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Introduction 

The main purpose of this note is to prove some facts about localization (in the sense 

of Bousfield [S]) of a space X with respect to real and complex K-Theory. In 

particular we compare the spaces which are acyclic for the real and complex 

K-homoiogies K?. and E, with coefficients in an arbitrary abelian group A 

(Theorem 1.7): 

If X is an arbitrary CW-complex, then G,(X) = 0 if and only if K=,(X) = 0. 

The proof of this theorem is based on methods of Anderson’s thesis [3] and a 

suggestion of the referee (proof of Proposition 1.5). Theorem 1.7 implies that 

localization with respect to complex KA-homology is equivalent to localization with 

respect to real KOA-homology (Corollary 1.8). Moreover it turns out that the 

coefficient group A can be restricted to special classes of groups [6] (Corollary 1.10): 

For an arbitrary abelian group A there exists a set of primes J such that the 

Vocalizations XKA, X,,, XKos and XKoA are equivalent, where either S = Z[f-‘J or 

S = G&r-J H/p depending on A). 

As a consequence of Corollary 1.8 we obtain many new examples of K-local 

spaces. In particular the spaces of the spectrum of real K-Theory are K-local as well 

as BSO, all homogeneous spaces obtained from the stable cIassica1 groups 0, U, SO, 

SU, Spin, and loop spaces of such (Proposition 2.3). 

In [ 1 l] Mislin has shown that the localization X, with respect to a generalized 

homology E, can be constructed out of rational and mod p information in a similar 

way as in the case of ordinary homology provided all spaces involved are 1 -connected 

(these spaces are X,, 2~ =flpX~~cDjr X,0, WE)EP~, or & = r]IpJG~lp, G%)EQ 

respectively). 

For K-Theory this is the case if X is l-connected [ 1 l]. We show that this condition 

can be replaced by a weaker one (Theorem 3.1): 
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For a space X with finite fundamental group the diagrams 
I 

XK - xh. x^- - xh. 

are (up to homotopy) fibre squares. Furthermore XKLc,,= (X,),,,“) and XKelp = 

(xK )HLh for all primes p (Corollary 3.4). 

As an application of Theorem 3.1 we compute the homotopy groups of BU[2nlK, 

n 2 2, the K-localization of the (2n - 1)-connective coverings of BU. In this way we 

obtain further examples of the periodicity theorem in [ 111. I am very much indebted 

to G. Mislin, E. Dror and M. Huber for ideas and helpful discussions. Finally I would 

like to thank the referee for his valuable suggestions. 

1. Acyclic spaces in K-Theory 

Let E, denote a homology theory (defined by a spectrum E) on IICW, the pointed 

homotopy category of CW-complexes. A space X E IICW is called E-local in the 

sense of [S], if for every E,-isomorphism f: A + B E IICW the induced map 

f” : LB, Xl + [A Xl 

is a bijection. A E-localization of X E IICW is defined to be a E,-isomorphism 

X + X, E IICW such that X, is E-local. Such a E-localization of X is unique up to 

equivalence. The main theorem of [8] asserts its existence. The E-localization 

functor is characterized by the acylic spaces of the homology E, as follows: Two 

homology theories F.+ and G, are said to have “the same acyclic spaces”, if the 

following equivalent conditions hold [6]: 

(i) For X E IICW, p+.(X) = 0 if and only if e*(X) = 0. 

(ii) For a map f: X + YE IICW, f* : F,(X) -+ F.+.(Y) is an isomorphism if and 

only if f* : G,(X) --+ G,(Y) is an isomorphism. 

Proposition 1.1. If the homology theories F* and G, have the same acyclic spaces 

they define equivalent localization functors on IICW. 

The proof is immediate from the universal property of localization [8]. 

1.2 

A homology F* is called connective, if Fi(pt) = 0 for i sufficiently small. In [6] it is 

shown that any connective homology F* has the same acyclic spaces as H*(- : S), 



Complex and real K-fheory and localization 61 

where either S = H[J-‘1 or S = &, H/p for some set of primes J. The class of acyclic 

spaces in K-Theory is not so restricted, since it contains the spaces K(G, n), G a 

torsion group, n 22 [S] and the cofibres of the maps A(p):M(Z/p, 2p + 1) 

-+ M(Z/p, 3), p an odd prime, and A(2):M(Z/2, 13) --+M(P/2,5) (see [l] and 

[ill). 
Ins section we will show however, that real and complex K-homology Km, 

and KA, with coefficients in an arbitrary abelian group have the same acyclic spaces 

as KS,, where either S = H[J-‘1 or S = &, iZ/p for a suitable set of primes J. For 

this we need the methods of Anderson [3], relating various K-(co)homology theories 

by long exact sequences. 

