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a b s t r a c t

In the context of designing a scalable overlay network to support decentralized topic-based
pub/sub communication, the Minimum Topic-Connected Overlay problem (Min-TCO in
short) has been investigated: given a set of t topics and a collection of n users together with
the lists of topics they are interested in, the aim is to connect these users to a network by a
minimumnumber of edges such that every graph induced by users interested in a common
topic is connected. It is known thatMin-TCO isN P -hard and approximablewithinO(log t)
in polynomial time.

In this paper, we further investigate the problem and some of its special instances. We
give various hardness results for instances where the number of topics in which a user is
interested in is bounded by a constant, and also for the instances where the number of
users interested in a common topic is a constant. For the latter case, we present a first
constant approximation algorithm. We also present some polynomial-time algorithms for
very restricted instances of Min-TCO.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the spreading of social networks and other services based on sharing content has allowed the development of
many-to-many communication, often supported by these services. Publishers publish information through a logical channel
that is consumed by subscribed users. This environment is often modeled by publish/subscribe (pub/sub) systems that can
be classified into two categories. When the channels are associated with a collection of attributes and the messages are
delivered to a subscriber only if their attributes match user-defined constraints, we speak about content-based pub/sub
systems. Each channel in topic-based pub/sub systems is associated with a single topic and the messages are distributed to
the users via channels by his/her topic selection. There are numerous implementations of pub/sub systems; for details see
[1,4,6,7,21,22,24].

In our paper, we focus on topic-based peer-to-peer pub/sub systems. In such a system, subscribers interested in a
particular topic have to be connected without the use of intermediate agents (such as servers). Many aspects of such a
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system can be studied (see [9,19]). Minimizing the diameter of the overlay network canminimize the overall time inwhich a
message is distributed to all the subscribers.Whenminimizing the (average) degree of nodes in the network, the subscribers
need to maintain a smaller number of connections. In this paper, we study the minimization of the overall number of
connections in the system. A small number of connections may be necessary due to maintenance requirements or may
be helpful since thus information aggregated into a single message can be broadcasted to the network and thus amortize
the head count of otherwise small messages.

We study here the hardness of Minimum Topic-Connected Overlay (Min-TCO) which was studied in different scenarios
in [2,9,16,17]. InMin-TCO, we are given a collection of users, a set of topics, and a user-interest assignment, and we want to
connect users in an overlay networkG such that all users interested in a common topic are connected and the overall number
of edges in G is minimal. The hardness of the problem was studied in [9,2]. In [9], the inapproximability by a constant was
proved and a logarithmic-factor approximation algorithm was presented. In [2], the lower bound on the approximability of
Min-TCO was improved to Ω(log(n)), where n is the number of users.

Moreover, we focus here on special instances of Min-TCO. We study the case where, for each topic, there is a constant
number of users interested in it. We also consider the case where the number of topics in which any user is interested is
bounded by a constant. We believe that such restrictions on the instances have wide practical applications such as when a
publisher has a limited number of slots for users or the user’s application limits the number of topics that he/she can follow.

In the study of the general Min-TCO, we extend the method presented in [9] and design an approximation-preserving
reduction from instances of the minimum hitting set problem to instances of Min-TCO. This reduction does not only prove
a similar lower bound as in [2], but also shows thatMin-TCO is LOGAPX-complete and thus, concerning approximability,
equivalent with such a famous problem as the minimum set cover. As our reduction is not blowing up the number of users
interested in a common topic, the reduction is also an approximation-preserving reduction for the case where the number
of users interested in a common topic is limited to a constant. Furthermore, we design a one-to-one reduction of these
instances to special instances of the hitting set problem. As these special instances of the hitting set problem are constantly
approximable, we immediately obtain the first approximation algorithm for our special instances. This, together with our
approximation preserving reduction, shows that the restriction of Min-TCO to such special instances is APX-complete.
Finally, we present the first nontrivial parameterized algorithm for the instances of Min-TCO for which there is a small
constant d such that for each topic the number of users interested in it is bounded by d. This algorithm is parameterized
with respect to the size of the output.

For the case where the number of topics of Min-TCO is bounded from above by (1 + ε(n))−1
· log log n, for ε(n) ≥

3/2 log log log n
log log n−3/2 log log log n (n is the number of users), we present a polynomial-time algorithm that computes the optimal solution.

In the study of instances where the number of topics any user is interested in is restricted to a constant, we show that, if
this number is at most 6,Min-TCO cannot be approximatedwithin a factor of 694/693 in polynomial time, unlessP = N P ,
even if any pair of two users is interested in at most three common topics.

The paper is organized as follows. Section 2 is devoted to the preliminaries and a summary of known results. The hardness,
approximation results and the parameterized algorithm for instances of Min-TCO, where we limit the number of users
interested in a common topic by a constant, are discussed in Section 3. This section also provides the discussion about
LOGAPX-completeness of the general Min-TCO. The results related to the instances of Min-TCO, where the number of
topics that each user is interested in is constant, are presented in Section 4. Section 5 contains a polynomial-time algorithm
that solves Min-TCO when the number of topics is small. The conclusion is provided in Section 6.

