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Abstract

The aim of the present paper is to study the semimartingale property of continuous time moving averages
driven by Lévy processes. We provide necessary and sufficient conditions on the kernel for the moving
average to be a semimartingale in the natural filtration of the Lévy process, and when this is the case we
also provide a useful representation. Assuming that the driving Lévy process is of unbounded variation, we
show that the moving average is a semimartingale if and only if the kernel is absolutely continuous with a
density satisfying an integrability condition.
c© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The present paper is concerned with the semimartingale property of moving averages (also
known as stochastic convolutions) which are driven by Lévy processes. More precisely, let
(X t )t≥0 be a moving average of the form

X t =

∫ t

0
φ(t − s)dZs, t ≥ 0, (1.1)

where (Z t )t≥0 is a Lévy process and φ: R+→ R is a deterministic function for which the integral
exists. We are interested in the question whether (X t )t≥0 is an (F Z

t )t≥0-semimartingale, where
(F Z

t )t≥0 denotes the natural filtration of (Z t )t≥0. In addition, two-sided moving averages (see
(1.6)) are studied as well.
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According to [1, page 533], a stationary process is a moving average if and only if its spectral
measure is absolutely continuous. Key examples of moving averages are the Ornstein–Uhlenbeck
process, the fractional Brownian motion, and their generalizations, the Ornstein–Uhlenbeck
type process (see [2]) and the linear fractional stable motion (see [3]). Moving averages occur
naturally in many different contexts, e.g. in stochastic Volterra equations (see [4]), in stochastic
delay equations (see [5]), and in turbulence (see [6]). Moreover, to capture the long-range
dependence of log-returns in financial markets it is natural to consider the fractional Brownian
motion instead of the Brownian motion in the Black–Scholes model (see [7, Part III]), and to
capture also heavy tails one is often led to more general moving averages.

It is often important that the process of interest is a semimartingale, and in particular the
following two properties are crucial: Firstly, if (X t )t≥0 models an asset price which is locally
bounded and satisfies the No Free Lunch with Vanishing Risk condition then (X t )t≥0 has
to be an (F Z

t )t≥0-semimartingale (see [8, Theorem 7.2]). Secondly, it is possible to define a
“reasonable” stochastic integral

∫ t
0 HsdXs for all locally bounded (F Z

t )t≥0-predictable processes
(Ht )t≥0 if and only if (X t )t≥0 is an (F Z

t )t≥0-semimartingale due to the Bichteler–Dellacherie
Theorem (see [9, Theorem 7.6]). In view of the numerous applications of moving averages it is
thus natural to study the semimartingale property of these processes.

Let (Z t )t≥0 denote a general semimartingale, φ: R+ → R be absolutely continuous with a
bounded density and let (X t )t≥0 be given by (1.1). Then by a stochastic Fubini result it follows
that (X t )t≥0 is an (F Z

t )t≥0-semimartingale, see e.g. [4, Theorem 3.3] or [5, Theorem 5.2]. In
the case where (Z t )t∈R is a two-sided Wiener process, φ ∈ L2(R+, λ) (λ denotes the Lebesgue
measure) and (X t )t≥0 is given by

X t =

∫ t

−∞

φ(t − s)dZs, t ≥ 0, (1.2)

Knight [10, Theorem 6.5] shows that (X t )t≥0 is an (F Z ,∞
t )t≥0-semimartingale if and only if φ

is absolutely continuous with a square integrable density (F Z ,∞
t := σ(Zs : −∞ < s ≤ t)).

Related results can be found in [11–13]. Moreover, results characterizing when (X t )t≥0 is an
(F X,∞

t )t≥0-semimartingale are given in [14,15].
The above presented results only provide sufficient conditions on φ or are only concerned

with the Brownian case. In the present paper we study the case where (Z t )t≥0 is a Lévy process
and we provide necessary and sufficient conditions on φ for (X t )t≥0, given by (1.1), to be an
(F Z

t )t≥0-semimartingale. Assume that (Z t )t≥0 is of unbounded variation and has characteristic
triplet (γ, σ 2, ν). Our main result is the following:
(X t )t≥0 is an (F Z

t )t≥0-semimartingale if and only if φ is absolutely continuous on R+ with a
density φ′ satisfying∫ t

0

∫
[−1,1]

(∣∣xφ′(s)∣∣2 ∧ ∣∣xφ′(s)∣∣) ν(dx)ds <∞, ∀t > 0, if σ 2
= 0, (1.3)∫ t

0

∣∣φ′(s)∣∣2 ds <∞, ∀t > 0, if σ 2 > 0. (1.4)

In the case where (Z t )t≥0 is a symmetric α-stable Lévy process, (1.3) corresponds to
φ′ ∈ Lα([0, t], λ) for all t > 0 when α ∈ (1, 2) and to

∣∣φ′∣∣ log+(
∣∣φ′∣∣) ∈ L1([0, t], λ) for

all t > 0 when α = 1.
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Assume that (Z t )t≥0 is of unbounded variation. If (X t )t≥0 is an (F Z
t )t≥0-semimartingale it

can be decomposed as

X t = φ(0)Z t +

∫ t

0

(∫ u

0
φ′(u − s)dZs

)
du, t ≥ 0. (1.5)

As a corollary of (1.5) it follows that (X t )t≥0 is càdlàg and of bounded variation if and only if
it is absolutely continuous, which is also equivalent to φ is absolutely continuous on R+ with a
density satisfying (1.3)–(1.4) and φ(0) = 0.

Finally we study two-sided moving averages, i.e. where (X t )t≥0 is given by

X t =

∫ t

−∞

(φ(t − s)− ψ(−s))dZs, t ≥ 0, (1.6)

(Z t )t∈R is a two-sided Lévy process and φ,ψ : R→ R are deterministic functions for which the
integral exists. Note that in this case (X t )t≥0 has stationary increments, and when ψ = 0 it is
a stationary process. Several examples, including fractional Lévy processes and hence also the
linear fractional stable motion, are given in Section 5.

The conditions on φ from the one-sided case translate into necessary conditions in the
two-sided case. That is, if (Z t )t∈R is of unbounded variation and (X t )t≥0 is an (F Z ,∞

t )t≥0-
semimartingale then φ is absolutely continuous on R+ with a density satisfying (1.3)–(1.4).
Moreover, [10, Theorem 6.5] is extended from the Gaussian case to the α-stable case with
α ∈ (1, 2].

The paper is organized as follows. In Section 2 we collect some preliminary results. The
main results are presented in Section 3. All proofs are given in Section 4. The two-sided case is
considered in Section 5.

2. Preliminaries

Throughout the paper (Ω ,F , P) denotes a complete probability space. Let (Z t )t≥0 denote a
Lévy process with characteristic triplet (γ, σ 2, ν), that is for t ≥ 0, E[eiθ Zt ] = etκ(θ) for all
θ ∈ R, where

κ(θ) = iγ θ − σ 2θ2/2+
∫ (

eiθs
− 1− iθs1{|s|≤1}

)
ν(ds), θ ∈ R. (2.1)

For a general treatment of Lévy processes we refer to [16,17] or [18]. Let f : R → R denote
a measurable function. Following [19, page 460] we say that f is Z -integrable if there exists a
sequence of simple functions ( fn)n≥1 such that fn → f λ-a.s. and limn

∫
A fn(s)dZs exists in

probability for all A ∈ B([0, t]) and all t > 0 (recall that λ denotes the Lebesgue measure). In
this case we define

∫ t
0 f (s)dZs as the limit in probability of

∫ t
0 fn(s)dZs . By [19, Theorem 2.7],

f is Z -integrable if and only if the following three conditions are satisfied for all t > 0:∫ t

0
f (s)2σ 2ds <∞, (2.2)∫ t

0

∫ (
|x f (s)|2 ∧ 1

)
ν(dx)ds <∞, (2.3)∫ t

0

∣∣∣∣ f (s)

(
γ +

∫
x(1{|x f (s)|≤1} − 1{|x |≤1}) ν(dx)

)∣∣∣∣ ds <∞. (2.4)
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In this case
∫ t

0 f (s)dZs is infinitely divisible with characteristic triplet (γ f , σ
2
f , ν f ) given by

γ f =

∫ t

0
f (s)

(
γ +

∫
x(1{|x f (s)|≤1} − 1{|x |≤1}) ν(dx)

)
ds, (2.5)

σ 2
f =

∫ t

0
f (s)2σ 2ds, (2.6)

ν f (A) = (ν × λ)((x, s) ∈ R× [0, t] : x f (s) ∈ A \ {0}), A ∈ B(R). (2.7)

If f is locally square integrable it is easily shown that (2.2)–(2.4) are satisfied and hence∫ t
0 f (s)dZs is well-defined for all t ≥ 0. Note also that (2.4) is satisfied if (Z t )t≥0 is symmetric.

