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Abstract

This paper studies on-line coloring of geometric intersection graphs. It is shown that no deterministic on-line
algorithm can achieve competitive ratio better ti§atiogn) for disk graphs and for square graphs witkertices,
even if the geometric representation is given as part of the input. Furthermore, it is proved that the standard First-fit
heuristic achieves competitive ratiqldgn) for disk graphs and for square graphs and is thus best possib£)2
Elsevier Science B.V. All rights reserved.
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1. Introduction

The intersection graplof a set of geometric objects is the graph with a vertex for each object and
an edge between two vertices if and only if the corresponding objects intersect. A @régph disk
graph if there exists a set of disks in the Euclidean plane whose intersection graph3sich a set
of disks is then called disk representatiof G. The class of disk graphs has been studied for many
years for its theoretical aspects as well as for its applications. As an example of a classical result we
mention that Koebe proved in 1936 that every planar graph can be represented as a coin graph, i.e., a disl
graph where disks are not allowed to overlap [13] (see also the more accessible discussion of Koebe’s
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result by Sachs [19]). Concerning applications, Hale pointed out in 1980 that the frequency assignment
problem can be modeled as a graph problem [9]. If we assume that all transmitters have circular range
and transmitters with intersecting ranges are to use different frequencies, the underlying graph is a disk
graph and the frequency assignment problem (without additional constraints) is equivalent to the graph
coloring problem [7,15]. Observe also that in this application the disk representation can be obtained
from the placement of transmitters and their ranges.

The question of determining for a given graph whether it is a disk graph has been studied by several
authors. In contrast to the case of planar graphs, no efficient algorithms are known for the recognition
of disk graphs. Breu and Kirkpatrick have shown that the recognition problé-isard for unit disk
graphs (intersection graphs of disks with equal diameter) [2] and for disk graphs with bounded diameter
ratio (intersection graphs of disks where the ratio of the largest diameter to the smallest diameter is
bounded by an arbitrary constant) [1]. Himy and Kratochvil proveliP-hardness for the recognition
problem of arbitrary disk graphs [10].

The hardness of the recognition problem implies that a disk representation cannot be derived from the
graph in polynomial time unlesB = NP. Therefore, an important factor in the design of algorithms for
disk graphs is whether the disk graph is given only as a set of edges and vertices, or whether the centers
and diameters of the disks (i.e., the disk representation of the graph) form the input to the algorithm.
Some problems can be solved efficiently no matter whether the disk representation is given or not. The
problem of computing a maximum clique in a unit disk graph is an example: While the first polynomial-
time algorithm for this problem, which was due to Clark, Colbourn, and Johnson [4], had required the
disk representation, Raghavan and Spinrad recently presented an efficient algorithm that does not require
the representation [18]. The situation seems to be different with respect to the approximability of the
maximum independent set problem in disk graphs. Here, a polynomial-time approximation scheme has
been found for the case of given disk representation [5], but only a 5-approximation algorithm is known
for the case that the representation is not available [16].

The problem of coloring unit disks with three colors has been sHéRscomplete in [4]. On the other
hand, Peeters showed that the class of unit disk graphs admits a 3-approximate coloring algorithm [17],
and this approach was generalized to disk graphs by Marathe et al. [16], who obtained a 5-approximation
algorithm (see also Gréf [7] and Maléska [15]). The proofs of these results also show that the number
of colors required to color a unit disk graph or general disk graph with maximum cliquexiae be
bounded by @ — 2 and @ — 6, respectively.

A class of graphs that are similar to disk graphs in certain aspects is the class of intersection graphs of
squares (whose sides are parallel to the coordinate axes) in the plane sqabed graphsThey have
not been studied as intensively as disk graphs so far, except that it has often been noted that results fol
disk graphs can be adapted to intersection graphs of arbitrary regular polygons (including squares), e.g..
[5,11].