Let n : S3 + S2 be the Hopf map. We set h = H, 1 E K’(P), where H denotes the 

(complex) Hopf bundle over the projective plane P = S2 u ,, e4. As in [3] one defines 

a transformation of cohomology theories 

w : R”(X) + iznt4(X A P) 

W(x)= r(*-,2(x) A L), 

where the notations are as follows: 

r : K -+ KO is the map of spectra [12, p. 3031 induced by realification of complex 

vector bundles. rU : X*K + K is the equivalence induced by Bott periodicity in 

complex K-Theory. The (exterior) product 

A :K”(x)oK”(Y)-&“+“(x A Y) 

is induced by the tensor product of complex vector bundles and can be extended to 

arbitrary complexes X and Y in IICW (or spectra) [12, Chapter 131. With this 

product K is a ring spectrum, that is, A commutes with suspensions [ 12, Proposition 

13.551. Hence the map W can be defined on arbitrary complexes (or spectra) and is a 

natural transformation of cohomology theories on IICW. 

Theorem 1.2. The transformation Winduces an equivalence of spectra K = KO A E, 

where E = So u rl e* is the suspension spectrum whose second term is P [2, p. 2061. 

Proof The cofibre sequence of suspension spectra 

rl XI, 
ZS”+So+E~~*So--+CS 0 

is by S-duality converted into the cofibre sequence 

x-Y,)* 
-S”tE* cZ-*S”+--~- s 1 0 
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and for arbitrary spectra X there is a commutative diagram [12, Corollary 14.331 

. t~Xh~SO,KO~t[X~S”.KO]t[X~E,KO]~[X~~~SO,KO] +[XA=“.KOI 

The transformation 

D-’ 0 W: [X, K]: [X A Z’E, C4KO] 
D-’ 

- [X, C4K0 A C-*I?*] 

defines a map of spectra 

W:K+KO A CP’E* 

which by the relation E” = Z2E reads 

W:K+KO A E. 

By a theorem of R. Wood the map W induces isomorphisms in the coefficients and is 

therefore an equivalence. 

Corollary 1.3. For any X E fICW (or for any spectrum X) the cofibration of spectra 

KO A E + KO A C*S”+ KO A ZS” 

induces long exact sequences 

and 

. . . + rA”(X) + r&“+2(X) -+a EA”+‘(X) -+ z”+‘(X) -+ . . . 

where A denotes an arbitrary abelian group, and KA = K A SA (or KOA = KO A 

SA) is the spectrum K (or KO) with coefficients in A [2, p. 2001. 

Corollary 1.4. Let X E IICW. Then 

z,(X)=0 ifK%A*(X)=O, 

and 

E*(X)=0 if&A*(X)=O. 

The next result shows that the statements of Corollary 1.4 are also valid in the 

opposite direction. 
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Proposition 1.5. Let X E TICW. Then 

KZ*(X) = 0 ifZ*(X) = 0, 

and 

K=*(X)=0 ifz*(X)=O. 

Proof. Let E’“‘, n EN, denote the CW-spectrum So u ,,n en+‘, where n” = Znel n”-’ 

and n = n1 : S’ + So is the (stable) Hopf map. For every n EN there is a homotopy- 

commutative diagram of cofibrations: 

n 

In particular we have constructed cofibrations 

E’3’ _ E’2’~ x3E0) 

E(4) --, E’3’ -_* x4E”’ 

But EC4)= So v S5 since n4 = 0. This follows from the fact that the 2-component of 

the 4-stem of the stable homotopy groups of spheres is trivial. Smashing the above 

cofibrations and equivalence with KOA we obtain long exact sequences similar to 

Corollary 1.3. Proposition 1.5 follows now by Theorem 1.2. Proposition 1.5 together 

with Corollary 1.4 imply 

Theorem 1.7. Let X E IICW. Then for an arbitrary abelian group A 

(i) k&.(X) if and only ifK%*(X) = 0 

(ii) z*(X) = 0 if and only if Km*(X)= 0. 