2. Preliminaries

In this section, we define basic notions used throughout the paper. We assume that the reader is familiar with notions
of graph theory. Let G = (V , E) be an undirected graph, where V is the set of vertices and E is the set of edges. Let V (G)
and E(G) denote the set of vertices and the set of edges of G, respectively. We denote by E[S] the set of edges of G in the
subgraph induced by the vertices from S ⊆ V , i. e., E[S] = {{u, v} ∈ E | u, v ∈ S}. The graph induced by S ⊆ V is denoted
as G[S] = (S, E[S]). By N[v] we denote the closed neighborhood of vertex v, i. e., N[v] = {u ∈ V | {u, v} ∈ E} ∪ {v}. A graph
G is called connected, if, for any u1, uℓ ∈ V , there exists a path (u1, u2, . . . , uℓ) such that {ui, ui+1} ∈ E, for all 1 ≤ i < ℓ. The
set of all possible edges between vertices in S is denoted as ES = {{u, v} | u, v ∈ S ∧ u ≠ v}.

Let x be an instance of an optimization problem (in this paper, Min-TCO, Min-VC or Min-HS), then by |x| we denote the
size of this instance, i. e., the number of vertices and topics of an instance of Min-TCO and the number of elements and sets
of an instance of Min-HS. For a set S, |S| denotes the size of the set, i. e., the number of its elements.

The set of users or nodes of our network is denoted by U = {u1, u2, . . . , un}. The topics are T = {t1, t2, . . . , tm}. Each
user subscribes to several topics. This relation is expressed by the user interest function INT : U → 2T . The set of all vertices
of U interested in a topic t is denoted by Ut . For instance, if user u ∈ U is interested in topics t1, t3 and t4, then we have
INT(u) = {t1, t3, t4} and u ∈ Ut1 ,Ut3 ,Ut4 . For a given set of usersU , a set of topics T , and an interest function INT, we say that
a graph G = (U, E) with E ⊆ EU is t-topic-connected, for t ∈ T , if the subgraph G[Ut ] is connected. We call the graph topic-
connected if it is t-topic-connected for each topic t ∈ T . Note that the topic-connectedness property implies that a message
published for topic t is transmitted to all users interested in this topic without using non-interested users as intermediate
nodes.
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The most general problem that we study in this paper is calledMinimum Topic Connected Overlay:
Problem 1. Min-TCO is the following optimization problem:

Input: A set of users U , a set of topics T , and an user interest function INT : U → 2T .
Feasible solutions: Any set of edges E ⊆ EU such that the graph (U, E) is topic-connected.
Costs: Size of E.
Goal: Minimization.
In this paper we study also some of the special instances of the problem Min-TCO. We restrict the number of users that

are interested in a common topic, i. e., the size of Ut , to a constant. We also study the instances where each user is interested
in a constant number of topics. The definitions necessary for these special instances are summarized in the beginning of the
corresponding section.

We refer here to the well-knownminimum hitting set problem (Min-HS) andminimum set cover problem (Min-SC). InMin-
HS, we are given a system of sets S = {S1, . . . , Sm} on n elements X = {x1, . . . , xn} (i. e., Sj ⊆ X). A feasible solution of this
problem is a set H ⊆ X , such that Sj ∩H ≠ ∅ for all j. Our goal is to minimize the size of H . TheMin-SC is the dual problem to
Min-HS. In this problem, we are given a system of sets S = {S1, . . . , Sm} on n elements X = {x1, . . . , xn}, a feasible solution
is a set S ⊆ S of sets such that for all i there exists j such that xi ∈ Sj ∈ S and the goal is the minimization of the size of S.

There are many modifications and subproblems of the hitting set problem that are intensively studied. In our paper, we
refer to the d-HS problem – a restriction of Min-HS to instances where |Si| ≤ d for all i.

The Min-HS and Min-SC is the same problem viewed from different perspectives [3], thus all the results concerning
approximability of Min-SC carry over to Min-HS (but may differ by a constant factor). From the facts known about Min-
SC it easily follows that Min-HS is LOGAPX-complete [10] and d-HS is APX-complete [20]. There is a well known d-
approximation algorithm for d-HS [5]. Following from [12], it can be approximated with ratio d −

(d−1) ln ln n
ln n . Furthermore,

d-HS is N P -hard to approximate within a factor (d − 1 − ε) due to [11] and it is not approximable within a factor better
than d, unless the unique games conjecture fails [15].

We use the standard definitions from complexity theory (for details see [13]):

• For N PO problems in the class PTAS, there exists an algorithm that, for arbitrary ε > 0, produces a solution in time
polynomial in the input size (but possibly exponential in 1/ε) that is within a factor (1 + ε) from optimal.

• TheN PO problems in the classAPX are approximable by some constant-factor approximation algorithm inpolynomial
time.

• ForN PO problems in the classLOGAPX, there exists a polynomial-time logarithmic-factor approximation algorithm.

Thus

PTAS ⊆ APX ⊆ LOGAPX.

Definition 1. Let A and B be two N PO minimization problems. Let IA and IB be the sets of the instances of A and B,
respectively. Let SA(x) and SB(y) be the sets of the feasible solutions and let costA(x) and costB(y) be polynomially computable
measures of the instances x ∈ IA and y ∈ IB, respectively. We say that A is AP-reducible to B, if there exist functions f and g
and a constant α > 0 such that:
1. For any x ∈ IA and any ε > 0, f (x, ε) ∈ IB.
2. For any x ∈ IA, for any ε > 0, and any y ∈ SB(f (x, ε)), g(x, y, ε) ∈ SA(x).
3. The functions f and g are computable in polynomial time with respect to the sizes of instances x and y, for any fixed ε.
4. The time complexity of computing f and g is nonincreasing with ε for all fixed instances of size |x| and |y|.
5. For any x ∈ IA, for any ε > 0, and for any y ∈ SB(f (x, ε))

costB(y)
min{costB(z) | z ∈ SB(f (x, ε))}

≤ 1 + ε implies

costA(g(x, y, ε))
min{costA(z) | z ∈ SA(x)}

≤ 1 + α · ε.