We focus our research on the on-line coloring problem for disk graphs and square graphs. The vertices
of the graph are presented to the on-line coloring algorithm one by one. When awéstesvealed, all
edges joining to previously presented vertices are revealed as well. The algorithm must assign a color to
v immediately without knowledge of future vertices and edges. The color assignadust be different
from the colors of all previously colored vertices that are adjacent We say that an on-line algorithm
is p-competitiveor achievesompetitive ratiop if it always uses at most times as many colors as an
optimal coloring.
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Fig. 1. The disk representation constrains the adversary.

We distinguish on-line algorithms that are given the disk or square representation and on-line
algorithms that are given only the intersection graph. In the former case, when a vertex is presented
to the algorithm, the corresponding disk (given by the coordinates of the center and the diameter) or the
corresponding square (given by the coordinates of the corners) is given to the algorithm as well. In the
latter case, no geometric information is given to the algorithm.

As a motivation we shall mention the result of Gyarfas and Lehel from 1988 showing that there exists
atreeT onn vertices such that for every on-line coloring algorithm there exists a specific ordering of the
vertices ofT, such that the algorithm is forced to u€glogn) distinct colors [8]. Every tree is planar,
so this result together with Koebe’s theorem immediately shows that this lower bound is valid also for
disk graphswithout given representatiofmhis leads naturally to the question of whether the knowledge
of the disk representation can help an on-line algorithm to get a better competitive ratio.

Note that in the setting with given representation, the choices of an adversary who wants to force the
algorithm to use many colors are constrained by the geometry. To illustrate this, we consider an adversary
who has already presented a forest consisting of several trees to the algorithm. See Fig. 1 for an example
If the disk representation is not given to the algorithm (left-hand side of Fig. 1), the adversary can next
present a vertex that is adjacent to an arbitrary vertex from each of the trees, e.g., a nevi teatex
is adjacent taz, ¢, andg, which forces the algorithm to use a fourth color. The resulting graph is a tree
and, therefore, a disk graph. On the other hand, if the disk representation is given to the algorithm and
if the situation is as shown on the right-hand side of Fig. 1, the only possibilities for presenting a disk
intersecting one disk from each of the trees are a disk intersegtingande or a disk intersecting,

b, andd. It is impossible to present a disk that intersects:, and g, but does not interseet If the
adversary presents the verticedo g with a different disk representation, the algorithm might assign
different colors to the disks, again preventing the adversary from forcing a fourth color on a tree with
8 vertices. Furthermore, if the situation is as shown in the figure, the on-line algdtitbmsthat the
adversary cannot present a disk intersecting anby; andg in the future.

Since the adversary is constrained by the geometry and since the algorithm is aware of these
constraints, one might expect that the disk representation can help an on-line algorithm to get a better
competitive ratio. The main result of this paper is that this is not the case. We prove that for every on-line
disk coloring algorithm there exists a sequence disks such that the algorithm is forced to usdogn)
distinct colors, while an optimal coloring uses only two colors. We also adapt a result of Irani [12] and
show that a competitive ratio of @gn) is achieved by the First-fit coloring algorithm. This shows that
the First-fit algorithm is optimal for on-line coloring of disk graphs up to a constant factor.

For simplicity, we first prove the lower bound result for intersection graphs of squares (Section 2) and
then provide arguments how the proof can be adapted to disks (Section 3). In Section 4, we prove that
the First-fit heuristic gives competitive ratio(logn) for disk graphs and square graphs. In Section 5,



246 T. Erlebach, J. Fiala / Computational Geometry 23 (2002) 243-255

Table 1

Known results for on-line coloring of disk graphs withvertices in the
setting with ) and without &) given representation. UDG stands for
unit disk graphs, D@ for disk graphs with diameter ratio bounded by
o, and DG for general disk graphs. New results obtained in this paper
are shown in bold

Graph Disk Competitive ratio

class rep. Lower bound Upper bound
uUDG + 2[6] 5[7,16]

DG, + Q(oglogo) O(min{logn,logo})
DG + Q(logn) O(logn)
uUbDG — 2[6] 5[7,16]

