Journal of Pure and Applied Algebra 14 (1979) 59–71. © North-Holland Publishing Company

COMPLEX AND REAL K-THEORY AND LOCALIZATION

W. MEIER

Forschungs institut für Mathematik, ETH Zürich, and Mathematik V der Gesamthochschule, Hölderlinstr. 3, D-5900 Siegen 21, W. Germany

Communicated by A. Heller Received 8 September 1976 Revised 27 March 1977

Introduction

The main purpose of this note is to prove some facts about localization (in the sense of Bousfield [8]) of a space X with respect to real and complex K-Theory. In particular we compare the spaces which are acyclic for the real and complex K-homologies \widetilde{KOA}_* and \widetilde{KA}_* with coefficients in an arbitrary abelian group A (Theorem 1.7):

If X is an arbitrary CW-complex, then $\widetilde{KA}_*(X) = 0$ if and only if $\widetilde{KOA}_*(X) = 0$.

The proof of this theorem is based on methods of Anderson's thesis [3] and a suggestion of the referee (proof of Proposition 1.5). Theorem 1.7 implies that localization with respect to complex KA-homology is equivalent to localization with respect to real KOA-homology (Corollary 1.8). Moreover it turns out that the coefficient group A can be restricted to special classes of groups [6] (Corollary 1.10):

For an arbitrary abelian group A there exists a set of primes J such that the localizations X_{KA} , X_{KS} , X_{KOS} and X_{KOA} are equivalent, where either $S = \mathbb{Z}[J^{-1}]$ or $S = \bigoplus_{p \in J} \mathbb{Z}/p$ depending on A).

As a consequence of Corollary 1.8 we obtain many new examples of K-local spaces. In particular the spaces of the spectrum of real K-Theory are K-local as well as BSO, all homogeneous spaces obtained from the stable classical groups O, U, SO, SU, Spin, and loop spaces of such (Proposition 2.3).

In [11] Mislin has shown that the localization X_E with respect to a generalized homology E_* can be constructed out of rational and mod p information in a similar way as in the case of ordinary homology provided all spaces involved are 1-connected (these spaces are X_E , $\check{X}_E = \prod_p X_{E\mathbb{Z}_{(p)}}$, X_{EQ} , $(X_E)_{EQ}$, or $\hat{X}_E = \prod_p X_{E\mathbb{Z}/p}$, $(\hat{X}_E)_{EQ}$ respectively).

For K-Theory this is the case if X is 1-connected [11]. We show that this condition can be replaced by a weaker one (Theorem 3.1):

For a space X with finite fundamental group the diagrams

are (up to homotopy) fibre squares. Furthermore $X_{K\mathbb{Z}_{(p)}} = (X_K)_{H\mathbb{Z}_{(p)}}$ and $X_{K\mathbb{Z}/p} = (X_K)_{H\mathbb{Z}/p}$ for all primes p (Corollary 3.4).

As an application of Theorem 3.1 we compute the homotopy groups of $BU[2n]_K$, $n \ge 2$, the K-localization of the (2n - 1)-connective coverings of BU. In this way we obtain further examples of the periodicity theorem in [11]. I am very much indebted to G. Mislin, E. Dror and M. Huber for ideas and helpful discussions. Finally I would like to thank the referee for his valuable suggestions.

1. Acyclic spaces in K-Theory

1.1

Let E_* denote a homology theory (defined by a spectrum E) on ΠCW , the pointed homotopy category of CW-complexes. A space $X \in \Pi CW$ is called *E-local* in the sense of [8], if for every E_* -isomorphism $f: A \to B \in \Pi CW$ the induced map

 $f^*: [B, X] \rightarrow [A, X]$

is a bijection. A *E*-localization of $X \in \Pi CW$ is defined to be a E_* -isomorphism $X \to X_E \in \Pi CW$ such that X_E is *E*-local. Such a *E*-localization of *X* is unique up to equivalence. The main theorem of [8] asserts its existence. The *E*-localization functor is characterized by the acylic spaces of the homology E_* as follows: Two homology theories F_* and G_* are said to have "the same acyclic spaces", if the following equivalent conditions hold [6]:

(i) For $X \in \Pi CW$, $\tilde{F}_*(X) = 0$ if and only if $\tilde{G}_*(X) = 0$.