By Theorem 1.7 and Proposition 1 .l we get 

Corollary 1.8. Let X E fICW. Then for any abelian group A the localization X,, with 

respect to KA-homology is equivalent to the localization X,0, with respect to KOA- 

homology. 
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1.3 

A class ‘%? of abelian groups is special in the sense of Bousfield [6], if it satisfies the 

following conditions: 

(i) 0E’Y.R. 

(ii) %’ is closed under arbitrary direct sums. 

(iii) If A 1 + A2 + A3 + A4 -+ A5 is an exact sequence of abelian groups with A 1, 

AZ, A4, A5~$Y.J2, then A3s5%!. 

For an abelian group A, one can obtain a special class !P1, by taking all G with 

G 0 A = 0 = Tor (G, A), or by taking all G with Horn (G, A) = 0 = Ext (G, A) [6]. 

We call this class $mA. 

By Proposition 2.3 of [6] the only special classes of abelian groups are the 

J-primary torsion groups and the uniquely J-divisible groups, where J is a set of 

primes. 

Proposition 1.9. Let F* be a homology theory on IICW, and let \3?, denote the class 

of acyclic spaces of Fx, for an arbitrary abelian group A. Then there exists an abelian 

group S such that !RrA = !VFs, where either S = Z[J-‘1 or S = eat_, Z/p for some set of 

primes J. 

Corollary 1.10. Let A be any abelian group. Then there exists a set of primes J such 

that XnA = XKs and X,,, = X,,s, where either S = L[J-‘1 or S = opt, Z/p. 

It follows that investigating localization with respect to real and complex K- 

homology with coefficients we can restrict attention to complex K-homology with 

coefficients in a special class of groups. 

Proof of Proposition 1.9. Let ‘9J? A be the class of all abelian groups G with 

G @A = 0 = Tor(G, A). We show first that there exists a group S with $n+t = ‘ns, 

where either S = H[J-‘1 or S = epeJ Z/p for some set of primes J. 

For this purpose we apply the universal coefficient theorem 

O+fi”(X)@A-fin(X,A)-Tor(l?_,(X),A)+O 

Hence fin(X) E \JJ7A for all n E N if X E \3? “A. Conversely for any G E ‘Jla one can find 

a X E \3?, such that Z?“(X) = G. (Take e.g. the Moore space X = M(G, n), n 2 2.) 

Therefore we get the relation 

‘Dl,‘, = {R”(X), n EN 1 x e glHA}. 

By Theorem 4.5 of [6] there is a group S in a special class such that 

i.e. 
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This relation together with the universal coeflicient theorem [2, p. 2011 

O-+~~(X)OA-+~,(X)-+Tor(~~-l(X),A)+O 
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implies that 

x E YlF.4 if and only if X E glFs. 

With regard to the acyclic spaces of a cohomology E*, we can deduce a similar 

result if there exists a homology E, and a universal coefficient theorem 

O-+ Ext(E,_r(X), A)+ FA”(X)+ Hom(E,(X), A)+ 0 

which is valid for any X E IICW and any abelian group A. It is known [4], [14], that 

besides ordinary cohomology there are universal coefficient theorems in real and 

complex K-Theory: 

where n E (z/g and KSp = C4K0 and 

O-+Ext(K,_i(X),A)-, KA”(X)+Hom(K,,(X),A)+O 

where II E L/2. 

Proposition 1.11. Let F be either H,K or KO and let !RFA denote the class of acyclic 

spaces of F%*. Then there exists a set of primes J such that !VFA = \RFs, where either 

S = Z[J-‘1 or S = opCJ Z/p. 

The proof is completely analogous to the proof of Proposition 1.9. In general, in the 

“reductions” ‘Y?, = ‘%‘Fs, and !RFA = !VFs * the groups Si and S2 are not the same, as 

the following example may show: 

Example. Let F be either H,K or KO and let A = Q/H. Then !UFA = !VF” = 9’; but 

SB F/, = ‘%FS, where s =&p H/p. If however A itself is special i.e. A = S, where 

either S = Z[J-‘1 or S = opcJ Z/p for some set of primes J, then we have 

Proposition 1.12. Let F be either H,K or KO and let A = S be a special group. Then 
\JFs = \JFS. 

This follows from the fact that %71, = ‘Y-Ii’, if S is special. 

