduality Loy = —sy:;

it results from (i) and (i) thal.o(Psvs) =0. O

THEOREM 2.3.7. —Every unitarizing measurg is invariant under the action on the left
expfeo).

Proof. —The unitarity conditionp(eg) + (p(eg))* = 0 together with (2.1.2) imply the
invariance. O

2.4. Resolution of a3 problem on M

THEOREM. —DenoteZ the endomorphism dbiff (S1) defined byZ(g) := ¢~1. Then there
exists a unique differential forf?; defined onM such that

(2.4.2) 52 = 7" 2.
Furthermores2; for the complex structure o is of type(0, 1) and satisfies
(2.4.2) 321 =+/-106, 3821 =0.

Proof. —The endomorphisri changes differentiation on left into differentation on the right.
Using (2.3.6) we obtain that*$2 is invariant under theight action of S1. Therefore it defines
a differential forms21 on Diff(S1) invariant under the right action ef therefore coming byt *
of aform$21 on M.

As 7* commutes with the coboundary operator, we deduce tf?at-d ® which by bidegree
splitting proves (2.4.2). O

Part Il: Symplectic embedding and Kahler potential
3. Embedding of the diffeomorphism group into the Siegel disk

3.1. Symplectic action of the diffeomorphism group

We consider the spacé of real valuedC!-functions defined on the circle with mean value
equal to 0. OrV we define a bilinear alternate form:

2

o, v) = E/uv/ ds.
i

0
THEOREM. —If g is an orientation preserving diffeomorphismsfthen

(3.1.1) w(g*u, g v) = w(u, v).
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Proof. —

(g"v) = (g*(")g,

2 2
f(g*(uv’))g’d@ =/uv’d9. 0
0 0

We define an action of Diffs1) on V by:

2
1
(3.1.2) Upr(u) = g"u — > /(g*u) do.
0
Then
(3.1.3) w(Ug (), Ug(v)) = o(u, v).

We have in this way defined an embedding of Diff) into the automorphism o¥/ which
preserves the symplectic foram We introduce orVV a complex structure defined by the Hilbert
transform:

J :sin(kf) — cogkd), cogkh)— —sinko).
We define orv an Hilbertian metric:

lull? = —w(u, Ju).

We have

2
= Zk(a,g +b,§).

k>0

Z ax cogkO) + by sin(ko)
k>0
ThenJ is an orthogonal transformation &f.

We consider the complex Hilbert spage=V ® C; then H can be identified with complex
valued function defined on the circle having mean value OHothe operation of conjugation
f +— f is well defined.

The orthogonal transformatiafi can be diagonalized i#f; as.7? = —1 only appears the
eigenvaluesy/—1 and —v/—1. We denoteH* the eigenspace associated to the eigenvalue
V—1; then we can identifyd* to the vectors of typél, 0) that is the vectors of the form
v — /=17 (), ve V. We can also identifyd+ with the functions having an holomorphic
extension inside the unit disk. Then defitgg~ = H+; then H~ can be identified with the
functions on the circle which possess an holomorphic extension ouside the unit disk, regular
at the point abo of the complex plane. The bilinear formextends to a bilinear forr defined
on H and we have:

Odw, w)=0 ifw,w eH orw,w eH".

We can expresd in term of the Hilbertian structure
oht, hYy=+v—=1h" ), VhteH", h~eH™,

identity which is proved by checking ont =€/, h— =&™? n >0, m <O.
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We define a symmetri€-bilinear form onH x H by:

(3.1.4) (h1,h2) = (h1lh2), then (hilh2) = (h1. h2).
Then
(3.1.5) &(h1, ha) =~=1((h], hy) — (1, h3)).

The restriction tad+ x H~ of the bilinear form(x) defines a duality coupling:
(3.1.6) (W, h™y =0T h).
GivenA € End(H) we denoted the transposed defined by:

(Ah1, ho) = (h1, ATho).

Givena € End(H ), then the matriX§ ) makes possible to identify EX#f ™) C End(H); then
a' e End(H) is well defined; furthermore we have through the duality coupling (3.1.6)

(ah*,h™)y=(n",a"h™);
which means that” € End(H ). The adjointa’ € End(H ") is defined by:
(awiwz) = (wila"wz), Ywi, wpe HY.

The conjugation operator sen#is™ — H~ thereforez € End(H ~) and we have the fact that the
adjoint is obtained by conjugation followed by transpostion

a'=@" " =al.

The automorphisnU, of V extends to an endomorphist}’% of H. Denotingz™*, 7~ the
projection ofH on H+, H~ we introduce:

a(g):=ntUm™; b(g):=nTUyn™.

As the endomorphisrﬁ’g commutes with the conjugation it is represented by the matrix

The conservation of the symplectic form (3.1.5) is equivalent to:

SR
QS

(3.1.7) U, = (

3.2. The Siegel disk in infinite dimension

@ a+b)y—b@a+by=n", B @a+b)—a (G+b)=n"

we remark that the first relation is the conjugate of the second. Therefore we have only to take
care of the second relation which by splitting on the componArtsH ~ gives:

(3.2.1) ala—bb=n",
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(3.2.2) a'b—bla=0.

We call Symplectic Group of infinite ordetet Sg(co), the collection of bounded, invertible,
operatorst € EndH™), b € L(H™; HT) satisfying the relations (3.2.1), (3.2.2); then(Sp is
a group for the composition of matrices.

We consider the infinite-dimensional Siegel di3k, consisting of operatorg € L(H~, HT)
such that:

(323) z'=2z, 1-27'72>0, trac€Z'z) < co; its based point is the matrizg = 0.

We shall identifyZ € Dw to Z € End(H) through the matridZ := (§ %).
THEOREM. — The groupSp(oo) operates oDy, by

(3.2.4) Z>Y=@Z+b(bZ+a) L
Remark— In the above formula:, b are identified with the corresponding elements of
End H).

_ Proof. -We have firstly to show thaty € L(H™; H™): we havea € EndH"),
bZ € End(H); therefore(bZ +a)~1 e End H ).
We have secondly to show thaf = v:

YT =2zb"+a" Y (za" +b7),
therefore the identity T = Y is equivalent to:
0=(Za" +b")(bZ +a) — (zb" +a")(azZ +b)
=Z(a"b—b'a)Z+ (b"b—a'a)Z+ Z(a"a—b'b) +b'a—ab,

the first coefficient vanishes accordingly (3.2.2); by conjugating (3.2.2) we obtain the vanishing
of the fourth coefficient; using (3.2.1) and its conjugation we obtaimn=Z 4 Zz T, these two
terms are zero according the fact tiais in fact the matri><(8 %).