Recall that (Z t )t≥0 is a symmetric α-stable Lévy process with α ∈ (0, 2] if γ = σ 2
= 0 and ν

has density s 7→ c |s|−1−α for some c > 0 when α ∈ (0, 2), and ν = 0 and γ = 0 when α = 2.
In this case (2.2)–(2.4) reduce to f ∈ Lα([0, t], λ) for all t > 0.

A function f : R+ → R is said to be of bounded variation if on each finite interval [0, t] the
total variation of f is finite, that is

Vt ( f ) := sup
n∑

i=1

| f (ti )− f (ti−1)| <∞, (2.8)

where the sup is taken over all partitions 0 = t0 < · · · < tn = t , n ≥ 1 of [0, t]. Note that a
Lévy process (Z t )t≥0 is of bounded variation if and only if

∫
[−1,1] |s| ν(ds) < ∞ and σ 2

= 0
(see e.g. [16, Theorem 21.9]). Let I denote an interval and f : I → R. Then f is said to be
absolutely continuous if there exists a locally integrable function h such that

f (t)− f (u) =
∫ t

u
h(s)ds, u, t ∈ I, u ≤ t, (2.9)

and in this case h is called the density of f . If f : I → R and g: R+ → R+ are two measurable
functions, then f is said to have locally g-moment if∫ t

u
g(| f (s)|)ds <∞, u, t ∈ I, u ≤ t. (2.10)

If (2.10) is satisfied with g(x) = xα for some α > 0 then f is said to have locally α-moment.
An increasing family of σ -algebras (Ft )t≥0 is called a filtration if it satisfies the usual

conditions of right-continuity and completeness. For each process (Yt )t≥0 we let (F Y
t )t≥0 denote

its natural filtration, i.e. (F Y
t )t≥0 is the least filtration for which (Yt )t≥0 is (F Y

t )t≥0-adapted. Let
(Ft )t≥0 denote a filtration. We say that (X t )t≥0 is an (Ft )t≥0-semimartingale if it admits the
following representation

X t = X0 + Mt + At , t ≥ 0, (2.11)

where (Mt )t≥0 is a càdlàg local (Ft )t≥0-martingale starting at 0 and (At )t≥0 is (Ft )t≥0-
adapted, càdlàg, of bounded variation and starting at 0, and X0 is F0-measurable. (Recall that
càdlàg means right-continuous with left-hand limits.)

We need the following standard notation: For functions f, g: R → (0,∞) we write f (x) ≈
g(x) as x → ∞ if f/g is bounded above and below on some interval (K ,∞), where K > 0.
Furthermore we write f (x) = o(g(x)) as x → ∞ if f (x)/g(x) → 0 as x → ∞. A similar
notation is used as x → 0.
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Assume that ν has positive mass on [−1, 1]. Similar to [20] we let ξ : [0,∞) → [0,∞) be
given by

ξ(x) =
∫
[−1,1]

(
|sx |2 ∧ |sx |

)
ν(ds), x ≥ 0. (2.12)

Note that ξ is 0 at 0, continuous and increasing and satisfies:

(i) ξ(x)/x →
∫
[−1,1] |s| ν(ds) ∈ (0,∞] as x →∞,

(ii) If
∫
[−1,1] |s|

α ν(ds) <∞ for α ∈ (1, 2] then ξ(x) = o(xα) as x →∞.

To show (i)–(ii) let

H(x) = x
∫

x−1≤|s|≤1
|s| ν(ds) and K (x) = x2

∫
|s|<x−1

s2 ν(ds), (2.13)

and note that ξ(x) = H(x)+ K (x) for x > 1. We have∫
x−1≤|s|≤1

|s| ν(ds) ≤ ξ(x)x−1
≤

∫
[−1,1]

|s| ν(ds), x > 1, (2.14)

where the first inequality follows from H ≤ ξ and the second from (2.12) since |xs|2 ∧
|xs| ≤ |xs|. Hence by (2.14) and monotone convergence (i) follows. To show (ii) assume∫
[−1,1] |s|

α ν(ds) <∞ for some α ∈ (1, 2]. For all ε > 0 we have

lim sup
x→∞

H(x)x−α ≤
∫
[−ε,ε]

|s|α ν(ds), (2.15)

and

K (x)x−α ≤
∫
|s|<x−1

|s|α ν(ds), (2.16)

which shows ξ(x)x−α → 0 as x →∞ and completes the proof of (ii).
Assume that ν is absolutely continuous in a neighborhood of zero with a density f satisfying

f (x) ≈ |x |−α−1 as x → 0 for some α ∈ (0, 2) (this is satisfied in the α-stable case). An easy
calculation shows:

(1) ξ(x) ≈ xα as x →∞ if α ∈ (1, 2),
(2) ξ(x) ≈ x log(x) as x →∞ if α = 1,
(3)

∫
[−1,1] |s| ν(ds) <∞ if α ∈ (0, 1).

3. Main results

Let (Z t )t≥0 denote a nondeterministic Lévy process with characteristic triplet (γ, σ 2, ν) and
φ: R+ → R be a measurable function which is Z -integrable (see (2.2)–(2.4)). Throughout this
section we let (X t )t≥0 be the moving average

X t =

∫ t

0
φ(t − s)dZs, t ≥ 0. (3.1)

Theorem 3.1 below is the main result of the paper. It provides a complete characterization of
when (X t )t≥0 is an (F Z

t )t≥0-semimartingale. Recall the definition of the function ξ in (2.12).
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Theorem 3.1. Assume that (Z t )t≥0 is of unbounded variation. Then (X t )t≥0 is an (F Z
t )t≥0-

semimartingale if and only if φ is absolutely continuous on R+ with a density φ′ which is locally
square integrable when σ 2 > 0 and has locally ξ -moment when σ 2

= 0 (that is, φ′ satisfies
(1.3)–(1.4)).

Assume that (Z t )t≥0 is of bounded variation. Then (X t )t≥0 is an (F Z
t )t≥0-semimartingale if

and only if it is of bounded variation which is also equivalent to φ is of bounded variation.

In particular, if σ 2
= 0,

∫
[−1,1] |x |

α ν(dx) < ∞ for some α ∈ (1, 2] and φ is absolutely
continuous on R+ with a density having locally α-moment, then it follows by (ii) and the
above theorem that (X t )t≥0 is an (F Z

t )t≥0-semimartingale. In the case where (X t )t≥0 is a
semimartingale the next proposition provides a useful representation of this process.

Proposition 3.2. Assume that (Z t )t≥0 is of unbounded variation and (X t )t≥0 is an (F Z
t )t≥0-

semimartingale. Then

X t = φ(0)Z t +

∫ t

0

(∫ u

0
φ′(u − s)dZs

)
du, t ≥ 0, (3.2)

where φ′ denotes the density of φ and (
∫ u

0 φ
′(u − s)dZs)u≥0 is chosen measurable.

Hence we obtain the following corollary.

Corollary 3.3. Assume that (Z t )t≥0 is of unbounded variation. Then the following four
statements are equivalent:

(a) (X t )t≥0 is càdlàg and of bounded variation,
(b) (X t )t≥0 is absolutely continuous,
(c) (X t )t≥0 is an (F Z

t )t≥0-semimartingale and φ(0) = 0,
(d) φ is absolutely continuous with a density satisfying (1.3)–(1.4) and φ(0) = 0.

In the symmetric α-stable case with α ∈ (1, 2) the equivalence between (b) and (d) follows
by [21, Theorem 6.1]. Braverman and Samorodnitsky [22] study, among other things, processes
(Yt )t≥0 on the form Yt =

∫ t
0 f (t, s)dZs , where (Z t )t≥0 is a symmetric Lévy process and f

is a deterministic function. Their Theorem 5.1 provides necessary and sufficient conditions on
f (t, s) for (X t )t≥0 to be absolutely continuous. In [23,24] necessary and sufficient conditions on
φ are obtained for (X t )t≥0 to have locally bounded or continuous sample paths.

The next corollary follows by Theorem 3.1 and the estimates on ξ given in (1)–(3).

Corollary 3.4. Assume that σ 2
= 0 and ν is absolutely continuous in a neighborhood of zero

with a density f satisfying f (x) ≈ |x |−α−1 as x → 0 for some α ∈ (0, 2) (this is satisfied in the
α-stable case with α ∈ (0, 2)). Then (X t )t≥0 is an (F Z

t )t≥0-semimartingale if and only if

(i) φ is absolutely continuous with a density having locally α-moment when α ∈ (1, 2),
(ii) φ is absolutely continuous with a density having locally x log+(x)-moment when α = 1,

(iii) φ is of bounded variation when α ∈ (0, 1).

Here log+ denotes the positive part of log, i.e. log+(x) = log(x) for x ≥ 1 and 0 otherwise.
In the following let (X t )t≥0 be the Riemann–Liouville fractional integral given by

X t =

∫ t

0
(t − s)τdZs, t ≥ 0, (3.3)
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where τ is such that the integral exists. If (Z t )t≥0 is a Wiener process and τ > −1/2, (X t )t≥0
is called a Lévy fractional Brownian motion (see [25, page 424]). Assume that (Z t )t≥0 has no
Brownian component (i.e. σ 2

= 0). Using (2.2)–(2.4) it follows that for (X t )t≥0 to be well-
defined one of the following (I)–(III) must be satisfied:

(I) τ > −1/2,
(II) τ = −1/2 and

∫
[−1,1] x

2 |log |x || ν(dx) <∞,

(III) τ < −1/2 and
∫
[−1,1] |x |

−1/τ ν(dx) <∞.

