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Many shear correction factors have appeared since the inception of Timoshenko beam theory in 1921.
While rational bases for them have been offered, there continues to be some reluctance to their full
acceptance because the explanations are not totally convincing and their efficacies have not been com-
prehensively evaluated over a range of application. Herein, three-dimensional static and dynamic infor-
mation and results for a beam of general (both symmetric and non-symmetric) cross-section are brought
to bear on these issues. Only homogeneous, isotropic beams are considered. Semi-analytical finite ele-
ment (SAFE) computer codes provide static and dynamic response data for our purposes. Greater clarifi-
cation of issues relating to the bases for shear correction factors can be seen. Also, comparisons of
numerical results with Timoshenko beam data will show the effectiveness of these factors beyond the
range of application of elementary (Bernoulli–Euler) theory.

An issue concerning principal shear axes arose in the definition of shear correction factors for non-sym-
metric cross-sections. In this method, expressions for the shear energies of two transverse forces applied
on the cross-section by beam and three-dimensional elasticity theories are equated to determine the
shear correction factors. This led to the necessity for principal shear axes. We will argue against this con-
cept and show that when two forces are applied simultaneously to a cross-section, it leads to an incon-
sistency. Only one force should be used at a time, and two sets of calculations are needed to establish the
shear correction factors for a non-symmetrical cross-section.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Timoshenko (1921, 1922) presented a beam theory involving
shear correction factors to enable more accurate natural frequen-
cies as vibrational wave lengths become shorter. Since its incep-
tion, assigning suitable factors to various cross-sections have
occupied the attention of many investigators. The most recent
methods for devising these factors rest on some form of static or
dynamic data from linear three-dimensional elasticity. While
many rational methods have been proposed, lingering thoughts re-
main. Is there a most suitable method for selecting them? What is
their effectiveness for more accurate modeling of physical behavior
beyond the range of classical beam theory? We strive to provide
clarifying discussions to these questions. Our response is based
on having three-dimensional elastostatic and elastodynamic data
for prismatic beams of any cross-section. Clearly, such data will en-
able any beam theory to be assessed over any range of application.

The three-dimensional beam data herein are found by means of
a semi-analytical finite element (SAFE) method so that any cross-
sectional shape can be modeled. In this SAFE formulation, only
ll rights reserved.
the cross-section undergoes discretization – i.e., in the (x; y) plane
– while both time t and axial dependence z are treated analytically,
see Fig. 1. The governing equations of motion have the form

K1U;zz � K2U;z � K3U�M€U ¼ F; ð1Þ

where U(z, t) and F(z, t) of length 3M are assemblages of nodal dis-
placements and consistent loads for the M nodes of the finite ele-
ment mesh, i.e.,

UTðz; tÞ ¼ ½[uðz; tÞ [ vðz; tÞ;[wðz; tÞ� FT ¼ ½[fx;[fy;[fz�: ð2Þ

System matrices K1; K2; K3, and M are found in Taweel et al. (2000).
Standard isoparametric methodology was used where both six-node
triangles and eight-node quads (i.e., quadratic interpolation fields)
were provided for modeling of the cross-section. Appropriate forms
of Eq. (1) together with Ies�an’s method (1976,1986,1987) for setting
forth the appropriate displacement fields were used for Saint-Venant
and Almamsi-Michell solutions by Dong et al. (2001), Kosmatka et al.
(2001) and Lin and Dong (2006). The homogeneous form of Eq. (1)
was used for free vibration results by Taweel et al. (2000).

There is a rather extensive extant literature on finite element
analyses of Saint-Venant’s flexure, viz., Mason and Herrmann
(1968), Tolf (1985), Wörndle (1982), Giavotto et al. (1983),
Kosmatka and Dong (1991), Schramm et al. (1994), Popescu and
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Fig. 1. Problem geometry and its semi-analytical finite element discretization.

1 The analogue elastostatics approach is due to Reissner (1945, 1947).
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Hodges (2000), Gruttmann and Wagner (2001), Ladevéze et al.
(2001), El Fatmi and Zenzri (2002, 2004), and El Fatmi (2007a,b).
The SAFE method was preferred, because of its ease in displaying
displacement results. In solutions employing the semi-inverse
method involving a stress function, the displacements can be
determined only after the stress state is established. Such displace-
ment data are quite often not shown. We will see the advantages of
visual display of the displacement field in explaining the effect of
shear. We note that the methods of El Fatmi and Zenzri (2002,
2004) and El Fatmi (2007a,b) are closely akin to the SAFE formula-
tion. Their analyses are based on Ladevéze and Simmonds (1998)
and displacement data were easily showcased.

Cowper (1966) was the first to use Saint-Venant flexure (i.e.,
three-dimensional) data to set forth shear correction factors. His
procedure involves integration of three-dimensional elasticity
equations to form beam-type deformations, constitutive relations
and equations of equilibrium. It ultimately led to integration of
shear warpage of Saint-Venant flexure solution to peg the shear
correction factor in the shear constitutive relation. Cowper dealt
with homogeneous, isotropic symmetric cross-sections. Mason
and Herrmann (1968) generalized Cowper’s procedure for general
homogeneous, isotropic cross-sections, wherein they determine
the shear warpage by finite element analysis. Gruttmann and Wag-
ner (2001) presented additional results, which essentially followed
Mason and Hermann’s methodology. We will show that integra-
tion of the SAFE warpage field at the root end of a cantilevered
beam yields a weighted-average shear angle. This shear angle is di-
rectly related to the shear correction factor. Moreover, these fac-
tors have the same magnitude as that of Cowper (1966) and
Mason and Herrmann (1968). The correction for shear deflection
on this basis shows the deflection curve of the centroidal axis by
three-dimensional and Timoshenko theories to be in agreement
over the entire length of a beam.

Other elastostatic approaches for shear correction factors will
also be discussed. One prominent method is due to Renton
(1991), who related the Timoshenko beam correction factors to
the transverse shear strain energy per unit length of beam, which
is constant for a beam in flexure. In our evaluation of correction
factors for rectangular and elliptical cross-sections with extremely
flat aspect ratios, very low values were found, which immediately
raised doubts on their efficacy. A modification is suggested, where
only energy due to the shear stress component in the direction of
transverse force is used. Numerical results are given to test this
suggestion. Schramm et al. (1994) adopted Renton’s approach for
general cross-sections. In their paper, they suggested the existence
of principal shear axes which did not coincide with the principal
bending axes. In another elastostatic approach, Popescu and Hod-
ges (2000) used a variational-asymptotic method due to Berdi-
chevsky and Starosel’skii (1983) to formulate an elasticity
solution. The data from this analysis was used to determine shear
correction factors for anisotropic beams. Their example on homo-
geneous, isotropic cross-sections corroborated those of Renton
and Schramm et al. (1994). We will argue that the concept of prin-
cipal shear axes independent of principal bending axes is not
viable.

Shear correction factors from free vibration data are also con-
sidered. Mindlin and Deresiewicz (1954) pegged the correction fac-
tors to frequencies of the lowest mode of infinitely long thickness-
shear vibration by three-dimensional theory. This method is the
extension of Mindlin (1951)’s well known shear deformation the-
ory for homogeneous, isotropic plates.1 Mindlin and Deresiewicz
(1954) provided data for rectangular, circular, elliptical and ovaloidal
cross-sections. In a recent paper, Hutchinson (2001) suggested an-
other method using a Hellinger–Reissner variational theorem to de-
rive ‘‘best” possible beam equations of motion that accounts for
shear deformation. His method is based on independent assump-
tions of stress and displacement fields. Upon comparison of his solu-
tions with that of conventional Timoshenko beam equations,
formulas for shear correction factors are established. Hutchinson’s
dealt only with symmetric cross-sections. By and large, the vibration
approach has received markedly less attention due to lack of three-
dimensional data by which to assess Timoshenko beam results. With
the SAFE approach where such data are easily generated, this is not
an issue.