3. Results for Min-TCO when the number of users interested in a common topic is a constant

In this whole section, we denote by a triple (U, T , INT) an instance of Min-TCO. We focus here on the case where the
number of users that share a topic t , i. e., maxt∈T |Ut |, is bounded.

We present here a lower bound on the approximability, a constant approximation algorithm and anAPX-completeness
proof for these restricted instances of Min-TCO.

3.1. Hardness results

It is easy to see that, if maxt∈T |Ut | ≤ 2, then Min-TCO can be solved in linear time, because two users sharing a topic t
should be directly connected by an edge, which is the unique minimum solution.
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Theorem 1. If maxt∈T |Ut | ≤ 2, then Min-TCO can be solved in linear time.

We extend the methods from [9] and design an AP-reduction from d-HS to Min-TCO, where maxt∈T |Ut | ≤ d + 1.

Theorem 2. For arbitrary d ≥ 2, there exists an AP-reduction from d-HS to Min-TCO, wheremaxt∈T |Ut | ≤ d + 1.

Proof. Let IHS = (X, S) be an instance of d-HS and let ε > 0 be arbitrary. We omit the subscript in the functions costd-HS
and costMin-TCO as they are unambiguous. For the instance IHS, we create an instance ITCO = (U, T , INT) of Min-TCO with
maxt∈T |Ut | ≤ d + 1, with |X | users that correspond to elements of X and k = |X |

2
·
 1+ε

ε


new special users pi, as follows

(the function f in the definition of AP-reduction).

U = X ∪ {pi | pi /∈ X ∧ 1 ≤ i ≤ k},
T = {t iSj | Sj ∈ S ∧ 1 ≤ i ≤ k},

INT(x) =


{t iSj | x ∈ Sj ∧ Sj ∈ S ∧ 1 ≤ i ≤ k} for x ∈ X
{t iSj | Sj ∈ S} for x = pi.

Observe that the instance contains k · |S| topics and its size is polynomial in the size of IHS. The users interested in a topic
t iSj (Sj ∈ S) are exactly the elements that are members of set Sj in d-HS plus a special user pi (1 ≤ i ≤ k). Let SolTCO be a
feasible solution of Min-TCO on instance ITCO. We partition the solution into levels. Level i is a set Li of the edges of SolTCO
that are incident with the special user pi. In addition, we denote by L0 the set of edges of SolTCO that are not incident with
any special user. Therefore, SolTCO =

k
i=0 Li and Li ∩ Lj = ∅ (0 ≤ i < j ≤ k).

We claim that, for any Li (1 ≤ i ≤ k), the set of the non-special users incident with edges of Li is a feasible solution of the
instance IHS of d-HS. This is true since, if a set Sj ∈ S is not hit, none of the edges {x, pi} (x ∈ Sj) is in Li. But then the users
interested in topic t iSj are not interconnected as user pi is disconnected.

Let j be chosen such that Lj is the smallest of all sets Li, for 1 ≤ i ≤ k. We construct SolHS by picking all the non-special
users that are incident to some edge from Lj (the function g in the definition of AP-reduction). Denote an optimal solution
of d-HS and Min-TCO for IHS and ITCO by OptHS and OptTCO, respectively.

If we knew OptHS, we would be able to construct a feasible solution ofMin-TCO on ITCO as follows. First, we pick the edges
{x, pi}, x ∈ OptHS, for all special users pi, and include them in the solution. This way, for any topic t ∈ INT(pi), we connect
pi to some element of X that is interested in t , too. To have a feasible solution, we could miss some edges between some
elements of X . So, we pick all the edges between elements from X . The feasible solution of Min-TCO on ITCO that we obtain
has roughly cost

k · cost(OptHS) + |X |
2

≥ cost(OptTCO).

On the other hand, if we replace all levels Li (1 ≤ i ≤ k) by level Lj in SolTCO, we still have a feasible solution of Min-TCO
on ITCO, with cost possibly smaller. Thus

k · cost(SolHS) ≤ cost(SolTCO).

We use these two inequalities to bound the cost of SolHS:

k · cost(SolHS) ≤
cost(SolTCO)
cost(OptTCO)

·

k · cost(OptHS) + |X |

2
and thus

cost(SolHS)
cost(OptHS)

≤
cost(SolTCO)
cost(OptTCO)

·


1 +

|X |
2

k


.

If cost(SolTCO)/cost(OptTCO) ≤ 1 + ε and α := 2, then we have

cost(SolHS)
cost(OptHS)

≤ (1 + ε) ·


1 +

|X |
2

k


≤ (1 + ε) ·


1 +

ε

1 + ε


= 1 + 2ε.

It is easy to see that the five conditions of Definition 1 are satisfied and thus we have an AP-reduction. �

Corollary 1. For any δ > 0 and polynomial-time α-approximation algorithm ofMin-TCOwithmaxt∈T |Ut | ≤ d+1, there exists
a polynomial-time (α + δ)-approximation algorithm of d-HS.