Condition (I) is also sufficient for (X t )t≥0 to be well-defined and when (Z t )t≥0 is symmetric,
the conditions (I)–(III) are both necessary and sufficient for (X t )t≥0 to be well-defined. When
τ = 0, (X t )t≥0 = (Z t )t≥0; thus let us assume τ 6= 0. As a consequence of Theorem 3.1 we have
the following.

Corollary 3.5. Let (X t )t≥0 be given by (3.3) and assume that (Z t )t≥0 has no Brownian
component. Then (X t )t≥0 is an (F Z

t )t≥0-semimartingale if and only if one of the following
(1)–(3) is satisfied:

(1) τ > 1/2,
(2) τ = 1/2 and

∫
[−1,1] x

2 |log |x || ν(dx) <∞,

(3) τ ∈ (0, 1/2) and
∫
[−1,1] |x |

1/(1−τ) ν(dx) <∞.

Note that 1/(1− τ) ∈ (1, 2) when τ ∈ (0, 1/2). Let us in particular consider

X t =

∫ t

0
(t − s)H−1/αdZs, t ≥ 0, (3.4)

where (Z t )t≥0 is a symmetric α-stable Lévy process with α ∈ (0, 2] and H > 0 (note
that (X t )t≥0 is well-defined). To avoid trivialities assume H 6= 1/α. As a consequence of
Corollary 3.5 (α ∈ (0, 2)) and Theorem 3.1 (α = 2) it follows that (X t )t≥0 is an (F Z

t )t≥0-
semimartingale if and only if H > 1 when α ∈ [1, 2] or H > 1/α when α ∈ (0, 1).

4. Proofs

Throughout this section (X t )t≥0 is given by (3.1). We extend φ to a function from R into R
by setting φ(s) = 0 for s ∈ (−∞, 0). For any function f : R→ R, let ∆t f denote the function
s 7→ t ( f (1/t+s)− f (s)) for all t > 0. We start by the following extension of [26, Theorem 24].

Lemma 4.1. Let I be either R+ or R, f : I → R be locally integrable and g: R+ → R+ be an
increasing convex function satisfying g(x)/x → ∞ as x → ∞ and let (rk)k≥1 be a sequence
satisfying rk → ∞. Then f is absolutely continuous with a density having locally g-moment if
and only if (g(

∣∣∆rk f
∣∣))k≥1 is bounded in L1([a, b], λ) for all a, b ∈ I with a < b. In this case

{g(|∆t f |) : t > ε} is bounded in L1([a, b], λ) for all a, b ∈ I with a < b and all ε > 0.

If (Z t )t≥0 is of unbounded variation the above lemma can be applied with ξ playing the role
of g (ξ is given by (2.12)), since in this case ξ satisfies all the conditions imposed on g except ξ
is not convex. But h, defined by h(x) = x21{x≤1} + (2x − 1)1{x>1} for all x ≥ 0, is convex and
if we let

g(x) =
∫
[−1,1]

h(|xs|) ν(ds), x ≥ 0, (4.1)
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then g satisfies all the conditions in the lemma and g/2 ≤ ξ ≤ g. Thus, if f : I → R is locally
integrable then f is absolutely continuous with a density having locally ξ -moment if and only if
(ξ(
∣∣∆rk f

∣∣))k≥1 is bounded in L1([a, b], λ) for all a, b ∈ I with a < b.

Proof. Note that g is continuous and x 7→ g(|x |) is a convex function from R into R, since g is
increasing and convex. Let a, b ∈ I satisfying a < b be given and assume that (g(

∣∣∆rk f
∣∣))k≥1

is bounded in L1([a, b], λ). Since g(x)/x → ∞ as x → ∞, {∆rk f : k ≥ 1} is uniformly
integrable and hence weakly sequentially compact in L1([a, b], λ) (see e.g. [27, Chapter IV.8,
Corollary 11]). Choose a subsequence (nk)k≥1 of (rk)k≥1 and an h ∈ L1([a, b], λ) such that
∆nk f → h in the weak L1([a, b], λ)-topology. For all c, d ∈ [a, b] with c < d we have∫ d

c
∆nk f dλ→

∫ d

c
hdλ, as k →∞. (4.2)

Moreover,∫ d

c
∆nk f dλ = nk

(∫ d+1/nk

c+1/nk

f dλ−
∫ d

c
f dλ

)

= nk

∫ d+1/nk

d
f dλ− nk

∫ c+1/nk

c
f dλ→ f (d)− f (c), as k →∞,(4.3)

for λ × λ-a.a. c < d. Thus, we conclude that f is absolutely continuous with density h. Since
∆nk f → h in the weak L1([a, b], λ)-topology we may choose a sequence (κn)n≥1 of convex
combinations of (∆nk f )k≥1 such that κn → h in L1([a, b], λ), see [28, Theorem 3.13]. By
convexity and continuity of g we have∫ b

a
g(|h|)dλ ≤ lim inf

n→∞

∫ b

a
g(|κn|)dλ ≤ sup

k≥1

∫ b

a
g(
∣∣∆nk f

∣∣)dλ <∞, (4.4)

which shows that h has g-moment on [a, b]. This completes the proof of the if -part.
Assume conversely that f is absolutely continuous with a density, h, having locally g-

moment. For all t > ε, we have by Jensen’s inequality that∫ b

a
g

(∣∣∣∣∣t
∫ s+1/t

s
h(u)du

∣∣∣∣∣
)

ds ≤
∫ b

a

(
t
∫ 1/t

0
g(|h(u + s)|)du

)
ds

= t
∫ 1/t

0

∫ b

a
g(|h(u + s)|)dsdu ≤

∫ b+1/ε

a
g(|h(s)|)ds <∞, (4.5)

which shows that {g(|∆t f |) : t > ε} is bounded in L1([a, b], λ) and completes the proof. �

In what follows, we are going to use two Lévy–Itô decompositions of (Z t )t≥0 (see e.g. [16,
Theorem 19.2]).

(a) Decompose (Z t )t≥0 as Z t = Z1
t + Z2

t , where (Z1
t )t≥0 and (Z2

t )t≥0 are two independent
Lévy processes with characteristic triplets (0, σ 2, ν1) respectively (γ, 0, ν2), where ν1 =

ν|[−1,1] and ν2 = ν|[−1,1]c . (Z1
t )t≥0 and (Z2

t )t≥0 are (F Z
t )t≥0-adapted. Moreover, when φ is

locally bounded we let

X1
t =

∫ t

0
φ(t − s)dZ1

s , and X2
t =

∫ t

0
φ(t − s)dZ2

s , t ≥ 0. (4.6)
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(b) Decompose (Z t )t≥0 as Z t = Wt + Yt , where (Wt )t≥0 is a Wiener process with variance
parameter σ 2 and (Yt )t≥0 is a Lévy process with characteristic triplet (γ, 0, ν). (Wt )t≥0 and
(Yt )t≥0 are independent and (F Z

t )t≥0-adapted. Moreover, let

X W
t =

∫ t

0
φ(t − s)dWs, and XY

t =

∫ t

0
φ(t − s)dYs, t ≥ 0. (4.7)

If σ 2
= 0 and (X t )t≥0 is càdlàg it follows by [29, Theorem 4] and a symmetrization argument

that by modification on a set of Lebesgue measure 0, we may and do choose φ càdlàg.
The following lemma is closely related to [10, Theorem 6.5].

Lemma 4.2. We have the following:

(i) (X t )t≥0 is an (F Z
t )t≥0-semimartingale if φ is absolutely continuous on R+ with a locally

square integrable density.
(ii) Assume that (Z t )t≥0 is a Wiener process. Then φ is absolutely continuous on R+ with a

locally square integrable density if (X t )t≥0 is an (F Z
t )t≥0-semimartingale.