In this paper, we employ rectangular Cartesian coordinates
(x,y,z) throughout, with the z axis coinciding with the line of cen-
troids of the cross-section. The (x,y) axes are always taken to be
parallel to the principal bending directions. For elastostatic prob-
lems, a cantilever beam is involved; the origin of coordinates is sit-
uated at the tip end of the beam and the z-axis runs toward the
root end. For elastodynamics, sinusoidal waves travel along the
z-direction so that the beam is assumed to be infinite in extent.
With the use of principal bending axes, two correction factors in
the principal directions can be determined for two uncoupled
shear constitutive relations. Then, constitutive relations in any
other coordinate system are possible by transformation equations
of a two-dimensional second rank tensor.

2. Synopsis of the Timoshenko beam equations

Herein, we summarize the equations for Timoshenko beam the-
ory. Let u(z, t) and v(z, t) be components of the deflection of the
centroidal axis, and bxðz; tÞ and byðz; tÞ as the bending rotations
about the (x,y) axes, respectively. The slopes to the deflection curve
are

@u
@z
¼ by þ cx;

@v
@z
¼ bx þ cy; ð3Þ

where cxðz; tÞ and cyðz; tÞ are the shear angles. The constitutive
equations relating these kinematic variables to moments and
shears, ðMx;My;Vx;VyÞ, are

Mx ¼ �EIxx
@bx

@z
; Vy ¼ k2

22GAcy ¼ k2
22GA

@v
@z
� bx

� �

My ¼ �EIyy
@by

@z
; Vx ¼ k2

11GAcx ¼ k2
11GA

@u
@z
� by

� �
;

ð4Þ

where E, G are the extensional and shear moduli, A the cross-sec-
tional area, and Ixx; Iyy the planar moments of inertia. Coefficients
k2

11 and k2
22 are shear correction factors. It is well established that

the flexural rigidities of the moment–curvature relations submit
to transformation as a second rank tensor with rotation of the coor-
dinate system about the z-axis. The transverse shear rigidities (i.e.,
the correction factors) will also abide by this transformation, as
they are components of a second rank tensor. The principal shear
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rigidity data allow data in any other coordinate system to be found
by a rotation about the z-axis.

The transverse and rotational equations of motion are
@Vx

@z
þ px ¼ qA€u;

@My

@z
� Vx ¼ qIyy

€by;

@Vy

@z
þ py ¼ qA€v; @Mx

@z
� Vy ¼ qIxx

€bx;

ð5Þ

where q is the unit mass density and px and py are transverse loads.
Substitution of constitutive relations (4) into Eq. (5) yields the kine-
matic equations of motion:

k2
11GA

@2u
@z2 �

@by

@z

( )
þ px ¼ qA€u;

EIyy
@2by

@z2 þ k2
11GA

@u
@z
� by

� �
¼ �qIyy

€by;

k2
22GA

@2v
@z2 �

@bx

@z

( )
þ py ¼ qA€v;

EIxx
@2bx

@z2 þ k2
22GA

@v
@z
� bx

� �
¼ �qIxx

€bx:

ð6Þ

Boundary conditions at an end z ¼ zo are in terms of prescribed dis-
placement or shear and prescribed rotation or moment.

uðzo; tÞ ¼ �u; or Vxðzo; tÞ ¼ Vx and

vðzo; tÞ ¼ �v ; or Vyðzo; tÞ ¼ Vy ð7aÞ
bxðzo; tÞ ¼ �b; or Mxðzo; tÞ ¼ Mx and

byðzo; tÞ ¼ �b; or Myðzo; tÞ ¼ My; ð7bÞ
where an overbar denotes a prescribed condition.

3. Shear correction factors based on Saint-Venant flexure

In Fig. 1, the Cartesian coordinate system is shown where the
origin is located at the centroid of the tip end of the beam with
the z-axis running toward the root end. The (x,y) axes in any gen-
eric cross-section coincide with the principal bending axes. Saint-
Venant flexure consists of determining the three-dimensional
stress and displacement fields in a prismatic beam of length L sub-
jected to prescribed shear tractions at the tip end whose resultants
are Px and Py and full restraint at the root end. What is known as
Saint-Venant’s solution consists of a stress field, which agrees only
in terms of the transverse resultant magnitudes for Px and Py, but
not necessarily on a point-wise traction basis. At the root end, a
complete point-wise kinematic restraint is relaxed and the follow-
ing conditions at the centroid are usually enforced:

uð0;0; LÞ ¼ 0; vð0;0; LÞ ¼ 0; wð0; 0; LÞ ¼ 0;
@uð0; 0; LÞ

@z
¼ 0;

@vð0;0; LÞ
@z

¼ 0;
@vð0;0; LÞ

@x
� @uð0;0; LÞ

@y
¼ 0:

ð8Þ

The SAFE methodology of Dong et al. (2001) consists of setting forth
the Saint-Venant flexure displacement field at the outset. This field
and those for the Almansi–Michell problems are available via
Ies�an’s procedure (1986) of sequential integration, beginning with
a rigid body field. The flexure field is composed of three parts: (1)
primal field, (2) cross-sectional warpage and (3) rigid body motion,
all of which are associated with unknown displacement coefficients.

uðx; y; zÞ ¼ �aII5
z3

6
� aII6

yz2

2
� aI5

z2

2
� aI6yz

þ aII3fzwI3u þ wII3ug þ aII4fzwI4u þ wII4ug
þ aII5fzwI5u þ wII5ug þ aII6fzwI6u þ wII6ug
þ aI3wI3u þ aI4wI4u þ aI5wI5u

þ aI6wI6u �x3y�x2zþ uo
vðx; y; zÞ ¼ �aII4
z3

6
þ aII6

xz2

2
� aI4

z2

2
þ aI6xz

þ aII3fzwI3v þ wII3vg þ aII4fzwI4v þ wII4vg
þ aII5fzwI5v þ wII5vg þ aII6fzwI6v þ wII6vg
þ aI3wI3v þ aI4wI4v þ aI5wI5v

þ aI6wI6v þx3x�x1zþ vo

wðx; y; zÞ ¼ 1
2
ðaII3 þ aII5xþ aII4yÞz2

þ ðaI3 þ aI5xþ aI4yÞzþ aII3fzwI3w þ wII3wg
þ aII4fzwI4w þ wII4wg þ aII5fzwI5w þ wII5wg
þ aII6fzwI6w þ wII6wg þ aI3wI3w þ aI4wI4w

þ aI5wI5w þ aI6wI6w þx1yþx2xþwo; ð9aÞ

where all the warpages, wI ’s and wII ’s, are functions of (x,y) only.
Recasting Eq. (9a) in matrix form yields

UðzÞ¼ Usv2
3M�4
ðzÞþzWsv1

3M�4
þWsv2

3M�4

� �
aII
4�1
þ Usv1

3M�4
ðzÞþWsv1

3M�4

� �
aI

4�1
þURB6

3M�6
ðzÞaRB6

6�1
;

ð9bÞ

where the entries in aI; aII; aRB6 are unknown kinematic coeffi-
cients given by

aI ¼ ½aI3; aI4; aI5; aI6�T ; aII ¼ ½aII3; aII4; aII5; aII6�T ;
aRB6 ¼ ½uo;vo;wo;x1;x2;x3�T ;

ð10Þ

and ðUsv1;Usv2Þ and ðWsv1;Wsv2Þ are the primal fields and warpages
for extension–bending–torsion (sv1) and flexure (sv2), respectively;
and URB6 contain six unit rigid body displacement components.
Note that the warpages ðWsv1;Wsv2Þ are independent of z, and URB6

can be stated by inspection.
The primal fields ðUsv1;Usv2Þ are given by Ies�an’s procedure

(1986). The warpages ðWsv1;Wsv2Þ are found by substitution of dis-
placement field (9) into Eq. (1) in which the load and inertial terms
have been suppressed. The details in this step can be found in Dong
et al. (2001). Once these warpages have been established, the stress
distribution can be written as

r ¼ ½zr0 þ r1�aII þ r0aI where
r0 ¼ C½hþ b1wsv1i

�aI

r1 ¼ C½b2wsv1i
þ b1wsv2i

�aII

(
;