Corollary 1.13. Let F be either H,K or KO and let S be a special group. Then 

f: X + YE IICW is a FS,-isomorphism if and only if it is a FS*-isomorphism. We 

therefore call f in this case just a FS-isomorphism. 
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2. Some examples of K-local spaces 

In [l 11 Mislin has given several examples of K-local spaces. In particular the 

representing spaces of a theory E* are E-local for an arbitrary abelian group A, if 

E is a ring spectrum [ll, Theorem 1.111. From this result and Corollary 1.9 we 

immediately deduce 

Proposition 2.1. Let A be any abelian group. Then the representing spaces of Km* 

are K-local. 

From the results in [9] we see that any H-local space can be built up from 

Eilenberg-Mac Lane Spaces K (A, n). Proposition 2.1 gives us nontrivial examples of 

K-local spaces which can be built up from the spaces U and BU. In this way we can 

obtain BO X BSp as a “two stage Postnikov system” with U and BU as fibres. For 

this we use the fibre sequences [3] 

U + Co-+ BU :BU 

and 

BU-BOxBSp+C”47. 

Thereby IJ denotes the operation @‘-$-’ and C” is the representing space of 

selfconjugate K-Theory Khc’. We then obtain a diagram 

BU - BO x BSpin 

Proposition 2.2. BSO and Spin are K-local, but BSpinK = BSO. 

Proof. BSO is the universal covering space of BO. Hence there is a fibration 

which is trivial since it has a section and BO is a H-space. Hence BSO (and RP”) are 

factors of the K-local space BO (Proposition 2.1) and therefore K-local. 
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Spin is the universal covering of SO. From the fibration 

Spin 4 SO + RP” 

we deduce, that Spin is K-local, since SO = RBSO is K-local. For the third assertion 

we need the fact that BT : BSpin + BSO is a K-isomorphism. As we see from a Serre 

spectral sequence argument, Brr is a HQ-isomorphism and a KZ/p-isomorphism 

forp any odd prime, and a result of Snaith [13] tells, that BTT is a KZ/2-isomorphism. 

Proposition 2.3. All homogeneous spaces obtained from the stable classical groups 0, 

SO, SU, Sp and all loop spaces of such are K-local. 

Proof. For any pair G c H of topological groups there is a fibration 

HIG + BG --, BH. 

If BG and BN are K-local, then also H/G is K-local. From Propositions 2.1 and 2.2 

and [ll] it follows, that the classifying spaces of the stable groups 0, U, SO, SU and 

Sp are K-local. 

3. Fibre squares 

It has been shown in [ll], that the localization X, with respect to a homology E, 

can be constructed out of rational and mod p information quite in a way as in the case 

E = H. Let Z!cpr denote the integers localized at p and define 

PEP 

2E = n XEL/p. 
PEP 

Then the following two squares are fibre squares, if the spaces involved are all 

l-connected [ 11, Proposition 1.91: 

(3.1) 

For E = KR, R a subring of the rationals or R = Z/p, p a prime, one has [ 111 that 

XICR is l-connected if X is l-connected. Hence in this case the diagrams (3.1) are 

fibre squares. In the next theorem we generalize this statement to spaces with a finite 

fundamental group: 
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Theorem 3.1. Let X E TICW be a space with a finite fundamental group. Then the 

digrams 
A 

XIC -X, X, -X, 

To prove this theorem we apply some methods of [lo]. First we need the following 

Proposition and its Corollary. We can assume X to be connected. 

Proposition 3.2. Let X E fICW and let R be a subring of the rationals or R = Z/p, p a 

prime. Then the KR-localization can : X,, -+ X,, induces an epimorphism in the 

fundamental groups. 

Proof. can:XHR --,X,, is a KR-isomorphism. Hence by [ll, Theorem 2.61 

can, : H,(X,,, R) -+ H,(X,,, R) is an isomorphism. Since X,, is HR-local, we can 

apply the generalized Whitehead theorem [7] and we get an epimorphism 

rl(xHR)-+ r,(xKR). 

Corollary 3.3. LetX E IICW be a space whose fundamental group is HR-local. Then 

can, : n,(X) -+ vl(X,,) is an epimorphism. 

This follows directly from the factorization [ 1 l] 

x-xHR 

\I 
X KR 

and the relation rr(XHR)= ~I(X>HR = ~I(X>. 