Proof. (i): Decompose (Z t )t≥0 and (X t )t≥0 as in (a) above. Since both φ and (Z2
t )t≥0 are

càdlàg and of bounded variation, (X2
t )t≥0 is càdlàg and of bounded variation as well. Hence,

it is enough to show that (X1
t )t≥0 is an (F Z

t )t≥0-semimartingale. Since

X1
t =

∫ t

0
(φ(t − s)− φ(0))dZ1

s + φ(0)Z
1
t , t ≥ 0, (4.8)

we may and do assume φ(0) = 0. Then, φ is absolutely continuous on R with locally square
integrable density and hence for all T > 0, ‖∆tφ‖L2([−T,T ],λ) ≤ K for some constant K > 0

and all t > 1/T by Lemma 4.1 with g(x) = x2. By letting c = E[
∣∣Z1

1

∣∣2] we have (recall that φ
is zero on (−∞, 0))

E[(X1
t − X1

u)
2
] = c ‖φ(t − ·)− φ(u − ·)‖2L2([0,t],λ)

≤ cK 2(t − u)2, ∀ 0 ≤ u ≤ t ≤ T, (4.9)

which by the Kolmogorov–C̆entsov Theorem (see [30, Chapter 2, Theorem 2.8]) shows that
(X1

t )t≥0 has a continuous modification (also to be denoted (X1
t )t≥0). Moreover, for all 0 = t0 <

· · · < tn = T we have

E

[
n∑

i=1

∣∣∣X1
ti − X1

ti−1

∣∣∣] ≤ n∑
i=1

∥∥∥X1
ti − X1

ti−1

∥∥∥
L2(P)

≤
√

cK T, (4.10)

which shows that (X1
t )t≥0 is of integrable variation and hence an (F Z

t )t≥0-semimartingale.
To show (ii) assume that (Z t )t≥0 is a standard Wiener process and (X t )t≥0 is an (F Z

t )t≥0-
semimartingale. Since (X t )t≥0 is a Gaussian process, Stricker [31, Proposition 4+5] entails that
(X t )t≥0 is an (F Z

t )t≥0-quasimartingale on each compact interval [0, N ]. For 0 ≤ u ≤ t we have

E
[∣∣∣E[X t − Xu |F Z

u ]

∣∣∣] = E

[∣∣∣∣∫ u

0

(
φ(t − s)− φ(u − s)

)
dZs

∣∣∣∣]
=

√
2
π

∥∥∥∥∫ u

0

(
φ(t − s)− φ(u − s)

)
dZs

∥∥∥∥
L2(P)
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=

√
2
π

(∫ u

0

(
φ(t − s)− φ(u − s)

)2ds

)1/2

=

√
2
π

(∫ u

0

(
φ(t − u + s)− φ(s)

)2ds

)1/2

, (4.11)

where the second equality follows by Gaussianity, which implies that

nN∑
i=1

E
[∣∣∣E[X i/n − X(i−1)/n|F Z

(i−1)/n]

∣∣∣] ≥ Nn
√
π2

(∫ N/2

0

(
φ(1/n + s)− φ(s)

)2ds

)1/2

.

(4.12)

Since (X t )t≥0 is an (F Z
t )t≥0-quasimartingale on [0, N ], the left-hand side of (4.12) is bounded

in n (see [32, Chapter VI, Definition 38]), showing that (∆nφ)n≥1 is bounded in L2([0, N/2], λ).
By Lemma 4.1 with g(x) = x2 this shows that φ is absolutely continuous on R+ with a locally
square integrable density. �

Lemma 4.3. If (X t )t≥0 is an (F Z
t )t≥0-semimartingale then (X1

t )t≥0 is an (F Z1

t )t≥0-
semimartingale.

Proof. Assume that (X t )t≥0 is an (F Z
t )t≥0-semimartingale, fix T > 0 and let

A := {∆Z2
t = 0 ∀t ∈ [0, T ]}. (4.13)

Note that P(A) > 0 and (Z1
t )t≥0 is P-independent of A. Let Q A denote the probability measure

given by Q A(B) := P(B ∩ A)/P(A).(X t )t≥0 is an (F Z
t )t≥0-semimartingale under Q A, since

Q A is absolutely continuous with respect to P . Moreover, since (Z t )t≥0 and (Z1
t )t≥0 are Q A-

indistinguishable it follows that (X1
t )t≥0 is an (F Z1

t )t≥0-semimartingale under Q A and since A
is independent of (Z1

t )t≥0 this is also true under P. �

In the next lemma we study the jump structure of (X t )t≥0.

Lemma 4.4. Assume that σ 2
= 0 and (X t )t≥0 is càdlàg. Then (∆X t 1{∆Zt 6=0})t≥0 and

(φ(0)∆Z t )t≥0 are indistinguishable.

Before proving the lemma we note the following:

Remark 4.5. (a) Let (X t )t≥0 and (Yt )t≥0 denote two independent càdlàg processes such that
P(∆X t = 0) = P(∆Yt = 0) = 1 for all t ≥ 0. Then as a consequence of Tonelli’s Theorem
we have P(∆X t∆Yt = 0, ∀t ≥ 0) = 1.

(b) If ν is concentrated on [−1, 1] then the mapping t 7→
∫ t

0 φ(t − s)dZs is continuous from R+
into L1(P). This follows by approximating φ with continuous functions.

Proof of Lemma 4.4. Since X t =
∫ t

0 (φ(t − s)− 1)dZs + Z t we may and do assume φ(0) 6= 0.
Recall that φ is chosen càdlàg; moreover, ∆φ(0) = φ(0).

First we show the lemma in the case where ν is a finite measure. Let τn denote the time of the
nth jump of (Z t )t≥0 ((τn+1 − τn)n≥1 is thus an i.i.d. sequence of exponential distributions) and
let (σn)n≥1 ⊆ [0,∞) denote the jump times of φ. Note that the event

B := {∃ ( j, k) 6= ( j ′, k′) : τ j + σk = τ j ′ + σk′}, (4.14)
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has probability zero. Since (Z t )t≥0 only has finitely many jumps on each compact interval we
may regard (X t )t≥0 as a pathwise Lebesgue–Stieltjes integral and hence it follows that

(∆X t )t≥0 =

(∑
k≥1

∆Z t−σk ∆φ(σk)

)
t≥0

. (4.15)

Let us show that on Bc the series
∑

k≥1 ∆Z t−σk ∆φ(σk) has at most one term which differs from
zero for all t ≥ 0. Indeed, to see this assume that ∆Z t−σk ∆φ(σk) and ∆Z t−σk′

∆φ(σk′) both
differ from zero, where k 6= k′. Then there exist n, n′ ≥ 1 such that τn = t−σk and τn′ = t−σk′

which implies τn + σk = τn′ + σk′ , and hence we have a contradiction. In particular, if ∆Z t 6= 0
then ∆Z t∆φ(0) 6= 0 and thus ∆X t = ∆Z t∆φ(0) = φ(0)∆Z t .

Now let (Z t )t≥0 be a general Lévy process for which σ 2
= 0. For each n ≥ 1, decompose

(Z t )t≥0 as Z t = Y n
t +U n

t , where (Y n
t )t≥0 and (U n

t )t≥0 are two independent Lévy processes with
characteristic triplets (0, 0, ν|[−1/n,1/n]) respectively (0, 0, ν|[−1/n,1/n]c ). Moreover, set

XY n

t =

∫ t

0
φ(t − s)dY n

s and XU n

t =

∫ t

0
φ(t − s)dU n

s . (4.16)

Since (U n
t )t≥0 has piecewise constant sample paths the second integral is a pathwise

Lebesgue–Stieltjes integral. Hence (XU n

t )t≥0 is càdlàg and it follows that (XY n

t )t≥0 is càdlàg as
well. Set

C :=
⋂
n≥1

{∆XY n

t ∆U n
t = 0, ∀t ≥ 0}, (4.17)

D :=
⋂
n≥1

{∆XU n

t 1{∆U n
t 6=0} = φ(0)∆U n

t , ∀t ≥ 0}. (4.18)

From Remark 4.5(b) it follows that P(∆XY n

t = 0) = 1 for all t ≥ 0 which together with
Remark 4.5(a) shows that C has probability one. Moreover, from the first part of the proof it
follows that D has probability one. When ∆Z t 6= 0, choose n ≥ 1 such that |∆Z t | > 1/n. Thus,
∆U n

t 6= 0, and hence ∆XY n

t = 0 on C , which shows ∆X t = ∆XU n

t = φ(0)∆U n
t = φ(0)∆Z t

on C ∩ D and completes the proof. �

Lemma 4.6. Assume that σ 2
= γ = 0, ν is concentrated on [−1, 1] and (X t )t≥0 is a special

(F Z
t )t≥0-semimartingale. Then (φ(0)Z t )t≥0 is the martingale component of (X t )t≥0.

Proof. Let X t = Mt + At denote the canonical decomposition of (X t )t≥0. Since (Z t )t≥0 is a
Lévy process, it is quasi-left-continuous (see [33, Chapter II, Corollary 4.18]) and thus there
exists a sequence of totally inaccessible stopping times (τn)n≥1 which exhausts the jumps of
(Z t )t≥0. On the other hand, since (At )t≥0 is predictable there exists a sequence of predictable
times (σn)n≥1 which exhausts the jumps of (At )t≥0. From the martingale representation theorem
for Lévy processes (see [33, Chapter III, Theorem 4.34]) it follows that (Mt )t≥0 is a purely
discontinuous martingale which jumps only when (Z t )t≥0 does. Furthermore, since

P(∃ n, k ≥ 1 : τn = σk <∞) = 0, (4.19)

Lemma 4.4 shows

φ(0)∆Zτn = ∆Xτn = ∆Mτn +∆Aτn = ∆Mτn , P-a.s. on {τn <∞} ∀ n ≥ 1. (4.20)
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Hence (∆Mt )t≥0 and (φ(0)∆Z t )t≥0 are indistinguishable which implies that (Mt )t≥0 and
(φ(0)Z t )t≥0 are indistinguishable since they both are purely discontinuous martingales (see [33,
Chapter I, Corollary 4.19]). This completes the proof. �

The following lemma is concerned with the bounded variation case and it relies on an inequality
by Marcus and Rosiński [20].