(ii) For a map $f: X \to Y \in \Pi CW$, $f_*: F_*(X) \to F_*(Y)$ is an isomorphism if and only if $f_*: G_*(X) \to G_*(Y)$ is an isomorphism.

Proposition 1.1. If the homology theories F_* and G_* have the same acyclic spaces they define equivalent localization functors on IICW.

The proof is immediate from the universal property of localization [8].

1.2

A homology F_* is called *connective*, if $F_i(pt) = 0$ for *i* sufficiently small. In [6] it is shown that any connective homology F_* has the same acyclic spaces as $H_*(-:S)$,

where either $S = \mathbb{Z}[J^{-1}]$ or $S = \bigoplus_{p \in J} \mathbb{Z}/p$ for some set of primes J. The class of acyclic spaces in K-Theory is not so restricted, since it contains the spaces K(G, n), G a torsion group, $n \ge 2$ [5] and the cofibres of the maps $A(p): M(\mathbb{Z}/p, 2p+1) \rightarrow M(\mathbb{Z}/p, 3)$, p an odd prime, and $A(2): M(\mathbb{Z}/2, 13) \rightarrow M(\mathbb{Z}/2, 5)$ (see [1] and [11]).

In this section we will show however, that real and complex K-homology \widetilde{KOA}_* and \widetilde{KA}_* with coefficients in an arbitrary abelian group have the same acyclic spaces as KS_* , where either $S = \mathbb{Z}[J^{-1}]$ or $S = \bigoplus_{p \in J} \mathbb{Z}/p$ for a suitable set of primes J. For this we need the methods of Anderson [3], relating various K-(co)homology theories by long exact sequences.

Let $\eta: S^3 \to S^2$ be the Hopf map. We set h = H, $1 \in K^0(P)$, where H denotes the (complex) Hopf bundle over the projective plane $P = S^2 \cup_{\eta} e^4$. As in [3] one defines a transformation of cohomology theories

$$W: \widetilde{K}^n(X) \to \widetilde{KO}^{n+4}(X \land P)$$

by

$$W(x) = r(\pi_U^{-2}(x) \wedge \tilde{h}),$$

where the notations are as follows:

 $r: K \to KO$ is the map of spectra [12, p. 303] induced by realification of complex vector bundles. $\pi_U: \Sigma^2 K \to K$ is the equivalence induced by Bott periodicity in complex K-Theory. The (exterior) product

$$\wedge : \check{K}^{m}(X) \otimes \check{K}^{n}(Y) \to \check{K}^{m+n}(X \land Y)$$

is induced by the tensor product of complex vector bundles and can be extended to arbitrary complexes X and Y in ΠCW (or spectra) [12, Chapter 13]. With this product K is a ring spectrum, that is, \wedge commutes with suspensions [12, Proposition 13.55]. Hence the map W can be defined on arbitrary complexes (or spectra) and is a natural transformation of cohomology theories on ΠCW .

Theorem 1.2. The transformation W induces an equivalence of spectra $K \approx KO \wedge E$, where $E = S^0 \cup_{\eta} e^2$ is the suspension spectrum whose second term is P [2, p. 206].

Proof The cofibre sequence of suspension spectra

$$\Sigma S^0 \xrightarrow{\eta} S^0 \to E \to \Sigma^2 S^0 \xrightarrow{\Sigma \eta} \Sigma S^0$$

is by S-duality converted into the cofibre sequence

$$\Sigma^{-1}S^0 \xleftarrow{\eta^*} S^0 \xleftarrow{} E^* \xleftarrow{} \Sigma^{-2}S^0 \xleftarrow{} \Sigma^{-1}(\eta)^* \Sigma^{-1}S^0$$

and for arbitrary spectra X there is a commutative diagram [12, Corollary 14.33]

