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The universality of the Metropolis, Stein, and Stein (MSS) sequence (J. Combin.
Theory 15 (1973), 25-44) is established for a wide class of unimodal functions. The
standard value of an LR-sequence is defined and a computational formula for:it is
established. An order on all finite LR-sequences is defined. It is shown that this
order is equivalent to the order of Collet and Eckman (CE} (“Iterated Maps on the
Interval as Dynamical Systems,” Birkhauser, Boston, 1980), Louck and Metropolis
(“Symbolic Dynamics of Trapezoidal Maps,” Reidel-Kluwer, Hingham, Ma, 1986)
and Beyer, Mauldin, and Stein (BMS), (J.. Math.Anal. Appl. 115 (1986), 305-362).
The contiguity of harmonics is proved for any finite LR-sequence. Finally using an
important result of BMS, it is shown that a pattern is legal if and only if it is a pat-
tern associated with a positive solution 1 of the sequence of equations
[Af T (ye) = yo (k=1,2,..). © 1987 Academic Press, Inc,

INTRODUCTION

In this paper we study patterns that are finite sequences on two symbols,
say, L and R. In a famous paper [1] Metropolis et al. (MSS) presented
many novel ideas and suggestive numerical results. They defined  legal
inverse paths and their coordinates. They also implicitly defined an order
on legal inverse paths in their table of legal patterns at the end of [17].
However, they did not extend this order to all inverse paths, and so they
did not investigate their properties further. Therefore, they did not prove
some important facts stated in their paper [1] (e.g., Lemma 1 [1, p. 351,
the last two sentences of the second paragraph below Lemma 1 on har-
monics of a legal inverse path, and Lemma?2.[1, p. 361).

Collet and Eckmann (CE) [5] and Beyer et al. (BMS) [4] formally
defined an order on the set of all patterns on two symbols. BMS sue-
cessfully proved for the class of round-top, cencave, unimodal fanctions
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that a pattern is an element of the MSS-sequence if and only if it is shift-
maximal. But the inherent meaning of their order is not immediately
evident.

Here we define an order on the set £ of all patterns of finite length on
two symbols by ordering the patterns according to the order on the real
line of their last points; see Section 3. This order is equivalent to the order
used by CE and by BMS. In other words, we give a concrete meaning to
their order. Having done this, we are able to establish a (non-order preser-
ving) 1-1 correspondence between the elements of 2 and the set of all ter-
minating binary numbers. We also give four equivalent statements of this
order; see Theorem 2 of Section 3. In addition, we directly generalize and
prove, as Theorems 4, 5, and 6 in Sections S and 6, the three results of MSS
referred to above. In Theorem 1 we prove a result that implies the univer-
sality of the MSS sequence of patterns in . Finally, after establishing the
equivalence of our order and that of CE in Section 6, we easily show that
for the class of round-top, concave, unimodal functions a pattern is an
element of the MSS sequence if and only if it is legal; see Theorem 6 of
Section 6.

1. BAsic DEFINITIONS AND ASSUMPTIONS

We denote the closed interval [ —1, 1] by 1. The symbol % denotes the
class of unimodal functions f that satisfy the following conditions:

(1) fis continuous on I, and f(—1)= f(1)= —1;

(2) fachieves its maximum f, ., < 1 on some proper, closed subinter-
val [a,,, b,,] of I (a,, <b,,); and

(3) fis strictly increasing on [ ~1, a,,] and is strictly decreasing on
[0, 1]

Our interval I, the domain of functions in &, corresponds to the unit inter-
val used by MSS in [1]. However, our conditions (1)-(3) are less restric-
tive than the conditions (A) and (B) of [1], and we do not require MSSs
hypothesis (C) at all. Further, we do not assume that f € C*(I), nor do we
assume differentiability of f with respect to A. Thus, our class # is wider
than the class of unimodal functions investigated by MSS in [17]. We shall
also consider a subclass %, of &,

Fo={f1feF and fr., =1}.