Lemma 4.7. Assume that γ = σ 2
= 0, ν is concentrated on [−1, 1] and (Z t )t≥0 is of unbounded

variation. Then (X t )t≥0 is càdlàg and of bounded variation if and only if φ is absolutely
continuous on R+ with a density having locally ξ -moment and φ(0) = 0.

Recall the definition of ∆tφ and of Vt ( f ) in (2.8).

Proof. Let N ≥ 1 be given. We start by showing the following (i) and (ii) under the assumptions
stated in the lemma:

(i) If (X t )t≥0 is of bounded variation then E[VN (X)] <∞ for all N ≥ 1.
(ii) For all N ≥ 1,

N

8
sup
n≥1


(∫ N/2

−N/2
ξ(|∆2nφ(s)|)ds

)
∧

(∫ N/2

−N/2
ξ(|∆2nφ(s)|)ds

)1/2


≤ E[VD
N (X)] ≤ 3N sup

n≥1

{∫ N

−N
ξ(|∆2nφ(s)|)ds + 1

}
, (4.21)

where for each f : R+→ R we let

VD
N ( f ) = sup

n≥1

2n N∑
i=1

∣∣ f (i/2n)− f ((i − 1)/2n)
∣∣ . (4.22)

To show (i) assume that (X t )t≥0 is of bounded variation. By Rosiński [29, Theorem 4], φ(· − s)
is of bounded variation for λ-a.a. s ∈ R+; in particular there exists an s ∈ R+ such that φ(· − s)
is of bounded variation. Hence φ is of bounded variation. Let T := [0, N ] ∩ Q, X : Ω → RT

denote the canonical random element induced by (X t )t∈T and let µ be given by

µ(A) = (λ× ν)
(
(s, x) ∈ [0, t0] × R : xφ(· − s) ∈ A \ {0}

)
, A ∈ B(RT). (4.23)

For all t1, . . . , tn ∈ T , (X t1 , . . . , X tn ) is infinitely divisible with Lévy measure µ◦ p−1
t1,...,tn , where

pt1,...,tn ( f ) = ( f (t1), . . . , f (tn)) for all f ∈ RT. For f ∈ RT let q( f ) denote the total variation
of f on T . Then q: RT

→ [0,∞] is clearly a lower-semicontinuous pseudonorm on RT (see [34,
page 998]). Since ν has compact support and φ is of bounded variation there exists an r0 > 0
such that µ( f ∈ RT

: q( f ) > r0) = 0 and hence by Lemma 2.2 in [34], E[eεq(X)] < ∞ for
some ε > 0. In particular (X t )t≥0 is of integrable variation on [0, N ].

(ii) From [20, Corollary 1.1] we have

1/4 min(ai,n, a1/2
i,n ) ≤ E

[∣∣2n(X i/2n − X(i−1)/2n )
∣∣] ≤ 3 max(ai,n, a1/2

i,n ), (4.24)

where

ai,n :=

∫ (i−1)/2n

−1/2n
ξ(|∆2nφ(s)|)ds. (4.25)
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By monotone convergence we have

E[VD
N (X)] = sup

n≥1

1
2n

2n N∑
i=1

E
[∣∣2n(X i/2n − X(i−1)/2n )

∣∣] , (4.26)

and hence
N

2
sup
n≥1

inf
2n N/2<i≤2n N

E
[∣∣2n(X i/2n − X(i−1)/2n )

∣∣] ≤ E[VD
0,N (X)]

≤ N sup
n≥1

sup
1≤i≤2n N

E
[∣∣2n(X i/2n − X(i−1)/2n )

∣∣] , (4.27)

which by (4.24) shows (4.21).
Assume that (X t )t≥0 is càdlàg and of bounded variation and hence by (i) of integrable

variation. From (ii) it follows that (ξ(∆2nφ))n≥1 is bounded in L1([−a, a], λ) for all a > 0.
Conversely, if (ξ(∆2nφ))n≥1 is bounded in L1([−a, a], λ) for all a > 0, (ii) shows that
E[VD

N (X)] <∞; in particular VD
N (X) <∞ P-a.s. Since in addition (X t )t≥0 is right-continuous

in probability by Remark 4.5(b) it has a càdlàg modification (also to be denoted (X t )t≥0), which
is of bounded variation since VN (X) = VD

N (X) <∞ P-a.s.
Finally, the discussion just below Lemma 4.1 completes the proof, since (Z t )t≥0 is of

unbounded variation. �

We have the following consequence of the Bichteler–Dellacherie Theorem.

Lemma 4.8. Let (Yt )t≥0, (Ut )t≥0, (Ỹt )t≥0 and (Ũt )t≥0 denote four processes such that (Yt )t≥0 is

(F U
t )t≥0-adapted, (Ỹt )t≥0 is (F Ũ

t )t≥0-adapted and (Y·,U·)
D
= (Ỹ·, Ũ·). If (Yt )t≥0 is an (F U

t )t≥0-

semimartingale then (Ỹt )t≥0 has a modification which is an (F Ũ
t )t≥0-semimartingale.

Proof. Since (Yt )t≥0, by assumption, is càdlàg and (Yt )t≥0
D
= (Ỹt )t≥0 we may choose a

càdlàg modification of (Ỹt )t≥0 (also to be denoted (Ỹt )t≥0). By the Bichteler–Dellacherie
Theorem (see [32, Theorem 80]) we must show that for all t > 0 the set of random variables
given by{

n∑
i=1

H̃ti−1(Ỹti − Ỹti−1) : n ≥ 1, 0 ≤ t0 < · · · < tn ≤ t, H̃ti ∈ F Ũ
ti ,

∣∣∣H̃ti

∣∣∣ ≤ 1

}
(4.28)

is bounded in L0(P). Since each H̃s ∈ F Ũ
s satisfying

∣∣∣H̃s

∣∣∣ ≤ 1 is given by

H̃s = lim
n→∞

Fn((Ũu)u≤s+1/n) P-a.s., (4.29)

for some Fn : R[0,s+1/n]
→ [−1, 1] which is B(R)[0,s+1/n]-measurable, our assumptions imply

that for each random variable in the above set there exist Hti ∈ F U
ti satisfying

∣∣Hti

∣∣ ≤ 1 for
i = 0, . . . , n − 1 such that

n∑
i=1

H̃ti−1(Ỹti − Ỹti−1)
D
=

n∑
i=1

Hti−1(Yti − Yti−1). (4.30)

Thus since (Yt )t≥0 is an (F U
t )t≥0-semimartingale, another application of the Bichteler–

Dellacherie Theorem shows that the set given in (4.28) is bounded in L0(P). �
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We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We prove the result in the following three steps (1)–(3). Recall the
Lévy–Itô decompositions (a) and (b).

(1) Let σ 2 > 0.
Assume that (X t )t≥0 is an (F Z

t )t≥0-semimartingale. Let Z̃ t = Yt − Wt and X̃ t =
∫ t

0 φ(t −

s) d Z̃s . We have F Z
t = F W

t ∨F Y
t = F−W

t ∨F Y
t = F Z̃

t and since (X ·, Z ·)
D
= (X̃ ·, Z̃ ·), Lemma 4.8

shows that (X̃ t )t≥0 is an (F Z
t )t≥0-semimartingale. Therefore (X W

t )t≥0 := ((X t − X̃ t )/2)t≥0 is
an (F Z

t )t≥0-semimartingale and thus an (F W
t )t≥0-semimartingale, and by Lemma 4.2(ii) we

conclude that φ is absolutely continuous on R+ with a locally square integrable density.
On the other hand, if φ is absolutely continuous with a locally square integrable density it

follows by Lemma 4.2(i) that (X t )t≥0 is an (F Z
t )t≥0-semimartingale.

(2) Let σ 2
= 0 and (Z t )t≥0 be of unbounded variation.

