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a b s t r a c t

A numerical–analytical solution to problems of seismic and acoustic-gravitational wave
propagation is applied to a heterogeneous Earth–Atmosphere model. The seismic wave
propagation in an elastic half-space is described by a system of first order dynamic
equations of the elasticity theory. The propagation of acoustic-gravitational waves in
the atmosphere is described by the linearized Navier–Stokes equations. The algorithm
proposed is based on the integral Laguerre transform with respect to time, the finite
integral Bessel transform along the radial coordinate with a finite difference solution of
the reduced problem along the vertical coordinate. The algorithm is numerically tested for
the heterogeneous Earth–Atmosphere model for different source locations.

© 2010 Published by Elsevier B.V.

1. Introduction

The problem of the propagation of acoustic-gravitational waves in a heterogeneous atmosphere has long been known.
The first publications concerning the impact of the gravitational field on the wave processes in the atmosphere and ocean
appeared in themiddle of the last century [1]. Martyn [2] and Hines [3] indicated an important role of acoustic-gravitational
waves for understanding and interpretation of numerous physical processes in the atmosphere. Starting in the fifties, an
increasing interest in studying the generation and propagation of the acoustic-gravitational waves in the real atmosphere
is associated with the development of the infrasonic method of monitoring the nuclear explosions in the atmosphere. A
review on studying the basic characteristics of the acoustic-gravitational waves in the atmosphere can be found in [4–6].
In many theoretical studies, the Earth–Atmosphere interface is considered to be absolutely reflecting, the effects, related

to the excitation of seismic waves in the Earth’s crust and their interaction with the acoustic-gravitational waves in the
atmosphere being neglected. In the past few decades, theoretical and experimental studies have shown a close relation
between the lithospheric and the atmospheric wave motions. In a number of papers (see, for example, [7–10]) the acoustic-
seismic induction effect is discussed. Alekseev [11] discovered the effect of acoustic-seismic induction, in which an acoustic
wave from a powerful vibrator induced intense surface seismic waves due to the atmospheric refraction at a distance of tens
of kilometers.
A specific feature of the numerical modeling of wave fields for a heterogeneous Earth–Atmosphere model is a

considerable difference in the velocities of seismic and acoustic waves. In this case, the use of explicit finite difference
schemes brings about serious restrictions on the time step of a finite difference scheme and results in large computer
costs. Another way of overcoming such difficulties is the application of the frequency-domain modeling. In this case, after
employing finite difference (FD) methods with respect to spatial coordinates, we deal with an extremely large matrix to be
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implicitly solved for a great number of temporal frequencies.When simulating the acoustic-gravitationalwaves propagation
in heterogeneous media, this difficulty can be avoided if the Fourier transform with respect to time is replaced by the
Laguerre transform. As a result, we obtain a system of algebraic equations, whose matrix is independent of the parameter
p—the degree of the Laguerre polynomials. Thus, only the right-hand side of the system has a recurrent dependence on the
parameter p. Hence, the system of linear algebraic equations can be solved for a great number of right-hand sides using fast
solutions, such as the Cholesky decomposition. Our approach is an analogue to the frequency-domain forward modeling,
where instead of the temporal frequency we have the number p—the degree of the Laguerre polynomials. In our paper, we
apply the numerical–analyticalmethod to study thewavepropagation in a 3Dheterogeneous Earth–Atmospheremodelwith
axial symmetry. The algorithm combines the Bessel integral transform along the radial coordinate and the integral Laguerre
transform with respect to time with the FD solution along the vertical coordinate. Such an approach has been developed in
our previous papers for the problem of seismic wave propagation in the heterogeneous elastic half-space (without taking
into account atmosphere at all) in [12,13].