ð11Þ

where b1; b2 are strain-transformation equations – see, Taweel
et al. (2000) – and h is

h ¼

� � � � � �
� � � � � �
� � 1 y x �
� 1 � � � x

1 � � � � �y
� � � � � �

2
666666664

3
777777775
: ð12Þ

Integrating stress components ðrzz; rzy; rzxÞ over a generic cross-
section P at station z yields the force and moment resultants
ðPz;Mx;My;MzÞ:

FðzÞ �

PzðzÞ
MxðzÞ
MyðzÞ
MzðzÞ

8>>><
>>>:

9>>>=
>>>;
¼
Z Z

P

rzz

rzzy

rzzx

rzyx� rzxy

8>>><
>>>:

9>>>=
>>>;

dxdy: ð13Þ

For Saint-Venant flexure, vector F(z) at any cross-section is given
by,
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FðzÞ ¼ z

�
Py

�Px

�

8>>><
>>>:

9>>>=
>>>;
þ

�
�
�

Pyex þ Pxey

8>>><
>>>:

9>>>=
>>>;
; ð14Þ

where Px and Py are the transverse forces, and ex and ey are dis-
tances to the shear center. This form of F(z) satisfies global equilib-
rium. Torque MzðzÞ involving ex and ey occurs only if the centroid
and shear center are not coincident. Carrying out the integration
in Eq. (13), and setting this result equal to Eq. (14) give

EA � � �
� EIxx � �
� � EIyy �
� � � GJ

2
6664

3
7775 z

aII3

aII4

aII5

aII6

8>>><
>>>:

9>>>=
>>>;
þ

aI3

aI4

aI5

aI6

8>>><
>>>:

9>>>=
>>>;

2
6664

3
7775

þ

jII33 jII34 jII35 jII36

jII43 jII44 jII45 jII46

jII53 jII54 jII55 jII56

jII63 jII64 jII65 jII66

2
6664

3
7775

aII3

aII4

aII5

aII6

8>>><
>>>:

9>>>=
>>>;

¼ z

�
Py

�Px

�

8>>><
>>>:

9>>>=
>>>;
þ

�
�
�

Pyex þ Pxey

8>>><
>>>:

9>>>=
>>>;
; ð15Þ

where EA, EIxx; EIyy, GJ are extensional, flexural and torsional rigid-
ities of the cross-section. For a homogeneous isotropic beam, the
second term on the left-hand side of this equation involving jII is
zero. To determine aII, differentiate Eq. (15) with respect to z, which
leads to

EA � � �
� EIxx � �
� � EIyy �
� � � GJ

2
6664

3
7775

aII3

aII4

aII5

aII6

8>>><
>>>:

9>>>=
>>>;
¼

�
Py

�Px

�

8>>><
>>>:

9>>>=
>>>;
!

aII3

aII4

aII5

aII6

8>>><
>>>:

9>>>=
>>>;
¼

�
Py=EIxx

�Px=EIyy

�

8>>><
>>>:

9>>>=
>>>;
:

ð16Þ

Coefficients in aI are then found by setting z ¼ 0 in Eq. (15). All coef-
ficients are equal to zero except for aI6, and it will only appear when
the shear center does not coincide with the centroid. At this stage of
the analysis, note that the stress state is uniquely determined. The
final step in the analysis is the evaluation of rigid body displace-
ments aRB6 from restraint conditions (8), which yields

u0 ¼ �PxL3=6EIyy; v0 ¼ PyL3=6EIxx; w0 ¼ 0;

x1 ¼ PyL2=2EIxx; x2 ¼ �PxL2=2EIyy; x3 ¼ �
L

GJ
ðPyex � PxeyÞ:

ð17Þ

Once displacement field (9) is established, we can examine it to
observe the effect of shear. Consider a unit transverse load, say
Py ¼ 1. The centerline deflection is given by Eq. (9)2 with x ¼ y ¼ 0:

vð0;0;zÞjPy¼1 ¼
1

6EIxx
ðz3�3L2zþ2L3Þ; and vð0;0;0ÞjPy¼1 ¼

L3

3EIxx
:

ð18Þ

This deflection curve is the same as that in Bernoulli–Euler theory.
Boundary conditions (8) giving rigid body components (17) enable
the Saint-Venant centroidal deflection to match that of Bernoulli–
Euler beam theory. Then, how does transverse shear deformation
evince itself? It is embodied in the out-of-plane warpage function
wII4wðx; yÞ, an effect that is independent of the length of the beam.
2 All warpage functions at the centroid of the displacement field can be set equal to
zero since they are unique only to within a rigid body motion of three translations
and a rotation about the z-axis.
This warpage by itself can be seen at the root end because, at that
cross-section, the Saint-Venant displacement field is free from all
effects due to the primal field and rigid body displacements. Exam-
ples of such warpages for the various cross-sections are shown in
Fig. 2 for cross-sections that will be discussed later on. The arrow
indicate the direction of the transverse force. Similar plots are seen
in El Fatmi and Zenzri (2004) and El Fatmi (2007b). A related plot is
seen in Timoshenko and Goodier (1970, pp. 44–45) in connection
with their plane-strain analysis of flexure. From these plots, it is
obvious that the relaxed boundary conditions of Eq. (8) do not result
in full axial restraint at the root end.

The Saint-Venant flexure solution is unique to within a rigid
body displacement. The root-end shear effect, as illustrated in
Fig. 2, can be approximated by an angle cy (a weighted-average va-
lue) that replaces warpage wII4wðx; yÞ.

wII4wðx; yÞjPy
� cyy: ð19Þ

Incorporating cy in the Saint-Venant flexure solution as a rigid body
rotation will restore the root end to its original (undeformed) con-
figuration on an average basis. Moreover, when this rotation is mul-
tiplied by distance with the root end, the entire centroidal
deflection is corrected for shear. To determine cy, multiply both
sides by y and integrate.3Z Z

½wII4wðx; yÞjPy
�ydA ¼ cy

Z Z
y2dA ¼ cyIxx ð20aÞ

or

cy ¼
1
Ixx

Z Z
½wII4wðx; yÞjPy

�ydxdy: ð20bÞ

From shear constitutive relation (4) for a unit force
Py; cy ¼ 1=k2

22GA. Therefore, the shear correction factor emerges as

1

k2
22

¼ GA
Ixx

Z Z
y½wII4wðx; yÞjPy

�dxdy: ð21Þ

By a similar calculation, the shear correction factor in the other
principal direction is

1

k2
11

¼ GA
Iyy

Z Z
x½wII5wðx; yÞjPx

�dxdy: ð22Þ

Herein, the values of the shear correction factors are calculated by
Gaussian quadrature of the SAFE Saint-Venant results. Recall that
they were predicated on quadratic polynomial displacement inter-
polations over the cross-section. In formulas (21) and (22), shear
modulus G appears; however, it should be remembered that func-
tions wII4wðx; yÞ and wII5wðx; yÞ also involve a similar factor in them
so that k2

11 and k2
22 are ultimately independent of this material

parameter. Lastly, we note that the residual out-of-plane warpage
(the difference between wII4w and average displacement ycy) is a dis-
placement field of a self-equilibrated state. According to Saint-Ve-
nant’s principle, it decays with distance from the root end, where
the decay distance can be quantified, see Lin et al. (2001) and
Alpdogan et al. (2010).

In our examples, the shear correction factors by Eqs. (21) and
(22) agree with those of Cowper (1966) and Mason and Herrmann
(1968). Cowper’s method used data based on a semi-inverse meth-
od (stress function) of solution to derive the shear constitutive
relation, so that the displacement field was not directly involved.
While Mason and Herrmann did solved for the out-of-plane war-
pages for general cross-sections, they utilized these data in the
same way as Cowper. We can therefore conclude that their meth-
ods for shear correction factors correspond to our characterization
3 Integrating both sides of Eq. (19) without multiplying by y will result in the right-
hand side vanishing as the origin is located at the centroid, i.e.,

R
ydA ¼ 0.



