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Abstract

Let (Zn) be a supercritical branching process in a random environment ξ , and W be the limit of the
normalized population size Zn/E[Zn |ξ ]. We show large and moderate deviation principles for the sequence
log Zn (with appropriate normalization). For the proof, we calculate the critical value for the existence of
harmonic moments of W , and show an equivalence for all the moments of Zn . Central limit theorems on
W − Wn and log Zn are also established.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction and main results

As an important extension of the Galton–Watson process, the model of branching process in
a random environment was introduced first by Smith and Wilkinson [22] for the independent
environment case, and then by Athreya and Karlin [4] for the stationary and ergodic environment
case. See also [3,23,24] for some basic results on the subject. The study of asymptotic properties
of a branching process in a random environment has recently received attention; see for example,
[1,2,15,5,6,8,7], among others. Here, for a supercritical branching process (Zn) in a random

∗ Corresponding author at: LMAM, Université de Bretagne-Sud, Campus de Tohannic, BP 573, 56017 Vannes, France.
Tel.: +33 2 9701 7140; fax: +33 2 9701 7175.

E-mail addresses: sasamao02@gmail.com (C. Huang), quansheng.liu@univ-ubs.fr (Q. Liu).

0304-4149/$ - see front matter c⃝ 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2011.09.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82243063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/spa
http://dx.doi.org/10.1016/j.spa.2011.09.001
http://www.elsevier.com/locate/spa
mailto:sasamao02@gmail.com
mailto:quansheng.liu@univ-ubs.fr
http://dx.doi.org/10.1016/j.spa.2011.09.001


C. Huang, Q. Liu / Stochastic Processes and their Applications 122 (2012) 522–545 523

environment, we shall mainly show asymptotic properties of the moments of Zn , and prove
moderate and large deviation principles for (log Zn). In particular, our result on the annealed
harmonic moments completes that of Hambly [12] on the quenched harmonic moments, and
extends the corresponding theorem of Ney and Vidyashanker [21] for the Galton–Watson
process; our moderate and large deviation principles complete the results of Kozlov [15],
Bansaye and Berestycki [5], Bansaye and Böinghoff [6] and Böinghoff and Kersting [8] on large
deviations.

Let us give a description of the model. Let ξ = (ξ0, ξ1, ξ2, . . .) be a sequence of independent
and identically distributed (i.i.d.) random variables taking values in some space Θ , whose
realization determines a sequence of probability generating functions

fn(s) = fξn (s) =

∞−
i=0

pi (ξn)si , s ∈ [0, 1], pi (ξn) ≥ 0,

∞−
i=0

pi (ξn) = 1. (1.1)

A branching process (Zn)n≥0 in the random environment ξ can be defined as follows:

Z0 = 1, Zn+1 =

Zn−
i=1

Xn,i n ≥ 0, (1.2)

where given the environment ξ , Xn,i (i = 1, 2, . . .) are independent of each other and
independent of Zn , and have the same distribution determined by fn .

Let (Γ , Pξ ) be the probability space under which the process is defined when the environment
ξ is given. As usual, Pξ is called quenched law. The total probability space can be formulated
as the product space (Γ × ΘN, P), where P = Pξ ⊗ τ in the sense that for all measurable and
positive function g, we have∫

gdP =

∫ ∫
g(ξ, y)dPξ (y)dτ(ξ),

where τ is the law of the environment ξ . The total probability P is usually called annealed law.
The quenched law Pξ may be considered to be the conditional probability of the annealed law P
given ξ . The expectation with respect to Pξ (resp. P) will be denoted Eξ (resp. E).

For ξ = (ξ0, ξ1, . . .) and n ≥ 0, define

mn(p) = mn(p, ξ) =

∞−
i=0

i p pi (ξn) for p > 0, (1.3)

mn = mn(1), Π0 = 1 and Πn = m0 · · · mn−1 for n ≥ 1. (1.4)

Then mn(p) = Eξ X p
n,i and Πn = Eξ Zn . It is well known that the normalized population size

Wn =
Zn

Πn

is a nonnegative martingale under Pξ (for each ξ ) with respect to the filtration Fn =

σ(ξ, Xk,i , 0 ≤ k ≤ n − 1, i = 1, 2, . . .), so that the limit

W = lim
n→∞

Wn

exists almost sure (a.s.) with EW ≤ 1. We shall always assume that
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E log m0 ∈ (0, ∞) and E
Z1

m0
log+ Z1 < ∞. (1.5)

The first condition means that the process is supercritical; the second implies that W is non-
degenerate. Hence (see e.g. [4])

Pξ (W > 0) = Pξ (Zn → ∞) = lim
n→∞

Pξ (Zn > 0) a.s.

For simplicity, we write often pi for pi (ξ0) and assume always

p0 = 0 a.s.

Therefore W > 0 and Zn → ∞ a.s.
It is known that log Zn

n → E log m0 a.s. on {Zn → ∞} (see e.g. [23]). We are interested in the
asymptotic properties of the corresponding deviation probabilities. Notice that

log Zn = log Πn + log Wn . (1.6)

Since Wn → W > 0 a.s., certain asymptotic properties of log Zn would be determined by those
of log Πn . We shall show that log Zn and log Πn satisfy the same limit theorems under suitable
moment conditions.

At first, we present a large deviation principle. Let Λ(t) = log Emt
0. Assume that m0 is not a

constant a.s. and that Λ(t) < ∞ for all t ∈ R. Let

Λ∗(x) = sup
t∈R

{t x − Λ(t)}

be the Fenchel–Legendre transform of Λ. It is well known [10, Lemma 2.2.5] that Λ∗(E log
m0) = 0, Λ∗(x) is strictly increasing for x ≥ E log m0 and strictly decreasing for x ≤ E log m0;
moreover,

Λ∗(x) =


t x − Λ(t) if x = Λ′(t) for some t ∈ R,

∞ if x ≥ Λ′(∞) or x ≤ Λ′(−∞).

In fact, Λ∗ is the rate function with which log Πn satisfies a large deviation principle. We
introduce the following assumption.
(H) There exist constants δ > 0 and A > A1 > 1 such that a.s.

A1 ≤ m0 and m0(1 + δ) ≤ A1+δ, (1.7)

(recall that m0 and m0(1 + δ) were defined in (1.3) and (1.4)). Notice that the second condition
implies that m0 ≤ A a.s.

The theorem below shows that log Zn and log Πn satisfy the same large deviation principle.

Theorem 1.1 (Large Deviation Principle). Assume (H). If EZ s
1 < ∞ for all s > 1 and p1 = 0

a.s., then for any measurable subset B of R,

− inf
x∈Bo

Λ∗(x) ≤ lim inf
n→∞

1
n

log P


log Zn

n
∈ B


≤ lim sup

n→∞

1
n

log P


log Zn

n
∈ B


≤ − inf

x∈B̄
Λ∗(x),

where Bo denotes the interior of B, and B̄ its closure.
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From Theorem 1.1, we obtain immediately the following corollary.

Corollary 1.2. Assume (H). If EZ s
1 < ∞ for all s > 1 and p1 = 0 a.s., then

lim
n→∞

1
n

log P


log Zn

n
≤ x


= −Λ∗(x) for x < E log m0,

lim
n→∞

1
n

log P


log Zn

n
≥ x


= −Λ∗(x) for x > E log m0.