This subclass is also wider than the subclass {A,,,f} in [1].
Let P=A4,4, - A,, A,=L or R (1 <i<k< o), which is a finite, for-
mal sequence on the two symbols I and R. We call such a P a pattern or



UNIVERSAL SEQUENCE 41

LR-sequence. In accordance with [1, p.29], we define the length of a pat-
tern P to be £+ 1, not k. We denote the set of all patterns P with finite
length on two symbols by 2.

Recall that [a,, 4,,] is a subinterval of I, where f{x)= f,.., as above,
and set yy = (a,, + b,,)/2. For any f € # and any Pe 2, we construct maps

IE /R and fF as
fH) =) ([ a)u{y})  (VxefU)),
FR =) N (b 1TV {30})  (Yxe f(D)),
freo)y= fAft. fA4(x),
if {x, fA(x), fA1fA(x),, fARfB- fA%(x)} < f(T). Tt is obvious that -

and f® are two branches of the inverse function /!, while f"(x) is one
point in / ~%(x) (if f¥(x) is well defined).

If /P(yo) is well defined, we define y, = f*(y,), ¥, =74y )p-,
Ve =1""(yi_ ) The sequence {yq, ¥, ¥} of points-in I is said to be the
generalized inverse path with respect to [ and P or simply the generalized
inverse path of P. We denote this path by W, .. We say that y, is the final
or last point of Wp, , and we write L(W, )= y,. If y; # y, (1 <i<k), we
call Wy, . an inverse path. If f e %,, each pattern (LR-sequence) has an
inverse path.

2. THE UNIVERSALITY OF THE MSS SEQUENCE

We shall prove that the order in R of final points for different pattérns is
independent of the choice of f € #. This property underlies the universality
of the MSS sequence. Universality was stated by MSS {1, pp. 30-317]
without proof. We prove

TaeoreMm 1. Let f, ge F, and let P, Qe P with P=A, A, - A, and

Q=B8B,B, B, Assume fP(J/O)a fQ(yo), gP(J’o)a and gQ(J’o) are well
defined. Then

LWp)<L(W, r) 2.1)
if and only if
L(Wp )<L (W, ) (2.2)

Proof. By symmetry we need only to prove-that (2.1) implies (2.2). The
proof is divided into five cases.

Case (i). A, #B,. Then (2.1) implies A, =L and B, = R. Using the
monotonicity properties shared by all functions in &, we get (2.2).
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Case (ii). A,=B, =1L and either k=1 or n=1. If k=1, then (2.1)
implies that n>1 and B, = R. For if n=1, P=Q = L contradicting (2.1);
and if B, = L, then f“*(p, _,) < f(»,), that is, (W, ;) < L(Wp ;), which
also contradicts (2.1). By the monotonicity properties shared by f and g,
this implies (2.2). Similarly, if n=1, then (2.1) implies that £>1 and
A, =L, so that (2.2) holds.

Case (ili). A, =B, =R and either k=1 or n=1. If k=1, then (2.1)
implies that n>1 and B, =L, which implies (2.2). If n=1, then (2.1)
implies k> 1 and 4, = R, so that (2.2) holds.

One may now proceed by induction on the lengths of the patterns P and
Q. The induction hypothesis is L(W, ;)<L (W, ,) implies that
LWp )<L Wy ) if P and Q' have lengths k—1 and n—1, respec-
tively. We proceed to carry out the induction in Cases (iv—v).

Case (iv). P=LA, " A,=LP and Q=LB, --B,=LQ". By the
monotonicity properties of f, we see from (2.1) that

L Wp )< LWy 1) (2.3)
By the induction hypothesis, we find that (2.3) implies
L(Wp )< LWy ). (2.4)

From (2.4), using the monotonicity properties of g, we obtain (2.2).