2. Statement of the problem

The system of linearized equations for propagation of acoustic-gravitational waves in a 3D heterogeneous axially
symmetric atmosphere in the cylindrical coordinates (r, z) is as follows:

ρ0
∂uz
∂t
= −

∂P
∂z
− ρg, (1)

ρ0
∂ur
∂t
= −

∂P
∂r
, (2)
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∂z
uz + F(r, z, t), (4)

where ur and uz are the displacement velocity components of air particles in a wave; P and ρ are the pressure and the
density perturbations, respectively, under the effect of a mass source in the atmosphere with its distribution given by
F(z, r, t) = δ(z − z0)f (t), c0 is the sound velocity in the atmosphere, and g is the acceleration due to gravity. The z-
axis is directed upward. Zero in subscripts marks mean values for the unperturbed atmosphere. The dependencies of the
atmospheric pressure P0 and the density ρ0 on the height are given by P0, ρ0 ∼ exp(−z/H), where H is a height of the
isothermal homogeneous atmosphere. For the unperturbed atmosphere in a homogeneous gravity field

∂P0
∂z
= −ρ0g; ρ0(z) = ρ1 exp(−z/H), (5)

where ρ1 is the density at z = 0. We assume the Earth–Atmosphere interface to be located at z = 0.
The system of first order equations of the elasticity theory for seismic wave propagation in the 3D heterogeneous axially

symmetric Earth model in the cylindrical coordinates is as follows:
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In these equations, ur and uz are the displacement velocity components in the elastic half-space, σzz, σrr , σrz, σθθ are the
stress tensor components, ρ0(z) is the density of the elastic half-space, and λ(z) and µ(z) are the Lame constants. Fz, Fr
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are the components of the force EF(z, r, t) = Fz(z, r, t)Eez + Fr(z, r, t)Eer that describe the distribution of an explosive, a
vertical-force or a dipole source in the elastic half-space. For an explosive source, they are:

Fz(z, r, t) =
δ(r)
2πr

d
dz
δ(z − z0)f (t), Fr(z, r, t) =

d
dr
δ(r)
2πr

δ(z − z0)f (t). (12)

The function f (t) is a time-dependent source wavelet. The sources are formally described using equations that include
generalized functions and their derivatives. In the numerical solution, the corresponding smooth equivalents of the
generalized functions are used. Eqs. (1)–(4) and (6)–(11) are solved at zero initial parameters in the atmosphere

uz |t=0 = ur |t=0 = P|t=0 = ρ|t=0 = 0, (13)

and in the elastic half-space

uz |t=0 = ur |t=0 = σzz |t=0 = σrr |t=0 = σrz |t=0 = σθθ |t=0 = 0, (14)

with the fitting condition at the Earth–Atmosphere interface
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For convenience, we assume that the interface is located at z = 0. In the concise notation, Eqs. (1)–(4) and (6)–(11) are
written down as a single system
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System (1)–(4) for the atmosphere is derived from (16)–(22) assuming

σrr = σzz = σθθ = −P; µ = 0; λ = c20ρ0; σrz = 0; L = 0; U = 1.

System (6)–(11) for the elastic half-space is recovered from (16)–(22) assuming that L = 1,U = 0. In this case, Eq. (22) is
formally multiplied by zero, thus it is not taken into consideration. The conditions at the interface for z = 0 are given by
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3. The solution algorithm

The solution of (16)–(22) is searching by separation of the radial variable. This separation is performed by means of
Fourier–Bessel integral transformation with respect to r over some finite interval (0, a). Its length is chosen large enough
in order to avoid reflections coming back before desired time T . So, at the first step, we obtain a solution to (16)–(22), with
zero initial data and boundary conditions (23), as the Fourier–Bessel series(
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where kn are the roots of the equation J1(kna) = 0. The coefficients ūz , ūr , σ̄rz , σ̄zz , σ̄rr , σ̄θθ ,Q1,Q2,Q3 in (24)–(27) are functions
of (n, z, t). After the Bessel transform, we obtain

∂ ūz
∂t
−
1
ρ0

∂σ̄zz

∂z
−
kn
ρ0
σ̄rz + U

g
ρ0
Q3 = L

1
2π
d
dz
δ(z − z0)f (t), (28)

∂ ūr
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The last equation for Q3 is derived from the original one
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In these equations, we denote c2p = (λ+ 2µ)/ρ0, c
2
s = µ/ρ0.