Remark. This result was shown by Bansaye and Berestycki [5] when (H) holds with δ = 1. If
P(p1 > 0) > 0, the rate function for the lower deviation is no longer Λ∗(x): in this case, Bansaye
and Berestycki [5] proved that under certain hypothesis,

lim
n→∞

1
n

log P


log Zn

n
≤ x


= −χ(x) for x < E log m0,

where χ(x) = inft∈[0,1]{−t log Ep1 + (1 − t)Λ∗( x
1−t )}. Obviously, χ(x) ≤ Λ∗(x).

For the upper deviation and for branching processes with special offspring distributions, more
precise results can be found in [15,8,6].

Notice that the Laplace transform of log Zn is

Eet log Zn = EZ t
n .

Therefore, Theorem 1.1 is a consequence of the Gärtner–Ellis theorem (see e.g. [10]) and
Theorem 1.3 below.

Theorem 1.3 (Moments of Zn). Let t ∈ R. Suppose that one of the following conditions is
satisfied:

(i) t ∈ (0, 1] and Emt−1
0 Z1 log+ Z1 < ∞;

(ii) t > 1 and EZ t
1 < ∞;

(iii) t < 0, Ep1 < Emt
0, ‖p1‖∞ := esssup p1 < 1 and (H) holds.

Then for some constant C(t) ∈ (0, ∞),

lim
n→∞

EZ t
n

Emt
0

n = C(t).

For t < 0, Theorem 1.3 is an extension of a result of Ney and Vidyashanker [21] on the
Galton–Watson process. Theorem 1.3 can also be used to study the convergence rate in a central
limit theorem for W − Wn (see Theorem 1.7).

A key step in the proof of Theorem 1.3 is the study of the harmonic moments (moments of
negative orders) of W , which is of interest of its own. The following result is our main result on
this subject.

Theorem 1.4 (Harmonic Moments of W ). Let a > 0. Assume (H) and ‖p1‖∞ < 1. Then

EW −a < ∞ if and only if Ep1ma
0 < 1.

Theorem 1.4 reveals that under certain conditions, the number a0 satisfying Ep1ma0
0 = 1 is

the critical value for the existence of the harmonic moments EW −a(a > 0). More precisely, we
have the following corollary.
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Corollary 1.5. Assume (H) and ‖p1‖∞ < 1. If Ep1ma0
0 = 1, then EW −a < ∞ if 0 < a < a0

and EW −a
= ∞ if a ≥ a0.

Remark. Hambly [12] proved that under an assumption similar to (H), the number α0 :=

−
E log p1
E log m0

is the critical value for the a.s. existence of the quenched moments Eξ W −a(a > 0):

namely, Eξ W −a < ∞ a.s. if a < α0 and Eξ W −a
= ∞ a.s. if a > α0. Here, we obtain the critical

value for the existence of the annealed moments instead of the quenched ones. Notice that by
Jensen’s inequality and the equation Ep1ma0

0 = 1, we see the natural relation that a0 ≤ α0.
Now we consider moderate deviations. Let (an) be a sequence of positive numbers satisfying

an

n
→ 0 and

an
√

n
→ ∞ as n → ∞. (1.8)

Similar to the case of large deviation principle, log Zn and log Πn satisfy the same moderate
deviation principle.

Theorem 1.6 (Moderate Deviation Principle). Assume (H) and σ 2
= var(log m0) ∈ (0, ∞).

Then for any measurable subset B of R,

− inf
x∈Bo

x2

2σ 2 ≤ lim inf
n→∞

n

a2
n

log P


log Zn − nE log m0

an
∈ B


≤ lim sup

n→∞

n

a2
n

log P


log Zn − nE log m0

an
∈ B


≤ − inf

x∈B̄

x2

2σ 2 ,

where Bo denotes the interior of B, and B̄ its closure.

Here and throughout the paper, var(log m0) denotes the variance of log m0.
As in the case of large deviation principle, the proof of Theorem 1.6 is based on the

Gärtner–Ellis theorem.
As another application of Theorem 1.3, we shall also establish a central limit theorem for

W − Wn with exponential convergence rate. Let

δ2
∞(ξ) =

∞−
n=0

1
Πn


mn(2)

m2
n

− 1


(1.9)

(recall that mn(2) =
∑

∞

i=1 i2 pi (ξn) by (1.3)). Then δ2
∞ is the variance of W under Pξ (see e.g.

[14]) if the series converges. As usual, we write T nξ = (ξn, ξn+1, . . .) if ξ = (ξ0, ξ1, . . .) and
n ≥ 0.

Theorem 1.7 (Central Limit Theorem on W − Wn). Assume (H) and ‖p1‖∞ < 1. If Ep1 <

Em−ϵ/2
0 , essinf m0(2)

m2
0

> 1 and EZ2+ϵ
1 < ∞ for some ϵ ∈ (0, 1], then for some constant C > 0,

sup
x∈R

P 
Πn(W − Wn)
√

Znδ∞(T nξ)
≤ x


− Φ(x)

 ≤ C

Em−ϵ/2

0

n
. (1.10)

Notice that the condition ‖p1‖∞ < 1 is automatically satisfied when ϵ > 0 is small enough.
Theorem 1.7 shows that W − Wn (with appropriate normalization) satisfies a central limit

theorem with an exponential convergence rate; it improves a recent result of Wang et al. [25]. For
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Galton–Watson process, Theorem 1.7 improves the convergence rate of Heyde and Brown [13],
and coincides with that of Ney and Vidyashanker [21].

Finally, as log Πn satisfies a central limit theorem, it is natural that the same would hold for
log Zn . In fact we have the following theorem.

Theorem 1.8 (Central Limit Theorem on log Zn). Assume that σ 2
= var(log m0) ∈ (0, ∞).

Then

lim
n→∞

P


log Zn − nE log m0
√

nσ
≤ x


= Φ(x), (1.11)

where Φ(x) =
1

√
2π

 x
−∞

e−u2/2du is the standard normal distribution function.

The rest of the paper is organized as follows. In Section 2, we consider the harmonic moments
of W and prove Theorem 1.4. Section 3 is devoted to the study of the moments of Zn of all orders
(positive or negative) and the large deviations of log Zn , where Theorems 1.1 and 1.3 are proved
with additional information. In Section 4, we consider the moderate deviations of log Zn and
prove Theorem 1.6. In Section 5, we deal with central limit theorems and prove Theorems 1.7
and 1.8. We end the paper by a short Appendix showing a general result on large deviations.

2. Harmonic moments of W

In this section, we shall study the harmonic moments of W , i.e. EW −s(s > 0), which are
closely related to the corresponding moments of Wn . The following lemma reveals their relations.

Lemma 2.1. Assume (1.5). Then for any convex function ϕ : R+ → R+,

lim
n→∞

Eξϕ(Wn) = sup
n

Eξϕ(Wn) = Eξϕ(W ) a.s.,

and

lim
n→∞

Eϕ(Wn) = sup
n

Eϕ(Wn) = Eϕ(W ).