Proof. The approximation algorithm for d-HS would use Theorem 2 with k := |X |
2
· ⌈

α
δ
⌉. �

Our theorem also implies the following negative results on approximability. One of them holds if unique games conjecture
is true. This conjecture is discussed, for example, in [23] and was introduced by Khot in [14].
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Corollary 2. Min-TCO with maxt∈T |Ut | ≤ d

• is N P -hard to approximate within a factor of (d − 2 − ε), for d ≥ 4 and any ε > 0.
• admits no polynomial-time (d − 1 − ε)-approximation algorithm, for d ≥ 3 and any ε > 0, unless the unique games

conjecture fails.

Proof. Otherwise, the reduction described in the proof of Theorem 2 would imply an approximation algorithm for d-HS
with a ratio better than d − 1 and d respectively. This would directly contradict theorems proven in [11,15]. �

The following corollary is an improvement of the already known results of [9] where an O(log |T |)-approximation
algorithm is presented, and of [2] where a lower bound of Ω(log(n)) on the approximability is shown. We close the gap
by designing a reduction that can reduce any problem from classLOGAPX toMin-TCO preserving the approximation ratio
up to a constant.

Corollary 3. Min-TCO is LOGAPX-complete.

Proof. Min-TCO is in the class LOGAPX since it admits a logarithmic approximation algorithm as presented in [9]. Our
reduction from the proof of Theorem 2 is independent of d and thus an AP-reduction from LOGAPX-complete Min-HS to
Min-TCO. �

3.2. A constant approximation algorithm

In this subsection, we present a reduction fromMin-TCOwithmaxt∈T |Ut | ≤ d toO(d2)-HS thus showing that there exists
a constant approximation algorithm for Min-TCO with maxt∈T |Ut | ≤ d as d-HS is constantly approximable. Moreover, the
constant approximation algorithm classifies this problem to be a member of the class APX and thus, since the APX-
hardness was proven in Section 3.1, we conclude that Min-TCO with maxt∈T |Ut | ≤ d is APX-complete.

Recall that a partition of vertices V in graph G is a pair (A, B), such that A ⊆ V , B ⊆ V , A ∩ B = ∅, and A ∪ B = V .

Definition 2. Let V = {v1, . . . , vn} be a set of vertices and for every partition (Ai, Bi) of V , let Ei = {{u, v} | u ∈ Ai ∧ v ∈ Bi}.
Thenwe call the system S = {E1, . . . , Em} of all sets of edges between vertices of all the partitions of V a characteristic system
of edges on V . In other words, S contains all sets of edges that form a maximum bipartite graph on V .

In the following lemma, we show the basic properties of characteristic systems of edges.

Lemma 1. Let S = {E1, . . . , Em} be a characteristic system of edges on the set V of n vertices. Then

1. m = 2n−1
− 1.

2. |Ej| ≤ ⌊n/2⌋ · ⌈n/2⌉, for all j, 1 ≤ j ≤ m.
3. Any two sets Ei and Ej differ in at least n − 1 elements (1 ≤ i < j ≤ m).
4. H ⊆ EV is a hitting set of (EV , S) if and only if (V ,H) is connected.
5. The set S is minimal with respect to set inclusion—no proper subset of S has property 4.

Proof. Observe that the complementary graph (V , Fj) (with Fj = EV \Ej) contains two complete graphs—one on the vertices
of Aj and other on the vertices of Bj, and it is a maximal graph (in the number of edges) that is not connected. We use this
observation to prove the last two parts of our lemma.

Part 1: We count the different partitions (Aj, Bj) of the vertices V as each such partition determines a different set Ej of
edges. There are 2n ways how to distribute vertices from V into partitions. We have to subtract 2 possibilities for the cases
where one of Aj or Bj is empty. Each of the other possibilities is counted twice – once when the vertices are present in Aj and
once when they are present in Bj.

Part 2: Let the two sets of vertices Aj and Bj of a partition contain k > 0 and n − k vertices. Then the size of Ej is
k · (n − k). This function reaches its maximum for k = n/2 and thus we can conclude that, for all j, 1 ≤ j ≤ m, we
have |Ej| ≤ ⌊n/2⌋ · (n − ⌊n/2⌋) = ⌊n/2⌋ · ⌈n/2⌉.

Part 3: Let us consider two different partitions (Ai, Bi) and (Aj, Bj) of the vertices V . The sets Ai and Aj must differ by at
least one vertex. W.l.o.g., let the vertex v ∈ Ai and v /∈ Aj. Then, due to the transition of the vertex v from Ai to Bj, there
are |Bi| edges that are in Ei but cannot be in Ej, and there are |Ai| − 1 edges that are not in Ei, but are in Ej. Thus, the overall
difference in the number of elements between the sets Ei and Ej is at least |Ai| + |Bi| − 1 = n − 1.

Part 4: First, we prove the if case. Suppose that H is a hitting set, but (V ,H) is not connected. Since S contains
complements of all maximal sets of edges that induce a disconnected graph, there exists j (1 ≤ j ≤ m) such that H ⊆ Fj. But
then, since Ej is complementary to Fj, it follows that Ej ∩ H = ∅. Thus, H cannot be a hitting set as Ej is not hit.

For the only-if case, suppose that (V ,H) is connected, but H is not a hitting set of (EV , S). Then there exists j such that
Ej is not hit by H and thus H ⊆ Fj. Yet in such a case, by our assumption, (V , Fj) is not connected and thus (V ,H) cannot be
connected as well.