Fig. 2. Examples of Saint-Venant warpages at the root-end of beams: (a, e) Rectangle sections with aspect ratios of 2 or 0.5; (b, f) ellipse sections with aspect ratio of 2 and 0.5;
(c, g) angle section No. 1, and (d, h) channel section No. 1.
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of them as weighted-average values. A correction for shear is one
that returns the root-end cross-section to its original configura-
tion, albeit on an average basis, by a rigid body rotation about a
principal bending axis. The Saint-Venant centroidal deflection gi-
ven by Eq. (18) and augmented with a correction for shear
becomes

vð0; 0; zÞjPy¼1 ¼
1

6EIxx
ðz3 � 3L2zþ 2L3Þ þ 1

k2
22GA

ðL� zÞ: ð23Þ

This expression is the same as that by the Timoshenko beam equa-
tions. Thus, we have a very compelling reason to regard the shear
correction factors of Cowper (1966) and Mason and Herrmann
(1968) as the most effective (at least for tip loaded cantilevered
beams). Their coefficients produce a deflection curve that tracks
the three-dimensional elasticity curve over the entire centroidal
axis.

Renton (1991) presented a method for shear correction factors
based on energy of transverse shear stresses, which is uniform
along the centroidal axis for a tip loaded cantilevered beam. He
evaluated this energy using the Saint-Venant flexure data, i.e.,

Us�total ¼
G
2

Z Z
A
ðc2

xz þ c2
yzÞdA ð24Þ

and equated it to an equivalent expression based on Timoshenko
beam theory. For example, for shear force Vy, the equivalent
shear energy WTimo, in terms of Ky (shear stiffness of the beam),
is
WTimo ¼
1
2

V2
y

Ky
where Ky ¼ k2

22GA: ð25Þ

Thus, the correction factor can be determined. Renton dealt with
symmetric cross-sections only.

In our examples on rectangular and elliptical cross-sections, we
found that Renton’s method gave quite low shear correction values
for extremely flat cross-sections. We have included another energy
version, where only the transverse shear energy of shear strain in
the direction of the force is used – the rationale being that only
such deformation contributes to a net shear deflection. For exam-
ple, for a transverse force in the y-direction, the energy is

Us�directional ¼
G
2

Z Z
A
c2

yz dA: ð26Þ

Equating this expression to that given by Eq. (25) yields another
correction factor. We shall call this version the directional shear en-
ergy method and test its efficacy along with all other correction fac-
tors considered herein.

4. Shear correction factors based on free vibration data

The method for shear correction factors on a dynamic basis is
due to Mindlin and Deresiewicz (1954). It follows the concept for
plates by Mindlin (1950), where the lowest thickness-shear fre-
quency from three-dimensional elasticity is utilized. The governing
equation for free vibration is the homogeneous form of Eq. (1),
from which the frequencies of harmonic propagating waves in
the z-direction are sought. The solution form for harmonic waves is
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Uðz; tÞ ¼ Uoeiðkz�xtÞ; ð27Þ

where k is an axial wave number related to wavelength k by
k ¼ p=k, and x is the natural frequency. Substituting this solution
form into the homogeneous form of Eq. (1) yields

k2K1Uo þ ikK2Uo þ K3Uo ¼ x2MUo: ð28aÞ

As K1; K3 and M are symmetric and K2 is antisymmetric, this com-
plex equation is hermitian. It can be rendered into a real symmetric
positive semi-definite system by doubling the matrix rank, as in,

K3 þ k2K1 �kK2

kK2 K3 þ k2K1

" #
Uo

�iUo

� �
¼ x2 M �

� M

� �
Uo

�iUo

� �
:

ð28bÞ

The roots for x2 of Eq. (28b) are real and repeated. Each pair of re-
peated roots corresponds to propagating waves of the same wave
number k but traveling in the opposite directions. The eigendata
from this system provide spectral data for all possible waves that
can occur in the beam. They include the axial, flexural and torsional
modes as the lowest branches, followed by thickness-shear and
thickness-stretch modes, and then of all of the higher branches. In
our discussion, we will only be concerned with the flexural and
thickness-shear branches in this spectra.

The governing equations for free vibration in Timoshenko the-
ory are those in Eq. (6). The analogous expressions for infinite
trains of sinusoidal waves in the x–z and y–z planes are

uðx; tÞ ¼ Ueiðkz�xtÞ; and byðz; tÞ ¼ Byeiðkz�xtÞ;

vðx; tÞ ¼ Veiðkz�xtÞ; and bxðz; tÞ ¼ Bxeiðkz�xtÞ;
ð29Þ

where ðU;V ;Bx;BxÞ are amplitudes. Substitution of these wave
forms into the homogeneous form of Eq. (6) yields the following
algebraic eigenproblems:

k2
22GAk2 �ik2

22GAk

ik2
22GAk EIxxk2 þ k2

22GA

" #
V

By

� �
¼ qx2 A �

� Ixx

� �
V

By

� �
;

k2
11GAk2 �ik2

11GAk

ik2
11GAk EIyyk2 þ k2

11GA

" #
U

Bx

� �
¼ qx2

A �
� Iyy

� �
U

Bx

� �
:

ð30Þ

For each eigenproblem, there are two branches in the frequency
spectra. The lowest defines the natural frequency for flexural mo-
tion as a function of k. The other branch pertains to the thickness-
shear vibrations.

Of particular interest are the frequencies of thickness-shear
modes of infinitely long wave lengths where k ¼ 0. These frequen-
cies for motions in the x-z and y-z planes are

x2 ¼ k2
22GA
qIxx

and x2 ¼ k2
11GA
qIyy

ð31aÞ

so that

k2
22 ¼

qIxx

GA
x2 and k2

11 ¼
qIyy

GA
x2: ð31bÞ

Shear correction factors on a dynamic basis are based on Eq. (31b),
where x2 are the three-dimensional thickness-shear frequencies
from algebraic eigensystem (28b). It is important to extract the
appropriate thickness-shear frequencies from system (28b), as the
eigensolution yields a rather vast spectra. A visual examination of
all vibration modes will easily reveal which ones are the lowest or-
der thickness-shear modes. Some examples of these infinitely long
wave length thickness-shear modes are shown in Fig. 3.4
4 Thickness-shear modes for rectangle and ellipse sections are omitted in Fig. 3,
because they are identical to Saint-Venant warpages shown in Fig. 1, for these
sections.
Hutchinson (2001) presented another method for shear correc-
tion factors. He used a Hellinger–Reissner variational principle to
derive equations of motion that may be considered as the ‘‘best”
equivalent Timoshenko-type equations. Upon invoking a harmonic
waveform, he is then able to compare this solution with that based
on the Timoshenko beam equations to produce formulas for shear
correction factors. In his Hellinger–Reissner functional, indepen-
dent assumptions of both stress and displacement fields were
used. For displacements, a field according to elementary beam
theory was adopted, which is essentially the primal field of
Saint-Venant flexure – i.e., Usv2 in Eq. (9b). For transverse shear
stresses, those of Saint-Venant flexure for a tip loaded cantilevered
beam were used. Therefore, this variational approach may be
considered as a best (or, alternatively, a least-squares residual) fit
of three-dimensional information into a system of one-dimen-
sional equations of motion that account for transverse shear
deformation.