Assume that (X t )t≥0 is an (F Z
t )t≥0-semimartingale. By Lemma 4.3 it follows that (X1

t )t≥0 is

an (F Z1

t )t≥0-semimartingale. Let T = Q ∩ [0, t], q( f ) = sups∈T | f (s)| for all f ∈ RT and µ
be given by (4.23) with ν replaced by ν1. Since ν1 has compact support and φ is locally bounded
(recall that φ is chosen càdlàg) there exists an r0 > 0 such that µ( f ∈ RT

: q( f ) ≥ r0) = 0 and
hence, according to Rosiński [34, Lemma 2.2], E[sups∈[0,t]

∣∣X1
s

∣∣] <∞. This shows that (X1
t )t≥0

is a special (F Z1

t )t≥0-semimartingale. Let X1
t = Mt + At denote the canonical (F Z1

t )t≥0-
decomposition of (X1

t )t≥0. Then Lemma 4.6 yields (Mt )t≥0 = (φ(0)Z1
t )t≥0 and hence (At )t≥0,

given by

At =

∫ t

0
ψ(t − s)dZ1

s , t ≥ 0, (4.31)

where ψ(t) = φ(t)− φ(0) for t ≥ 0, is of bounded variation. Thus, by Lemma 4.7 we conclude
thatψ , and hence also φ, is absolutely continuous on R+ with a density having locally ξ -moment.

Assume conversely that φ is absolutely continuous with a density having locally ξ -moment.
Since φ and (Z2

t )t≥0 are càdlàg and of bounded variation it follows that (X2
t )t≥0 is càdlàg and of

bounded variation as well. Let (At )t≥0 be given by (4.31). By Lemma 4.7 it follows that (At )t≥0
is càdlàg and of bounded and hence (X1

t )t≥0 = (φ(0)Z1
t + At )t≥0 is an (F Z

t )t≥0-semimartingale
and we have shown that (X t )t≥0 is an (F Z

t )t≥0-semimartingale.
(3) Let (Z t )t≥0 be of bounded variation.
Assume that (X t )t≥0 is an (F Z

t )t≥0-semimartingale. By arguing as in (2) it follows that
(At )t≥0 given by (4.31) is of bounded variation. Hence [29, Theorem 4] and a symmetrization
argument shows that ψ , and hence also φ, is of bounded variation.

Assume conversely that φ is of bounded variation. Since (Z t )t≥0 is càdlàg and of bounded
variation it follows that (X t )t≥0 is càdlàg and of bounded variation and hence an (F Z

t )t≥0-
semimartingale. �

To show Proposition 3.2 we need the following Fubini type result.

Lemma 4.9. Let T > 0, µ denote a finite measure on R+ and let f : R2
+ → R be a measurable

function such that either (i) or (ii) is satisfied, where

(i) σ 2
= 0, ξ(| f (t, ·)|) ∈ L1([0, T ], λ) for all t ≥ 0 and ξ(| f |) ∈ L1(R+ × [0, T ], µ× λ).

(ii) σ 2 > 0, f (t, ·) ∈ L2([0, T ], λ) for all t ≥ 0, and f ∈ L2(R+ × [0, T ], µ× λ).
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Then (
∫ T

0 f (t, s)dZs)t≥0 can be chosen measurable and in this case

∫ (∫ T

0
f (t, s)dZs

)
µ(dt) =

∫ T

0

(∫
f (t, s) µ(dt)

)
dZs P-a.s. (4.32)

Proof. Assume that (i) is satisfied. To show (4.32) we may and do assume that (Z t )t≥0 has
characteristic triplet (0, 0, ν) where ν is concentrated on [−1, 1]. Let g be given by (4.1). Since
g is 0 at 0, symmetric, increasing, convex, limx→∞ g(x) = ∞ and g(2x) ≤ 4g(x) for all x ≥ 0,
g is a Young function satisfying the ∆2-condition (see [35, page 5+22]). Let Lg([0, T ], λ) denote
the Orlicz space of measurable functions with finite g-moment on [0, T ] equipped with the norm

‖h‖g = inf
{

c > 0 :
∫ T

0
g(c−1h(s))ds ≤ 1

}
. (4.33)

According to Chapter 3.3, Theorem 10, and Chapter 3.5, Theorem 1, in [35], Lg([0, T ], λ) is
a separable Banach space. Let ft := f (t, ·) for all t ≥ 0. Since ξ(| ft |) ∈ L1([0, T ], λ) for
all t ≥ 0, it is easy to check that ft satisfies (2.2)–(2.4) and hence Yt :=

∫ T
0 ft (s)dZs is well-

defined for all t ≥ 0. We show that (Yt )t≥0 has a measurable modification. Since Lg([0, T ], λ) is
separable and t 7→ ‖ ft − h‖g is measurable for all h ∈ Lg([0, T ], λ) it follows that t 7→ ft is a
measurable mapping from R+ into Lg([0, T ], λ). Furthermore, since Lg([0, T ], λ) is separable
there exists (hn

k )n,k≥1 ⊆ Lg([0, T ], λ) and disjoint measurable sets (An
k )k≥1 for all n ≥ 1 such

that with

f n
t (s) =

∑
k≥1

hn
k (s)1An

k
(t), (4.34)

we have
∥∥ ft − f n

t

∥∥
g ≤ 2−n for all t ≥ 0. Set Y n

t =
∑

k≥1

∫ T
0 hn

k (s)dZs1An
k
(t) for all t ≥ 0 and

n ≥ 1. Then (Y n
t )t≥0 is a measurable process and by [20, Theorem 2.1] it follows that∥∥Y n

t − Yt
∥∥

L1(P) ≤ 3
∥∥ f n

t − ft
∥∥

g ≤ 3× 2−n, ∀t ≥ 0, ∀n ≥ 1. (4.35)

For all t ≥ 0 and ω ∈ Ω let Ỹt (ω) = limn Y n
t (ω) when the limit exists in R and zero otherwise.

Then (Ỹt )t≥0 is measurable and for all t ∈ R, Ỹt = Yt P-a.s. by (4.35). Thus we have constructed
a measurable modification of (Yt )t≥0.

Let us show that both sides of (4.32) are well-defined. Since g/2 ≤ ξ ≤ g and ξ(ax) ≤
(a + 1)2ξ(x) for all x, a > 0, it follows by Jensen’s inequality that∫ T

0
ξ

(∫
| f (t, s)| µ(dt)

)
ds ≤

2(µ(R)+ 1)2

µ(R)

∫ T

0

∫
ξ(| f (t, s)|) µ(dt)ds <∞. (4.36)

Thus, the right-hand side of (4.32) is well-defined. The left-hand side is well-defined as well
since

E

[∫ ∣∣∣∣∫ T

0
f (t, s)dZs

∣∣∣∣µ(dt)

]
≤ 3

∫ (∫ T

0
ξ(| ft (s)|)ds

)
∨

(∫ T

0
ξ(| ft (s)|)ds

)1/2

µ(dt)

< ∞, (4.37)
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where the first inequality follows by [20, Corollary 1.1]. Furthermore, (4.32) is obviously true
for simple f on the form

f (t, s) =
n∑

i=1

αi 1(si−1,si ](t)1(ti−1,ti ](s). (4.38)

If f is a given function satisfying (i) we can choose a sequence of simple ( fn)n≥1 converging to
f and satisfying | fn| ≤ | f |. We have∫ (∫ T

0
fn(u, s)dZu

)
µ(ds) =

∫ T

0

(∫
fn(u, s) µ(ds)

)
dZu, (4.39)

and by estimates as above it follows that we can go to the limit in L1(P) in (4.39), which shows
(4.32).

The case (ii) follows by a similar argument. In this case we have to work in L2([0, T ], λ)
instead of Lg([0, T ], λ). �

Proposition 3.2 is an immediate consequence of Theorem 3.1 and Lemma 4.9, since

φ(t − s) = φ(0)+
∫ t−s

0
φ′(u)du = φ(0)+

∫ t

0
1{s≤u}φ

′(u − s)du, s ∈ [0, t]. (4.40)

5. The two-sided case

Let (X t )t≥0 be given by

X t =

∫ t

−∞

(φ(t − s)− ψ(−s)) dZs, t ≥ 0, (5.1)

where (Z t )t∈R is a (two-sided) nondeterministic Lévy process with characteristic triplet
(γ, σ 2, ν) and φ,ψ : R → R are measurable functions for which the integral exists (still in
the sense of [19, page 460]). Also assume that φ and ψ are 0 on (−∞, 0) and let (F Z ,∞

t )t≥0

denote the least filtration for which σ(Zs : −∞ < s ≤ t) ⊆ F Z ,∞
t for all t ≥ 0. From [19,

Theorem 2.8] it follows that (X t )t≥0 is well-defined if and only if

X1
t =

∫ t

0
φ(t − s)dZs, and X2

t =

∫ 0

−∞

(φ(t − s)− ψ(−s))dZs, (5.2)

are well-defined. Similar to Lemma 4.8 we have the following.

Lemma 5.1. Let (Yt )t≥0, (Ut )t∈R, (Ỹt )t≥0 and (Ũt )t∈R denote four processes such that (Yt )t≥0

is (F U,∞
t )t≥0-adapted, (Ỹt )t≥0 is (F Ũ ,∞

t )t≥0-adapted and (Y·,U·)
D
= (Ỹ·, Ũ·). If (Yt )t≥0

is an (F U,∞
t )t≥0-semimartingale then (Ỹt )t≥0 has a modification which is an (F Ũ ,∞

t )t≥0-
semimartingale.