In particular, for all s > 0,

lim
n→∞

Eξ W −s
n = sup

n
Eξ W −s

n = Eξ W −s a.s.,

and

lim
n→∞

EW −s
n = sup

n
EW −s

n = EW −s .

Proof. Recall that by (1.5), Wn → W in L1. Therefore, Wn = E(W |Fn) a.s. By the conditional
Jensen’s inequality,

E(ϕ(W )|Fn) ≥ ϕ(E(W |Fn)) = ϕ(Wn) a.s.,

so Eϕ(W ) ≥ supn Eϕ(Wn). The other side comes from Fatou’s lemma. The equality

lim
n→∞

Eϕ(Wn) = sup
n

Eϕ(Wn)

is obvious by the monotonicity of Eϕ(Wn). For the quenched moments, it suffices to repeat the
proof above with Eξ in the place of E. �
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Recall that we can estimate the harmonic moments of a positive random variable through its
Laplace transform.

Lemma 2.2 ([16, Lemma 4.4]). Let X be a positive random variable. For 0 < a < ∞, consider
the following statements:

(i) EX−a < ∞; (ii) Ee−t X
= O(t−a)(t → ∞);

(iii) P(X ≤ x) = O(xa)(x → 0); (iv) ∀b ∈ (0, a), EX−b < ∞.

Then the following implications hold: (i) ⇒ (ii) ⇔ (iii) ⇒ (iv).

Set

φξ (t) = Eξ e−tW and φ(t) = Eφξ (t) = Ee−tW (t ≥ 0).

Lemma 2.3. Assume (H). Then there exist constants β ∈ (0, 1) and K ≥ 1 such that

φξ (t) ≤ β a.s. ∀t ≥
1
K

.

Proof. Let p = 1 + δ. By a similar argument to the one used in the proof of [18, Proposition
1.3], we have ∀k ≥ 0,

Eξ |Wk+1 − Wk |
p

≤


2pΠ 1−p

k mk(p) if 1 < p ≤ 2,

(Bp)
pΠ −p/2

k Eξ W p/2
k mk(p) if p > 2,

(2.1)

where Bp = 2
√

⌈p/2⌉ with ⌈p/2⌉ = min{k ∈ N : k ≥ p/2}, and mk(p) =
∑

∞

i=0 |
i

mk
−

1|
p pi (ξk).
The assumption (H) implies that ‖m0(p)‖∞ = ‖Eξ |

Z1
m0

− 1|
p
‖∞ < ∞ and that Πk ≥ Ak

1
a.s. Using the inequality (2.1) and an induction argument on [p] (see [18, Proposition 1.3]), we
obtain

Eξ W 1+δ
= sup

n
Eξ W p

n ≤ C a.s.

for some constant C . In fact we shall only use the result for δ ≤ 1. Assume that δ ∈ (0, 1],
otherwise we consider min{δ, 1} instead of δ. Notice that the function e−x

−1+x
x1+δ is positive and

bounded on (0, ∞). So there exists a constant C ≥ 1 such that

e−x
≤ 1 − x +

C

1 + δ
x1+δ

∀x > 0. (2.2)

Take K :=

C‖Eξ W 1+δ

‖∞

1/δ
∈ [1, ∞). By (2.2), we obtain

φξ (t) = Eξ e−tW
≤ 1 − t +

C

1 + δ
t1+δEξ W 1+δ

≤ 1 − t +
K δ

1 + δ
t1+δ a.s.

Let g(t) = 1 − t +
K δ

1+δ
t1+δ . Obviously,

min
t>0

g(t) = g


1
K


= 1 −

δ

K (1 + δ)
=: β ∈ (0, 1)
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(it can be seen that β ≥
1
2 ). Since φξ (t) is decreasing, we have for t ≥

1
K ,

φξ (t) ≤ φξ


1
K


≤ g


1
K


= β a.s. �

Denote

m = essinf Z1 = inf{ j > 0 : P(Z1 = j) > 0}. (2.3)

Notice that P(Z1 = j) = 0 if and only if P(p j (ξ0) > 0) = 0, so an alternative definition of m is

m = inf{ j > 0 : P(p j (ξ0) > 0) > 0}. (2.4)

The following theorem gives an uniform bound for the quenched harmonic moments of W .

Theorem 2.1. Assume (H).

(i) If ‖p1‖∞ < 1, then for some constants a > 0 and C > 0, we have a.s.,

φξ (t) ≤ Ct−a (∀t > 0), Pξ (W ≤ x) ≤ Cxa (∀x > 0) and Eξ W −a
≤ C.

(ii) If p1 = 0 a.s., then a.s.

φξ (t) ≤ C2 exp(−C1tγ ) (∀t > 0), Pξ (W ≤ x) ≤ C2 exp(−C1x
γ

γ−1 ) (∀x > 0),

and Eξ W −s
≤ Cs (∀s > 0), where γ =

log m
log A ∈ (0, 1), C1, C2 and Cs are positive constants

independent of ξ .

Proof. We only prove the results about φξ (t), from which the results about Pξ (W ≤ x) and
Eξ W −s can be deduced by Lemma 2.2 for (i), and by Tauberian theorems of exponential type
(see [20]) for (ii).

(i) It is clear that φξ (t) satisfies the functional equation

φξ (t) = f0


φT ξ


t

m0


(2.5)

(recall that T nξ = (ξn, ξn+1, . . .) if ξ = (ξ0, ξ1, . . .) and n ≥ 0). Hence a.s.,

φξ (t) ≤ p1(ξ0)φT ξ


t

m0


+ (1 − p1(ξ0))φ

2
T ξ


t

m0


≤ φT ξ


t

m0

 
p1(ξ0) + (1 − p1(ξ0))φT ξ


t

m0


≤ φT ξ


t

m0


.

Similarly, we have a.s.,

φT ξ


t

m0


≤ φT 2ξ


t

Π2

 
p1(ξ1) + (1 − p1(ξ1))φT 2ξ


t

Π2


≤ φT 2ξ


t

Π2


.

Consequently, we get a.s.,

φξ (t) ≤ φT 2ξ


t

Π2

 
p1(ξ1) + (1 − p1(ξ1))φT 2ξ


t

Π2


×


p1(ξ0) + (1 − p1(ξ0))φT 2ξ


t

Π2


.
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By iteration, we obtain that ∀n ≥ 1, a.s.

φξ (t) ≤ φT nξ


t

Πn

 n−1∏
j=0


p1(ξ j ) + (1 − p1(ξ j ))φT nξ


t

Πn


. (2.6)

By Lemma 2.3, a.s., φT nξ (
t

Πn
) ≤ β if t ≥

An

K and n ≥ 0, since Πn ≤ An . Let p̄1 := ‖p1‖∞. As
p1(ξ0) ≤ p̄1 a.s., it follows that a.s.,

φξ (t) ≤ βαn for t ≥
An

K
and n ≥ 0,

where α = p̄1 + (1 − p̄1)β ∈ (0, 1). For t ≥
1
K , take n0 = n0(t) = [

log(K t)
log A ] ≥ 0. Clearly,

t ≥
An0

K and log(K t)
log A − 1 ≤ n0 ≤

log(K t)
log A . Thus for t ≥

1
K , a.s.

φξ (t) ≤ βαn0 ≤ βα−1(K t)
log α
log A = C0t−a ,

where C0 = βα−1 K
log α
log A > 0 and a = −

log α
log A > 0; therefore, we can choose a constant C > 0

such that a.s., φξ (t) ≤ Ct−a (∀t > 0). Thus the first part of the theorem is proved.
(ii) By Eq. (2.5),

φξ (t) = f0


φT ξ


t

m0


≤


φT ξ


t

m0

m

a.s.