$$\cdots \leftarrow [X, KO \land \Sigma^{-1}S^{0}] \leftarrow [X, KO \land S^{0}] \leftarrow [X, KO \land E^{*}] \leftarrow [X, KO \land \Sigma^{-2}S^{0}] \leftarrow [X, KO \land \Sigma^{-1}S^{0}]$$

$$= \int_{D} = \int_{D} =$$

The transformation

$$D^{-1} \circ W : [X, K] \xrightarrow{W} [X \land \Sigma^2 E, \Sigma^4 KO] \xrightarrow{D^{-1}} [X, \Sigma^4 KO \land \Sigma^{-2} E^*]$$

defines a map of spectra

$$W: K \to KO \land \Sigma^{-2}E^*$$

which by the relation $E^* = \Sigma^{-2}E$ reads

$$W: K \to KO \land E.$$

By a theorem of \mathbf{R} . Wood the map W induces isomorphisms in the coefficients and is therefore an equivalence.

Corollary 1.3. For any $X \in \Pi CW$ (or for any spectrum X) the cofibration of spectra

$$KO \land E \to KO \land \Sigma^2 S^0 \to KO \land \Sigma S^0$$

induces long exact sequences

$$\cdots \to \widetilde{KA}_n(X) \to \widetilde{KOA}_{n-2}(X) \to \widetilde{KOA}_{n-1}(X) \to \widetilde{KA}_{n-1}(X) \to \cdots$$

and

$$\cdots \to \widetilde{KA}^{n}(X) \to \widetilde{KOA}^{n+2}(X) \to \widetilde{KOA}^{n+1}(X) \to \widetilde{KA}^{n+1}(X) \to \cdots$$

where A denotes an arbitrary abelian group, and $KA = K \land SA$ (or $KOA = KO \land SA$) is the spectrum K (or KO) with coefficients in A [2, p. 200].

Corollary 1.4. Let $X \in \Pi CW$. Then

$$\widetilde{KA}_*(X) = 0$$
 if $\widetilde{KOA}_*(X) = 0$,

and

$$\widetilde{KA}^*(X) = 0$$
 if $\widetilde{KOA}^*(X) = 0$.

The next result shows that the statements of Corollary 1.4 are also valid in the opposite direction.

Proposition 1.5. Let $X \in \Pi CW$. Then

$$\widetilde{KOA}_{*}(X) = 0$$
 if $\widetilde{KA}_{*}(X) = 0$,

and

$$\widetilde{KOA}^*(X) = 0 \quad if \ \widetilde{KA}^*(X) = 0.$$

Proof. Let $E^{(n)}$, $n \in \mathbb{N}$, denote the CW-spectrum $S^0 \cup_{\eta^n} e^{n+1}$, where $\eta^n = \sum^{n-1} \eta^{n-1}$ and $\eta = \eta^1 : S^1 \to S^0$ is the (stable) Hopf map. For every $n \in \mathbb{N}$ there is a homotopy-commutative diagram of cofibrations:

In particular we have constructed cofibrations

$$E^{(2)} \rightarrow E^{(1)} \rightarrow \Sigma^2 E^{(1)},$$

$$E^{(3)} \rightarrow E^{(2)} \rightarrow \Sigma^3 E^{(1)},$$

$$E^{(4)} \rightarrow E^{(3)} \rightarrow \Sigma^4 E^{(1)}.$$

But $E^{(4)} \simeq S^0 \vee S^5$ since $\eta^4 = 0$. This follows from the fact that the 2-component of the 4-stem of the stable homotopy groups of spheres is trivial. Smashing the above cofibrations and equivalence with *KOA* we obtain long exact sequences similar to Corollary 1.3. Proposition 1.5 follows now by Theorem 1.2. Proposition 1.5 together with Corollary 1.4 imply

Theorem 1.7. Let $X \in \Pi CW$. Then for an arbitrary abelian group A

(i) $\widetilde{KA}_*(X)$ if and only if $\widetilde{KOA}_*(X) = 0$

(ii) $\widetilde{KA}^*(X) = 0$ if and only if $\widetilde{KOA}^*(X) = 0$.