DG, - 2(logloga) O(minflogn, 62})
DG — Q(logn) [8] O(logn)

we consider disk graphs in which the ratio of the diameter of the largest disk to the diameter of the
smallest disk, the so-callediameter ratig is bounded by . We present an algorithm that makes use

of the disk representation (in fact, it requires only knowledge of the diameters of the disks) to achieve
an improved competitive ratio of @in{logn, logo}), while the competitive ratio of First-fit can be
bounded by @min{logn, o2}) in this case. For square graphs, we call the ratio of the side length of the
largest square to the side length of the smallest squargidbdength raticand we show that the results

for disk graphs with bounded diameter ratio can be adapted to square graphs with bounded side-length
ratio. We give our conclusions in Section 6. A summary of our results for on-line coloring of disk graphs

is given in Table 1.

2. A lower bound for on-line coloring of squares

Let A be an arbitrary deterministic on-line square coloring algorithm. We prove that fot #mre
exists a sequenceéSy, S, ..., S,) of n < 2* squares on which4 uses at least colors, while the
intersection graph of the squares is a tree and can be colored optimally with only two colors.

We deal only with squares whose sides are parallel to the axes of the coordinate system. The minimum
and maximume-coordinate of the squarg are denoted by; andx;, respectively. Similarlyy; andy;
denote the minimum and maximupacoordinate, respectively. Thus, we have o

Si={0.y lx <x <X, y<y<yi}

We will denote a squars; also by the tupléx;, y;, x;, ;).

If S andS’ are sequences of squares, then their concatenation is denafed®yIf S is a nonempty
sequence of squares, th&n denotes the same sequence without the last element.

We say that squares of a sequence iargeneral positionif every pair of squares differs in the
maximumy-coordinate.

Now assume that the intersection graph of an arbitrary sequence of s@fares, S,) in general
position is a forestF. (Only such sequences will occur in our lower bound construction.) In each
connected component df we define theactive squareto be the one with the highest coordinate.
The active zoneof an active square; is delimited by the intervala;, a;], wherea, = y; anda; =
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Fig. 3. The active zone of a sequence of squares.

Fig. 2. Example of an active square and its
active zone.

max;{y;. S; #S; andS; belongs to the same connected componers; pdf the connected component
of S; contains onlys;, we leta; = y;. See Fig. 2 for an example.

The active zone of a sequence of squafes (4, ..., S,) is defined as the intersection of the active
zones of all active squares & The width of the active zone is equal to the length of the corresponding
interval, or is equal to O if the zone is empty. An example is shown in Fig. 3, where the active squares are
drawn in bold and the active zone of the sequence is indicated by two dashed lines.

The motivation for introducing active zones is as follows: If the sequence of squares presented to the
algorithm so far has an active zone of positive width, then the adversary can present a new square that
intersects all active squares but no other squares, and the resulting graph is still a tree. Therefore, the goe
of the adversary is to construct sequences of squares with an active zone of positive width for which the
algorithm assigns many different colors to active squares.

If all squares in a sequend&s, S», ..., S,) are contained in another squaBe then we callB a
bounding squaréor the sequence.

Lemma 1. For each on-line square coloring algorithmd, eachk > 2, and each bounding squa# with
side lengthe, there exists a sequenéeof at most2* squares such that

everyS € S is contained inB,

the squares it are in general position,

the intersection graph af is a tree,

the smallest square i has side length at leagt 2" +1¢,

the active zones & andS~ have width at least=2""+1¢,

the algorithm.A uses at least — 1 distinct colors on the active squares®f, and
the last square it$ intersects all active squares 6f and is the active square &f.

Proof. In the proof, we assume without loss of generality tBats the unit squard(x,y) | 0 < x <
1, 0< y <1} and thus we havé = 1; if B is a different bounding square, all squares in the constructed
sequence are scaled and shifted accordingly.