By iteration, using Lemma 2.3 we have

φξ (t) ≤


φT nξ


t

Πn

mn

≤ βmn
a.s. for t ≥

An

K
.

Like the proof of the first part, take n0 = n0(t) = [
log(K t)

log A ] ≥ 0. Then for t ≥
1
K ,

φξ (t) ≤ βmn0
≤ exp


m−1(log β)(K t)

log m
log A


≤ exp(−C1tγ ) a.s.,

where C1 = −m−1 K
log m
log A log β > 0 and γ =

log m
log A ∈ (0, 1). It follows that we can choose

C2 > 0 such that a.s., φξ (t) ≤ C2 exp(−C1tγ ), ∀t > 0. This completes the proof. �

We now study the annealed moments of W .

Theorem 2.2. Assume (H).

(i) Then there exist constants a > 0 and C > 0 such that

φ(t) ≤ Ct−a (∀t > 0), P(W ≤ x) ≤ Cxa (∀x > 0) and

EW −s < ∞ (∀s ∈ (0, a)). (2.7)

If additionally ‖p1‖∞ < 1, then for each a > 0 with Ep1ma
0 < 1, (2.7) holds for some

constant C > 0.
(ii) If p1 = 0 a.s., then

φ(t) ≤ C2 exp(−C1tγ ) (∀t > 0), P(W ≤ x) ≤ C2 exp(−C1x
γ

γ−1 ) (∀x > 0),

and EW −s < ∞ (∀s > 0), where γ =
log m
log A ∈ (0, 1), and C1, C2 are positive constants.
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Notice that when ‖p1‖∞ < 1, the conclusion that (2.7) holds for some a > 0 is also a direct
consequence of Theorem 2.1(i). But Theorem 2.2(i) gives more precise information.

To prove Theorem 2.2, we need the following lemma.

Lemma 2.4 ([17], Lemma 3.2). Let φ: R+ → R+ be a bounded function and let A be a positive
random variable such that for some 0 < p < 1, t0 ≥ 0 and all t > t0,

φ(t) ≤ pEφ(At).

If pE A−a < 1 for some 0 < a < ∞, then φ(t) = O(t−a) (t → ∞).

Proof of Theorem 2.2. Part (ii) is from Theorem 2.1(ii) by taking expectation E. For part (i), we
first consider the special case where p1 ≤ p̄1 a.s. for some constant p̄1 < 1. By Theorem 2.1(i),
we have φξ (t) ≤ C1t−a1 a.s. (∀t > 0) for some positive constants C1 and a1. So for all
0 < ϵ < 1, there exists a constant tϵ > 0 such that φξ (t) ≤ ϵ a.s. for t ≥ tϵ . Thus by (2.5),

φξ (t) ≤ (p1 + (1 − p1)ϵ)φT ξ


t

m0


a.s. if t ≥ Atϵ . (2.8)

Notice that ξ0 is independent of T ξ . Taking expectation in (2.8), we see that for t ≥ Atϵ ,

φ(t) ≤ E
[
(p1 + (1 − p1)ϵ)φT ξ


t

m0

]
= E

[
(p1 + (1 − p1)ϵ)E

[
φT ξ


t

m0

 ξ0

]]
= E

[
(p1 + (1 − p1)ϵ)φ


t

m0

]
= pϵEφ( Ãϵ t),

where pϵ = E(p1 + (1 − p1)ϵ) < 1 and Ãϵ is a positive random variable whose distribution is
determined by

Eg( Ãϵ) =
1
pϵ

E
[
(p1 + (1 − p1)ϵ)g


1

m0

]
for all bounded and measurable function g. If pϵE Ã−a

ϵ < 1, by Lemma 2.4, we have φ(t) =

O(t−a) (t → ∞), or equivalently, φ(t) ≤ Ct−a (∀t > 0) for some constant C > 0. Since
Ep1ma

0 < 1, we can take ϵ > 0 small enough such that

pϵE Ã−a
ϵ = E


(p1 + (1 − p1)ϵ)m

a
0


< 1.

Therefore, we have proved that φ(t) = O(t−a) whenever ‖p1‖∞ < 1 and Ep1ma
0 < 1 (a > 0).

Now consider the general case where ‖p1‖∞ may be 1. By Lemma 2.3, we have φξ (t) ≤ β a.s.
for t ≥ tβ =

1
K . So we can repeat the proof above with β in place of ϵ, showing that if a > 0

small enough such that

E[(p1 + (1 − p1)β)ma
0] ≤ Aa(Ep1 + (1 − Ep1)β) < 1,

then φ(t) = O(t−a). Now we have proved the results about φ(t). By Lemma 2.2, we obtain the
results about P(W ≤ x) and EW −s . �

We now prove our main result on the harmonic moments of W already stated in the introduc-
tion at the beginning of this paper.
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Proof of Theorem 1.4. If Ep1ma
0 < 1, then there exists ϵ > 0 such that Ep1ma+ϵ

0 < 1. So by
Theorem 2.2(i), EW −a < ∞. Conversely, assume that a > 0 and EW −a < ∞. Notice that

W =
1

m0

Z1−
i=1

W (1)
i a.s.,

where


W (1)
i


i≥1

, when ξ is given, are conditionally independent copies of W (1) whose

distribution is Pξ (W (1)
∈ ·) = PT ξ (W ∈ ·). Since P(Z1 ≥ 2) > 0, we have

EW −a > Ema
0


W (1)

1

−a
1{Z1=1} = Ep1ma

0EW −a .

Therefore, Ep1ma
0 < 1. �

3. Moments of Zn and large deviations for log Zn

We first recall some preliminary results for the existence of moments of W .
Guivarc’h and Liu [11] gave a sufficient and necessary condition for the existence of moments

of positive orders of W : for s > 1,

0 < EW s < ∞ if and only if E


Z1

m0

s

< ∞ and Em1−s
0 < 1. (3.1)

In particular, if p0 = 0 a.s. and EZ s
1 < ∞ for all s > 1, then 0 < EW s < ∞ for all s > 0.

For the existence of moments of negative orders of W , Theorem 1.4 shows that, assuming (H)
and ‖p1‖∞ < 1, we have for s > 0,

EW −s < ∞ if and only if Ep1ms
0 < 1. (3.2)

In particular, if p0 = p1 = 0 a.s., it is clear that EW −s < ∞, for all s > 0.
These results will be applied in the proof of Theorem 1.3.

Proof of Theorem 1.3. Denote the distribution of ξ0 by τ0. Fix t ∈ R and define a new
distribution τ̃0 as

τ̃0(dx) =
m(x)tτ0(dx)

Emt
0

,

where m(x) = E[Z1|ξ0 = x] =
∑

∞

i=0 i pi (x). Consider the new branching process in a random
environment whose environment distribution is τ̃ = τ̃⊗N

0 instead of τ = τ⊗N
0 . The corresponding

probability and expectation are denoted by P̃ = Pξ ⊗ τ̃ and Ẽ, respectively. Then

EZ t
n

Emt
0

n = ẼW t
n .