By Theorem 1.7 and Proposition 1.1 we get

Corollary 1.8. Let $X \in \Pi CW$. Then for any abelian group A the localization X_{KA} with respect to KA-homology is equivalent to the localization X_{KOA} with respect to KOA-homology.

1.3

A class \mathfrak{M} of abelian groups is special in the sense of Bousfield [6], if it satisfies the following conditions:

(i) $0 \in \mathfrak{M}$.

(ii) \mathfrak{M} is closed under arbitrary direct sums.

(iii) If $A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow A_4 \rightarrow A_5$ is an exact sequence of abelian groups with A_1 , A_2 , A_4 , $A_5 \in \mathfrak{M}$, then $A_3 \in \mathfrak{M}$.

For an abelian group A, one can obtain a special class \mathfrak{M}_A by taking all G with $G \otimes A = 0 = \text{Tor}(G, A)$, or by taking all G with Hom (G, A) = 0 = Ext(G, A) [6]. We call this class \mathfrak{M}^A .

By Proposition 2.3 of [6] the only special classes of abelian groups are the J-primary torsion groups and the uniquely J-divisible groups, where J is a set of primes.

Proposition 1.9. Let F_* be a homology theory on ΠCW , and let \mathfrak{N}_{FA} denote the class of acyclic spaces of \widetilde{FA}_* for an arbitrary abelian group A. Then there exists an abelian group S such that $\mathfrak{N}_{FA} = \mathfrak{N}_{FS}$, where either $S = \mathbb{Z}[J^{-1}]$ or $S = \bigoplus_{p \in J} \mathbb{Z}/p$ for some set of primes J.

Corollary 1.10. Let A be any abelian group. Then there exists a set of primes J such that $X_{KA} = X_{KS}$ and $X_{KOA} = X_{KOS}$, where either $S = \mathbb{Z}[J^{-1}]$ or $S = \bigoplus_{p \in J} \mathbb{Z}/p$.

It follows that investigating localization with respect to real and complex K-homology with coefficients we can restrict attention to complex K-homology with coefficients in a special class of groups.

Proof of Proposition 1.9. Let \mathfrak{M}_A be the class of all abelian groups G with $G \otimes A = 0 = \operatorname{Tor}(G, A)$. We show first that there exists a group S with $\mathfrak{M}_A = \mathfrak{M}_S$, where either $S = \mathbb{Z}[J^{-1}]$ or $S = \bigoplus_{p \in J} \mathbb{Z}/p$ for some set of primes J. For this purpose we apply the universal coefficient theorem

 $0 \to \tilde{H}_n(X) \otimes A \to \tilde{H}_n(X, A) \to \operatorname{Tor}(\tilde{H}_{n-1}(X), A) \to 0.$

Hence $\tilde{H}_n(X) \in \mathfrak{M}_A$ for all $n \in \mathbb{N}$ if $X \in \mathfrak{N}_{HA}$. Conversely for any $G \in \mathfrak{M}_A$ one can find a $X \in \mathfrak{N}_{HA}$ such that $\tilde{H}_n(X) = G$. (Take e.g. the Moore space $X = M(G, n), n \ge 2$.) Therefore we get the relation

 $\mathfrak{M}_A = \{ \tilde{H}_n(X), n \in \mathbb{N} \mid X \in \mathfrak{N}_{HA} \}.$

By Theorem 4.5 of [6] there is a group S in a special class such that

i.e. $\mathfrak{M}_{HA} = \mathfrak{M}_{HS}$ $\mathfrak{M}_{A} = \mathfrak{M}_{S}.$

64

This relation together with the universal coefficient theorem [2, p. 201]

$$0 \to \widetilde{F}_n(X) \otimes A \to \widetilde{FA}_n(X) \to \operatorname{Tor}(\widetilde{F}_{n-1}(X), A) \to 0$$

implies that

 $X \in \mathfrak{N}_{FA}$ if and only if $X \in \mathfrak{N}_{FS}$.