Part 5: Let S′
= S \ Ej, and let


EV , S′


be an instance of Min-HS. Then we claim that Fj is a hitting set of (EV , S′). First,

observe that Fj ≠ ∅ since Ej cannot contain all the edges. Moreover, for every Ei ∈ S′, there exists e ∈ Ei such that e /∈ Ej.
Then e ∈ EV \ Ej = Fj and thus Fj is a hitting set. However, by the definition of Fj, the graph (V , Fj) cannot be connected and
thus, the if case of Part 4 does not hold. �
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Now we are ready to present a simple one-to-one reduction of Min-TCO with maxt∈T |Ut | ≤ d to O(d2)-HS. The core
concept is to construct a system of sets that has to be hit in O(d2)-HS as a union over all the topics of the characteristic
systems of edges on the vertices interested in the topic.

Theorem 3. There exists a one-to-one reduction of instances of Min-TCO with maxt∈T |Ut | ≤ d to instance of O(d2)-HS.

Proof. Let ITCO = (U, T , INT) be an instance of Min-TCO with maxt∈T |Ut | ≤ d. For each topic t ∈ T we define St to be the
characteristic system of edges on vertices in Ut . Note that Lemma 1 holds for each St with n := d. We construct an O(d2)-HS
instance IHS = (X, S) as follows:

X = {{u, v} | u, v ∈ U ∧ u ≠ v}

S =


t∈T

St .

The system contains

|U|

2


elements and at most |T | ·


2d−1

− 1

sets in S and thus has a size polynomial in |ITCO|. Obviously,

the construction of IHS takes time polynomial in |ITCO|, too. We now show that a feasible solution of ITCO corresponds to a
feasible solution of IHS and vice versa.

First, consider a feasible solution SolHS of IHS and a topic t ∈ T . Due to our construction, the system S contains the
characteristic system St on vertices Ut . Therefore, by Lemma 1 Part 4 and the fact that SolHS is a hitting set, we know that
the graph induced by the edges in SolHS on vertices Ut is connected.

Now, consider a feasible solution SolTCO of ITCO. By the following argument, we can easily see that SolTCO hits all the sets
in S. Let P ∈ S be a set that is not hit by SolTCO. Then there exists t such that P ∈ St and thus a set of the characteristic
systemwas not hit and SolTCO is not a hitting set of St . Yet in such a case, considering Lemma 1 Part 4, the subgraph induced
on vertices Ut by edges from SolTCO cannot be connected and that is in contradiction with the definition of Min-TCO with
maxt∈T |Ut | ≤ d. �

Theorem 4. There exists a polynomial-time (⌊d/2⌋ · ⌈d/2⌉)-approximation algorithm for Min-TCO with maxt∈T |Ut | ≤ d.

Proof. We employ the reduction from Theorem 3 together with the well-known d-approximation algorithm for d-HS. Since
the size of each set in S is atmost ⌊d/2⌋·⌈d/2⌉ (Lemma 1 Part 2), by application of this approximation algorithmonO(d2)-HS
instance (X, S) we obtain a ⌊d/2⌋ · ⌈d/2⌉ approximate solution of our Min-TCO instance with maxt∈T |Ut | ≤ d.

Note that our reduction is tight in the size of S as it is minimal (Lemma 1 Part 5), thus to achieve an improvement in the
approximation algorithm, a different method has to be developed. �

Corollary 4. Min-TCO with maxt∈T |Ut | ≤ 3 inherits the approximation hardness of Min-VC.

Corollary 5. Min-TCO with maxt∈T |Ut | ≤ d is APX-complete, for arbitrary d ≥ 3.

Proof. The APX-hardness follows from the APX-hardness of d-HS ([20]). Due to our reduction the problem belongs to
the class APX. �

3.3. Min-TCO and parameterized complexity theory

We shortly summarize the consequences of our reduction from Theorem 3 leading to a nontrivial parameterized
algorithm forMin-TCOwith maxt∈T |Ut | bounded by a constant. To express only the main factors in the time-complexity of
algorithms if this section, we use O∗-notationwhich is the same as O-notation, except that polynomial factors are neglected.

Problem 2. Min-d-TCO(k) is the following parameterized problem:

Input: Instance of Min-TCO with maxt∈T |Ut | ≤ d and a parameter k.
Goal: Decide whether there exists a feasible solution of the Min-TCO instance of size at most k.

Problem 3. d-HS(k) is the following parameterized problem:

Input: Instance of d-HS and a parameter k.
Goal: Decide whether there exists a feasible solution of the d-HS instance of size at most k.

Consider an instance of Min-TCO with maxt∈T |Ut | ≤ d and n vertices. A straightforward parameterized algorithm for
Min-d-TCO(k) has to consider all sets of at most k edges out of possible

n
2


edges of the instance. This number of sets can be

roughly estimated as
k

i=0


n2

i


≤ k ·


n2

k


≤ k · n2k.

Hence, the time complexity of such an approach is O∗(n2k).
However, if we apply first our transformation from Theorem 3 and then the fixed-parameter algorithm from [18], we

obtain a better algorithm for Min-d-TCO(k).
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Theorem 5. Min-d-TCO(k) with n users can be solved in time O(αk
+ n2) with

α =
1
2


n
2


·


n
2


− 1


+

1
2


n
2


·


n
2


− 1


·


1 +

4
(⌊n/2⌋ · ⌈n/2⌉ − 1)2

which is approximately

α =


n
2


·


n
2


− 1 + O(n−2).