Hutchinson dealt mainly with doubly symmetric cross-sections.
His formulas for elliptical and rectangular sections in our notation
are, respectively,

k2
22 ¼

6ð1þ 3/2Þð1þ mÞ2

20/4 þ 8/2 þ mð37/4 þ 10/2 þ 1Þ þ m2ð17/4 þ 2/2 � 3Þ
ð32Þ

and

k2
22 ¼

1þ m
1:2þ m� f

where

f ¼ 18m2

ð1þ mÞ/5

X1
n¼1

np/� tanhðnp/Þ
ðnpÞ5

; ð33Þ

where m is the Poisson’s ratio, and / ¼ b=a is the aspect ratio (see,
Fig. 4). There are misgivings with these formulas. In Figs. 3 and 4
of Hutchinson (2001), negative shear correction factors are shown
when either or both Poisson’s and aspect ratios exceed certain lim-
its. One culprit is the term f in the denominator of Eq. (33). This is-
sue was also raised by Stephen (2001). Negative values are not
plausible for they violate the first law of thermodynamics in work
and energy expressions. For Poisson’s ratio m ¼ 0:3, Hutchinson’s
factor without the f term is k2

22 ¼ 0:867. Stephen (1980) indepen-
dently obtained essentially the same formula as Hutchinson. With
his formula, the same value of k2

22 ¼ 0:867 is obtained for deep
cross-sections. Stephen’s formula was also capable of negative fac-
tors, particularly for shallow or flat cross-sections. However, he cau-
tioned against using the formula for anything but deep cross-
sections. Note that for / P 1 (deep sections), we have
ð/; f Þ ¼ fð1; 0:018Þ; ð2; 0:0003Þ; ð3; 0:00003Þ; . . .g, and f is minimally
affected by /.

For shallow cross-sections ð/ < 1Þ, f is magnified as /5 occurs in
the denominator. This produces negative correction factors as well
as seemingly unrealistic values. For our rectangular cross-sections
(cf., Table 3), we will use a shear correction factor as given by Eq.
(33) for / > 1. However, for / < 1, we will use a shear correction
factor without f, thus rendering it independent of aspect ratio /.
Such a factor sans f will be dubbed the ad hoc Hutchinson factor.
There is some merit in this choice given that both Hutchinson
and Cowper used the same shear stress distribution in their deriva-
tions. Cowper obtained factors independent of aspect ratio, so that
we anticipate that ad hoc Hutchinson factors will acquit them-
selves well in comparison with three-dimensional results. This will
be seen in a subsequent section. In our examples on the ellipse
with Poisson’s ratio m ¼ 0:3, formula (32) does not give negative
values for all aspect ratios which we are considering. Hence, we
will use it as shown.



Table 1
Geometry of channel cross-sections.

Section H W t1 tb ycen ysc

1 8.5 7.0 1.0 1.0 3.3977 6.2954
2 8.5 8.0 2.0 1.0 3.8553 6.5647
3 8.5 10.0 4.0 1.0 4.1429 5.5234
4 9.0 7.0 1.0 2.0 3.2500 5.1541
5 10.0 7.0 1.0 4.0 3.5000 3.4638
6 9.0 8.0 2.0 2.0 3.8636 5.7830
7 10.0 8.0 2.0 4.0 4.1429 4.3136
8 9.0 10.0 4.0 2.0 4.3158 5.1526
9 10.0 10.0 4.0 4.0 4.7273 4.1798

Fig. 4. Geometries and measures for various cross-sections.

Fig. 3. Examples of thickness-shear vibration modes corresponding to infinitely long waves: (a, b) angle section No. 1, and (c, d) channel section No. 1.
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5. Examples of cross-sections

Shear correction factors for four cross-sections are presented in
tabular form in this section, viz., (1) rectangle, (2) ellipse, (3) chan-
nel, and (4) angle. Their geometries are defined in Fig. 4. For the
rectangle and ellipse, the aspect ratio / ¼ b=a is the basic parame-
ter; only the correction factor k2

22 need to be listed, as k2
11 is given

under the inverse aspect ratio. For the channel and angle, their geo-
metric parameters and locations of the centroid and shear centers
are tabulated in Tables 1 and 2. Shear correction factors based on
(1) Saint-Venant weighted-average warpage angle, (2) vibration
method, (3) Hutchinson’s method (for rectangles and ellipses only),
(4) Renton’s method, and (5) directional shear energy are tabulated
in Tables 3–6. For directional shear energy, the percentage of the
total shear energy in the direction of the transverse force appears
in parentheses. All factors presume a coordinate system with the
origin at the centroid and (x,y) coordinate axes parallel to the prin-
cipal bending axes. It is furthermore assumed that all transverse
shear forces pass through the shear center of the cross-section.
The performance of these correction factors for both static and free
vibration responses is given in the next section.



Table 2
Geometry of angle cross-sections.

Section H W hW hH �xcen �ycen / xsc ysc

1 10 10 1.0 1.0 2.8684 2.8684 45.00 3.3062 �
2 10 10 2.0 2.0 3.2222 3.2222 45.00 2.9691 �
3 10 10 3.0 3.0 3.5588 3.5588 45.00 2.5180 �
4 6 10 1.0 1.0 3.5000 1.5000 19.64 2.3370 2.9109
5 6 10 2.0 2.0 3.8571 1.8571 17.77 1.8704 1.5372
6 6 10 3.0 3.0 4.1923 2.1923 15.09 1.2658 1.0580
7 6 10 2.0 1.0 4.2500 1.5000 12.53 2.4643 1.2248
8 6 10 3.0 2.0 4.3333 2.0000 12.39 1.4133 1.0170
9 6 10 3.0 1.0 4.5909 1.7727 8.02 1.4400 0.7257
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6. Performance of correction factors

The potency of Timoshenko shear correction factors is mea-
sured by their capacity to replicate three-dimensional results. We
will make measurements with static and vibration data by com-
paring (1) centroidal axis deflections in a tip-loaded cantilevered
beam and (2) normalized frequencies of harmonic waves, where
the lowest thickness-shear frequency xs is used for normalization.
In all cases, Poisson’s ratio m ¼ 0:3.

In the Saint-Venant solution, the warpage functions depicted
the three-dimensional or point-wise representation of shear ef-
fects. These deformation patterns resulted in shear angle cx or cy

of Eq. (21) or (22), which led to a weighted-average fit of a fully
clamped condition. Adding shear deflection based on this angle
as a rigid body rotation onto the Saint-Venant centroidal deflection
Table 3
Shear correction factors for rectangular cross-sections ðm ¼ 0:3Þ.

b=a Thickness-shear

Saint-Venant Vibration

10 0.850 0.822
8 0.850 0.822
5 0.850 0.822
3 0.850 0.822
2 0.850 0.822
1.5 0.850 0.822
1 (square) 0.850 0.822
0.667 0.850 0.822
0.500 0.850 0.822
0.333 0.850 0.822
0.200 0.850 0.822
0.125 0.850 0.822
0.100 0.850 0.822

For b=a < 1, Hutchinson’s ad hoc shear correction factor is 0.867.

Table 4
Shear correction factors for elliptical cross-sections ðm ¼ 0:3Þ.

b=a Thickness-shear

Saint-Venant Vibration

8 0.915 0.889
5 0.914 0.888
3 0.912 0.884
2.5 0.910 0.882
2 0.907 0.878
1.5 0.902 0.869
1 (circle) 0.886 0.847
0.667 0.859 0.812
0.500 0.828 0.781
0.400 0.792 0.756
0.333 0.757 0.736
0.200 0.612 0.457
0.125 0.419 0.334
with boundary conditions (8) gives Eq. (23); this deflection curve is
identical to that by Timoshenko beam theory. Since this shear an-
gle is inversely proportional to the correction factor, then all other
correction factors can be judged according to its relation to it. This
factor, we noted, is also the same as that by Cowper (1966, 1968)
and Mason and Herrmann (1968). Any shear correction factor of
lower value, over-corrects for shear, and conversely, and one that
is higher under-corrects.