It is easy to see that under P̃, we still have p0 = 0 a.s. Moreover, if (H) holds and ‖p1‖∞ < 1,
then the same hold under P̃. Notice that

Ẽ log m0 =
Emt

0 log m0

Emt
0

∈ (0, ∞].

We distinguish three cases as considered in the theorem.
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(i) If t ∈ (0, 1] and Emt−1
0 Z1 log+ Z1 < ∞, then

Ẽ
Z1

m0
log+ Z1 =

Emt−1
0 Z1 log+ Z1

Emt
0

< ∞,

so that Wn → W in L1 under P̃ (cf. [4,24]). Therefore,

lim
n→∞

ẼW t
n = ẼW t

∈ (0, ∞). (3.3)

(ii) If t > 1 and EZ t
1 < ∞, then

Ẽ


Z1

m0

t

=
EZ t

1

Emt
0

< ∞ a.s. under P̃,

so that Wn → W in L t under P̃ (cf. (3.1)).
(iii) If t < 0, Ep1 < Emt

0, ‖p1‖∞ < 1 and (H) holds, then

Ẽp1m−t
0 =

Ep1

Emt
0

< 1,

so that ẼW t < ∞ from Theorem 1.4. Using Lemma 2.1, we obtain again (3.3).
Therefore, we have proved Theorem 1.3 with C(t) = ẼW t . �

Using Theorem 1.3, we can easily prove Theorem 1.1.

Proof of Theorem 1.1. It is clear that the hypothesis of Theorem 1.1 ensures that EZ t
1 < ∞ for

all t ∈ R. Hence by Theorem 1.3,

lim
n→∞

EZ t
n

Emt
0

n = C(t) ∈ (0, ∞) ∀t ∈ R,

which implies that

lim
n→∞

1
n

log EZ t
n = log Emt

0 = Λ(t) ∀t ∈ R. (3.4)

Notice that the Laplace transform of log Zn is Eet log Zn = EZ t
n . As Λ(t) is finite and deriv-

able everywhere, from (3.4) and the Gärtner–Ellis theorem ([10], p. 52, Exercise 2.3.20), we
immediately obtain Theorem 1.1. �

Theorem 1.3 can also be used to study the large deviation probabilities P


log Zn
n ≥ x


(resp.

P
 log Zn

n ≤ x

) for a finite interval of x , when EW a (resp. EW −a) (a > 0) exists only in a finite

interval of a. To this end, we shall use the following version of the Gärtner–Ellis theorem adapted
to the study of tail probabilities.

Lemma 3.1 ([19, Theorem 6.1]). Let (µn) be a family of probability distribution on R and let
(an) be a sequence of positive numbers satisfying an → ∞. Assume that for some t0 ∈ [0, ∞]

and for every t ∈ [0, t0), as n → ∞,

ln(t) :=
1
an

log
∫

ean t xµn(dx) → l(t) < ∞.
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For x ∈ R, set

l∗(x) = sup{t x − l(t); t ∈ [0, t0)}.

If l is continuously differentiable on (0, t0), then for all x ∈ (l ′(0+), l ′(t0−)) (where l ′(x±) =

limy→x± l ′(y)),

lim
n→∞

1
an

log µn([x, ∞)) = −l∗(x).

From Theorem 1.3 and Lemma 3.1, we immediately obtain the following theorem.

Theorem 3.1. Let a ∈ R.

(i) Let a > 0. If a ∈ (0, 1] and Ema−1
0 Z1 log+ Z1 < ∞, or a > 1 and EZa

1 < ∞, then

lim
n→∞

1
n

log P


log Zn

n
≥ x


= −Λ∗(x), ∀x ∈ (E log m0,Λ′(a)). (3.5)

(ii) Let a < 0. Assume (H) and ‖p1‖∞ < 1. If Ep1 < Ema
0 , then

lim
n→∞

1
n

log P


log Zn

n
≤ x


= −Λ∗(x), ∀x ∈ (Λ′(a), E log m0). (3.6)

If EZa
1 < ∞ for all a > 1 (resp. p1 = 0 a.s.), then Theorem 3.1 suggests that the limit in (3.5)

(resp. (3.6)) would hold for any x > E log m0 (resp. x < E log m0). This leads to the following
theorem which is more precise than Corollary 1.2. It was proved by Bansaye and Berestycki [5]
when (H) holds with δ = 1.

Theorem 3.2. (i) If EZ s
1 < ∞ for all s > 1, then

lim
n→∞

1
n

log P


log Zn

n
≥ x


= −Λ∗(x) for x > E log m0.

(ii) Assume (H) and p1 = 0 a.s., then

lim
n→∞

1
n

log P


log Zn

n
≤ x


= −Λ∗(x) for x < E log m0,

If Λ′(∞) = ∞ and Λ′(−∞) = 0, then Theorem 3.2 can be directly deduced from
Theorem 3.1. But it is possible that Λ′(∞) < ∞ or Λ′(−∞) > 0. So we will give a direct
proof of Theorem 3.2, following [5].

According to the large deviation principle for i.i.d. random variables, we have

lim
n→∞

1
n

log P


log Πn

n
≤ x


= −Λ∗(x) for x ≤ E log m0, (3.7)

lim
n→∞

1
n

log P


log Πn

n
≥ x


= −Λ∗(x) for x ≥ E log m0. (3.8)

Lemma 3.2 below gives the lower bound for both the lower and upper deviations.



C. Huang, Q. Liu / Stochastic Processes and their Applications 122 (2012) 522–545 535

Lemma 3.2 ([5, Proposition 1]). Assume (1.5). Then

lim inf
n→∞

1
n

log P


log Zn

n
≤ x


≥ −Λ∗(x) for x ≤ E log m0, (3.9)

lim inf
n→∞

1
n

log P


log Zn

n
≥ x


≥ −Λ∗(x) for x ≥ E log m0. (3.10)

We remark that in Lemma 3.2, the original moment condition in [5, Proposition 1], namely,

E


Z1
m0

s
< ∞ for some s > 1, is weaken to E Z1

m0
log+ Z1 < ∞.

The following lemma gives the upper bound for both the lower and upper deviations.

Lemma 3.3. (i) If EW −s < ∞ for all s > 1, then

lim sup
n→∞

1
n

log P


log Zn

n
≤ x


≤ −Λ∗(x) for x < E log m0. (3.11)

(ii) If EW s < ∞ for all s > 0, then

lim sup
n→∞

1
n

log P


log Zn

n
≥ x


≤ −Λ∗(x) for x > E log m0. (3.12)

The inequality (3.12) was proved by Bansaye and Berestycki [5]. For readers’ convenience,
we shall prove simultaneously (3.11) and (3.12).

Proof of Lemma 3.3. By the decomposition (1.6), for x ∈ R, ϵ > 0 and s > 0, we have

P


log Zn

n
≤ x


≤ P


log Πn

n
≤ x + ϵ


+ P


log Wn

n
≤ −ϵ


.