With regard to the acyclic spaces of a cohomology \widetilde{FA}^* , we can deduce a similar result if there exists a homology E_* and a universal coefficient theorem

$$0 \to \operatorname{Ext}(E_{n-1}(X), A) \to \operatorname{FA}^n(X) \to \operatorname{Hom}(E_n(X), A) \to 0$$

which is valid for any $X \in \Pi CW$ and any abelian group A. It is known [4], [14], that besides ordinary cohomology there are universal coefficient theorems in real and complex K-Theory:

$$0 \to \operatorname{Ext}(KSp_{n-1}(X), A) \to KOA^{n}(X) \to \operatorname{Hom}(KSp_{n}(X), A) \to 0$$

where $n \in \mathbb{Z}/8$ and $KSp = \Sigma^4 KO$ and

$$0 \rightarrow \operatorname{Ext}(K_{n-1}(X), A) \rightarrow KA^{n}(X) \rightarrow \operatorname{Hom}(K_{n}(X), A) \rightarrow 0$$

where $n \in \mathbb{Z}/2$.

Proposition 1.11. Let F be either H,K or KO and let \mathfrak{N}^{FA} denote the class of acyclic spaces of \widetilde{FA}^* . Then there exists a set of primes J such that $\mathfrak{N}^{FA} = \mathfrak{N}^{FS}$, where either $S = \mathbb{Z}[J^{-1}]$ or $S = \bigoplus_{p \in J} \mathbb{Z}/p$.

The proof is completely analogous to the proof of Proposition 1.9. In general, in the "reductions" $\mathfrak{N}_{FA} = \mathfrak{N}_{FS_1}$ and $\mathfrak{N}^{FA} = \mathfrak{N}^{FS_2}$ the groups S_1 and S_2 are not the same, as the following example may show:

Example. Let *F* be either *H*,*K* or *KO* and let $A = \mathbb{Q}/\mathbb{Z}$. Then $\mathfrak{N}^{FA} = \mathfrak{N}^{F\mathbb{Z}} = \mathfrak{N}^{F}$, but $\mathfrak{N}_{FA} = \mathfrak{N}_{FS}$, where $S = \bigoplus_{p \in P} \mathbb{Z}/p$. If however *A* itself is special i.e. A = S, where either $S = \mathbb{Z}[J^{-1}]$ or $S = \bigoplus_{p \in J} \mathbb{Z}/p$ for some set of primes *J*, then we have

Proposition 1.12. Let F be either H,K or KO and let A = S be a special group. Then $\mathfrak{N}_{FS} = \mathfrak{N}^{FS}$.

This follows from the fact that $\mathfrak{M}_{S} = \mathfrak{M}^{S}$, if S is special.

Corollary 1.13. Let F be either H,K or KO and let S be a special group. Then $f: X \to Y \in \Pi CW$ is a FS_{*}-isomorphism if and only if it is a FS^{*}-isomorphism. We therefore call f in this case just a FS-isomorphism.

2. Some examples of K-local spaces

In [11] Mislin has given several examples of K-local spaces. In particular the representing spaces of a theory \widetilde{EA}^* are E-local for an arbitrary abelian group A, if E is a ring spectrum [11, Theorem 1.11]. From this result and Corollary 1.9 we immediately deduce

Proposition 2.1. Let A be any abelian group. Then the representing spaces of \widetilde{KOA}^* are K-local.

From the results in [9] we see that any *H*-local space can be built up from Eilenberg-Mac Lane Spaces K(A, n). Proposition 2.1 gives us nontrivial examples of *K*-local spaces which can be built up from the spaces *U* and *BU*. In this way we can obtain $BO \times BSp$ as a "two stage Postnikov system" with *U* and *BU* as fibres. For this we use the fibre sequences [3]

$$U \to C^0 \to BU \xrightarrow{\Psi} BU$$

and

$$BU \rightarrow BO \times BSp \rightarrow C^{0} \rightarrow U.$$

Thereby ψ denotes the operation $\psi^1 - \psi^{-1}$ and C^0 is the representing space of selfconjugate K-Theory \widetilde{KC}^0 . We then obtain a diagram

Proposition 2.2. BSO and Spin are K-local, but BSpin_K = BSO.