On this elastostatic basis, all factors for rectangular and ellipti-
cal cross-sections in Tables 3 and 4 over correct for shear except for
Hutchinson (2001), which under corrects. For a rectangle of aspect
ratio b=a ¼ 10 and 0.1, values of k2 ¼ 0:833 and 0.179 were ob-
tained by El Fatmi and Zenzri (2004). These are in agreement with
Renton’s values in Table 3 and suggest that their beam theory is
predicated on equality of shear strain energies. For channel and an-
gle cross-sections – factors for which are given in Tables 5 and 6 –
the thickness-shear and Renton’s energy methods over-correct,
and directional energy method under-corrects (there are no factors
by Hutchinson’s method). It should be remembered that this
assessment of correction factors for static loading conditions is
based on a tip loaded cantilevered beam. Other loadings may not
follow these guidelines. However, it is known that the transverse
shear stress distribution for a uniformly loaded beam by three-
dimensional theory, i.e., by the Almansi-Michell problem, is the
same as Saint-Venant flexure except that now it varies linearly
with z. Cowper (1966) intimated that, for loadings that do not vary
rapidly with z, shear correction factors based on a tip loaded can-
tilevered beam should be suitable.
Hutchinson Renton Directional shear energy

0.867 0.833 0.833 (100%)
0.867 0.833 0.833 (100%)
0.867 0.833 0.833 (100%)
0.867 0.833 0.833 (100%)
0.867 0.833 0.833 (100%)
0.869 0.832 0.832 (�100%)
0.877 0.828 0.829 (99.9%)
0.929 0.813 0.820 (99.1%)
1.126 0.784 0.807 (97.2%)

-3.026 0.694 0.777 (89.3%)
-0.089 0.478 0.720 (66.4%)
-0.012 0.258 0.648 (39.9%)
-0.005 0.179 0.607 (29.5%)

Hutchinson Renton Directional shear energy

0.932 0.899 0.900 (99.9%)
0.932 0.898 0.900 (99.7%)
0.931 0.894 0.900 (99.3%)
0.931 0.891 0.900 (99.0%)
0.930 0.886 0.900 (98.4%)
0.929 0.876 0.899 (97.3%)
0.925 0.851 0.899 (94.6%)
0.912 0.806 0.897 (89.9%)
0.911 0.758 0.894 (84.7%)
0.904 0.709 0.892 (79.4%)
0.897 0.659 0.891 (74.0%)
0.858 0.476 0.887 (53.7%)
0.780 0.286 0.885 (32.4%)



Table 5
Shear correction factors for channel cross-sections ðm ¼ 0:3Þ.

b=a Thickness-shear

Saint-Venant Vibration Renton Directional shear energy

About y-axis
1 0.645 0.610 0.624 0.668 (93.5%)
2 0.756 0.718 0.731 0.764 (95.6%)
3 0.831 0.801 0.804 0.813 (98.8%)
4 0.554 0.524 0.539 0.574 (94.0%)
5 0.541 0.492 0.533 0.569 (93.8%)
6 0.695 0.657 0.637 0.707 (95.2%)
7 0.677 0.634 0.662 0.696 (95.1%)
8 0.811 0.779 0.785 0.798 (98.4%)
9 0.805 0.771 0.783 0.797 (98.3%)

About x-axis
1 0.179 0.164 0.177 0.297 (59.7%)
2 0.145 0.134 0.143 0.206 (69.2%)
3 0.143 0.124 0.142 0.199 (71.1%)
4 0.236 0.200 0.236 0.451 (52.4%)
5 0.321 0.238 0.328 0.598 (54.9%)
6 0.209 0.185 0.207 0.338 (61.2%)
7 0.298 0.243 0.300 0.503 (59.6%)
8 0.212 0.180 0.209 0.312 (67.1%)
9 0.317 0.258 0.315 0.470 (67.1%)

Table 6
Angle cross-sections: correction factors in principle directions ðm ¼ 0:3Þ.

b=a Thickness-shear

Saint-Venant Vibration Renton Directional shear energy

About y-axis
1 0.442 0.422 0.439 0.810 (54.2%)
2 0.473 0.458 0.470 0.793 (59.2%)
3 0.558 0.521 0.514 0.785 (65.4%)
4 0.532 0.515 0.527 0.685 (76.9%)
5 0.584 0.563 0.578 0.695 (82.2%)
6 0.656 0.629 0.649 0.722 (89.8%)
7 0.656 0.625 0.650 0.764 (85.0%)
8 0.682 0.657 0.675 0.749 (90.1%)
9 0.743 0.716 0.735 0.794 (92.5%)

About x-axis
1 0.442 0.433 0.433 0.850 (50.9%)
2 0.473 0.461 0.483 0.886 (54.5%)
3 0.517 0.498 0.565 0.914 (61.9%)
4 0.327 0.305 0.327 0.455 (71.8%)
5 0.426 0.363 0.421 0.548 (78.8%)
6 0.594 0.481 0.575 0.670 (85.6%)
7 0.304 0.244 0.288 0.363 (79.2%)
8 0.528 0.381 0.501 0.600 (83.6%)
9 0.473 0.283 0.433 0.510 (85.0%)
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For vibration, frequencies of a sinusoidal wave form (27) given
by three-dimensional elasticity, i.e., Taweel et al. (2000), are com-
pared with all Timoshenko beam results. The important parame-
ters are wave number k and ratio D=k of depth to wave length,
where k ¼ p=k. Comparative data are presented in terms of per-
centage difference between elasticity and Timoshenko beam data
as a function of D=k, where this percentage difference is defined as

%-difference ¼ x3D �xTimo

x3D
� 100: ð34Þ

Two different cross-sections for each type of beam were considered,
where vibrations about both principal axes were evaluated.

For rectangular cross-sectional shapes, aspect ratios b=a ¼ 2
and 8 and their reciprocals were considered and the comparisons
are shown in Fig. 5(a–d). Observe in all the plots that the results
by ad hoc Hutchinson factor show the least departure from elastic-
ity, followed by those of the Saint-Venant factor. In vibrations
about the shallow direction – cf., Fig. 5(a and b) –, the frequencies
in the case b=a ¼ 8 were off by less than 3% except for those of Ren-
ton and directional shear energy, which exceeded 10% difference at
D=k ¼ 1. For vibrations about an axis perpendicular to the deep
direction – cf., Fig. 5(c and d) –, deviations from three-dimensional
data are quite small and smaller in comparison to that about the
shallow direction. While Hutchinson method yielded the most
superior result, we need to also acknowledge that for the worst
performing shear correction factor – i.e., thickness-shear –, the fre-
quencies were only off by 2% at D=k ¼ 1. On this basis, any of the
shear correction factors qualifies as eminently suitable for provid-
ing acceptable frequencies. No plot of the frequency spectra is
shown here, as all spectral curves would be piled on top of each
other in such a figure.

For elliptical cross-sections, aspect ratios b=a ¼ 2 and 8 and
their reciprocals were considered. The results are quite similar to
those for the rectangle in the deep direction – see, Fig. 6(c, d).
Again, the Hutchinson factor acted the best followed by that by
Saint-Venant flexure. For vibrations about the shallow direction,
Fig. 6 (a and b), moderately greater discrepancies were seen vis-
a-vis the rectangle. For b=a ¼ 1=8, it appears that for %-differences
less than 5%, the range stops around D=k ¼ 0:25. Here, it is again
seen that Timoshenko beam results can be quite accurate even
up to D=k ¼ 1.

For the channel, cross-sections 1 and 9 in Table 1 were consid-
ered to provide a contrast based on the widths of their leg and
bridge portions. For cross-section 1, which is a thin section, flexural
frequency spectra for vibrations about the y-axis are shown in
Fig. 7, where a complete lack of agreement between Timoshenko
beam and three-dimensional elasticity data is apparent. There is
an absence of a pure flexure mode in the three-dimensional elastic-
ity data, as seen in Fig. 8 for D=k ¼ 0:05, where an in–plane rota-
tional pattern indicates a significant torsional component even
though a strong flexural action is also present. For this cross-sec-
tion, the flexural and torsional rigidities are EIyy ¼ 164:83 and
GJ ¼ 2:81, a low ratio of GJ=EIyy. Without a pure elasticity flexural
mode, a meaningful comparison of Timoshenko beam data is not
possible.