By Markov’s inequality and Lemma 2.1,

P


log Wn

n
≤ −ϵ


≤

EW −s
n

esϵn ≤
EW −s

esϵn .

Thus

lim sup
n→∞

1
n

log P


log Zn

n
≤ x


≤ max


lim sup

n→∞

1
n

log P


log Πn

n
≤ x + ϵ


, −sϵ


= max{−Λ∗(x + ϵ), −sϵ}.

Letting s → ∞ and ϵ → 0, we obtain (3.11). For (3.12), we use a similar argument. For ϵ > 0
and s > 1,

P


log Zn

n
≥ x


≤ P


log Πn

n
≥ x − ϵ


+ P


log Wn

n
≥ ϵ


≤ P


log Πn

n
≥ x − ϵ


+

EW s

esϵn .

Thus

lim sup
n→∞

1
n

log P


log Zn

n
≥ x


≤ max


lim sup

n→∞

1
n

log P


log Πn

n
≥ x − ϵ


, −sϵ


= max{−Λ∗(x − ϵ), −sϵ}.

Again letting s → ∞ and ϵ → 0, we obtain (3.12). �
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Proof of Theorem 3.2. It is just a combination of Lemmas 3.2 and 3.3. �

Notice that Theorem 3.2 implies Corollary 1.2. By Lemma 4.4, we see that Corollary 1.2 is in
fact equivalent to Theorem 1.1. So the direct proof of Theorem 3.2 leads to an alternative proof
of Theorem 1.1.

4. Moderate deviations for log Zn

Now we turn to the proof of moderate deviation principle (Theorem 1.6). Similar to the
proof of large deviation principle (Theorem 1.1), we can study the convergence rate of log Zn

n

by considering those of log Πn
n . Recall that (an) is a sequence of positive numbers satisfying

(1.8). Let

Sn := log Πn − nE log m0 and Λ̄n(t) = log E exp


t Sn

an


.

By the classic moderate deviation results for i.i.d. random variables (see [10], Theorem 3.7.1 and
its proof), it is known that, if f (t) = Emt

0 < ∞ in a neighborhood of the origin, then

lim
n→∞

n

a2
n
Λ̄n


a2

n

n
t


=

1
2
σ 2t2, (4.1)

and for any measurable subset B of R,

− inf
x∈Bo

x2

2σ 2 ≤ lim inf
n→∞

n

a2
n

log P


log Πn − nE log m0

an
∈ B


≤ lim sup

n→∞

n

a2
n

log P


log Πn − nE log m0

an
∈ B


≤ − inf

x∈B̄

x2

2σ 2 . (4.2)

Lemma 4.1. Let t ∈ R.

(i) If (H) holds and ‖p1‖∞ < 1, then for all t < 0,

lim
n→∞

EZ
an
n t

n

EΠ
an
n t

n

= 1. (4.3)

(ii) If (H) holds, then there is a constant c > 0 such that for all t > 0,

c ≤ lim inf
n→∞

EZ
an
n t

n

EΠ
an
n t

n

≤ lim sup
n→∞

EZ
an
n t

n

EΠ
an
n t

n

≤ 1. (4.4)

Proof. (i) Let tn =
an
n t . For t < 0, we have tn < 0. By Jensen’s inequality,

Eξ W tn
n ≥ (Eξ Wn)tn = 1 a.s.

Thus

EZ tn
n = EΠ tn

n Eξ W tn
n ≥ EΠ tn

n , (4.5)
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which leads to

lim inf
n→∞

EZ tn
n

EΠ tn
n

≥ 1.

On the other hand, if (H) holds and ‖p1‖∞ < 1, then by Theorem 2.1, we have Eξ W −s
≤ Cs

a.s. for some constants s > 0 and Cs > 0. Noticing that −tn/s ∈ (0, 1) for n large enough and
that by Lemma 2.1, Eξ W −s

n ≤ Eξ W −s a.s., again by Jensen’s inequality, we have

Eξ W tn
n = Eξ (W −s

n )−tn/s
≤ (Eξ W −s

n )−tn/s
≤ (Eξ W −s)−tn/s

≤ C−tn/s
s ,

so that

EZ tn
n ≤ C−tn/s

s EΠ tn
n .

Letting n → ∞, we obtain

lim sup
n→∞

EZ tn
n

EΠ tn
n

≤ 1.

(ii) For t > 0, we have tn =
an
n t ∈ (0, 1) for n large enough, so by Jensen’s inequality,

Eξ W tn
n ≤ (Eξ Wn)tn = 1 a.s.

Thus

lim sup
n→∞

EZ tn
n

EΠ tn
n

≤ 1.

On the other hand, from the proof Lemma 2.3, we know that the assumption (H) ensures that
Eξ W s

≤ Cs a.s. for 1 < s ≤ 1 + δ and some constant Cs > 0. By Hölder’s inequality,

1 = Eξ Wn ≤ Eξ W tn/p
n W 1−tn/p

n

≤

Eξ W tn

n

1/p

Eξ W (1−tn/p)q

n

1/q
a.s., (4.6)

for p, q > 1, 1/p + 1/q = 1. Take p = p(n) =
s−tn
s−1 and q = q(n) =

s−tn
1−tn

, so that

(1 − tn/p)q = s and p/q =
1−tn
s−1 . Notice that by Lemma 2.1, Eξ W −s

n ≤ Eξ W −s a.s. We
deduce from (4.6) that

Eξ W tn
n ≥


Eξ W s

n

−
1−tn
s−1 ≥


Eξ W s−

1−tn
s−1 ≥ C

−
1−tn
s−1

s .

Thus

EZ tn
n ≥ C

−
1−tn
s−1

s EΠ tn
n .

Letting n → ∞, we obtain

lim inf
n→∞

EZ tn
n

EΠ tn
n

≥ c,

where c = C
−

1
s−1

s ∈ (0, 1]. This completes the proof. �



538 C. Huang, Q. Liu / Stochastic Processes and their Applications 122 (2012) 522–545

Theorem 4.1. Let Λn(t) = log E exp


log Zn−nE log m0
an

t


and Λ̄n(t) = log E exp


t Sn
an


. If (H)

holds, then

lim
n→∞

Λn


a2

n
n t


Λ̄n


a2

n
n t

 = 1, ∀t ≠ 0 (4.7)

and

lim
n→∞

log EZ
an
n t

n

log EΠ
an
n t

n

= 1, ∀t ≠ 0. (4.8)

Proof. We only need to prove (4.7), which implies (4.8). For t > 0, (4.7) is a direct consequence
of Lemma 4.1(ii). For t < 0, if additionally ‖p1‖∞ < 1, then (4.7) is also a direct consequence
of Lemma 4.1(i); we shall prove that the condition ‖p1‖∞ < 1 is not needed for (4.7) to hold.
Assume (H) and let t < 0. Notice that (4.5) implies that

lim inf
n→∞

Λn


a2

n
n t


Λ̄n


a2

n
n t

 ≥ 1.