The conditions at the interface become as follows:
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At the second step, we use the integral Laguerre transform. Here we use its modified version in the following form:
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Here we select an integer parameter α ≥ 1 to satisfy the initial data and introduce a shift parameter h >0. The value of
the latter affects the accuracy of the numerical implementation of the algorithm. After the Laguerre transform, we have the
system of equations, where the superscript p in ũpr , ũ

p
z , σ̃

p
zz , . . . is omitted:
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∂ ũr
∂z
+ knρ0c2s ũz = −h
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p−1∑
j=0

Q̃ j1, (44)

h
2
Q̃2 − ρ0

(
c2p − 2c

2
s

) (∂ ũz
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where F = −Uc20δ(z− z0)fp and fp is the coefficient of the Laguerre series of the source function f (t). The coefficients ũz , ũr ,
σ̃rz , σ̃zz , σ̃rr , σ̃θθ , Q̃1, Q̃2, Q̃3 in (40)–(46) are the functions of (n, z, p). After applying the Laguerre transform, the conditions
at the interface z = 0 become as follows:

ũz
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.
(47)

The FD for the system of linear differential equations (40)–(47) with respect to z was applied using the staggered
grids [14] providing second order accuracy approximation. This scheme is used within the computation domains in the
atmosphere and in the elastic half-space, the fitting conditions at the interface being exactly satisfied. Note that only
the right-hand side of this system of ODE includes the parameter p (the degree of the Laguerre polynomials) and has a
recurrent p dependence. The matrix is thus independent of p, which makes applicable the fast solutions using the Cholesky
decomposition.We decomposed thematrix into the upper and the lower triangularmatrices, which gave us a bandedmatrix
with banded components. Thus, we solve (40)–(46) simultaneously for many right-hand sides, or for many p, and then sum
up the solutions using inversion (38). The computation repeats for different roots kn of the Bessel equation to return to the
displacement, pressure, and stress components using series (24)–(27). Note that (24)–(27) and (38) exponentially converge
with increasing kn and p, and thus errors associated with the series truncation can be controlled. In our experiments, the
error was an order of magnitude lower than that in the FD approximation of derivatives along z in (40)–(46).
Our modeling case is particular as we simulate the wave motion together in the atmosphere and in the elastic Earth.

Waves in the atmosphere being 10–15 times slower than in the elastic half-space, the processes have to be considered
over long time intervals and, hence, over large spatial domains. The computation domains in the atmosphere and in the
elastic Earth are constrained in the vertical direction by introducing Perfectly Matched Layers (PML) [15]. In this study, we
adapt the PML algorithm, which was originally designed for solving non-stationary problems, to the equation systems for
the atmosphere and an elastic half-space that follow the integral Laguerre transform along the time coordinate. Unlike the
time-domain application of the PML method, we achieved stable solutions for quite narrow absorbing layers (narrower
than a wavelength) without increasing the computation time. For a more detailed description of such a version of the PML
algorithm for the elasticity equation system, see [16].

4. Numerical examples

To gain a better understanding of the wave propagation in the Earth and in the atmosphere, we begin with simple
homogeneous models of an elastic half-space that borders on the atmosphere, where the sound velocity is constant but
density decreases exponentially with height. The wave propagation velocities in the elastic half-space are vp = 3000 m/s,
vs = 1760 m/s and the density is ρ0 = 2300 kg/m3. The velocity of acoustic waves in the atmosphere is c0 = 340 m/s and
the density is ρ0 = 1.225 kg/m3 (at z = 0).
Fig. 1(left) shows computed snapshots at the time t = 20 s for the component ur in the elastic half-space and in

the atmosphere. The explosive source located in the elastic half-space at a depth of z = 3000 m (1λ, where λ is the
dominant wavelength of the P-wave in the elastic Earth), generates a direct P-wave and a PP-wave reflected from the
Earth–Atmosphere interface, and then a converted PS-wave; a conical wave propagating in the atmosphere. The wavefield
becomes more complex if an explosive source is located nearer to the free surface at a depth of 750 m (1/4λ). In this case, a
non-geometric wave S∗ appears in the elastic half-space in addition to the classical P–PP and P–PS waves, Fig. 1(right). The
S∗-wave related to a heterogeneous plane P-wave in the source attenuates exponentially with distance. Its contribution
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Fig. 1. Computed snapshots at the time t = 20 s for the component ur in the elastic half-space and atmosphere with source positions 1λ (left) and 1/4λ
(right).