Case (v). P=RA, A, =RP and Q=RB,---B,=RQ". By the
monotonicity properties of f, we see from (2.1) that

LW )>L(Wy () (2.3
By induction hypothesis, we obtain the inequality
L(Wp )>F Wy ) (24
From (2.4') and the monotonicity properties of g, we obtain (2.2). The
proof of Theorem 1 is now complete.
3. THE ORDER OF PATTERNS AND THEIR STANDARD VALUES

We now use Theorem 1 to define a linear order “<” on the set £ of all
patterns with finite length on two symbols.

DerFNITION 1. Given P and Q in 2, we say P is less than Q (or P
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precedes Q) if and only if L(W, ;)< L(W,, ;) for each fe . If P is less
than @, we write P< Q.

In order to recognize the order of patterns in terms of their symbols we
use the simple triangle function fye%: fo=2x+1 if —1<x<0;
fo=—2x+11if 0<x<1. For each Pe#, we call the inverse path W, .
with respect to f, and P the standard inverse path of P; we call the final
point L(Wp ) the standard value of P.

Let % = %(W, 4), and we define the set of real numbers

E={%: Pec2}

The ordered set {2, <} is isomorphic to E. Define 6, =1 and 6, = —4.

Observe that for xel and A either L or R, fi(x)=0 ,x—1). Thus, for
P=A1A2 "'Ak_lAk, we havefgl‘(()): _6Ak’

a1 f540) = g (~d,)= =04, ~ 04, 04
and finally,

i

k
Lp= 20V = =04 =4 84y -+ =04 0gyba4=3 [[0,. ()
i=1j=1

It is easy to see that there exists a 1-1 correspondence between E and the
set of all terminating binary numbers. From (3.1), we immediately obtain

ProposITION 1. For any two patterns P and Q in P, there exists d
pattern between them.

If P is any pattern in 2, we may write
P=LW R R... [im—1) RLi(m),
where i(1),..., i(m) are nonnegative integers and m > 1. We call the sequence
{i(k)}r_, of m elements the power sequence of P relative to L. Let
S = {{i(1),.., i{m)} | 1 <Km < o0, i(k) is 2 nonnegative integer }.

There is an obvious 1-1 correspondence between the sets # and ¥. By
(3.1) we have

i(1) ) m K(r) )
Lp=—Y 2774y (=1y Y 27 (3.2)
1 r=2 K(r—1)+1

where K(r)=i(1)+ --- +i{r)+r—1.
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We now define a lexical order <, on & as follows: for any two power
sequences {i(k)} (k=1,..,m) and {j(p)} (p=1,..,n)in &.

{i{(1)seey i(m)} <; { J(1)sey f()}
if and only if one of the following three conditions holds:

(i) There exists an r with 1 <r < min(m, n) such that i(8) = j(8) for
f=1,.,r—1and (—1) i(ry<(-1)" j(r);
(i) m<mn, i(f)=j(B) for f=1,.., m, and m is odd;
(ii1) m>n, i(B)=j(B) for f=1,.., n, and n is even.

ProposITION 2. {i(1),..., i(m)} <, {j(1),..., j(n)} if and only if

i (=DPLi(B)+ 1]/xF < Z (=1YLi(B) +11/x7, (3.3)
B=1

g=1
where x =2 + max{i(1),..., i(m), j(1),..., j(n)}.

Proof. First suppose i(1)=j(1),..., i(f—1)=j(B—1), but i(B)+# j(B))
and f < min(m, n). We carry out the proof for even f; the proof for odd §
is similar. By, condition (i) {i(1),..., i(m)} <, {j(1),.., j(n)} if and only if
J(B)>i(B). Choose x =2+ max{i(1),..., i(m), j(1),..., j(n}}. Recall that each
P e 2 has finite length. Since j(#) > i(f) and

[iB)+11x P+ (x—1)x Pt (x—1)xF 24 - <[i(f)+1]xF+xF
=[iB)+21x*
<L) +11x7,

it follows that

)+ 1]x P —(x—Dx P —(x=)x 53
SHP)+F1x P+ (x—Dx P24 (x—DxF 4+ -
so that (3.3) holds. Conversely, note that (3.3) implies
[JB)+1]x P (x—Dx~ P24 (x—1)x P44 -
> Li(B) + 1%~ = (x = 1) P~ — (x— 1)x—F—2— .-
Then
[AB)+11x P> [i(f)+1]x P — {(x—1)xP~!
+x—Dx P2+ (x~1)x P 3+ -}
>i(f)x*

implies j(f)+ 1 > i(B), so that j(B) > i(F).