It remains to show that

lim sup
n→∞

Λn


a2

n
n t


Λ̄n


a2

n
n t

 ≤ 1. (4.9)

By Hölder’s inequality,

exp

Λn


a2

n

n
t


= E exp

an

n
t (log Zn − nE log m0)


= Ee

an
n t Sn W

an
n t

n

≤


Ee

an
n pt Sn

1/p


EW
an
n tq

n

1/q

≤ exp


1
p
Λ̄n


a2

n

n
pt

 
EW

an
n tq

n

1/q

,

where p, q > 1 are constants satisfying 1/p + 1/q = 1. By Theorem 2.2, there exists s > 0
such that EW −s < ∞. Noticing that tnq > −s for n large, we have

EW tnq
n ≤ 1 + EW −s

n ≤ 1 + EW −s .

Hence for n large enough,

Λn


a2

n

n
t


≤

1
p
Λ̄n


a2

n

n
pt


+

1
q

log(1 + EW −s).
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Therefore, considering (4.1), we have

lim sup
n→∞

Λn


a2

n
n t


Λ̄n


a2

n
n t

 ≤
1
p

1
2σ 2 p2t2

1
2σ 2t2

= p.

Letting p → 1, (4.9) is proved. �

Proof of Theorem 1.6. From (4.7) and (4.1), we have

lim
n→∞

n

a2
n
Λn


a2

n

n
t


= lim

n→∞

n

a2
n
Λ̄n


a2

n

n
t


=

1
2
σ 2t2.

Applying the Gärtner–Ellis theorem ([10], p. 52, Exercise 2.3.20), we obtain Theorem 1.6. �

The following theorem about the tail probabilities is a direct consequence of Theorem 1.6.

Theorem 4.2. Assume (H) and σ 2
= var(log m0) ∈ (0, ∞). Then for all x > 0,

lim
n→∞

n

a2
n

log P


log Zn − nE log m0

an
≤ −x


= −

x2

2σ 2 , (4.10)

lim
n→∞

n

a2
n

log P


log Zn − nE log m0

an
≥ x


= −

x2

2σ 2 . (4.11)

It is also possible to give a direct proof of Theorem 4.2. We shall give such a proof in
the following, as it will give additional one-side results on the tail probabilities under weaker
assumptions.

Lemma 4.2. If f (t) = Emt
0 < ∞ in a neighborhood of the origin, then for all x > 0,

lim inf
n→∞

n

a2
n

log P


log Zn − nE log m0

an
≤ −x


≥ −

x2

2σ 2 , (4.12)

lim sup
n→∞

n

a2
n

log P


log Zn − nE log m0

an
≥ x


≤ −

x2

2σ 2 . (4.13)

Proof. Let x > 0. By (4.2), the moderate deviation principle for log Πn , we have

lim
n→∞

n

a2
n

log P


log Πn − nE log m0

an
≤ −x


= −

x2

2σ 2 (4.14)

and

lim
n→∞

n

a2
n

log P


log Πn − nE log m0

an
≥ x


= −

x2

2σ 2 . (4.15)

For every ϵ > 0,

P


log Zn − nE log m0

an
≤ −x


≥ P


log Πn − nE log m0

an
≤ −x − ϵ


− P(Wn ≥ eanϵ)

=: un − vn = un(1 − vn/un).

By (4.14), we have ∀δ′ > 0, for n large enough,
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un ≥ exp


−
a2

n

n


(x + ϵ)2

2σ 2 + δ′


.

Furthermore, by Markov’s inequality,

vn = P(Wn ≥ eanϵ) ≤ e−anϵ .

Hence,

0 ≤
vn

un
≤ exp


−anϵ +

a2
n

n


(x + ϵ)2

2σ 2 + δ′


→ 0 as n → ∞,

since

lim
n→∞

−anϵ +
a2

n
n


(x+ϵ)2

2σ 2 + δ′


an

= −ϵ < 0.

Therefore,

lim inf
n→∞

n

a2
n

log P


log Zn − nE log m0

an
≤ −x


≥ lim inf

n→∞

n

a2
n

log un = −
(x + ϵ)2

2σ 2 .

Letting ϵ → 0, we obtain (4.12). For (4.13), the proof is similar. For every ϵ > 0,

P


log Zn − nE log m0

an
≥ x


≤ P(Wn ≥ eanϵ) + P


log Πn − nE log m0

an
≥ x − ϵ


=: vn + ũn = ũn(1 + vn/ũn).

Since limn→∞
vn
ũn

= 0, we have

lim sup
n→∞

n

a2
n

log P


log Zn − nE log m0

an
≥ x


≤ lim sup

n→∞

n

a2
n

log ũn = −
(x − ϵ)2

2σ 2 .

Letting ϵ → 0, we get (4.13). �

To prove Theorem 4.2, we need to estimate the decay rate of the probabilities P(Wn ≤ e−anϵ)

for ϵ > 0.

Lemma 4.3. If EW −s < ∞ for some s > 0, then for any positive sequence (an) satisfying
an → ∞, we have for all ϵ > 0,

lim sup
n→∞

1
an

log P(Wn ≤ e−anϵ) ≤ −sϵ. (4.16)

Proof. By Markov’s inequality and Lemma 2.1,

P(Wn ≤ e−anϵ) ≤
EW −s

n

esanϵ
≤

EW −s

esanϵ
.

Thus
1
an

log P(Wn ≤ e−anϵ) ≤
1
an

log EW −s
− sϵ.

Taking the limit superior in the above inequality gives (4.16). �
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Another Proof of Theorem 4.2. Lemma 4.2 gives one side of the desired results, so we only
need to prove the other side. By Theorem 2.2, there exists s > 0 such that EW −s < ∞, so (4.16)
holds for this s. For x > 0, we have for every ϵ > 0,

P


log Zn − nE log m0

an
≤ −x


≤ P


Wn ≤ e−anϵ


+ P


log Πn − nE log m0

an
≤ −x + ϵ


=: vn + un .

By (4.14) and (4.16), limn→∞
vn
un

= 0, thus,

lim sup
n→∞

n

a2
n

log P


log Zn − nE log m0

an
≤ −x


≤ lim sup

n→∞

n

a2
n

log un = −
(x − ϵ)2

2σ 2 .

Letting ϵ → 0, we obtain

lim sup
n→∞

n

a2
n

log P


log Zn − nE log m0

an
≤ −x


≤ −

x2

2σ 2 . (4.17)

(4.12) and (4.17) yield (4.10). To prove (4.11), on account of (4.13), it remains to show that

lim inf
n→∞

n

a2
n

log P


log Zn − nE log m0

an
≥ x


≥ −

x2

2σ 2 . (4.18)

Similarly, for every ϵ > 0,

P


log Zn − nE log m0

an
≥ x


≥ P


log Πn − nE log m0

an
≥ x + ϵ


− P(Wn ≤ e−anϵ)

=: ũn − vn .

Again by (4.14) and (4.16), limn→∞
vn
ũn

= 0, thus,

lim inf
n→∞

n

a2
n

log P


log Zn − nE log m0

an
≥ x


≤ lim inf

n→∞

n

a2
n

log ũn = −
(x + ϵ)2

2σ 2 .

Letting ϵ → 0, we obtain (4.18). �

We remark that, by Lemma 4.4 below, Theorem 4.2 is in fact equivalent to Theorem 1.6. So
the direct proof of Theorem 4.2 leads to another proof of Theorem 1.6.