Proof. Let (x, k) be an instance of Min-d-TCO(k). We apply our reduction from Theorem 3 to transform x to an instance
y of O(d2)-HS with dimension d := ⌊n/2⌋ · ⌈n/2⌉. Our transformation matches feasible solutions of both instances in a
one-to-one manner, hence, (x, k) is a yes-instance of Min-d-TCO(k) if and only if (y, k) is a yes-instance of d-HS(k).

Hence, the fixed-parameter algorithm of Niedermeier and Rossmanith of [18] for d-HS(k) problem can be applied. The
algorithm yields the claimed time complexity.

If we compute a rough estimation of the time complexity of this algorithm, we have

O(αk
+ n2) = O∗(4−kn2k).

Hence,we can conclude that our algorithm is exponentially better than a trivial algorithm that exhaustively searches through
all possibilities.

4. Hardness of Min-TCO when the number of connections of a user is a constant

It is natural to consider Min-TCO with bounded number of connections per user, i. e., to bound maxu∈U |INT(u)|, since
for a fixed user the number of interesting topics is usually not too large. We show that, sadly, Min-TCO is APX-hard even
if maxu∈U |INT(u)| ≤ 6. To show this, we design a reduction from minimum vertex cover problem (Min-VC) to Min-TCO. The
minimum vertex cover problem is just a different name for d-HS with d = 2. For a better presentation, in this section, we
refer to Min-VC instead of 2-HS.

Given is a graph G = (V ′, E ′) and a positive integer k as an instance of Min-VC, where the goal is to decide whether the
given graph has a solution of size at most k. We construct an instance of Min-TCO as follows. Let V = V (1)

∪ V (2) be the set
of users, where V (1)

= {v(1)
| v ∈ V ′

} and V (2)
= {v(2)

| v ∈ V ′
}. For each edge e ∈ E ′, we prepare three topics, t(0)e , t(1)e and

t(2)e . The set of topics is the union of all these topics, i. e., T =


e∈E′{t(0)e , t(1)e , t(2)e }. The user interest function INT is defined
as

INT(u(1)) =


e∈E′[N[u]]

{t(0)e , t(1)e }

INT(u(2)) =


e∈E′[N[u]]

{t(0)e , t(2)e }.

The following lemma shows the relation between the solutions of the two problems.

Lemma 2. The instance (V , T , INT) of Min-TCO defined as above has an optimal solution of cost k + 2|E ′
| if and only if the

instance (V ′, E ′) of Min-VC has an optimal solution of cost k.
Moreover, any feasible solution H of (V , T , INT) can be transformed into a feasible solution of (V ′, E ′) of cost at most |H| − 2|E ′

|.

Proof. It is obvious that any feasible solutionH of the instance ofMin-TCO contains the edge {u(i), v(i)
} (i ∈ {1, 2}), for every

edge e = {u, v}, because only u(1) and v(1) (resp., u(2) and v(2)) are interested in topic t(1)e (resp., t(2)e ).
Since each feasible solutionH of (V , T , INT)must contain the edges {u(1), v(1)

} and {u(2), v(2)
}, for every edge e = {u, v} ∈

E ′, it is sufficient to consider only the topics t(0)e . The number of edges in H connecting a user from V (1) with a user from V (2)

is at most |H| − 2|E ′
|.

For an edge e = {u, v}, the vertices that are interested in t(0)e are u(1), v(2), v(1) and u(2). Since these four vertices have to
be connected, H contains at least one edge of {u(1), u(2)

}, {v(1), v(2)
}, {u(1), v(2)

} and {v(1), u(2)
}.

The optimal solution of (V , T , INT) contains at most two of these four edges, namely the edges {u(1), u(2)
} and {v(1), v(2)

}.
Observe that, for each edge f that is incidentwith vertexu inG, the edge {u(1), u(2)

} connects the solution to be t(0)f -connected.
The only topic that the other two edges connect is t(0)

{u,v}
and thus they can be replaced by {u(1), u(2)

} or {v(1), v(2)
}.

In any non-optimal solution, more than two of the four edges may be present and the replacement of edges {u(1), v(2)
}

and {v(1), u(2)
} by {u(1), u(2)

} and {v(1), v(2)
}, respectively, may lead to a decrease of the cost of the solution.

We assume that the solution of (V , T , INT) has been transformed so that it does not contain cross edges between u(i) and
v(3−i) (i ∈ {1, 2}). The vertices that correspond to the edges between the two layers V (1) and V (2) form a feasible solution
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of Min-VC. As discussed above, its size is at most |H| − 2|E ′
| for a feasible solution H and exactly |H| − 2|E ′

| for an optimal
solution H . This proves one implication of the first claim and the second claim.

We now show that, if Min-VC has an optimal solution of size k, then the instance of Min-TCO has an optimal solution
of size k + 2|E ′

|. From an optimal solution W ⊆ V ′ of Min-VC, we construct the optimal solution of Min-TCO as H =

{{u(1), v(1)
}, {u(2), v(2)

} | {u, v} ∈ E ′
} ∪ {{u(1), u(2)

} | u ∈ W }. Clearly, the size of H is exactly k + 2|E ′
|. As W is the

smallest set of vertices that covers all the edges of E ′, its corresponding edges ofMin-TCO produce the minimal set of edges
that connect every topic with superscript 0. Thus, H satisfies the connectivity requirement for every topic t ∈ T and is
optimal. �

We use the Min-VC on degree-bounded graphs, which is APX-hard, to show lower bounds for our restricted Min-TCO.
By the above reduction and the lemma, we prove the following theorem.