UNIVERSAL SEQUENCE 45

Second, we suppose i(f)=j(B), =1, 2,..,n and n is even. By condition
(i) {i1),..., i(m)} <; {j(1),..., j(n)} if and only if m>n. It is easy to see
that if m > n, then

~[i4in+DIx " '+ [1+in+2)]x "2~ <0

implies (3.3) and vice versa. The same. argument applied to ()= j(p)
(B=1,2,..,m) and m odd gives m <n if and only if (3.3) holds. The proof
of the proposition is complete.

Definition 1, the definition of <, (3.2), and Proposition 2 imply

THEOREM 2. Let P and Q be any patterns in & with standard values %>
and %y, respectively, and whose power sequences relative to L are {i(p)}t
and {j(p)}", respectively. Then the following four statements are equivalent:

i) P<0;
() Zo<%y;
) (D i)} < (D ) s
(V) Zpo, (DL +11/xF <Xp_ ) (—DPLiAB) + 1155,
where x =2+ max{i(1),..., i(m), j(1),.., j(n)}.

Since finding the power sequence relative to L of a pattern P in 2 is sim-
ple, Theorem 2 makes it easy to determine the order of any two patterns.

4. LEGAL PATTERNS AND LEGAL INVERSE PATHS

Consider any P=A4, 4, A, €¢P. Wecall 4,4, -4, (1<igk)aleft
subpattern of P and A;A; . | -+ A, a right subpattern of P. We also consider
the empy set (¥ to be a (left or right) subpattern of P with length:1. For
feF the inverse path W , and last point L(W ;) of @& are both the
point y,, where y, is defined in Section 1. As do MSS [ 1, p:34] we adopt

DermITION 2. Given Pe 2 and any f € %,, if the last point Z(W /) of
the path W, ,is greater than each other point of W ,, then we call P a
legal pattern (Ip); otherwise, we call P an illegal pattern. We.call W - a
legal inverse path (lip) if and only if P is a Ip.

Using Definition 1 (in Sect. 3) of order < on £, one may easily prove

PROPOSITION 3. A pattern P is an Ip if and only if every proper right
subpattern (including ) of P, precedes P.
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From Proposition 3 and Theorem 2, using P for @ and a proper right
subpattern of P for P, we immediately obtain

 THEOREM 3. Suppose P=L"" RL' R---L'"=Y RL'™_ Then P is an
Ip if and only if

(i) i(1)=0,
(i) #(2)>max{i(3),.., i(m)}, and
(i) i i(f)=i(2) (2<p<m), then
(B + D)y i)} <, {i(3),...y i(m1) ).

One may apply Theorem 3 to judge directly whether a pattern Pe 2 is
legal or illegal. One does not need to choose, via Definition 2, a function
f € % and then to calculate all points of W, .. One only needs to know the
power sequence {i(k)} of P relative to L.

5. HArRMONICS AND CONTIQUITY OF HARMONICS

Now recall (see [1, p. 32]) that the (first) harmonic H of a pattern P is
defined to be PAP, where A= L if P contains an odd number of R’s and
A= R if P contains an even number of R’s. Also recall that I=[ 1, 1].
For x,, x, € I let I(x,, x,) be the open interval (x,, x,) or (x,, x,), and let
I[x,, x,] be the closed interval [x,, x,] or [x,, x,]. No order of the
endpoints x, and x, is implied by this notation. We next prove

THEOREM 4 [MSS, p.35]). If P is an lp, its first harmonic H is also an
Ip; hence, all its higher harmonics are Ip’s.