Proof of Theorem 3.1. Since the proofs for the two squares are similar, we consider 

only the second square. Then we have the diagram 
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where W is the (hornotopy theoretic) pullback. By [8] W is K-local. It is therefore 

enough to show that cp is a K-isomorphism. For this purpose we show that cp is a 

KQ-isomorphism and a KZ/p-isomorphism for any prime p. 

Since rrr(X) is finite, Corollary 3.3 implies that X,o = X,o and (J?K)Ko = (g~)Ho 

are l-connected. 

Let F be the fibre of the map (Y : XKQ --* (2K)K~. F is also the fibre of the map 8. In 

addition F is connected and Q-local. By Lemma 1113 of [lo] y : W + X,, is a 

HQ-isomorphism since this is the case for /3. The map p’ is also a HQ-isomorphism 

and hence cp :X, += W is a HQ-isomorphism. This immediately implies that cp is a 

KQ-isomorphism. We now show that (Y’ : XK -+ zK is a KZ/p-isomorphism for any 

prime p. For this we consider the projection 

with the fibre F’ = n,+, XKz,,. By Corollary 3.3 m,(F’) is finite and by Lemma 7.5 of 

[8] even nilpotent. ~~~~~ is HZ/q-local. Hence the homotopy groups of X,,,, are 

uniquely s-divisible for any prime s # q, [lo, Lemma 1.241. It follows that the 

homotopy groups of F’ are uniquely p-divisible. By Lemma 1.26 of [lo] the 

homology groups of F’ are as well uniquely p-divisible, and by [lo, Lemma 1.271 the 

groups &?*(F’, Z/p) vanish. By a mod-p Serre spectral sequence argument 

n.+ : H,(X,, Z/p) + H,(XKLIp, Z/p) is an isomorphism. 

Since f.xb : XK 4 XKHjp is a KE/p-isomorphism, the diagram 

ff’ L 

XK -xK 

implies, that (Y’ is a KZ/p-isomorphism for any prime p. By [ 10, Lemma 1.131 

S : W --, kK is a HE/p-isomorphism for any p, since q : XKQ --* ($?K)KQ is a HZ/p- 

isomorphism for any p. Therefore ~0 :X, -+ W is a KZ/p-isomorphism for any 

prime p. 

Corollary 3.4. Let X E KICW be a space with a finite fundamental group. Then 

(XK)H+,,, = xK%j and (XK )HL/~ = XKLI~. 

Proof. We consider the diagram 

(XK)HEIp 2 x KHIP 
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From the proof of Theorem 3.1 it follows, that (Y’ is a HZ/p-isomorphism for any p, 

since 6 : W + gK is. Therefore Q: and F are HZ/p-isomorphisms for any p. Since 

X KBIP is HZ/p-local, the map F is an equivalence. The first statement is proved 

similarly. 

Corollary 3.5. Let A be a finite abelian group. Then 

K(A 1)KL<,, = K(A 0 Z(p), 1) and K(A, l)Kzlp = K(A @Z/p. 1). 

As an application of Theorem 3.1 and Corollary 3.4 we compute the homotopy 

groups of BU[2nlK, the K-focalization of the (2n - I)-connective coverings of BU. 

Proposition 3.6. Let X = BU[2n], n a 2. Then 

(i) XKLIp = BSUHhIa 

(ii) ‘rri(XK)= (1 

I 

r,BlJ is2n, 

0 i=2n-1, 

i < 2n, i even, 

QlS 5si<2n-l,iodd, 

0 osis3. 

Similar results are valid for BO[n], n 2 2. 

Proof. The first assertion follows from [l 1, Corollary 2.31 and from Corollary 3.4 (or 

see [ll]). For the computation of 7ri(XK) we use the Mayer-Vietoris sequence for the 

homotopy groups of the fibre square (Theorem 3.1 or [ 111) 

A 1 

j 7Ti+IXK O ni+lxKQ* YT~+I(XK)KQ + ~T,XK - nj~%!K 
0 7TiXKQ + T,(~?K)KQ - 

From this sequence we can immediately read off the groups 

r,XK = TiBU, i 2 2n. 

r?“-1X, = 0. 

nix, = ker(f + f 0 Q) = 0, if i < 2n, i even. 

.rr,XK=coker(~j~OQ)=Q/L, if5si<2n-1,iodd 

?TiXK = 0, ifOGis3. 
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Remark. The groups nTTi(XK) of the form Q/Z effect the periodicity in the homotopy 

groups ri(zlP, XK) [Ill. 
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