We have to check that := Y'Y — 7~ < 0. We denoteD := (bZ + a) then:

D'AD = (Za"+ bY@z +b) — (2" + a2~ (bZ +a)
=ZzNa'a—b"0)Z+ 2" (a"b —b"a) + (bTa —a"b)Z
(3.2.5)
+(b—a"a)=2"2 -,

=YY= = -z'2p 1,

as the conjugation of a positive operator stay positive we'geD,,. O

The orbit through Sgo) of the based poinZg defined in (3.2.3) is the space of matrices of
the form

(3.2.6) Z=b(a").

We remark thata, 0) € Sp(oco) iff a € U(H™) the unitary group ofi. Therefore the orbit oo
can be identified to Spo)/U(H™).
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We remark that: € u(H*) impliesa—1 = at = aT; therefore the action ot/ (H*) can be
describe by:

Z+>aZa' and ZZ&—)CZZCT,

with ¢ = a; therefore defl — ZTZ) is invariant under the action &f (H ).
The Kahler potential o, is defined as:

K(Z)=—logdetl — z'Z) = —tracelogl — Z22),

the last equality is intrinsic and does not depend upon a basis; it will be proved using a basis
diagonalizingZTZ. As by (3.2.3) the operatdt ' Z has a trace, the determinant is well defined.

THEOREM 3.2.7. -Associating to the complex structure @ the correspondingdd
operator, we have thatd K is invariant under the left action &p(co).

Proof. —Using (3.2.5) we get, assuming tha&t is a trace class operator and that
a = ldentity+ trace class operator, that

K(Y)— K(Z)=2%tracelodbZ + a)

as the right-hand side is the real part of a function holomorphi€ we get that it vanishes.
The general case is deduced by density.

THEOREM. — Using the identificatior3.2.6)we have
(3.2.8) K (Z) =tracelodl+ b'b).
Proof. ~We have
z=bat,  zZ'=((a") )",
therefore
detl—z'z) =def1— (a) p'pa?);
then we get
=det((a”) (a"a—b'b)at) = (defaa)) ",

and using (3.2.1) we get the resulto

4. Kahler potential and Berezinian representation
4.1. Kéhler potential
To the mapU, defined in (3.1.7) we associate a map Diff (S1) — Dy, defined by:

(4.1.0) w(g) =Uy(Zo) whereZy is the based point defined in (3.2.3)
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By abuse of notations we shall dendteo ¥ still by K. Given g € Diff (S1), we define the
kernel:

Be(z.0)= Y cjx(®)2/ ¢k,
Jj.k>0
(4.1.1) L
wherec; x(g) = Zfexp(—«/—l(j@ +kg‘1(9)))d9.
0

THEOREM. — The operatob, has the following expression

1 d
(4.1.2) (b (@®) @) = 5 / By (. c)qs(c)?c, peH .

s1

In the same spirit

2
_ 1 _ d _ s - 1_

(4.1.3)  (bghe(@®) @ = o / Co(Z, 0)p(0) f Co@ )= Y PEVIY 2w k.

o jI>0 k
Then

J
(4.1.4) tracabib) = > leiul”
Jj,k>0

We have the invariance properties
(4.1.5) K@) =K(g?). K@gy)=K(@®, yes,

in particular K (g) defines a function oBiff (s1)/S2.

Proof. ~We consider the orthonormal basig exp(ik6), whereay = k~1/2. Consider the
coefficients of the operatdr, in this basist; r = oo (exp(i j0)|Ug (exp—ik6))); then
N Qk
Cik=—Cik.
J.k o J.k
The operatob s has coefficients in this orthonormal basis:

1

— Zakéj,kakcl,k
ajo

By an integration by part

: _ _ / f
(4.1.6) () = %fexp(—l(l@ +kg 1)) (—ik(g71) @) do = ?cl’k(g—l)’

the last equality is obtained by making the change of varigblgd) = ¢.

Therefore
! k
Z X |Ck,1(g)|2 = Z 7 lera(g™) |2’
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relation which is the first order term of the expansion nearby0 of tracelog(/ + b;rbg)). For
lbgll < 1 we develop the logarithm in entire series which has for second term:

-1 -1 ik _ _
— racq(bghe)?) = — 3 1-E,i(@)Em j(@)erk(@)em k(8).
J.k,l,m>0

using (4.1.6) we prove the invariance of this last quantity whes g . Proceeding along the
same lines we prove the same equality for all the coefficients of the power series and we get
(4.1.5)afor ||bg|| < 1 and by analytic prolongation for &l

Finally we want to prove thg? invariance.

2

cer(gy) = / exp(—i (k0 — Iy +152(9))) d9 = explily )i (g).
0

which imply K (gy) =K(g). O
The functionalX is relatively settled. It is of interest to knosvpriori some case where it is
finite as this is done in the next theorem.

THEOREM 4.1.7.-Given M and ¢ > 0O, consider the clas®,, . of all diffeomorphisms
satisfying||gllcs < M and g'(§) > & > 0, V0 e SL. Then there exist3/’ < oo which can be
computed fromM, ¢ such thatk (g) < M’ for all g € Dy ;.

Proof. —

27
(g™ =/eXp(—i(k+l)¢k,l(9))d9,
0
whereyy ; is defined as the convex combination

! k
Yi1(0) = ——0

X L.
it Tt ®

If we assumes < 1 andM > 1 thenyy; € Dy .. We denotey the diffeomorphism inverse of
Yr.;. Then making the change of varialsle= x (6"),

cki(g) = / exp(—i(k + 1)9/))(/(9/) do’.
Making a double integration by part
leealk + 12 < / x@@")|d6’ < Mo,

whereM5 is a constant depending only up#fiandes which comes from classical computation
of derivatives of the implicit functiory. Then

1

m:=M1<OO. O

[
K@ <Mz -
k,[>0
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LEMMA. —The differential ofK is given by
dK =trace1+b'6)"1((db)"b + bTdb).
Proof. —Denotec := b'b, then

d(c — co)* =dc(c — o) L+ (c — co) de(c — )" 2+ -+ + (¢ — cg)" L de,

trace(d(c — co)") = tracgn(c — co)"~*dc).
Developping: — log(1 + ¢) in Taylor series around the poicg we get the result. O
PROPOSITION —DenoteV, the variation along the plane generated &yss6, sinsé, then
2r
(Vieri)(g) = ;—;Tl / exp(—ikg(¢) —il¢)(es((0, 1)) cogsg()) — es((1,0)) sin(sg(¢))) dep.