Proof. BSO is the universal covering space of BO. Hence there is a fibration

 $BSO \rightarrow BO \rightarrow \mathbb{R}P^{\infty}$

which is trivial since it has a section and BO is a *H*-space. Hence BSO (and $\mathbb{R}P^{\infty}$) are factors of the *K*-local space *BO* (Proposition 2.1) and therefore *K*-local.

Spin is the universal covering of SO. From the fibration

$$\operatorname{Spin}^{\pi} \to SO \to \mathbb{R}P^{\infty}$$

we deduce, that Spin is K-local, since $SO = \Omega BSO$ is K-local. For the third assertion we need the fact that $B\pi : B$ Spin $\rightarrow BSO$ is a K-isomorphism. As we see from a Serre spectral sequence argument, $B\pi$ is a HQ-isomorphism and a $K\mathbb{Z}/p$ -isomorphism for p any odd prime, and a result of Snaith [13] tells, that $B\pi$ is a $K\mathbb{Z}/2$ -isomorphism.

Proposition 2.3. All homogeneous spaces obtained from the stable classical groups O, SO, SU, Sp and all loop spaces of such are K-local.

Proof. For any pair $G \subseteq H$ of topological groups there is a fibration

$$H/G \rightarrow B_G \rightarrow B_H$$

If B_G and B_H are K-local, then also H/G is K-local. From Propositions 2.1 and 2.2 and [11] it follows, that the classifying spaces of the stable groups O, U, SO, SU and Sp are K-local.

3. Fibre squares

It has been shown in [11], that the localization X_E with respect to a homology E_* can be constructed out of rational and mod p information quite in a way as in the case E = H. Let $\mathbb{Z}_{(p)}$ denote the integers localized at p and define

$$\check{X}_E = \prod_{p \in P} X_{E\mathbb{Z}_{(p)}}, \qquad \hat{X}_E = \prod_{p \in P} X_{E\mathbb{Z}/p}$$

Then the following two squares are fibre squares, if the spaces involved are all 1-connected [11, Proposition 1.9]:

For E = KR, R a subring of the rationals or $R = \mathbb{Z}/p$, p a prime, one has [11] that X_{KR} is 1-connected if X is 1-connected. Hence in this case the diagrams (3.1) are fibre squares. In the next theorem we generalize this statement to spaces with a finite fundamental group:

Theorem 3.1. Let $X \in \Pi CW$ be a space with a finite fundamental group. Then the digrams

are fibre squares.

To prove this theorem we apply some methods of [10]. First we need the following Proposition and its Corollary. We can assume X to be connected.

Proposition 3.2. Let $X \in \Pi CW$ and let R be a subring of the rationals or $R = \mathbb{Z}/p$, p a prime. Then the KR-localization can: $X_{HR} \rightarrow X_{KR}$ induces an epimorphism in the fundamental groups.

Proof. can: $X_{HR} \to X_{KR}$ is a *KR*-isomorphism. Hence by [11, Theorem 2.6] can_{*}: $H_1(X_{HR}, R) \to H_1(X_{KR}, R)$ is an isomorphism. Since X_{KR} is *HR*-local, we can apply the generalized Whitehead theorem [7] and we get an epimorphism $\pi_1(X_{HR}) \to \pi_1(X_{KR})$.

Corollary 3.3. Let $X \in \Pi CW$ be a space whose fundamental group is HR-local. Then $\operatorname{can}_*: \pi_1(X) \to \pi_1(X_{KR})$ is an epimorphism.

This follows directly from the factorization [11]

and the relation $\pi_1(X_{HR}) = \pi_1(X)_{HR} = \pi_1(X)$.

Proof of Theorem 3.1. Since the proofs for the two squares are similar, we consider only the second square. Then we have the diagram

where W is the (homotopy theoretic) pullback. By [8] W is K-local. It is therefore enough to show that φ is a K-isomorphism. For this purpose we show that φ is a $K\mathbb{Q}$ -isomorphism and a $K\mathbb{Z}/p$ -isomorphism for any prime p.