We prove the statement by induction okefThe statement is clearly true fér= 2: we can select
as two intersecting squarés, 7. 3. 3) and(3, 1, 2, 2). Clearly, the width of the active zones 8f and
Sisat Ieastz—l1 and the smallest square has side length at I?ast
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Fig. 4. lllustration of lower bound construction.

Now assume that the statement is correckfand we want to prove the statement for 1. We apply
the inductive hypothesis fdr to the algorithmA and the bounding squa® = (0, O, %1, %1). From this
we obtain a sequenc® of at most 2 squares, all contained B, such that4 uses at least — 1 distinct
colors on the active squares 8f . Furthermore, the active zone 8f has positive width.

Assume that the active zone 8f is an interval[ay, a»] and lete = a, — a1. Note that 427141 ;11 <
e < 1 and that the smallest squaredfr has side length at least4 "+* . 1.

Now we apply the inductive hypothesis fbra second time to the algorithd (after it has colored
§’7) and the bounding squaks’ = (l%, ai, 152 +¢,ay). This gives us a sequen& of at most 2 squares,
all contained inB”, such that4 uses at least — 1 colors on the active squares 8f~. Note that the
squares ir§” lie in the active zone of'~, but are strictly to the right of all squaresdi~. We know that
the active zones a$” andS”~ have width at least# " +1¢ > 4-2+1 and that the smallest squareSf
has side length at least4 "+1g > 4-2+1,

Now we have to consider two cases (illustrated in Fig. 4):

(1) The sets of colors used on active squares’ofandS”~ are the same. Then the color of the last
squareS of §” is a newkth color. Denote the active zone 8fby [b,, bo] and letb = (b + by) /2.
Then we can take

2 2
— /— 1 Ob_b -
§=8708 O{<,,3, +3>}

and it is clear that all the conditions of the statement are satisfigd-fat.

(2) Active squares of’~ andS”~ have different colors. This means that at |dadifferent colors appear
on active squares of the sequerie o S”~. Let the active zone of this sequence (which must have
positive width) bec1, co] and letc = (¢ + ¢2)/2. Then we can take

2 2
8 — 8/— S//— 0’ =, _
I {( R 3)}
and it is again easy to see that the statement holdsfot.
This completes the inductive step and thus the proof of the lemma.

Substitutingz = 2* in the lemma we get the following theorem.
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Theorem 2. For every on-line square coloring algorithpd and arbitrarily large values of there exists a
sequence of squaresS such that4 uses2 (logn) distinct colors onS while S can be colored optimally
with two colors.

Furthermore, the proof of Lemma 1 shows that the ratio of the largest side length to the smallest side
length of a square used in the lower bound construction is at nost4 This leads to the following
corollary.

Coroallary 3. There cannot be an on-line square coloring algorithm with competitive @iiog logo)
for square graphs with side-length ratio boundeddyeven if the square representation is given as part
of the input.

3. A lower bound for on-line coloring of disks

Instead of giving a detailed proof of the lower bound for disk graphs, we show how to adapt the
approach of the previous section for square graphs and only point out which aspects require a different
treatment.

Again we consider active disks and we define the active zone of an active disk analogously, i.e., as
an interval[a, a,], wherea, is the maximumy-coordinate of the active disk and is the maximum
y-coordinate of any other disk in the same connected component. If the active disk does not intersect
any other disk, we take; to be its minimumy-coordinate. We use the notions of the active zone of a
sequence, of a bounding square, and of being in general position as they were defined in the previous
section.

We adapt the construction of the previous section in order to establish the following lemma.

Lemma 4. For each on-line disk coloring algorithmt, eachk > 2, and each bounding squa® with
side length, there exists a sequen@of at most2* disks such that

everyD € D is contained inB,

the disks inD are in general position,

the intersection graph dP is a tree,

the smallest disk i® has diameter at least- 1(T4H£,

the active zones @ and D~ have width at leas? - 10?4“28,

the algorithm.A uses at least — 1 distinct colors on the active disks Bf, and

the last disk irD intersects the active zones of all active disk®ofand is the active disk dp.