Theorem 6. Min-TCOwithmaxv∈U |INT(v)| ≤ 6 cannot be approximated within a factor of 694/693 in polynomial time, unless
P = N P , even if |INT(v) ∩ INT(u)| ≤ 3 holds for every pair of different users u, v ∈ U.

Proof. We prove the statement by contradiction. Suppose that there exists an approximation algorithm A forMin-TCOwith
the above stated restrictions that has the ratio (1 + δ).

Let G = (V ′, E ′) be an instance of Min-VC and let G be cubic and regular (i. e., each vertex is incident with exactly three
edges). We construct an instance ITCO of Min-TCO as stated above and we apply our algorithm A to it to obtain a feasible
solution SolTCO. From such a solution, by Lemma 2, we create a feasible solution of the original Min-VC instance SolVC. We
denote by OptTCO and OptVC the optimal solutions of ITCO and G, respectively.

Let d be a constant such that d · cost(OptVC) = 3|V ′
|. Since G is cubic and regular, cost(OptVC) ≥ |E ′

|/3 = |V ′
|/2 and thus

d ≤ 6.
Observe that, due to Lemma 2, cost(OptTCO) = cost(OptVC) + 2|E ′

| = cost(OptVC) + d · cost(OptVC) and cost(SolTCO) ≥

cost(SolVC) + 2|E ′
| = cost(SolVC) + d · cost(OptVC). These two estimations give us the following bound

cost(SolVC) + d · cost(OptVC)
cost(OptVC) + d · cost(OptVC)

≤
cost(SolTCO)
cost(OptTCO)

≤ 1 + δ.

The above inequality allows us to bound the ratio of our Min-VC solution SolVC and the optimal solution OptVC:

cost(SolVC)
cost(OptVC)

≤ (1 + δ) · (d + 1) − d = 1 + δ(d + 1) ≤ 1 + 7δ.

For δ :=
1

693 , we obtain a 100
99 -approximation algorithm forMin-VC on 3-regular graphs which is directly in contradiction

with a theorem proven in [8].
�

Corollary 6. Min-TCO with maxv∈U |INT(v)| ≤ 6 is APX-hard.

Corollary 7. Min-TCO with |INT(v) ∩ INT(u)| ≤ 3, for all users u, v ∈ U, is APX-hard.

This result is almost tight, the case when |INT(v) ∩ INT(u)| ≤ 2 is still open. The following theorem shows thatMin-TCO
with |INT(v) ∩ INT(u)| ≤ 1, for every pair of distinct users u, v ∈ U , can be solved in linear time.

Theorem 7. Min-TCO can be solved in linear time, if |INT(v) ∩ INT(u)| ≤ 1 holds for every pair of users u, v ∈ U, u ≠ v.

Proof. We execute the following simple algorithm. First set the solution E := ∅. Then sequentially, for each topic t , choose
its representative v∗

∈ U (t ∈ INT(v∗)) and add edges {{v∗, u} | u ∈ Ut \ {v∗
}} to the solution E. We show that, if

|INT(v) ∩ INT(u)| ≤ 1, for all distinct u, v ∈ U , then the solution E is optimal.
Observe that, in our case, any edge in any feasible solution is present because of a unique topic. We cannot find an edge

e = {u, v} of the solution that belongs to the subgraphs for two different topics. (Otherwise |INT(v) ∩ INT(u)| > 1 and our
assumption would be wrong for the two endpoints of the edge e.) Thus, any solution consisting of spanning trees for every
topic is feasible and optimal. Note that its size is |T | · (|U| − 1). �

Corollary 8. Min-TCO with maxu∈U |INT(u)| ≤ 2 can be solved in linear time.

5. A polynomial-time algorithm for Min-TCO with bounded number of topics

In this section, we present a simple brute-force algorithm that achieves a polynomial running time when the number of
topics is bounded by |T | ≤ log log |U| −

3
2 log log log |U|.

Theorem 8. The optimal solution of Min-TCO can be computed in polynomial time if |T | ≤ (1 + ε(|U|))−1
· log log |U|, for a

function

ε(n) ≥
3/2 log log log n

log log n − 3/2 log log log n
.
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Proof. Let (U, T , INT) be an instance of Min-TCO such that |T | ≤ (1 + ε(|U|))−1
· log log |U|. Moreover, |T | > 2, otherwise

the problem is solvable in polynomial time. We shorten the notation by setting t = |T | and n = |U|.
First observe that, if u, v ∈ U and INT(u) ⊆ INT(v), instead of solving instance (U, T , INT), we can solve Min-TCO on

instance (U \ {u}, T , INT) and add to such solution the direct edge {u, v}. Note that u has to be incident with at least one
edge in any solution. Thus, the addition of the edge {u, v} cannot increase the cost. Moreover, any other user that would
be connected to u in some solution can be also connected to v. Thus, we can remove u, solve the smaller instance and then
add u by a single edge. Such a solution is feasible and its size is unchanged. We say that user u is dominated by the user v if
INT(u) ⊆ INT(v).

Therefore, before applying our simple algorithm, we remove from the instance all the users that are dominated by some
other user. We denote the set of remaining users (i. e., those with incomparable sets of interesting topics) byM . The largest
system of incomparable sets on n elements is called a Sperner system and it is a well known fact that its size is at most n
⌊n/2⌋


. Since every user inM must have different set of interesting topics and these sets are all incomparable, we have

m = |M| ≤


t

⌊t/2⌋


≤

2t

√
t
.