Since $\pi_1(X)$ is finite, Corollary 3.3 implies that $X_{KQ} = X_{HQ}$ and $(\hat{X}_K)_{KQ} = (\hat{X}_K)_{HQ}$ are 1-connected.

Let F be the fibre of the map $\alpha: X_{KQ} \to (\hat{X}_K)_{KQ}$. F is also the fibre of the map δ . In addition F is connected and Q-local. By Lemma 1:13 of [10] $\gamma: W \to X_{KQ}$ is a HQ-isomorphism since this is the case for β . The map β' is also a HQ-isomorphism and hence $\varphi: X_K \to W$ is a HQ-isomorphism. This immediately implies that φ is a KQ-isomorphism. We now show that $\alpha': X_K \to \hat{X}_K$ is a $K\mathbb{Z}/p$ -isomorphism for any prime p. For this we consider the projection

$$\pi: X_K \to X_{K\mathbb{Z}/p}$$

with the fibre $F' = \prod_{q \neq p} X_{K\mathbb{Z}/q}$. By Corollary 3.3 $\pi_1(F')$ is finite and by Lemma 7.5 of [8] even nilpotent. $X_{K\mathbb{Z}/q}$ is $H\mathbb{Z}/q$ -local. Hence the homotopy groups of $X_{K\mathbb{Z}/q}$ are uniquely s-divisible for any prime $s \neq q$, [10, Lemma 1.24]. It follows that the homotopy groups of F' are uniquely p-divisible. By Lemma 1.26 of [10] the homology groups of F' are as well uniquely p-divisible, and by [10, Lemma 1.27] the groups $\tilde{H}_*(F', \mathbb{Z}/p)$ vanish. By a mod-p Serre spectral sequence argument $\pi_*: H_*(\hat{X}_K, \mathbb{Z}/p) \to H_*(X_{K\mathbb{Z}/p}, \mathbb{Z}/p)$ is an isomorphism.

Since $\alpha'_p: X_K \to X_{K\mathbb{Z}/p}$ is a $K\mathbb{Z}/p$ -isomorphism, the diagram

implies, that α' is a $K\mathbb{Z}/p$ -isomorphism for any prime p. By [10, Lemma 1.13] $\delta: W \to \hat{X}_K$ is a $H\mathbb{Z}/p$ -isomorphism for any p, since $\alpha: X_{KQ} \to (\hat{X}_K)_{KQ}$ is a $H\mathbb{Z}/p$ -isomorphism for any p. Therefore $\varphi: X_K \to W$ is a $K\mathbb{Z}/p$ -isomorphism for any prime p.

Corollary 3.4. Let $X \in \Pi CW$ be a space with a finite fundamental group. Then

$$(X_K)_{H\mathbb{Z}_{(p)}} = X_{K\mathbb{Z}_{(p)}}$$
 and $(X_K)_{H\mathbb{Z}/p} = X_{K\mathbb{Z}/p}$.

Proof. We consider the diagram

W. Meier

From the proof of Theorem 3.1 it follows, that α' is a $H\mathbb{Z}/p$ -isomorphism for any p, since $\delta: W \to \hat{X}_K$ is. Therefore α'_p and ε are $H\mathbb{Z}/p$ -isomorphisms for any p. Since $X_{K\mathbb{Z}/p}$ is $H\mathbb{Z}/p$ -local, the map ε is an equivalence. The first statement is proved similarly.

Corollary 3.5. Let A be a finite abelian group. Then

 $K(A, 1)_{K\mathbb{Z}_{(p)}} = K(A \otimes \mathbb{Z}_{(p)}, 1)$ and $K(A, 1)_{K\mathbb{Z}/p} = K(A \otimes \mathbb{Z}/p, 1).$

As an application of Theorem 3.1 and Corollary 3.4 we compute the homotopy groups of $BU[2n]_K$, the K-localization of the (2n-1)-connective coverings of BU.