The only problem that might arise in the new construction is that the diameter of the last disk in
might have to be very large in order to ensure that this disk intersects the tiny active zones of all active
disks inD~, but no other disks. In this case, the first condition of the lemma might be violated. However,
we can handle this issue as follows: We select the bounding sqBaeesl B” for the application of the
inductive hypothesis scaled by a factor depending anich that the last active disk of the sequefite
remains inside the bounding squaken any case that may arise after the recursive construction of the
setsD’ andD” (corresponding t&’ andS” in the proof of Lemma 1).
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Fig. 5. Disk D, intersects the strip of horizontal length 20-24 " and of width 2 104"

Proof. We mimic the proof of Lemma 1 and assume without loss of generalityRhathe unit square.
For k = 2 the lemma holds if we choose the sequence consisting of two disks with cerxtér%)aand
2. 2), both of diameteg.

Consider the inductive step fromto k£ + 1. We selectB’ of side Iength%lsz‘ with lower left
corner at(% — 107247, llz). By the inductive hypothesis, there is a sequefdor A consisting of
disks contained iB’ and having the properties claimed in the lemma. Similarly as in the case of squares
we place the bounding squai’ into the active zone oD~ to the right of B, say, with its left side
atx = % By the inductive hypothesis, there is a sequeb¢eof disks contained irB” that satisfies the
properties claimed in the lemma for the algoritbdrafter it has colored’.

The minimum diameter of a disk i~ o D” is at least 410~*"" and the active zones 6" andD"~
have width at least 2104 ", Depending on the way the algorith# colors the sequenc®’™ o D',
we either extend the sequerP& o D" or the sequenc®’~ o D”~ by adding the last disl, to get the
desired sequenc®, analogous to the proof of Lemma 1. In the sequeriess D’ andD’'~ o D", the
active zone intersects the active disks in a strip of (horizontal) length less tHAT2* " and (vertical)
width at least 2104 ", As is depicted in Fig. 5, a last didR, intersecting all active disks can be found
with diameter at mos% +2.10%47" < % Therefore, the entire sequenPeis contained inside the unit
square. (To plac® into a prespecified squa® different from the unit square, we shift and scale the
bounding square8’ and B” accordingly.) O

4k—2

Theorem 5. For every on-line disk coloring algorithml and arbitrarily large integers: there exists a
sequence ot disksD such thatA4 usesS2 (logn) distinct colors oD while D can be colored optimally
with two colors.

Furthermore, we see that in the proof of Lemma 4 the diameter #atibthe disks inD is bounded
from above byi—L1 1077, SinceA uses at least colors on this instance, the competitive ratio4must
be 2 (loglogo).

Corollary 6. No deterministic on-line disk coloring algorithm can have competitive ratioglogo)
on disk graphs with diameter ratio bounded dyeven if the disk representation is given as part of the
input.
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4. Upper bound for the First-fit algorithm

First-fit is one of the most well-known heuristics for on-line graph coloring. It simply assigns to each
node the lowest-numbered color that has not yet been assigned to any of its neighbors. In order to analyze
the competitive ratio of the First-fit on-line coloring algorithm for disk and square graphs, we make use
of a result due to Irani [12]. A grapt is calledd-inductiveif the nodes ofG can be ordered in such a
way that each node has at mastdges to higher-numbered nodes. Irani’s result is the following.

Theorem 7 (Irani, 1994).If G is ad-inductive graph om nodes, then First-fit used(d logn) colors to
color G.

We usew (G) to denote the size of a maximum cliqueGhand obtain bounds on the inductiveness of
disk graphs and square graphs in terma ¢of7).

Lemma 8. Every disk graplG is 6w (G)-inductive.

Proof. Let D be a set of disks that is a disk representatio;oDrder the disks irD according to non-
decreasing diameters. Consider some diskWe partition the higher-numbered disks that interdect
into six groups such that the disks in each group form a clique: A higher-numbereD ikt intersects
D; is assigned to group3a /7 |, wherex is the angle that the line from the centerof to the center of
D; forms with the positiver axis.