Frequency spectra for channel Section 1 in flexural vibrations
about the x-axis – i.e., the other principal axis – are shown in
Fig. 9a, and comparative data appear in Fig. 9c. As can be seen,
agreement of Timoshenko data occurs in a very limited range of
D=k. Large discrepancies appear to begin at D=k ¼ 0:18. For cross-
section 9, a similar conclusion can be drawn on vibrations about
the y-axis. No meaningful comparison is possible as a pure flexural
mode is not present. A bending-torsional mode appears immedi-
ately after D=k departs from the origin, even though the GJ=EIxx ra-
tio is much higher, i.e, EIyy ¼ 829:33 vs. GJ ¼ 174:63. It appears that
for channel cross-sections, vibrations about the y-axis consist of
bending-torsion motions regardless of their GJ=EIxx ratios. Data
for vibration about the x-axis are given in Fig. 9b and d. In
Fig. 9b showing the flexural spectra, the departure of Timoshenko
beam data does not occur until D=k ¼ 0:65. In Fig. 9d, all shear cor-
rection factors appear to be able to replicate frequencies to within
1% accuracy up to D=k ¼ 0:5. The thicker legs of this cross-section
extended the range of Timoshenko beam theory well beyond that
with thin legs.

Angle cross-sections 1 and 6 of Table 2 were considered as these
two sections also contrasted thin legs versus thick legs. Moreover,
cross-section 6 is completely non-symmetric. There is no pure flex-
ural vibration about the x-axis in cross-section 1, as bending and
torsional behaviors occur at the outset of wave k–0. This behavior
is similar to that in the thin walled channel. For vibration about the
y-axis, the flexural spectra are shown in Fig. 10a that shows the
elasticity and Timoshenko beam results parting ways in the vicin-
ity of D=k ¼ 0:15. A plot of the percentage differences is given in
Fig. 10c. While the errors of classical theory are nominally higher



Fig. 5. Comparison of frequencies of rectangular cross-sections: shallow sections (a, b); deep sections (c, d).
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up to D=k ¼ 0:15, the difference is almost inconsequential as Tim-
oshenko beam theory only provides for a minimum improvement.

For cross-section 6, the unnormalized elasticity spectral data
are presented in Fig. 11. We see that there is one flexural mode
(about the y-axis) and two coupled bending-torsion modes with
respect to the other principal axis. These labels of the spectra are
based on inspections of their modal patterns. The flexural spectra
of both elasticity and Timoshenko beam modes are shown in
Fig. 10b. Good agreement is observed up to D=k � 0:3. The percent-
age differences of the Timoshenko beam results with elasticity are
shown in Fig. 10d, where Timoshenko data exceed 5% difference at
roughly D=k � 0:3. The spectra for vibrations about the other (sec-
ond) principal axis are shown in Fig. 12. Here, an unusual phenom-
enon is occuring. The elasticity frequency spectrum is higher than
the Timoshenko beam spectra. In Fig. 11, we identified the first
mode as coupled bending-torsional behavior. For this cross-sec-
tion, EIxx ¼ 71:96 and GJ ¼ 40:695; the presence of considerable tor-
sional rigidity is reflected in a higher frequency for the fundamental
(coupled bending–torsion) elasticity mode. The sum of flexural and
shear rigidities in Timoshenko beam is less than the amount of flex-
ure and torsion. In Fig. 13, a three-dimensional elasticity modal pat-
tern is given to show this coupled behavior. When a pure flexural
mode is pre-empted, a meaningful comparison of Timoshenko beam
data is not possible.

In summary, we see that Timoshenko beam theory works well
for rectangular and elliptical cross-sections for factors by Hutchin-
5 For cross-section 1, EIxx ¼ 73:43 and GJ ¼ 2:39.
son’s and Cowper’s methods. Renton’s and directional shear meth-
ods work well for deep cross-section; but when the geometry
becomes shallow, there is a substantial decline in their effective-
ness. Directional shear energy factors are able to improve upon
Renton’s factors, but their overall effectiveness deserves to be ex-
plored further. For channel and angle cross-sections, the three-
dimensional bending-torsion coupling phenomenon with respect
to one principal bending axes precludes any possibility of Timo-
shenko type theory capturing this behavior. Timoshenko beam the-
ory can only capture the bending behavior about the other
principal axis. Moreover, the range of application of Timoshenko
beam theory is quite restrictive for such cross-sections vis-a-vis
rectangles and ellipses.

7. The issue of principal shear axes

Schramm et al. (1994) extended Renton’s concept of equating
comparable energies to determine shear correction factors for
non-symmetrical cross-sections. They introduced principal shear
axes that were not coincident with the principal bending axes in
their formulation. An examination of the Saint-Venant flexure
solution will dissuade this concept. It shows deflection of the cent-
roidal axis lying in the same plane as the transverse load; there is
no displacement normal to this plane. If Timoshenko beam consti-
tutive relations are based on non-coincident principal bending and
shear axes, then a lateral or sidesway displacement will be admit-
ted. Such behavior precludes any opportunity for Timoshenko
beam theory to ever replicate linear three-dimensional elasticity
results.



Fig. 6. Comparison of frequencies of elliptic cross-sections: ahallow sections (a, b); deep sections (c, d).

Fig. 7. Flexural spectra for channel cross-section No. 1 about y-axis.
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Schramm et al’s method for the Timoshenko beam shear correc-
tion factors for a non-symmetric cross-section involves the follow-
ing expressions of the shear angles in terms of the transverse
forces:
cxz ¼ axx
Vx

GA
þ axy

Vy

GA
; cyz ¼ ayx

Vx

GA
þ ayy

Vy

GA
; where axy ¼ ayx:

ð35Þ



Fig. 8. Mode shape of vibration of channel cross-section No. 1 about y-axis:
(a) in–plane and (b) out-of-plane components.
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In these expressions, the terms Vi=GA denote shear angles; and
coefficients aij are the inverses of the shear correction factors k2

ij.
Popescu and Hodges (2000) adopted the same procedure on match-
ing energies in studying beams that were not isotropic. Observe that
these shear angle expressions imply the presence of shear forces in
both orthogonal directions. The shear strain energy per unit length
Fig. 9. Flexural spectra about x-axis for channel cross-sections Nos. 1 a
in terms of these shear angles and their corresponding shear forces
has the form

Usb ¼
1
2

Z
A
ðrxzcxz þ ryzcyzÞdA

¼ 1
2

axx
VxVx

GA
þ axy

VxVy

GA
þ ayx

VyVx

GA
þ ayy

VyVy

GA

" #
: ð36Þ

Let us now state the shear strain energy per unit length, Use, by
three-dimensional elasticity. Using superscripts x and y to denote
stress components of forces in these directions, respectively,

rxz ¼ rx
xz þ ry

xz and ryz ¼ rx
yz þ ry

yz: ð37Þ

We have

Use ¼
1

2G

Z
A
ðrx

xz þ ry
xzÞ

2 þ ðrx
yz þ ry

yzÞ
2

h i
dA

¼ Uxx
se þ Uyy

se þ 2Uxy
se ; ð38Þ

where

Uxx
se ¼

1
2G

Z
A
½ðrx

xzÞ
2 þ ðrx

yzÞ
2�dA; Uyy

se ¼
1

2G

Z
A
½ðry

xzÞ
2 þ ðry

yzÞ
2�dA

Uxy
se ¼

1
2G

Z
A
½rx

xzr
y
xz þ rx

yzr
y
yz�dA:

ð39Þ

Schramm et al. equated Eq. (36) to Eq. (38) and matched each shear
correction factor to its corresponding energy expression. We para-
phrase their results, given by Eqs. (66) to (68) of Schramm et al.’s
(1994) paper, as
nd 9 (a, b), and their comparison with the elasticity solution (c, d).