0
(4.1.8)

Proof. —Let z e diff (S) then denote by! the derivative on the left associatedztahen:

2
—il .
(8ler)(g) = o f exp(—i (k6 +1g719))) (g71) (©)z(0) do.
0
Making the change of variablgs= g~1(9), we get the result. O

THEOREM 4.1.9 (Hong and Rajeev [4]). Fhe functiorbK is the Kahlerian potential of the
left invariant pseudo-Kahlerian metric defined biff (S1) by (1.2.8)

Proof. —Given# e diff (S1) the differentiation on the left

2

/exp(—il@ — ik(—h(0) + g () do

0

3IC'k= _—
h*Js
delc—o

2

=ik/exp(—i19 —ikg™1(0))h(6) do.
0

We shall prove the identity at the identity elemeythenc; x (e) = O; furthermor&dyc; i) (e) =0
if i is antiholomorphic; therefore

a ind —inf\ __ 52 _ _ _} 3_
(90K, €" e )_;kk 1(k+z_n)_k§;nk1_6(n n).

In order to prove the theorem at every point of D§ff) we shall proceed using homo-
geneity argument. On the Siegel infinite-dimensional dizk the (1,1) form 99K is in-
variant under the left action of symplectic group as shown in (3.2.7); using (4.1.0) we have
V(gog) =Ugy(¥(g)). O
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4.2. Berezinian representation

We recall the notion oBerezinian representatioon a finite-dimensional complex symmetric
spaceM := G/H admitting a Kahler potentiak. Then Berezin introduced on the trivial line
bundle overM the metric

exp(—cK) and the corresponding measuge= exp(—cK) dm,

where dm is the Riemannian volume #f; for ¢ large enough, is of finite mass. Berezin
constructed a unitary representatiomn HLEC (M) by

(4.2.2) o()® =L, @+ (Ly, £22)®@, v e(, the Lie algebra o,

where2; is a 1-differential form defined om, of type (0, 1), which will uniquely determined
below in (4.2.3). The unitarity condition following the line of the proof of (2.4.1) can be written
as:

(4.2.2) divy, (Ly) =20 ((Ly, £22)).

Then it is possible to show that relation (4.2.2) implies that
(4.2.3) 2,=0K.

THEOREM 4.2.4. -The Neretin representation is Berezinjanore precisely the differential
form £21 constructed in2.5.1)satifies the identity

(4.2.5) 6IK1 = 21,

whereK = K1 o 7, 7 : Diff (§1) — Diff ($1) /5.

Proof. —Consider the(0, 1) form I' = —63K1 + £21; then 91" = dI" = 0 which implies
dI" = 0; therefore as\ is contractible, there exists a functighsuch thatl” = dy. As I'" is
of type (0, 1) we must haver = i with & holomorphic onM.

Furthermore by (4.1.5), we hav is invariant under the infinitesimal action bf.

The differential form2 = )" v_;(Ps o ) has its coefficient®; o = invariant under the right
action ofep. The diffferential formsyy are right invariant and in particular invariant under the
action ofeg; therefores2; is invariant undeto. Finally I is invariant undeto. Using Cartan
formula (where we denote hyx) the interior product),

(4.2.6) 0=d(i(Lo)(I")) +i(Lo)dI" which implies that Lo, dh) = constant

We expand in Taylor series the holomorphic functiomearby the origin and we split this
expansion in polynomials homogeneous in weight:

h=Y"0Q, weightQ,)=s;

s=>0

then
(4.2.7) (Lo, dh) =) 50y

s>0
combining (4.2.6) with (4.2.7) we obtaii;, =0 fors >0. O
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Appendix

We prove identity (2.1.4) of Part I. As it is natpriori known that Neretin construction gives
rise to a representation, we give a direct proof of this fact (Section A.6 and A.7). With the
embeddingM — CV which sendsf(z) = z(1+ :;"{ cn2") 10 (cu)n>1, following Kirillov,
we express the vector fieldd)iez in terms of the(c;);>1. With this approach, we compute
in Section A.4 the components of thg, as homogeneous polynomials in the€);>; and
obtain generating functions for these polynomials. In Section A.5, we deduce more asymptotic
expansions related to the operat@ts)i<z and to the representation. Moreover, in Section A.7,

we calculate the action df_, k > 0, on the Neretin polynomials.

A.1. Polynomials associated to a univalent function

Consider:
o0 o0
(A.1.0y f(z)=z<1+Zc,,z") =z+chz"+l.
n=1 n=1
We have
o0
(A.1.0) f (@) =z+ Z(n + Dyt
n=1

Forn >0, k€ Z, j € Z, we consider the homogeneous polynomi'aysf", Q{; in the variables
(ci)i>1 defined by:

/ 2 k 2+j .
(A.1.1) ZZ(J}((ZZ))) (@) =1+ZP,:’+kz" and fizzi_/ =Z 07"

n>1 n>0

then

SN @Y K( p\n
(A.1.2) (z f(z))< ) =1+) Pi(f@)"

< n>1

We obtain (A.1.2) after making the change of varialle= f(z) with the function
1) = () (EE)k in the integral contoust- [, h(g)é‘%.
If Kk >0, (A.1.2) can be rewritten as:

oo k
(A.1.3) 2@ =) PR ST Y PR M

j=0 j=0
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We denote
u . 1
(A.1.4) ¢k=—ZE)Pf_,f(z)1"=—<fkj+"‘+Pff)~
j=
If we write (A.1.2) with—k, (A.1.2) yields
o0
(A.13) M@= Y PRl f@f R
jzk-1

If we expandf (z)/ in sum of powers of in (A.1.2) or (A.1.3), then match the coefficientsz3f
we get

k+n
(A.1.5) S PEI T = itk Den
j=0

The polynomiaIsQ{; are given by the expansion:

1 1 +1
= = |1- perz+ p(p )ci—pcz .2
. +1(p+2
+ (p(p + Dcico — pez — wci)f T+ Vazt o+ Ve® + - _]’
where

pip+D) o plp+D(@+2 ,  pP+D(P+(P+3 4

Va=p(p+Deres — peat ———c3 5 2 + - 4,
(r+DH(p+2) (r+DH(p+2
Vs = p(p + Dcac3 + p(p + Dcica — pes — %clcé - %C%cg

p(p+DH(Pp+2(p+3) 3 p(p+D(p+2(p+3)(p+4 5
+ 3 cyc2 — 5 3.