Lemma 5.2. Assume that (Z t )t∈R is symmetric. Then (X t )t≥0 is an (F Z ,∞
t )t≥0-semimartingale

if and only if (X1
t )t≥0 is an (F Z

t )t≥0-semimartingale and (X2
t )t≥0 is càdlàg and of bounded

variation.

Proof. The if -part is trivial. To show the only if -part assume that (X t )t≥0 is an (F Z ,∞
t )t≥0-

semimartingale. Let X̃ t = X1
t − X2

t and let Z̃ t = Z t for t ≥ 0 and Z̃ t = −Z t when t < 0.
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Since (Z t )t∈R is symmetric (X ·, Z ·)
D
= (X̃ ·, Z̃ ·) and from Lemma 5.1 it follows that (X̃ t )t≥0

is an (F Z̃ ,∞
t )t≥0-semimartingale and hence an (F Z ,∞

t )t≥0-semimartingale since (F Z̃ ,∞
t )t≥0 =

(F Z ,∞
t )t≥0. Thus, (X1

t )t≥0 = ((X t + X̃ t )/2)t≥0 is an (F Z ,∞
t )t≥0-semimartingale and hence

an (F Z
t )t≥0-semimartingale. Moreover, (X2

t )t≥0 is an (F Z ,∞
t )t≥0-semimartingale and hence

càdlàg and of bounded variation since X2
t is F Z ,∞

0 -measurable for all t ≥ 0. �

We have the following consequence of Lemma 5.2 and Theorem 3.1.

Proposition 5.3. Let (X t )t≥0 be given by (5.1) and assume that it is an (F Z ,∞
t )t≥0-

semimartingale.
If (Z t )t∈R is of unbounded variation then φ is absolutely continuous on R+ with a density φ′

satisfying (1.3)–(1.4).
If (Z t )t∈R is of bounded variation then (X t )t≥0 is of bounded variation and φ is of bounded

variation as well.

Proof. Let Z̃ t = Z t − Z ′t where (Z ′t )t∈R is an independent copy of (Z t )t∈R and let (X ′t )t≥0 be
given by

X ′t =
∫ t

−∞

(φ(t − s)− ψ(−s)) dZ ′s, t ≥ 0. (5.3)

By Lemma 5.1, (X ′t )t≥0 is an (F Z ′,∞
t )t≥0-semimartingale, which by independence of filtrations

shows that (X̃ t )t≥0 := (X t− X ′t )t≥0 is a semimartingale in the (F Z ,∞
t ∨F Z ′,∞

t )t≥0-filtration and

hence in the (F Z̃ ,∞
t )t≥0-filtration. Since (Z̃ t )t∈R is symmetric Lemma 5.2 shows that (X̃1

t )t≥0

is an (F Z̃
t )t≥0-semimartingale and since (Z̃ t )t≥0 has characteristic triplet (0, 2σ 2, ν̃) where

ν̃(A) = ν(A)+ ν(−A), the proposition follows by Theorem 3.1. �

Let (X t )t≥0 denote a fractional Lévy motion, that is

X t =

∫ t

−∞

((t − s)τ − (−s)τ+)dZs, t ≥ 0, (5.4)

where τ is such that the integral exists and x+ := x ∨ 0 for all x ∈ R. In the following let us
assume that (Z t )t∈R has no Brownian component. Recall the definition of X2

t in (5.2). From [19,
Theorem 2.8] it follows that it is necessary (and sufficient when (Z t )t≥0 is symmetric) that∫

∞

0

∫ (∣∣x((t + s)τ − sτ )
∣∣2 ∧ 1

)
ν(dx)ds <∞ (5.5)

for X2
t to be well-defined. A simple calculation shows that (5.5) is satisfied if and only if

τ < 1/2 and
∫
[−1,1]c

|x |1/(1−τ) ν(dx) <∞. (5.6)

Thus it is necessary that (5.6) and (I)–(III) are satisfied for (X t )t≥0 to be well-defined, and when
(Z t )t∈R is symmetric these conditions are also sufficient. Marquardt [36] studies processes of the
form (5.4) under the assumptions that σ 2

= 0,
∫
[−1,1]c |x |

2 ν(dx) < ∞, γ = −
∫
[−1,1]c x ν(dx)

and 0 < τ < 1/2. See also [37] for a study of the well-balanced case.
To avoid trivialities assume τ 6= 0. As an application of Proposition 5.3 and Corollary 3.5 we

have the following.
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Corollary 5.4. Assume that (Z t )t∈R has no Brownian component and let (X t )t≥0 be
given by (5.4). If (X t )t≥0 is an (F Z ,∞

t )t≥0-semimartingale then τ ∈ (0, 1/2) and∫
[−1,1] |x |

1/(1−τ) ν(dx) <∞.

In particular let (X t )t≥0 denote a linear fractional stable motion with indexes α ∈ (0, 2] and
H ∈ (0, 1), that is

X t =

∫ t

−∞

(
(t − s)H−1/α

− (−s)H−1/α
+

)
dZs, t ≥ 0, (5.7)

where (Z t )t∈R is a symmetric α-stable Lévy process (see [3, Definition 7.4.1]). For α = 2,
(X t )t≥0 is a fractional Brownian motion (fBm) with Hurst parameter H (up to a scaling constant).
From Corollary 5.4 it follows that (X t )t≥0 is an (F Z ,∞

t )t≥0-semimartingale if and only if
H = 1/α.

Let (X t )t≥0 be given by (5.1) and assume that (Z t )t∈R is a symmetric α-stable Lévy process
with α ∈ (1, 2]. If (X t )t≥0 is an (F Z ,∞

t )t≥0-semimartingale it follows by Proposition 5.3 and
result (1) at the end of Section 2 that φ is absolutely continuous on R+ with a density having
locally α-moment. The next result shows that this condition is actually necessary and sufficient
for (X t )t≥0 to be an (F Z ,∞

t )t≥0-semimartingale if we delete “locally”. Thus, extending [10,
Theorem 6.5] from α = 2 to α ∈ (1, 2] we have the following.

Proposition 5.5. Let (X t )t≥0 be given by (5.1) and assume that (Z t )t∈R is a symmetric α-stable
Lévy process with α ∈ (1, 2]. Then (X t )t≥0 is an (F Z ,∞

t )t≥0-semimartingale if and only if φ is
absolutely continuous on R+ with a density in Lα(R+, λ).

Let B denote a Banach space (not necessarily separable) and assume that there exists a countable
subset D of the unit ball of B ′ (the topological dual space of B) such that

‖x‖ = sup
F∈D
|F(x)| , ∀x ∈ B. (5.8)

Following [38, page 133], a B-valued random element X is called α-stable if
∑n

i=1 ai Fi (X) is a
real-valued α-stable random variable for all n ≥ 1, F1, . . . , Fn ∈ D and a1, . . . , an ∈ R.

Let T denote an interval in R+ and let B denote the subspace of RT containing all functions
which are càdlàg and of bounded variation. Then B is a Banach space in the total variation norm
(but not separable) and since the unit ball of B ′ consists of F of the form

F( f ) =
n∑

i=1

ai ( f (ti )− f (ti−1)), f ∈ B, (5.9)

where (ai )
n
i=1 ⊆ [−1, 1] and (ti )ni=0 is an increasing sequence in T , it follows that B satisfies

(5.8).

Proof of Proposition 5.5. For α = 2 the result follows by [11, Theorem 3.1]; thus let us assume
α ∈ (1, 2).

Assume that (X t )t≥0 is an (F Z ,∞
t )t≥0-semimartingale. According to Lemma 5.2 (X2

t )t≥0 is
càdlàg and of bounded variation. Consider (X2

t )t≥0 as an α-stable random element with values
in the Banach space consisting of functions which are càdlàg and of bounded variation equipped
with the total variation norm. Hence from [38, Proposition 5.6] it follows that (X2

t )t≥0 is of
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integrable variation on each compact interval. Moreover, by [20, Corollary 1.1] we have

E
[∣∣∣n(X2

i/n − X2
(i−1)/n)

∣∣∣] ≥ 1
4

(
ai,n ∧

√
ai,n

)
, i, n ≥ 1, (5.10)

where

ai,n :=

∫
∞

(i−1)/n
ξ̃ (|∆nφ(s)|)ds, and ξ̃ (x) :=

∫
(|xs|2 ∧ |xs|) ν(ds). (5.11)

Since i 7→ ai,n is decreasing it follows that

E[V1(X
2)] ≥ sup

n≥1

n∑
i=1

E
[∣∣∣X2

i/n − X2
(i−1)/n

∣∣∣] ≥ sup
n≥1

1
4

(
an,n ∧

√
an,n

)
. (5.12)

By (5.12) we conclude that (an,n)n≥1 is bounded and hence (ξ̃ (|∆nφ|))n≥1 is bounded in
L1([1,∞), λ). A straightforward calculation shows ξ̃ (x) = c1xα for all x ≥ 0 for some constant
c1 > 0, which implies that (∆nφ)n≥1 is bounded in Lα([1,∞), λ). Since α > 1, a sequence in
Lα([1,∞), λ) is bounded if and only if it is weakly sequentially compact (see [27, Chapter IV.8,
Corollary 4]). Thus, by arguing as in Lemma 4.1 it follows that φ is absolutely continuous with
a density in Lα([1,∞), λ). Furthermore, since (X1

t )t≥0 is an (F Z
t )t≥0-semimartingale it follows

by Corollary 3.4 that φ is absolutely continuous on R+ with a density locally in Lα(R+, λ). This
shows the only if -part.