Remark. Collet and Eckman’s Corollary I1.2.4 [5, p.75] implies this
theorem. Here we give a proof directly from the definition of an Ip.

Proof. We suppose P=A, A4, -+ A, and H= PAP. Choose [ € %, and
let the inverse path Wy, » = { Yo, Yi> Vi 15 Yor 41} MSS give [1, p. 35]
a one sentence proof of “x <x,” or, in our notation, y, < y,., . Thus,
each point in Wp = { yg,.., ¥} is less than y,, , , because P is an Ip. But,
whether or not each point of {y,. ,... v} is less than y,,,, is unclear.
To provide an answer, we proceed as follows.

Since P is an Ip, y;, > y; (i=0, 1,.., k—1). Thus, there exist-no points
of {yi.. yi} between yo and yi .1 =/*(ye) U p,€l(yo, yiry) for
some i with 1<i<k, then y, ;> y,, which is a contradiction. Let
Iy =1[yg, Vi+ 11 We claim that for 2<i<k,

Vi ¢fAi.nAk(10)-
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If it is in this interval, then

Yoo =Ly e T AMT) = 1,

which is a contradiction. Since y, _,,, = /" M yo) < yi, 1, AT po)
is to the left of vy, yorira ;= f4"*(y,,,) also lies to the left of y,.
Hence, yox 12 ; < Vor .- This completes the proof of Theorem 4.

THEOREM 5. For any P=A A, - A €P let Q=PAP; where A is
either L or R. Relative to some fe%,, let Wy r={Voym Vs
Vit 15 Yok 14~ Then there exists no last point of any legal inverse path in
the open interval I, = (y,, Yoy 1)

Remark. We point out that Theorem 5 generalizes MSSs Lemma 2 1,
p. 36] in that their P is an Ip, while the P in Theorem 5 may be either legal
or illegal. In addition, the statement [1, p. 367, “Thus no inverse path of 3
can have a coordinate x* satisfying x, <x* < x,” is not appropriate,
unless “no inverse path” is replaced by “no legal inverse path.” (Note that
the definitions of inverse path and legal inverse path in [1, p. 347 are dif-
ferent.) By Proposition 1, an illegal inverse path does always exist between
P and PAP. For example, let P=R, and let x, be the coordinate of the
pattern P. The first harmonicof P is H= RLR. Let x4 be the coordinate of
H. To sec that Q= HL is a pattern whose coordinate x* satisfies the
inequalities x, < x* < x,, we use (3.1) or (3.2) to compute x, =%, =1,
Xy =%p=3, x*=%, =F. Of course, there are infinitely many patterns Q
with this property. Moreover, there is no proof for the statement of
Theorem 5 above in MSSs proof of Lemma 2. However, Beyer and Stein
[3, pp. 278-2807] gave a proof for symmetric trapezoidal maps, and in 1986
Louck and Metropolis [6, Lemma B11, Appendix B} gave a correct proof
for symmetric trapezoidal maps. Here we give a proof of ‘Theorem S for
general unimodal maps directly from our definition of an inverse path.

Proof of Theorem 5. Assume x, €I, is the last point of the inverse path
Wg ;= {xgs X,}, corresponding to some pattern S=B;B,---B,e?.
Recall that x, = y,. We need to prove that § is not a legal patteri.

If n<k, then

Xy =f(x)e ) =Kye_1s Yu
Xp_2 =f2(xn)€f2(11)=l(yk72’ y2k~1)s

x() =fn(xn)efn(ll):](yk7n9 y2k+1—»n)'
On the other hand, by definition,
Hyi_ s Vour1—n) =Ly, Yies 1)),

582a/46/1-4
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and the whole open interval I(y,_,, V2c 41— ,) lies to the left or to the right
side of x, = y,, that is, it cannot contain x,. Therefore, n < k is false. Next
we consider #> k. In this case,