We compute theP* with the expansion oiz(%)z(@)/ in powers ofz, we obtain:
Py =1,
Py =(p+1Dci,

2
—-p—4
PP =(p+2ca+ %c%,
-3)(p-5(p+2
Py =(p+3)c3+ (pz—p—8)clcz+ (P =3 5 )(p )cf,
2
—p—12
(ALT) P =(p+dea+ (p? = p—1)cres+ ——=c3
(P=0P*—p=10 ,  P-6P-DP*—p=-8) ,
+ > cic2+ 24 1,
—N(p?>—p-14
Py =(p+5cs+ (p2 —p—22)c1ea+ (p )(172 P )c1c§

pP-N(p*—p-16) ,  (p=D(pP-8(p+3)(p—9 4
cic3 + c1C2

+ > 1¢ 6 1
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— — — 2_ -
LD =8P -9 —p 10)C§+(p2_p_18)czc3.

120
For the(¢r)r >0, it gives:
do=—1,
$p1=—1—2c1f,
(A.1.8) ¢2=—;;—&4—(m2—c3ﬁ
$3= —% —461% — (2 +5¢c2) — P3f,
¢4 = —% — 501% — (46%—!— 602)% - P34 - Pff,
rd=1,
P =2cy, P=1,
P =4c; - f, P? =30y, P2=1,
(A.1.9) Pg =6c3 — 2c102, P23 = c% + 5c¢o, P13 =41,
Pf =8cq4 — 2c103 — 26‘%C2 + c‘ll, P:,f1 = —ci’ +4cqico + Tes, P; = 405 + 6¢2,

P55 = 10c5 — 2c1c4 — 6616‘%
— 4C%CS + 86262 — ZCi’ + c2c3,
A.2. The algebra of operatorsLy

For a functiong (z, c1, ¢2, ..., ¢, ...), we denote by, ¢ = %¢> the partial derivative o
with respect to the variabls, and by’ = 9, the derivative with respect ta Forn > 1,

(A2.1) alr@l=" alf@]=2

In the same way[zf"(2)] = (n + 1)z"*1, then an[zk+1f’(z)] — (n + Dz *+1 and for any
n>1,

(A.2.2) 00z = 0z 0.

Foranyn > 2, f(z) is satisfies:
(A.2.3) nd[f(@)] =@+ Dd-1[ D).

Remark— Because of (A.2.3) and the second relation in (2.1), we dput %818Z and
9_1 = dpd;. We havedp[ f(z)] = z and d_1[f(z)] = 1. We see thabpd, = 9,00 and9_19, =
d,0—1. Moreovera_19,[ f(z)] = 0.

Fork > 1, we define the first-order differential operators:

o0
(A.2.4) L=+ Y (n+Dcndnss.
n=1
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From (A.1.0» and (A.2.4), we see that(z) is solution of the partial differential equation:
(A.2.5) Li(f@)=2""f() fork>1

Sinced, 0, = 9,9, for anyn > 1 and since the coefficients &f, do not depend upog, for any
k> 1, we have

(A.2.6) Lyd;, =0;Lg.
Thus, for any integep, andk > 1,
z”
f”) i

w(p) = (55) =2
kpz zp< ) ,

.
an (1)) ((5))
P (O] () omeme(5) .

Foranyk>1,p , we have

A.3. Calculation of asymptotic expansions with recurrence formulas

(A.3.1) flp 5 (1+ Z vz )

where V,/ are homogeneous polynomials in the)i>1 and n, p are indices. Given the
asymptotic expansion of/¥”, we compute easily the asymptotic expansion 4f7i+! since

9 1 Zi-',-l
i (F) R

In this way, we obtain’- V! =0ifn <i andv/ Tt = _;anp+l if n>0.

The operator$L)x>1 allow to calculate the asymptotic expansion ¢f1 independently of
that of 1/ /71, We replace 1f? by (A.3.1) in the first equation (A.2.7). We obtain:

0 if n<k,
(A3.2) Li(Vu) = { m—k—p)\Vuy if n>k.
We have Vi = —pc1, we determineV, = acl + Bcz with the conditionsLy(Vo) = —p

and L1(V2) = (1 — p)V1. We find Vo = P(”l) 2 — pc2. In the same way, we calculate
V3= p(p + Dcicz — pe3 — 7”(”13(”2%3 e
To compute the polynomialB”, n >0, p € Z, we replace in the third equation (A.2.7) the

funct|0nz2(f )2 ( )? by its asymptotlc expansion in powerszénd we match the coefficients,
we obtain fork > 1:

(A.3.3) Le(P)) = {(k+J)P,{,f it >k,
0 if n<k.
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With the homogeneity conditions on the polynomials, we deduce f@‘n: 1 the other
polynomialsP!, Py, ....

A.4. The operatorsL_, for p >0

We aim to define sequence of operatbrs, for p > 0 such thatL_, is of the form:
o
(A.4.1) L,=Y Ald,,

whereA? are functions of théc;);>1 and depend upop.
Thus, we shall have:

(A.4.2) L, (f(2) ZAPan f@]=) Artt

n=1

and forp >0,

1 (L_,[f(2)]
(A.4.3) Al = E/ ;ﬁdz= L_p(cn).
D

Expanding (A.4.2) in powers of (z), we see thaL_,(f(z)) is of the form:

2
(A4.4) L p(f@)=Y_ Bu(f()""
n=>0
whereB,, is a homogeneous polynomial in thg);>1.
PROPOSITION —For p > 0, assume thafsee(A.1.3))

(A.4.5) Lp(f(2) Z Pl f @72

thenA? is uniquely determined ifA.4.1); we have

0

0
_ pp
L—p—PerlaCl (261P Tt p+2)362

a0
(A45)2 + ((C]_ + 202) p+1 + 361 p+2 + Pp+3) dcs

d
+ ((2c1c2+ ZCS)PP+1 + (3c1 + 3c2) P? 2t 4c1 PP st p+4) e 4

Forany; > 1, we have
(A.4.6) [Lj,L_pl=(G+pLj_p.
Proof. —We determined? in order that:

P
p(f@) ZP1+,+,,f<z)f+2—z1 Pf@ =Y Py fY

j=0
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1 124 v
(A45)3 zzlipf/(z) - fp—l - (fpl—z + +---+ pr)

= Zl_pf/(z) + ¢p.

For that purpose, we replag&z)’ in (A.4.5)3 by its asymptotic expansion in powers pand
we find:

Al = (n + 2p)cy+p + homogeneous polynomial of degree- p

(A.4.7)
in the variablesy, c2, ..., chqp-1.