(To verify the bound, consider t to be odd or even and use
2n
n


≤

4n
√
3n+1

, n ≥ 1.)
Our simple algorithm exhaustively searches over all the possible solutions on instance (M, T , INT) and then reconnects

each of the removed users U \ M by a single edge. The transformation to set M and the connection of the removed users is
clearly polynomial. Thus, we only need to show that our exhaustive search is polynomial.

Observe that the size of the optimal solution is at most t(m − 1), as merged spanning trees, for all the topics, form a
feasible solution. Our algorithm exhaustively searches over all possible solutions, i. e., it tries every possible set of i edges
for 1 ≤ i ≤ t(m− 1) and verifies the topic-connectivity requirements for such sets of edges. The verification of each set can
be done in polynomial time. The number of sets it checks can be bounded as follows:

t(m−1)
i=1

m
2


i


≤

tm
i=1


m2

i


≤ tm ·


m2

tm


≤ tm · mtm

≤ mtm
· O(log2 n).

(Note that tm ≤ m2/2 and thus the binomial coefficient is maximal in tm. Otherwise the number of all possible choices of
edges into a solution is polynomial in n.)

To check a polynomial number of sets, it is sufficient to bound the factormtm by a polynomial, i. e., by at most nc for some
c > 0. (In all our calculations, log stands for the binary logarithm, however any other logarithm can be used as the change
will effect the exponent by a constant.) We consider two cases:

A: First assume that t ≤
log log n
1+2ε(n) , then m ≤ 2t

≤ (log n)(1+2ε(n))−1
.

We use the upper bounds on t and m to estimate the number of sets our exhaustive search has to check:

mtm
≤ (log n)(1+2ε(n))−2

·log log n·(log n)(1+2ε(n))−1
≤ nc .

Then we take the logarithm of the inequality, leading to

(1 + 2ε(n))−2
· log log2 n ≤ c · (log n)

2ε(n)
1+2ε(n) .

After another logarithm operation, we obtain the following inequality:

−2 log(1 + 2ε(n)) + 2 log log log n ≤
2ε(n)

1 + 2ε(n)
· log log n + log c.

We prove inequality (1) instead. In the end, we will see that the function ε(n) is positive, except for the first few values.
Thus, for large inputs, 2 log(1 + 2ε(n)) is positive and thus the above inequalities will hold, too.

2 log log log n ≤
2ε(n)

1 + 2ε(n)
· log log n. (1)

We are now able to estimate the function ε(n):

ε(n) ≥
log log log n

log log n − 2 log log log n
. (2)
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Due to the following case, we use ε(n) ≥
3/2 log log log n

log log n−3/2 log log log n that also satisfies (2) and is positive for n ≥ 16.

B: To conclude the proof, assume that log log n
1+2ε(n) < t ≤

log log n
1+ε(n) . Since we have both an upper and a lower bound on t , we can

refine the estimation ofm:

m ≤
2t

√
t

≤ (log n)(1+ε(n))−1
· (1 + 2ε(n))1/2 · (log log n)−1/2.

We show that mtm is polynomial in n similarly as in the previous case:

(log n)(1+ε(n))−2
·(log log n)1/2·(log n)(1+ε(n))−1

·(1+2ε(n))1/2
≤ mtm

≤ nc .

Then we take the logarithm of the inequality, leading to

(1 + ε(n))−2
· (log log n)3/2 · (1 + 2ε(n))1/2 ≤ c · (log n)

ε(n)
1+ε(n) .

Assume that (1+2ε(n))1/2 ≤ 1+ε(n), except for the first few values, then it is sufficient to prove a simpler inequality:

(1 + ε(n))−1
· (log log n)3/2 ≤ c · (log n)

ε(n)
1+ε(n) .

After another logarithm operation, we obtain the following inequality:

− log(1 + ε(n)) + 3/2 · log log log n ≤
ε(n)

1 + ε(n)
· log log n + log c.

Again, assuming that log(1 + ε(n)) > 0 if n tends to infinity, to prove the above inequality, it is sufficient to show
that

3/2 log log log n ≤
ε(n)

1 + ε(n)
· log log n.

Thus we are able to bound the function ε(n) as

ε(n) ≥
3/2 log log log n

log log n − 3/2 log log log n
.

Observe that ε(n) > 0 for n ≥ 16, thus both assumptions that we made hold for |U| ≥ 16 which concludes the
proof. �

6. Conclusion

In this paper,we have closed the gap in the approximation hardness ofMin-TCO by showing itsLOGAPX-completeness.
We studied a subproblem ofMin-TCOwhere the number of users interested in a common topic is bounded by a constant d.
We showed that, if d ≤ 2, the restricted Min-TCO is in P and, if d ≥ 3, it is APX-complete. The latter result, together with
the constant approximation algorithm we presented, allows us to prove lower bounds on approximability of these special
instances that match any lower bound known for any problem from the class APX. Furthermore, we studied instances
of Min-TCO where for a fixed user the number of interesting topics is bounded by a constant d. We presented a reduction
that shows that such instances are APX-hard for d = 6. In this reduction, any two users have at most three common
topics, thus the reduction shows also thatMin-TCO restricted in this way is APX-hard. We also investigatedMin-TCOwith
a bounded number of topics. Here we presented a polynomial-time algorithm for |T | ≤ (1 + ε(|U|))−1

· log log |U| and a
function ε(n) ≥

3/2 log log log n
log log n−3/2 log log log n . The case where |T | = ω(log log |U|) and |T | = o(|U|) remains to be a challenging open

problem.
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