Fig. 10. Flexural spectra about y-axis for angle cross-section No. 1 (a), and their comparison with the elasticity solution (c). Flexural spectra about the first principal bending
axis for angle cross-section No. 6 (b), and their comparison with the elasticity solution (d).

Fig. 11. Three-dimensional spectra for angle cross-section No. 6.
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axx¼
GA

VxVx
Uxx

se ; ayy¼
GA

VyVy
Uyy

se ; axy¼ayx¼
GA

VxVy
Uxy

se ¼
GA

VyVx
Uxy

se : ð40Þ

Observe that Eqs. (37)–(39) are valid for all coordinate directions,
even those parallel to the principal bending axes. Moreover, for a gi-
ven pair of forces in any two orthogonal directions, strain energy
(38) is invariant with respect to coordinate rotation about an axis
normal to the cross-section. The shear strain energy is unchanged.
If strain energy expression (36), i.e., the right-hand side, is trans-
formed to principal bending axes, then axy should vanish. This raises
a conundrum on the term Uxy

se in the third equation of (40). It is gen-
erally not zero, even when the forces are in the principal bending



Fig. 12. Flexural spectra about for angle cross-section No. 6 about the second principal bending axis.

Fig. 13. Mode shape for angle cross-section No. 6 about the second principal
bending axis: (a) in-plane and (b) out-of-plane components.
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directions. Only for cross-sections possessing at least one plane of
structural symmetry, Uxy

se will vanish in the principal bending direc-
tions – a consequence of orthogonality of the shear stress states for
the two forces. For unsymmetrical cross-sections, it will not vanish.
What Schramm et al. (1994) found, which they dubbed ‘‘the princi-
pal shear axes,” was an alternate set of axes where the two shear
stress states evince the aforementioned orthogonality. However,
this is not pertinent to shear correction factors!

It is not appropriate to begin shear correction calculations with
an expression of form (36) consisting of stresses and strains of two
force systems. Only a single transverse force at a time can be con-
sidered, and it is expedient to adopt a coordinate system oriented
in the principal bending directions.6 Then, the shear correction fac-
tors in the principal bending directions are found by two equations,
each equivalent to that of Renton (1991):
6 Mason and Herrmann (1968) did not used a coordinate system oriented in the
principal bending directions. But only one force was applied at a time and two
calculations gave two sets of correction factors, ða2

ii ;a
2
ijÞ and ða2

jj ;a
2
jiÞ. Their procedure

allows the symmetry of a2
ij and a2

ji to be verified.
axx ¼
GA

V2
x

Uxx
se ¼

1
2V2

x

Z
A
½ðrx

xzÞ
2 þ ðrx

yzÞ
2�dA;

ayy ¼
GA

V2
y

Uyy
se ¼

1
2V2

y

Z
A
½ðry

xzÞ
2 þ ðry

yzÞ
2�dA:

ð41Þ

Knowing the shear correction factors in the principal bending direc-
tions allows for constitutive relations in any other coordinate sys-
tem as these factors are components of a second-rank tensor.
8. Concluding remarks

Three-dimensional information and numerical data were cen-
tral in our discussion to clarify many issues on shear correction fac-
tors of Timoshenko beam theory. The displacements (in the SAFE
formulation) were vital to the visualization of transverse shear ef-
fects in beams of various cross-sections.

In the Saint-Venant flexure solution, we were able to show that
the shear deformation warpage was located at the root end. Be-
cause the Saint-Venant flexure solution is only unique to within
a rigid body motion, we can append another rigid body rotation
to this solution. This rigid body motion given by a weighted-aver-
age measure of the warpage turns out, in fact, to be the shear angle
of Timoshenko beam theory. Moreover, shear correction factors on
this basis have the same values as those by Cowper (1966) and Ma-
son and Herrmann (1968). While this analysis is predicated on a tip
loaded cantilevered beam, Cowper and others have conjectured
persuasively that these shear correction factors should work for
other elastostatic loadings, especially ones with only slow varia-
tions in the direction of the beam.

For dynamic results, Hutchinson (2001)’s shear correction factors
(with our suggested modification for cross-sections with a flat geom-
etry) appeared to have worked exceedingly well for rectangular and
elliptical cross-sections. His approach has one conceptual advantage
over the long standing method of Mindlin and Deresiewicz (1954), in
that the variational formulation offered the ‘‘best” equations of mo-
tion that accounts for shear deformation. The method of Mindlin and
Deresiewicz (1954) makes the Timoshenko beam solution exact at
only one wave number, i.e., at k ¼ 0. Their trust, most likely, was that
major deviations from three-dimensional data would not begin until
k is sufficiently into the short wavelength regime.

Our analysis of channel and angle cross-sections revealed an
interesting behavior that should caution against blind application
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of Timoshenko beam theory. These geometries may be said to repre-
sent open cross-sections. Three-dimensional data shows that with
respect to one of the principal bending axis, coupled bending-torsion
modes occur so that any Timoshenko theory without further provi-
sions for torsional behavior will never be able to approximate three-
dimensional behavior over any range of wave numbers. Moreover,
for these geometries, the range of application of Timoshenko beam
theory about the other principal bending axis is abbreviated, vis-a-
vis cross-sections of the types such as rectangles and ellipses.

A Timoshenko beam solution employing the shear correction fac-
tors herein is an approximation of the long wavelength solution, as
termed by Ladevéze and Simmonds (1998), where end effects are ig-
nored. Also, while the vibrational plots showed relatively good
agreement with three-dimensional data over an extended range, it
is noted that periodic boundary conditions employed for the plots
do not validate all types of boundary conditions. By an asymptotic
analysis of free vibration of a cantilevered beam, Duva and Sim-
monds (1991) found that the frequency correction due to end effects
was of order (H/L), where H is a thickness and L is some wave length
measure. This is compared with a ðH=LÞ2 frequency correction due to
shear deformation and suggests that end effects may have a poten-
tially greater influence vis-a-vis shear. While their analysis based
on plane strain conditions is valid for a thin (deep) rectangular
cross-section, definitive remarks for all cross-sectional shapes re-
main open. Many other issues need to be explored for a complete
understanding. Inverse decay lengths of flat cross-sections (as op-
posed to deep cross-sections) have shorter inverse decay lengths
as diffusion of end effects can take place three-dimensionally. Thus,
even though end effects are modulated by (H/L), the actual correc-
tion may still be small. End effects with a greater potential of pene-
trating into the interior are those in beams composed of extremely
low transverse shear stiffnesses, such as seen in fiber-reinforced
composites. The influence of boundary conditions is beyond the
present scope, but nevertheless it remains to be an important issue.

The determination of shear correction factors for non-symmet-
rical cross-sections by matching transverse shear energies per unit
length was addressed. Here, we showed a nuance, which can easily
be overlooked, that only one transverse force can be considered in
the calculation of such energies. Using two orthogonal transverse
shear forces as Schramm et al. (1994) and Popescu and Hodges
(2000) requires the concept of principal shear axes, that is not sup-
ported by the Saint-Venant flexure solution.

Lastly, we interject the following thought on shear correction
factors for homogeneous, isotropic plates. Mindlin’s method
(1950) yielded a value of p2=12, which is the same as that for rect-
angular cross-sections. This should not be surprising as for both
beams and plates, thickness-shear vibrations involve plane–strain
conditions. Reissner’s (1947) method required independent fields
for transverse and normal stresses in this complementary strain
energy expression; his method gave the shear correction factor
as 5/6. If the root-end warpage function of the plane–strain flexure
solution for beams given by Timoshenko and Goodier (1970, pp.
44–45) were integrated as per our discussion, it should give a shear
correction factor appropriate for plate theory, or an alternative to
Reissner’s. Such an integration gives

1

k2 ¼
3

20
8þ 9m
1þ m

� �
: ð42Þ

For the range of Poisson’s ratio 0 6 m 6 0:5, the range of k2 is
0:833 P k2 P 0:800. For m ¼ 0:3, Eq. (42) gives k2 ¼ 0:810 as com-
pared to Reissner’s 5/6.
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