If we consider the ponnomiaIQ{; defined by (A.1.1), then

=+ p+Densp— ZPprlﬂl) ’
(A.4.8)

0 1
= Q) 1P+ 0y oP) -+ O TP,

where the second equality in (A.4.8) comes from (A.1.5). k&t 0, with the choice (A.4.7) of
AP, we prove (A.4.6) as follows: Consider two operatorﬁ = 20133&: and

Jz_2n>1B 9, the condition/1[ f ()] = Jo[ f (:)] gives)_, 1 Biz" Tt =), 5 1 B2+ thus

by the unicity of the asymptotic expansion, we dedBge= 32 foranyn > 1 andJl = Jo. Con-
sequently, to prove (A.4.6), it is enough to verify:

(A-4-9) [Lj’ L—p](f(z)) = (J + P)Lj—p (f(z))
We compute the left side of (A.4.9),

Li[Loe(F@)] =Lz f @ + ol =224 (7 (@) + Ll

We have
k 1
Lilg) = %% f Li[f@]-> L [Ps"]ﬁ
(A.4.10) =0
_Zj+1¢ _ZL Pk fk—ls—l

s=j
On the other hand

(A4.11)  L[Li(f@)] = (L[f@]) = @) + 2 gy

Thus, using (A.3.3), we obtain:

1
Li[L+(f@)] = L[Lj(f@)] =k + D) = ZL [PE]

Trk—s—1
s=j f

=(k+ NZIFF @+ k+ D = k+ DL f@D].
This proves (A.4.9).
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We see that the knowledge bf and the condition, for any > 0,

[Lk, —p] (k+ p)Li— p

determines completly the coefficiemé’. We have:

a a d d
LiL_,—L_,Ly=L(A?)— + L, (A?)— +... —2A? —3A7
kL—p pLi=Li( 1)3 + Li( 2)3C2 + L 9e1it 2 Seaen +
k k .
(k+ p)AT ™ & +<k+p>A” R it p>k,
T kP (5 2ot e - D) i k> p.
By identifying the coefficients ogc—n, we obtain:

(n—k+DA? , + (k+p)AL " it p>k,

(A.4.12) Lk(A,f) = " .
n—k+DA,_+k+p)(n—k+p+Dcyitp If p<k

with the conventiomA_; =01if j >0, co=1, c—; =0if j > 0. In this way, we find (compare
with (A.4.5),):

a a a a
Lo= ci— +2c2— +3cg— +---+ney

acy dco dac3 e T
0 d 9
L_1= (3c2— 20%) e + (4ez — 2c1€2)a—c2 4+ ((n+ g1 — 2c16n) . T
9 i)
L_= (5c3+ 20? — Bc1c2) e + (6c4 — 5¢2 — 2c1c3 + 4cZep — C‘ll) -
C c2

0
+ (7es — 6cac3 + 3c1¢5 — 2c1¢4 + Ackes — 4c1cz + cl) 5e +
c3
0
L_3= (704 — 36% —8c1c3+ 66162 — ci’) Fy
c
5 3 2 2 9
+ (261 — 8cjco + 4cfez — 2c1c4 + 10c1c5 — 12c0c3 + 865)3— +---,
c2
2 2 5 9
L_4= (905 — 6c2c3 — 10c1c4 + 3c105 4 6c1c3 — cl) Fy
Cc1
(A.4.13)

PROPOSITION —Let

o0
L=+ ) (1 +Deadpsr fork>1
(A.4.14) n=1
L= A}d, fork=>0,
n>1

whereAX the homogeneous polynomial of degree  in the (¢;)i>1 given by(A.4.7), then for
anym,n € Z:
(A415) [Lma Ln] = (m - n)LWH-n-

Proof. —We did the proof fom € Z, n > 1. We extend to all values af e Z using the Jacobi
identity on the vector field&,, and a recursion argument.
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For the polynomialstX, k > 1, n > 0, we have generating functions:

PROPOSITION —For j > 1andn >0, letL_, = Z,>1A, o whereA" are the polynomials
defined by(A.4.7). We consider the ponnomia@,’; defined by(A.1.1), then

YA 0
Zn+2(f)<Qr}—1+Q 2, Qis +ﬂ+i)

2 2 3 n—1 n
(A.4.16) ! ! ! f U
=14 2c1z +3c22% + 4c3® + - nep12" L+ Z AB Pt
p=0

In particular, we have

2
3(f) _1+ZAn 1n

n>1

N2 2 1
z4(f2) <ﬂ + —2> =1+42c1z+ ZASZ”+2,
T Z

(N2 (c2+2c; 3c; 1
T e
f’)2(203+261cz+3cz+3c%+4c1+ 1)
I? f 12 VAR
=1+ 2012+ 3coz? + deaz® + ) ARzP T,
p=0
7(f’)2 C%+2€4+2€163+36‘3+6C162+C§+4C2+6C%+%+i
f? S 12 f3 f4
=1+2€11+3c212+4c3z3+504z4+ZAgzp+5.
p=0

=1+42c17 4 3c222 + Z ALz 3,
p=0

(A.4.17) 6!

Proof. —We put, forn > 1

nt2 (f"H? ( n—1 Q Q cl 1 )
n +E T =
=TT Tyt T et
and as conventioty_,, =0, if n > 0. Fors > 1, we verify that:
(A.4.18) L) = 2559, 4+ (25 — )Y + (0 — s + D2 Yy

On the other hand, the asymptotic expansioipfs of the form:

(A.4.19) Yp =1+ Z Bl P

p=1

where 8¢ is a homogeneous polynomial of degrpe The system of partial differential
equations (A.4.18) determines completély wheny,, has the form (A.4.19) and is known.
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Thus, to obtain (A.4.16), it is enough to prove that

Un =1+ 2c12 4 3c22% 4 deat® 4 - ney_12" L Z ARzl
r=0

satisfies also (A.4.18). This comes from (A.4.12).

Remark— We can also deduce (A.4.16) directly form the identity (A.1.5)—(A.4.8). The left
side of (A.4.16) can be expressed with a integral contour.

PROPOSITION —We put

1 f()? 1 dt

(0 "=a) T Go—sorm
oD
then
n+2(f/)2<Q2—1 0, 0, ncy 1 )
n = + + 4.4 +—
wazy P ;oo e
— f/(Z) _Zn-ﬁ—Z%In.