Assume conversely that φ is absolutely continuous on R+ with a density in Lα(R+, λ). By
Corollary 3.4 (X1

t )t≥0 is an (F Z
t )t≥0-semimartingale. Thus it is enough to show that (X2

t )t≥0
is càdlàg and of bounded variation. Since φ is absolutely continuous on R+ with a density in
Lα(R+, λ) it follows by arguing as in Lemma 4.1 that ‖φ(t − ·)− φ(u − ·)‖Lα((−∞,0),λ) ≤

c(t − u) for some c > 0 and all 0 ≤ u ≤ t . For all p ∈ [1, α) and all u, t ≥ 0 we have∥∥∥X2
t − X2

u

∥∥∥
L p(P)

= K p,α ‖φ(t − ·)− φ(u − ·)‖Lα((−∞,0),λ) ≤ K p,αc |t − u| , (5.13)

for some constant K p,α > 0 only depending on p and α. By letting p ∈ (1, α), (5.13) and
the Kolmogorov–C̆entsov Theorem show that (X2

t )t≥0 has a continuous modification. Moreover,
by letting p = 1 (5.13) shows that this modification is of integrable variation on each compact
interval. This completes the proof. �

Motivated by Lemma 5.2 we study in the following proposition infinitely divisible processes
(X t )t≥0 of bounded variation, where (X t )t≥0 is on the form X t =

∫
R f (t, s)dZs . Assume that

(X t )t≥0 is càdlàg and of bounded variation. Rosiński [29, Theorem 4] shows that t 7→ f (t, s) is
of bounded variation for λ-a.a. s ∈ R. Extending this we show that the total variation of f (·, s)
must satisfy an integrability condition which is equivalent to the existence of

∫
R Vt ( f (·, s))dZs

for all t > 0 when (Z t )t∈R is symmetric and has no Brownian component.

Proposition 5.6. Let f : R+ × R → R denote a measurable function such that X t =∫
R f (t, s)dZs is well-defined for all t ≥ 0. If (X t )t≥0 is càdlàg and of bounded variation then∫∫ (

1 ∧ |x Vt ( f (·, s))|2
)
ν(dx)ds <∞, ∀t > 0. (5.14)

Let (εi )i≥1 denote a Rademacher sequence, i.e. (εi )i≥1 is an i.i.d. sequence such that
P(ε1 = −1) = P(ε1 = 1) = 1/2. It is well-known that if (αi )i≥1 ⊆ R then

∑
∞

i=1 εiαi
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converges P-a.s. if and only if
∑
∞

i=1 α
2
i < ∞. Let B denote a Banach space satisfying (5.8).

Following [38, page 99], a B-valued random element X is called a vector-valued Rademacher
series if there exists a sequence (xi )i≥1 in B such that

∑
∞

i=1 F2(xi ) < ∞ for all F ∈ D and
(F1(X), . . . , Fn(X)) equals (

∑
∞

i=1 εi F1(xi ), . . . ,
∑
∞

i=1 εi Fn(xi )) in distribution for all n ≥ 1
and all F1, . . . , Fn ∈ D.

Proof of Proposition 5.6. By a symmetrization argument we may and do assume that σ 2
= 0

and (Z t )t∈R is symmetric. Define

Yt =

∞∑
j=1

ε j C j f (t,U j ), t ≥ 0, (5.15)

where (ε j ) j≥1 is a Rademacher sequence, (τ j ) j≥1 are the partial sums of i.i.d. standard
exponential random variables and (U j ) j≥1 are i.i.d. standard normal random variables with
density ρ, and (ε j ) j≥1, (τ j ) j≥1 and (U j ) j≥1 are independent. Let ν←: R+ → R+ denote
the right-continuous inverse of the mapping x 7→ ν((x,∞)), that is, ν←(s) = inf{x > 0 :
ν((x,∞)) ≤ s}, and let C j := ν←(τ jρ(U j )) for all j ≥ 1. By [29, Proposition 2], the series
(5.15) converges P-a.s. and (Yt )t≥0 has the same finite dimensional distributions as (X t )t≥0.
Thus, (Yt )t≥0 has a càdlàg modification of locally bounded variation. Hence we may and do
assume that (X t )t≥0 is given by (5.15). Moreover, we may define (ε j ) j≥1 on a probability
space (Ω ′,F ′, P ′), (τ j ) j≥1 and (U j ) j≥1 on a probability space (Ω ′′,F ′′, P ′′) and (X t )t≥0 on
the product space. Let T = [0, t] denote a compact interval in R+ and let B denote the subspace
of RT consisting of functions which are càdlàg and of bounded variation. Inspired by Marcus
and Rosiński [23] let us fix ω′′ ∈ Ω ′′ and consider X = (X t )t∈T as a B-valued Rademacher

series under P ′. From [38, Theorem 4.8] it follows that E ′[eα‖X‖
2
] < ∞ for all α > 0, which

in particular shows that (X t )t∈T is of P ′-integrable variation. By Khinchine’s inequality there
exists a constant c > 0 such that E ′[|X t − Xu |] ≥ c ‖X t − Xu‖L2(P ′) for all u, t ≥ 0. Together
with the triangle inequality in l2 this shows that

E ′
[

n∑
i=1

∣∣X ti − X ti−1

∣∣] ≥ c
n∑

i=1

(
∞∑
j=1

C2
j ( f (ti ,U j )− f (ti−1,U j ))

2

)1/2

≥ c

(
∞∑
j=1

(
n∑

i=1

∣∣C j ( f (ti ,U j )− f (ti−1,U j ))
∣∣)2)1/2

= c

(
∞∑
j=1

(∣∣C j
∣∣ n∑

i=1

∣∣ f (ti ,U j )− f (ti−1,U j )
∣∣)2)1/2

. (5.16)

Thus, by monotone convergence we conclude

E ′[Vt (X)] ≥ c

(
∞∑
j=1

(
C j Vt ( f (·,U j ))

)2)1/2

, (5.17)

and in particular (C j Vt ( f (·,U j ))) j≥1 ∈ l2. Thus, we have shown that the series∑
∞

j=1 ε j C j Vt ( f (·,U j )) converges P-a.s. and from Theorem 2.4 and Proposition 2.7 in [39]
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it follows that∫
∞

0

∫ (
1 ∧ H(u, v)2

)
ρ(v)dvdu <∞, (5.18)

where H(u, v) = ν←(uρ(v))Vt ( f (·, v)). Furthermore, (5.18) equals∫∫ (
1 ∧ (ν←(u)Vt ( f (·, v)))2

) 1
ρ(v)

du ρ(v)dv

=

∫∫ (
1 ∧ (u Vt ( f (·, v)))2

)
ν(du)dv, (5.19)

which shows (5.14). �
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[5] M. Reiß, M. Riedle, O. van Gaans, On Émery’s inequality and a variation-of-constants formula, Stochastic Anal.

Appl. 25 (2) (2007) 353–379.
[6] O.E. Barndorff-Nielsen, J. Schmiegel, Ambit processes: With applications to turbulence and tumour growth,

in: Stochastic Analysis and Applications, in: Abel Symp., vol. 2, Springer, Berlin, 2007, pp. 93–124.
[7] F. Biagini, B. Øksendal, A. Sulem, N. Wallner, An introduction to white-noise theory and Malliavin calculus for

fractional Brownian motion, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2041) (2004) 347–372,
Stochastic analysis with applications to mathematical finance.

[8] F. Delbaen, W. Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann. 300 (3)
(1994) 463–520.

[9] K. Bichteler, Stochastic integration and L p-theory of semimartingales, Ann. Probab. 9 (1) (1981) 49–89.
[10] F.B. Knight, Foundations of the Prediction Process, in: Oxford Studies in Probability, vol. 1, The Clarendon Press,

Oxford University Press, Oxford Science Publications, New York, 1992.
[11] A. Cherny, When is a moving average a semimartingale? MaPhySto – Research Report2001–28, 2001. Available

from http://www.maphysto.dk/cgi-bin/gp.cgi?publ=318.
[12] P. Cheridito, Gaussian moving averages, semimartingales and option pricing, Stochastic Process. Appl. 109 (1)

(2004) 47–68.
[13] A. Basse, Spectral representation of Gaussian semimartingales. Thiele Centre – Research Report 2008–03, 2008b.

Available from http://www.imf.au.dk/publs?id=672.
[14] T. Jeulin, M. Yor, Moyennes mobiles et semimartingales, Sémin. Probab. XXVII (1557) (1993) 53–77.
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