Xn_o1 = SEHHx) eI
=ffk(11)=f(1(yo’ Vie+1))
=I(17 yk)

K yorv1 <yi OF yorr1 > e a0d X,y € [Yors1, 1), then x, <x,_,_;.
Therefore, x, is not the rightmost point of W ,, and S is not a legal pat-
tern. If y,, . >y and x,_ . € ys, Y2y ), then we start from x,_, _
as from x, above. If n—k— 1<k, then we obtain a contradiction. If
n—k—1>k, then x, ,, 1) €1(1, y,), etc. We repeat this procedure: we
go first from x,_,, , ;) as from x,, then from x, 34 ), etc. Ultimately, we
find that going from x, to x, on the inverse path W , we meet a point x;
such that x; > x,,. This means W ,is not a lip, and the proof is completed.

Theorem 5 is equivalent to

THEOREM 5 (Contiguity of harmonics). If Pe P and A= L or R, there
exists no legal pattern that lies between P and PAP in the ordered set P.

6. SoLuTiONS A OF [Af]%)(yy) = yo AND LEGAL PATTERNS

In this section we prove that the order < on £ is equivalent to the order
introduced by Beyer er al. in [4, p.309], to the order of Coliet and
Eckman [5, pp. 64-67], and to the order of Louck and Metropolis (LM)
[6]. (LM [6] showed that their order is equivalent to BMSs.) These
authors studied the set S of all finite LR-sequences terminating with a
symbol C, and infinite LR-sequences as well. They defined a parity-
lexicographic ordering of S from the formal structure of patterns. We
denote their order by <, and we call ours <.

PROPOSITION 4. The orders < s and < 5 are equivalent on .

Proof. By Theorem 2, we need only to prove that, given any P and Q
in #, P<gQ if and only if % <%,. Note that I(%)=PC and
P(&,)=QC, where the definition of an itinerary //(x) is given by Beyer et
al. in [4, p. 3117 and where f, is defined in Section 2. Following the proof
of BMSs Lemma 4.1 [4, p.311] (we only need to delete A), we obtain
P <5 Q implies &, < %,; namely, P < Q implies P <, Q.

Conversely, given any P and Q in & such that %, < %, if Q < P, then
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the above proof implies that ¥, < %,, which is a contradiction. If P=;Q,
thatis, P and Q are identical, then, by the definition of %,, we have &, =

§(0)= f8(0)=Y,, which is again a contradiction. Therefore P <, Q
implies P < ¢ Q, and the proof is complete.

BMS proved (see Theorem 4.2 [4, p. 3127 and Theorem 5.3 [4, p.317]
that if f is a unimodal, round-top, concave function, then a finite LR-
sequence is shift-maximal if and only if it is a functional MSS-sequence.
Using this important result of BMS and our Propositions 3 and 4, we
obtain the result that, for the class of round-top, concave, unimeodal
functions, a pattern is legal if and only if it is a functional MSS-sequence;
in other words:

THEOREM 6. For the class of round-top, concave unimodal functions, a
pattern is associated with a solution A of [1f1%(yo) = y, for some k if and
only if it is legal.

Remarks. Theorem 6.is in part the same as Lemma 1 of MSS [ 1, p. 35].
However, MSSs proof of their Lemma 1 is incomplete; both BMS [4] and
LM [6] confirm this. Further, Theorem 6 does not -imply that a 1-1
correspondence between the set of legal patterns and the set of all solutions
4 of the sequence of equations [Af 1*(y,)= y, (k= 1, 2,...) exists. MSS con-
jectured ‘that this correspondence is 1-1, but this has not been proved, to
our knowledge, for unimodal functions in.general. LM [6] proved that the
correspondence is 1-1 for symmetric trapezoidal maps. Their proof is long
and difficult. Beyond LMs result little is known. To prove 1-1'ness for all
s and sequences of legal patterns in general or to prove in general that
kneading sequences are monotone increasing with A appears to ‘be very
hard.

We thank the referce for his (her) comments. They were very helpful.
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