Proof. —A residue calculus of the integral.
A.5. Asymptotic expansions related tqL_y, L_p]1=(p —k)L_(p4)

The condition

(A5.1) [L—k, L—pl=(p —K)L_(p+i)
fork >0, p >0, is equivalent to

0y, I
bk of ¢p af
(A.5.2) L K ptk g
=> L /) =1 D L-o(P) s k)ZP’p+ pHh—r—1
Jj=0 ! j=0 ! r=0 /

We put as a conventioR” =0 if j <0 orif j > p. Then we can write the sums in (A.5.2) as
series, and matching equal powers ¢f 1we obtain the condition for & r < p + &,

(A53) — > (p—k+j-9PPl =L (P )~ L (Pt )~ (p—k)PP**
J.Ss,j+s=r

with0<j <kand0<s < p.
Forp +k =r, (A.5.3) reduces to

(A5.4) L (P)) =L p(P})=(p - 0PV

To discuss (A.5.3)—(A.5.4), we shall need the following lemma:
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LEMMA. —Letk € Z and leth; = zz(fT.,)Z(f)k =1+),>1 P z", we have forj >0,

(A.5.5) L_j(h) =z by 4+ (k —2j)z Ty + [(k — 2)% + 288%1]@.
Moreover
¢j a¢ji| J.n
=l k—2)L 42 |py = B}
Y [( )f af k n;j z
satisfies forx > 1:
(A.5.6) L) =2+ (k+ 292" + (s + )

with the conventiony,, = 0if n < 0. The ponnomiaIsB,{ satisfy

(A5.7) Li(Bl)=(+s+I)Bl_, +(s+ j)B] "

For (A.5.5) and (A.5.6), the proof is a verification. We deduce (A.5.7) from (A.5.6).
(A.5.4) is a consequence of the following proposition:

PROPOSITION —Leth = zz(é)z, then for anyj > 1,

¢ ¢j>_ z<f’)2(8¢j ¢j>
on( L D) =22 ) (2 -ZE
<8f 7)) \F) s Ty

(A.5.8) 2 ) j j j
_ 9.2 f (J_S)Ps _Lf(Pj) Lj—l(Pj) in
=2z <7> > T +ot Y Loa(PDZ
0<s <y n>0
Remark that we can also express (A.5.8) as:
! FN2 (08 @i dr
A.5.9 L (P)=— [22(L) (& _% .
(A59) =g [2(5) (57 - %)
aD
Proof. —From (A.5.5) withk = 0,
_;  _j ¢;  09;
A.5.10 L_j(h)y=zY"7n' —2jz7/h—2| L - —L|h
(A5.10) J =i =2z -2 % - 2]
thus
[ e, (., G—DP (j —mPl 2P/,
e kB o e = e ¢
(A.5.11) gy
= Loy = 4 2jz = i Y HE

n>0

SinceLj(ij) =2j andLj_1(ij) =2c1(2j — 1), we verify immediately that in the asymptotic

expansion (A.5.8)—(A.5.11), we ha\léfj = Lj(ij) and HfjH = Lj_1(ij). We prove now
(A.5.8):Fors > 1,
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(A.5.12) Ly(j) =259 + 25259 + (s + ) s

with the convention thag; = 0 if j < 0. With (A.5.12), we deduce that the ponnomia{é in
the asymptotic expansion (A.5.11) satisfy fop 1:

(A.5.13) Ly(H]) =+ ) H]_, + (s + DH] ™.

On the other hand, let
Ki =L_,(P))

we verify thatK,{ satisfy also (A.5.13). Since the two sequences of polynomials have the same
initial data, they are equal. This proves (A.5.8).

COROLLARY. —The relation(A.5.4) holds.

Proof. —For h = z2(§)2, then L_;(h) = ZDIL,,»(P,{’)z". In (A.5.9), we replace
2h(%i}f — %) by its asymptotic expansion given by (A.5.8). This proves (A.5.4).

The proposition (A.5.8) extends as follows:

PrRoOPOSITION —If 0 < u, for anyk € Z, we have

7\ 2
AL) ¥ RS Y e
(A.5.14)

O<s<u —u<n

_ Lu(PLf) Lu—l(P,f)
- Z4 Zu—1

+o Y Lo (PH"
n=>0

With (A.3.3) and (A.1.7), we compute the first term in the expansion:

Ly(PYY=(k+u),  Lia(PY=k+u—1)k—u+2c1

Proof. —Let
"\ (k — 25 + u)
(A515) Gk,u = Z2<7 Z prk — Z Hrllc,uzn.
0 s<u n>=—u
Fors > 1,
(A.5.16) Ly(Gru) =2 THGrw) +252° G+ (s +K)Grgus

with the convention thaG, , = 0 if u < 0. In (A.5.16), we replace the functio@i , by its
asymptotic expansio[@,u HEzn 1t gives the following conditions on the homogeneous

polynomialsHx™". For p > —u,
(A.5.17) Ly(HE'") = (s + pYH" + (s + k) Hf 7

Since forn > 0, Hf’uﬂ,, is a homogeneous polynomial of degreethe Hf’uﬂ,, are uniquely
determined by (A.5.17) and the initial conditi(br{_"; = (k +u).
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With (A.5.17), we fde_u+1 =[2—wk+u)+QA+k)k+u—2)]c1,....
We put for 0< u <k, Kk = = L_,(P%. Fors > 1, we use (A.4.6) and (A.3.3) to compute
Ly (K" “y. The KX satisfy the system of equations (A.5.17) with the same initial condition

k “ = (k +u). ThusHS“ = L_,(P¥). This proves (A.5.14).

COROLLARY. —Leth, = zz(fT) (;)k, thenforO<u, ke Z,

dr
k . k
(A.5.18) L_,(P))= Z (k—2j+u)P; fh,(u,,-)m.
0 j<u 9D

Proof. —In (A.5.15), the coefficientiX " is given by:

Hk _ 1 G dr
" ir kst

oD
We have
1 dr . oL 21
5= [ Crump = ) k=2+wPi5— f (7 Fums el
3D O<s<u aD

and we find the right side of (A.5.18).
For 0< u < k, the asymptotic expansion (A.5.14) is a consequence of (A.4.15)—-(A.5.1) as is
proved in the following lemma:

LEMMA. —The relation(A.5.3)is equivalent tqA.5.18).
Proof. —We shall use the residue form Bﬂk. ForO0<r < p+k,

1 f/ 2f[7—r+k

(A.5.19) Prp—kzﬂ lz(?) p+L dr.
9D
Thus
» 1 ) f/ 2fp7r+k dr
Li(Py) =5~ Lk[f (7) W},_—m
A.5.20 D
( ) 1 dr
=5 L—k[hp—r+k]m-
aD

We calculatel _i[A 1] with (A.5.5)