Proposition 3.6. Let X = BU[2n], $n \ge 2$. Then

(i)
$$X_{K\mathbb{Z}/p} = BSU_{H\mathbb{Z}/p}$$

(ii) $\pi_i(X_K) = \begin{cases} \pi_i BU & i \ge 2n, \\ 0 & i \ge 2n-1, \\ 0 & i < 2n, i \text{ even}, \\ \mathbb{Q}/\mathbb{Z} & 5 \le i < 2n-1, i \text{ odd}, \\ 0 & 0 \le i \le 3. \end{cases}$

Similar results are valid for BO[n], $n \ge 2$.

Proof. The first assertion follows from [11, Corollary 2.3] and from Corollary 3.4 (or see [11]). For the computation of $\pi_i(X_K)$ we use the Mayer-Vietoris sequence for the homotopy groups of the fibre square (Theorem 3.1 or [11])

$$\cdots \to \pi_{i+1} \hat{X}_K \oplus \pi_{i+1} X_{K\mathbb{Q}} \to \pi_{i+1} (\hat{X}_K)_{K\mathbb{Q}} \to \pi_i X_K \to \pi_i \hat{X}_K \\ \oplus \pi_i X_{K\mathbb{Q}} \to \pi_i (\hat{X}_K)_{K\mathbb{Q}} \to \cdots$$

From this sequence we can immediately read off the groups

$$\pi_i X_K = \pi_i BU, \quad i \ge 2n.$$

$$\pi_{2n-1} X_K = 0.$$

$$\pi_i X_K = \ker(\hat{\mathbb{Z}} \to \hat{\mathbb{Z}} \otimes \mathbb{Q}) = 0, \quad \text{if } i < 2n, i \text{ even.}$$

$$\pi_i X_K = \operatorname{coker}(\hat{\mathbb{Z}} \to \hat{\mathbb{Z}} \otimes \mathbb{Q}) = \mathbb{Q}/\mathbb{Z}, \quad \text{if } 5 \le i < 2n-1, i \text{ odd.}$$

$$\pi_i X_K = 0, \quad \text{if } 0 \le i \le 3.$$

70

Remark. The groups $\pi_i(X_K)$ of the form \mathbb{Q}/\mathbb{Z} effect the periodicity in the homotopy groups $\pi_i(\mathbb{Z}/p, X_K)$ [11].

References

- [1] J.F. Adams, On the groups J(X) IV, Topology 5 (1966) 21-71.
- [2] J.F. Adams, Stable homotopy and generalized homology (The University of Chicago Press, Chicago, 1974).
- [3] D.W. Anderson, Thesis (unpublished), Berkeley (1964).
- [4] D.W. Anderson, Universal coefficient theorems for K-theory (preprint).
- [5] D.W. Anderson and L. Hodgkin, The K-theory of Eilenberg-Mac Lane complexes, Topology 7 (1968) 317-329.
- [6] A.K. Bousfield, Types of acyclicity, J. Pure Appl. Algebra 4 (1974) 293-298.
- [7] A. K. Bousfield, Homological localizations of spaces, groups and π-modules, in: Localization in Group Theory and Homotopy Theory, Lecture Notes in Math 418 (Springer-Verlag, Berlin, 1974).
- [8] A. K. Bousfield, The localization of spaces with respect to homology, Topology, 14 (1975) 133-150.
- [9] E. Dror and W. G. Dwyer, A long homology localization tower, Comm. Math. Helv. 52 (1977) 185-210.
- [10] E. Dror, W. G. Dwyer and D. Kan, Arithmetic spaces (preprint).
- [11] G. Mislin, Localization with respect to K-theory, J. Pure Appl. Algebra 10 (1977) 201-213.
- [12] R.M. Switzer, Algebraic Topology-Homotopy and Homology, (Springer-Verlag, Berlin-Heidelberg-New York, 1975).
- [13] V.P. Snaith, Topics in K-theory, Lecture Notes in Math. 490 (Springer-Verlag, Berlin-Heidelberg-New York, 1975).
- [14] Z. Yosimura, Universal coefficient sequences for Cohomology theories of CW-spectra, Osaka J. Math. 12 (1975) 305-323.