See Fig. 6 for an example with two disks in group 1. Since all higher-numbered disks are at least
as big asD;, simple geometric arguments show that any two disks assigned to the same group must
intersect. O

Lemma 9. Every square graplt; is 4w (G)-inductive.

group 1

group 2 group 0

y group 4

Fig. 6. The larger disks intersectirg; can be partitioned into six cliques.
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Proof. Order the squares in order of non-decreasing size. Consider some Sgudraigher-numbered
squares that interse6t contain at least one corner §f. Therefore, the higher-numbered squares that
intersects; can be partitioned into four cliques.c

From Theorem 7 and Lemmas 8 and 9 we get the following result.
Theorem 10. First-fit usesO(w (G) logn) colors to color a disk graph or square gragh with n nodes.
Since an optimal coloring requires at leasiG) colors, we get the following corollary.

Corollary 11. First-fit is an O(logn)-competitive on-line coloring algorithm for disk graphs and square
graphs withn nodes.

Note that First-fit does not require the geometric representation of the disk graph or square graph.

5. Coloring diskswith bounded diameter ratio or squares with bounded side-length ratio

We now focus our attention on the case that the ratio of the diameter of the largest disk and the smallest
one is bounded by some valdeand that the disk representation is given as part of the input. (In fact, it
would suffice that the diameters of the disks are given as part of the input.)

We prove that there exists an on-line coloring algorithm with competitive ragioi@logn, logo}).

The algorithm is a composition of two algorithms: The first algoritdns the First-fit algorithm for disk
graphs with arbitrary diameter. It provides the boundo@r). The second algorithn® is the First-fit
technique applied separately on todayers of disks, where the diameters of the disks on each layer are
within a factor of two so that First-fit has constant competitive ratio on each layer.

More precisely, the algorithr® colors disksD,, ..., D, as follows:

FIRST-FIT ON LAYERS BB
L;j:=¢forall j eZ
fori:=1ton do
begin
Jj = llogy(diam(Dy))];
L;:=L; U{D;};{the layer containingD;}
F:={c(Dy). 1<k <i,Dy€Lj, DN D; #0}U
{c(Dp): 1<k <i, Dy ¢ Lj}; {the set of forbidden colofs
c(D;) :=min(N\ F);
end

Lemma 12. The First-fit coloring algorithm i28-competitive on disks of diameter ratio bounded by two.

Proof. Assume that disks in the s& are scaled such that the smallest disk has unit diameter. The
centers of all disks that intersect a particular digkare at distance at most two from the centeiDpf
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Fig. 7. 28 segments of the plane around the centé;of = 1.306.

We divide the plane around the center@f up to distance two into 28 segments such that inside each
segment, every pair of points is at distance at most one, see Fig. 7. (Similar proof techniques have beer
used in [6].) If the centers of two disks lie in the same segment, then these disks intersect, and hence
disks with centers in the same segment induce a clique in the intersection@maan.

Further we observe that the six inner segments contain also the cemd¢rofl therefore the vertex
D; can have at most 28 G) — 6 neighbors inG. Then the First-fit coloring algorithm uses at most
28x(G) — 5 colors onG, and hence is 28-competitive.0

Since algorithm3 achieves constant competitive ratio on each layer and there are gldg
different layers, we obtain the following lemma.

Lemma 13. If the disk representation is given as part of the input, First-fit on layers i©éogo)-
competitive coloring algorithm for disk graphs of diameter ratio bounded by

We combine First-fit and First-fit on layers as follows: We use two separate sets of colors for the
algorithms.A and5. When a new diskD; is presented we rud on D; together with those disks colored
by A. Similarly we executd3. Then we compare the results of these two algorithms and é@levith
the algorithm that has used fewer colors up to now (including digk The total number of colors used
on the entire seD is the sum of the number of colors used by both algorithms. Note that at any time of
the execution of the combined algorithm, the number of colors used &yd the number of colors used
by B differ by at most one.