Lik(Prp—k)ZE/ hp+k r+(p—r+k—2k)t hp+k7rm
aD
1 ok 00k dr
2I |:(P_"+k 2)7+23fi| p+k—rm
aD

k N2 fp-r+i
=(p—P 4> k-2j—p —i—r)ijzI ft (’}) f,p+1 dr
aD

j=0
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k
1 dr
— r+k : k .
=(p—0Pp +§]k—m—p+n&z;fmwﬂ;;ﬁ
j=0 aD
=(p—kP 4K,

where at the second step, we replage,_ by its asymptotic expansion in the first term afd

by ¢ = — ZI;':O ijﬁ in the second term. If > r, there is no residue for the integral
1 dr
2ir ) Mot
aD
Thus
inf(k,r)
1 dr
. k
Jj=0 9D
, « 1 dr
= ) *k=2j—p+nP] o | Porti T
0<j<r—p 4D

. k pP
+ Y, (k=2j—p+nPiP’,
r—p<j<inf(k,r)

With the conventioer‘.” =0if j <Oorif j > p asin (A.5.3), we have for the last term:
Y. k=2j—p+r)PiPl = Y (k=2j—p+r) PP’
r—p<j<inf(k,r) 0<j<k
and to prove (A.5.3) is the same as to prove
1 dr
k _ : k .
L*P(Prfp)_ Z (k—2]—p+r)P]E/hp,r+]tl+—r_j

O0<jsr—p aD

We putr = p + u, this gives (A.5.18) and proves the lemma.

A.6. More asymptotic expansions and polynomials found with th&Lj)x>1

We consider functionsp(z, c1,c¢2,...,cn,...) Which satisfy for anyk > 1, the partial
differential equation:
(A.6.1) Li(¢) = 25 + anz* ¢’ + Br(2),

whereay is a constantfy(z) = 3° ,~obp.kz” is a polynomial inz independent of théc;);>1,
andb, ; are constants. Thus the linear operatprdefined by

(A.6.2) Zip =20, + b

is independent of thé;);>1.

PrROPOSITION —Considerg (z) = ngo P,z" where for anyn > 0, P, is a function of the
(ci)i>1. Assume thap(z) is a solution of(A.6.1) for any k > 1, then the sequend@’,),>o is
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such that

bu for n <k —1,

(A.6.3) Li(Py) = {(n—k-l—ak)Pn—k +bnk for n > k.

Proof. -We identify the coefficients of" to obtainL,(P,). The operatol is a derivation
and we obtamLk(z ) = z(L‘(f))’ Then we match the coefficients of in the asymptotic

expansions.
For the following asymptotic expansions:

1 ¥4 / / /"
(A.6.4) -, “ u=zi, u?, v=, f,

f fr f u f
the coefficient ok” for n > 1 is a homogeneous polynomial in the variablesco, ..., ¢,, and

we have an equation of the type (A.6.1). For example:

/

f o0
u=z7=1+clz+~-~=1+Zan”,

wss ()=o) () ()
thusLy(Q,) =nQ,_x forn>k+1,
Li(Qr)=k and Ly (Q0,)=0 forn<k-—1,

u 1" /
“ +f—_i—cl+zrnz,

u f/ n>1
zf—,—2c1z+(6cz—4cl )22 4= Ra2",

(A 6 6) f n>1
Lk<%> = k(k+1)zF 1+ z’““(’} ) + (k+ 1 ’;

thusLy(R,) =nR,_x forn>k+1,
Li(Ry)=k(k+1) and Li(R,) =0 forn<k-1

PROPOSITION —Let

f/ f‘//

(A.6.7) P()=h fez = > P,
n>0

whereh andc are two constants, then

(A.6.8) Li(Py) =nP,_r + (ck(k +1)+ hk)ak,n.

Proof. —We use (A.6.5)—(A.6.6).

PrROPOSITION —Assume thap is a solution of

(A.6.8) Li(¢) = 5% + (k+ DF o + k(k + 1)ZF L,
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thenw = ¢’ — 3¢ is a solution of
(A.6.9) Li(w) = 25w’ + 2(k + 1) ZFw + k(k* — 1)2572.

Proof. —
Li(¢)) = M1¢" + 20k + D¢/ + k(k + DT + k(K — 1),
L (92) = 24 (¢?) + 2k + ¥ % + 2k (k + 1* 1o
From these two equalities, we deduce immediately (A.6.9).

COROLLARY. —Consider the Schwarzian derivati$g¢ f) = (ﬁ)’ - %(?—7)2. Let

UM hoen
Ph,c(z) =hz"— +cz°S(f) = ZPn z
n=>0
(A.6.10) — h + 2c1hz + [h(4ez — ) + 6e(cz — ) ]2

+ [h(Bes — 2c1c0) +¢- -]+,
whereh andc are two constantghen

(A.6.11) Li(Pa) = (0 + k) Pu—i + (2hk + ck(k? — 1)) 8¢ .

Proof. —The functionz];—f,/ satisfies (A.6.8), see (A.6.6). Thus the Schwarzian derivative

w1 = S(f) satisfies (A.6.9). On the other hand, from (A.2.7), we seeuthat (%)2 satisfies:
Li(wp) = Zk+1w/2 + 2(k + 1)zFws.
A.7. Therelation L_;(Pp) — L_p(Pr) = (p — k) Ppyi,for p>0, k>0
We consider the identity fde > 0, p > 0,
(A.7.1) L_x(Pp) —L_p(P) =(p — k) Pptk

and sequences of homogeneous polynomials which satisfy (A.7.W/,).>0 and (V,).>0
satisfy (A.7.1), then for any constamisandc, (hU, + cV,),>0 also satisfy (A.7.1). For the

function Py, (z) of (A.6.10), we shall prove that the polynomidl%”c satisfy (A.7.1). When
c =0 andh # 0, the relation (A.7.1) has been proved fo§ = P,‘,” in (A.5.4) (see the corollary
of (A.5.8)). In the following, we prove (A.7.1) wheln= 0 andc # 0.

THEOREM. — The polynomial$, defined by

(A.7.2) 2S(f) = Pat"

n=>0

satisfy(A.7.1).

Proof. ~We havePy = P1 = 0. We first consider the case whére- 1 in (A.7.1) and we prove
that for anyp > 1, the sequence of polynomiah satisfy:

(A73) L1(Pp)=(p—DPpis
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we computeL_1(fT,,/) = (ff—./,,)’, thus

(A.7.4) L_1S(f)=(S(H)

and we replace in (A.7.4) the functions by their asymptotic expansions.
To prove the theorem for arky we use the following lemma:

LEMMA. —Let¢p = f"/f’, we have

(A.7.5) L@ =k(k — Dz~ ®HD 1 (1= k2 4 22 4 afz S f

31

(A7.8) L_i(S(f))=—k(k?—1)z 2 12— k)z7*S(f) + 2*(S()) + 773 (fH2.