Lemma 4.4. Let I be a continuous function on R satisfying

(a) I (b) = infx∈R I (x) = 0 for some b ∈ R;
(b) I is strictly increasing on [b, ∞) and strictly decreasing on (−∞, b].

Let (µn) be a family of probability distribution on R and let (an) be a sequence of positive
numbers satisfying an → ∞. Then the following statements (i) and (ii) are equivalent.

(i) For x < b,

lim
n→∞

1
an

log µn((−∞, x]) = −I (x);
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for x > b,

lim
n→∞

1
an

log µn([x, +∞)) = −I (x).

(ii) (µn) satisfies a large deviation principle: for any measurable subset B of R,

− inf
x∈Bo

I (x) ≤ lim inf
n→∞

1
an

log µn(B) (4.19)

≤ lim sup
n→∞

1
an

log µn(B) ≤ − inf
x∈B̄

I (x), (4.20)

where Bo denotes the interior of B and B̄ its closure.

This is a general result on large deviations. It shows that the large deviation principle holds
if and only if the corresponding limit exists for tail events, when the rate function is continuous
and strictly monotone. This result would be known; as we have not found a reference, we shall
give a proof in an Appendix by the end of the paper.

5. Central limit theorems for W − Wn and log Zn

In this section, we shall prove the results about central limit theorems.
We first prove the central limit theorem on W − Wn with exponential convergence rate, using

the results about the harmonic moments of Zn (i.e. Theorem 1.3 with t < 0).

Proof of Theorem 1.7. Notice that

Πn(W − Wn) =

Zn−
i=1


W (n)

i − 1


,

where under Pξ , the random variables W (n)
i (i = 1, 2, . . .) are independent of each other and

independent of Zn , and have common conditional distribution Pξ (W (n)
i ∈ ·) = PT nξ (W ∈ ·).

Notice that if a0 := essinf m0(2)

m2
0

> 1, then δ2
∞ ≥ a0 − 1 > 0. Therefore, the condition

EZ2+ϵ
1 < ∞ implies that E

 W−1
δ∞

2+ϵ

< ∞. By the Berry–Esseen theorem (see [9, Theorem

9.1.3]), for all x ∈ R,Pξ


Πn(W − Wn)
√

Znδ∞(T nξ)
≤ x


− Φ(x)

 ≤ C1ET nξ

W − 1
δ∞

2+ϵ

Eξ Z−ϵ/2
n , (5.1)

where C1 is the Berry–Esseen constant. Taking expectation in (5.1), we obtain for all x ∈ R,P 
Πn(W − Wn)
√

Znδ∞(T nξ)
≤ x


− Φ(x)

 ≤ C1E
W − 1

δ∞

2+ϵ

EZ−ϵ/2
n . (5.2)

Since Ep1 < mϵ/2
0 , ‖p1‖∞ < 1 and (H) holds, the condition (iii) of Theorem 1.3 is satisfied, so

that by Theorem 1.3, there exists a constant Cϵ > 0 such that

lim
n→∞

EZ−ϵ/2
n

Em−ϵ/2
0

n = Cϵ .

Combining this with (5.2), we obtain (1.10). �
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We then prove the central limit theorem on log Zn , using the central limit theorem on log Πn .

Proof of Theorem 1.8. Let x ∈ R. By the standard central limit theorem for i.i.d. random
variables,

lim
n→∞

P


log Πn − nE log m0
√

nσ
≤ x


= Φ(x). (5.3)

By (1.6), we have for every ϵ > 0,

P


log Zn − nE log m0
√

nσ
≤ x


≤ P


log Wn

√
n

< −ϵσ


+ P


log Πn − nE log m0

√
nσ

≤ x + ϵ


. (5.4)

Since limn→∞
log Wn√

n
= 0 a.s., we have

lim
n→∞

P


log Wn
√

n
< −ϵσ


= 0. (5.5)

Taking the limit superior in (5.4), and applying (5.3) and (5.5), we obtain

lim sup
n→∞

P


log Zn − nE log m0
√

nσ
≤ x


≤ Φ(x + ϵ).

Letting ϵ → 0, we get the upper bound. For the lower bound, observe that

P


log Zn − nE log m0
√

nσ
≤ x


≥ P


log Πn − nE log m0

√
nσ

≤ x − ϵ


− P


log Wn

√
n

> ϵσ


. (5.6)

Similarly,

lim
n→∞

P


log Wn
√

n
> ϵσ


= 0.

Taking the limit inferior in (5.6) and letting ϵ → 0, we get

lim inf
n→∞

P


log Πn − nE log m0
√

nσ
≤ x


≥ Φ(x).

So (1.11) is proved. �
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Appendix. Proof of Lemma 4.4

Proof of Lemma 4.4. It is clear that (ii) implies (i) since I is continuous. We need to prove (i)
implies (ii). First, we show (4.19). For x ∈ Bo, consider the case where x ≥ b. Then Bo contains
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an interval [x + ϵ1, x + ϵ2) for some 0 < ϵ1 < ϵ2. Consequently, by (i), ∀ϵ > 0, there exists
nϵ > 0 such that ∀n ≥ nϵ ,

µn(B) ≥ µn([x + ϵ1, x + ϵ2))

= µn([x + ϵ1, ∞)) − µn([x + ϵ2, ∞))

≥ e−an(I (x+ϵ1)+ϵ)
− e−an(I (x+ϵ2)−ϵ).

Since I is strictly increasing on [b, ∞), we can take ϵ > 0 small enough such that I (x+ϵ1)+ϵ <

I (x + ϵ2) − ϵ. Therefore,

lim inf
n→∞

1
an

log µn(B) ≥ −I (x + ϵ1) − ϵ.

Letting ϵ, ϵ1 → 0, we get

lim inf
n→∞

1
an

log µn(B) ≥ −I (x). (A.1)

If x < b, we obtain (A.1) by a similar argument. So (A.1) holds for all x ∈ Bo, which yields
(4.19).

Now we show (4.20). If b ∈ B̄, then (4.20) is obvious since µn(B) ≤ 1 and the right side
of (4.20) is 0. Assume that b ∉ B̄. Let B1 = B


(−∞, b] and B2 = B


(b, ∞) so that

B = B1


B2. Then

B1 ⊂ (−∞, b1] (if B1 ≠ ∅) and B2 ⊂ [b2, ∞) (if B2 ≠ ∅),

where b1 := sup B1 and b2 := inf B2. Assume that B1 ≠ ∅ and B2 ≠ ∅. As b ∉ B̄, we have
b1 < b < b2. By (i), ∀ϵ > 0, there exists nϵ > 0 such that ∀n ≥ nϵ ,

µn(B) ≤ µn([−∞, b1]) + µn([b2, ∞))

≤ e−an(I (b1)−ϵ)
+ e−an(I (b2)−ϵ)

≤ 2e−an(I0−ϵ),

where I0 := min{I (b1), I (b2)} = infx∈B̄ I (x). Therefore,

lim sup
n→∞

1
an

log µn(B) ≤ −I0 + ϵ.

Letting ϵ → 0, we obtain

lim sup
n→∞

1
an

log µn(B) ≤ −I0 = − inf
x∈B̄

I (x).

If B1 = ∅ or B2 = ∅, we obtain (4.20) by a similar argument. �
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