Fig. 2. A snapshot at the time t = 20 s for ur component for a source, located in the atmosphere at a height of 2 km (left); computed seismograms for uz
(dashed) and ur (solid) components at the Earth–Atmosphere interface (right).

to the wave field is considerable at a distance shorter than a wavelength (see e.g. [17]). In its own turn it generates
a non-geometric P-wave in the atmosphere. The snapshot also includes a Stoneley surface wave propagating along the
Earth–Atmosphere interface and conical waves in the atmosphere. It is worth pointing out that the Fourier–Bessel transform
with respect to radial variable r and application of Laguerre decompositionwith respect to time leads to a split systemofODE,
that is to a series of 1D problems. For its numerical solution, an extremely fine spatial grid can be used in order to provide a
reliable simulation of Stonely and acoustic waves. A snapshot at the time t = 20 s for the component ur in the elastic half-
space and in the atmosphere for the model with the same parameters as above, for a source, located in the atmosphere at a
height of 2 km (about 6λ, whereλ is the dominantwavelength in the atmosphere) is presented in Fig. 2(left). One can observe
intense heterogeneous plane waves, even at this distance between the source and the Earth–Atmosphere interface. The
reason is that an exponential amplitude decrease of these waves depends on distance as well as on the medium parameters
included in the exponent. Note that the atmospheric density is over 1000 times lower than that of the elastic Earth. The
snapshot shows a non-geometric PS∗wave in addition to the refracted P and PS waves. The non-geometric wave is produced
by the interaction of heterogeneous plane P waves with an elastic subsurface over the source. Waves in the atmosphere are
a direct P wave from the source and a PP reflection from the Earth–Atmosphere interface. Fig. 2(right) shows the vertical and
horizontal displacement components at the Earth–Atmosphere interface. The first arrivals (1) are of a P head wave in the
elastic half-space, the second one (2) is a Stoneley wave, and (3) is an acoustic wave. Note that the acoustic wave incident
to the elastic half-space shows an elliptic polarization, possibly because the Earth–Atmosphere interface is a creeping
interface.
Consider a numerical example illustrating the case of a high-frequency seismic exploration bandwidth and amodel of an

explosive source in the atmosphere 10 m above the Earth–Atmosphere interface with a dominant frequency of f0 = 20 Hz.
Let us introduce into the above model an elastic 20 m thin layer that bounds the atmosphere with wave propagation
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Fig. 3. A snapshot at the time t = 2.5 s for uz component (left); computed seismogram for uz at the Earth–Atmosphere interface (right).

velocities being lower than in the atmosphere: vP = 250 m/s, cs = 150 m/s, and ρ0 = 1700 kg/m3. This case is common
for seismic exploration in the presence of a low-velocity zone. A snapshot Fig. 3(left) at the time t = 2.5 s for the component
uz images non-geometric waves PP∗, PS∗ and conical P , S waves in the elastic half-space. Fig. 3(right) shows synthetic
seismograms of the displacement velocity at the Earth–Atmosphere interface.

5. Conclusions

We offer a numerical–analytical algorithm applied to simulate the propagation of seismic and acoustic-gravitational
waves within the limits of a heterogeneous Earth–Atmosphere model. The algorithm proposed is based on the integral
Laguerre transform with respect to time, the finite integral Bessel transform along the radial coordinate with the finite
difference solution of the reduced problem along the vertical coordinate. The algorithm is numerically tested for simple
models.
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