Proof. —-We haveL _(S(f)) = L_x(¢) — ¢L_4(p) =---
We prove (A.7.1) whek = 2.

LEMMA. —Letz2S(f) =3, 50 Paz" = 6(c2 — c)z% + - -, we have
(A7.7) L_a(Pp) — L_p(PD) = (p — 2 Pps2.

Proof. —For the polynomials in (A.7.2), we have
L_p(P2) = A] —(Pz) + A”—(Pz) —12c1A7 + 642,

thus we have to prove that
(A.7.8) L_2(Pp) =(p—2)Ppi2+6A5 — 12c1A7.

We compute
2(/)?
Al

We replacer?S(f) andzZ(f )2 by their expansions, and we obtain (A.7.8).

1 ’
L_2(228(f)) = —65 +2(S(/) —25(/) +6z

LEMMA. —Letz2S(f) = 3", 5o Pat22" 2, we have
(A.7.9) L—3(Pp) - L—[)(PS) =(p— 3)7)p+3-

Proof. —Since

33 24
= sdrah,

we obtain

24 24
(A7.10)  L3(S(f)=—7 S(f)+ (S(f)) f5(f’)2(1+61f)-
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In (A.7.10), we replace(f) by } ., Pn+22",

D L 3(Ppi2)z”
p=0

(A.7.11) 04

_ _ 24
== AN Bpead S Y pPpia S+ (A e,
p=20 p=20

We compute

"2 1 co— CZ)
(fg A+caf)==5+ (731 + X:M‘,,z”_2 + chl(Aé7 - ZClAf)z‘"_z.
f < < p>0 p>0

We let

A.7.12 Gp=M,+c1AL —2c2AY = AL — 2c1AL — 2co AT + 3c2AL.
p / 2 141 3 2 1 141

From (A.7.11), we obtain

(A.7.13) Y L 3(Pp2)zP =) (p—DPpisi” +24)  Gpyoz’.
r=0 r=0 p=20

By matching equal powers af we get for anyp > 0,

(A.7.14) L_3(Ppy2) =(p — D Ppi5+24G p 2.
To prove (A.7.9), it is enough to show that

(A.7.15) L_(p12)(P3) =24G ;2.

Since
P3= 24(63 — 2c1c2 + cf)
the relation (A.7.15) is satisfied.

PROPOSITION —Letz2S(f) =}, 50 Pat22" 2, we have

Bk o k(kZ-1) 1 12k —1)(ca—c?) .
W(f/) ZW_OX x| o +"'+Z‘6L—(n+2)(7)k)l
nz
_ Li(Pr) | Li—1(Pi) | Lx—2(Px) Li—;(Pr)
= Zk+2 Zk+1 Zk + .- W e
(A.7.16)
andfork >0, p>0
(A.7.17) L_x(Pp) —L_p(Px)=(p —K)Pptk-

Proof. —S(f) = Zn>0 Pn427", we replace in the expression bf ; (S(f)),

Y Lo (P2 =20 —k) Y Puyad" + Y P+ > HE,

n>0 m>=k m>=k n>0
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whereHX is the coefficient ot in the asymptotic expansion 55/%1(“/)2, ie.

33 k(k? — 1)
—(f)%= — —0x k+1+ —i—Zan

(A.7.18) 5
8f Z n>=0

By matching equal powers af in (A.7.18), we obtain:

(A.7.19) L 4 (Ppi2) = (n+2—k)Puykr2 + HE.
To prove (A.7.17), it is enough to prove that foe> 2,

(A.7.20) HY = L_(432)(Pr).

We use the following lemmas:

LEMMA. —Forany;j > 1,

o\ 1[0k O i
(A.7.21) L,(afp)_zf+ <afp) + 0 +h) 8fp

with the convention thag, = 0if p <O0.

Proof. —We prove the relation by recurrence pn

LEMMA. —Consider the asymptotic expansi@h7.18), wherek is given we have forj > 1:

(A.7.22) Li(H) =0+ j+2H + G +hH,

with the conventionall,” =0if p < 0.
Proof. ~We match the coefficients of the asymptotic expansion in (A.7.21) with3.
LEMMA. —We put
Ky =L_(ny2)(Pr)
thenforj > 1
(A.7.23) Li(K)=@m+j+2KE +(G+0K,

Proof. —

Lj(L—s2)(Po)) =L_(u12)(Lj(P)) 4+ (G +n+2)Lj—(n12)(Pr)

thus
Li(Ky)=(+j+2Ky_;+ L i) (L j(P).
SinceL ;(Pr) = (j + k)Px—; + constant, we obtain (A.7.23).

Proof of (A.7.20)— Fork fixed, the two sequencég’ andk* = L_, 2 (Py) follow the same
recurrence formulas (A.7.22) and (A.7.23). Since we knowHi%\ls a homogeneous polynomial
in the variables(c;), the relations (A.7.22)—(A.7.23) determine completely the sequeH{es



H. AIRAULT, P. MALLIAVIN / J. Math. Pures Appl. 80 (2001) 627—667 667

with the conditioan(k+2) = k(k? — 1). Thus the two sequences are equal. This proves (A.7.20)
and thus (A.7.16) and (A.7.17)
With the relations (A.7.22)—(A.7.23) and the condition

(A.7.24) HY 1o =k(k* = 1)

we shall compute the first terms in the asymptotic expansion (A.7.16). Wefh’é(\%erl) =acy

thusLy(HX 1)) = B%(Hf(kﬂ)) = a. By (A.7.22)—(A.7.23), we know that:

k k (k—1)
Ly(HZ gpq) = (14+2— (k+D)HZ g + A+ HI ).

we replacer(kJrz) by (A.7.24) and also using (A.7.24) with — 1 instead ofk, we obtain

Hik(;i)b = (k — 1)((k — 1)? — 1), we finda =0,

k
HZ 4y = 0.

For H*, = ac? + Bco, we haveLi(H*)) = (3371 + 261%)(010% + Bc2) = 2ac1 + 2Bc1. On the
other hand, from (A.7.22)—(A.7.23),

Li(HY) = (~k+ 14+ 2H ) + A+ HE =0

this givesa + B = 0. Then, we computdy(H*,) = 3372(056% + Beo) = B; from (A.7.22)—
(A7.23),La(H* ) = (—k + 2+ 2)H* ;5 + (k+ 2 H %, this givesp = 12(k — 1),

H*, =120k — D)(c2 — ¢2).

COROLLARY. — The residue at = 0 of 2’3—‘7’3"(1")2

- 1 isequal toL _(,42)(Py).

Zn
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