Assume that log < logo. The number of colors used by algorithihis at most @logn) times the
optimal number. The number of colors used by algoritBns at most one more than that @f. So the
total number of colors used by the combined algorithm {g@») times the optimal number of colors.
A symmetric argument holds in the case thatdog logn. Therefore, we obtain the following theorem.

Theorem 14. If the disk representation is given as part of the input, there iQ@min{logx, logo})-
competitive coloring algorithm for disk graphs whose diameter ratio is bounded by

An analogous result can be obtained for square intersection graphs as well. Hereg wietete the
ratio of the largest side length of a square to the smallest side length, i.e., the side-length ratio. Lemma 12
can be adapted as follows.
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Lemma 15. The First-fit coloring algorithm isLl6-competitive on squares of side-length ratio bounded
by two.

Proof. Assume that the squares are scaled such that the smallest square has side-length one. Consid
a particular squars;. Assume that the center 6f is at the origin. Then the centers of all squares that
intersectS; are within the square with lower left endpoitt2, —2) and upper right endpoint, 2).

Partition this square into 16 subsquares with side length 1 in the natural way. Any two squares with
centers in the same subsquare must intersect. Furthermore, the four subsquares touching the origir
contain the center of;. Therefore,S; can have at most 6G) — 4 neighbors in the square graph.

Then the First-fit coloring algorithm uses at mostv16) — 3 colors, and hence is 16-competitiver

Lemma 13 and Theorem 14 can then be adapted to square graphs directly. So we obtain the analogou
result for square graphs.

Theorem 16. If the square representation is given as part of the input, there i©@min{logn, logo })-
competitive coloring algorithm for square graphs whose side-length ratio is bounded by

Concerning on-line coloring of disk graphs (or square graphs) with diameter ratio (side-length ratio)
bounded by in the case without given representation, First-fit is easily seen to(bé) @ompetitive.
This follows because the neighborhood of a disk or square can be covere@ Bydliques. The idea of
the analysis is the same as the one used in the proofs of Lemmas 12 and 15 for the-=cdggombining
this with the upper bound of Mgn), we get that First-fit is @Qnin{logn, o2})-competitive.

6. Conclusion

We have shown that the First-fit algorithm, which does not need the disk representation as part of
the input, provides an @gn)-competitive disk coloring algorithm and that no algorithm can have
competitive ratio dogn), even if it uses the geometric representation. For instances with diameter
ratio bounded by, we showed that the geometric representation can help to get a better ratio of
O(min{logn, logo}). Our lower bound on the competitive ratio of any on-line disk coloring algorithm is
Q(loglogo) in this case. Analogous results hold for intersection graphs of squares.

We initiated the study of on-line coloring of disk graphs with bounded diameter ratio and square graphs
with bounded side-length ratio. However, for these particular problems the gaps between the lower and
upper bounds on the competitive ratio should be narrowed.

The most widely used lower bound on the chromatic number of a disk graph (i.e., the lower bound
on the optimal solution) is expressed via the clique number of the graph. We hope that by use of more
sophisticated arguments it could be proven that standard coloring algorithms behave even better. As a
particular open problem we would ask what is the supremum of the ratio of chromatic and clique number
of a unit disk graph. The only known bounds aré & % < 3. The lower bound is derived from the
coloring of the cycleCs, and the upper bound is achieved by the algorithm due to Peeters [17].

Furthermore, it should be noted that many questions are still open for rectangle intersection graphs, a
generalization of square intersection graphs. The recognition problem for rectangle intersection graphs
has been proveNP-complete in [14]. For coloring a rectangle intersection gr&pvith clique number
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w(G), it is known that Qw(G)?) colors suffice [3], but no example with a non-linear lower bound in
terms of the cliqgue number has been obtained. For some special cases, it is knowwtt@y)@olors
suffice [15]. It would be an interesting problem for future research to investigate off-line and on-line
coloring of rectangle intersection graphs.

Finally, we believe that the use of standard methods like randomized algorithms might improve the
competitive ratio and we expect further results in this direction.
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