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Abstract

We compute temperate fundamental solutions of homogeneous differential operators with real-principal
type symbols. Via analytic continuation of meromorphic distributions, fundamental solutions for these non-
elliptic operators can be constructed in terms of radial averages and invariant distributions on the unit
sphere.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

If P := P(Dx) is a differential operator on R
n a temperate fundamental solution to P is

a distribution s ∈ S ′(Rn) such that P(Dx)s = δ, where δ is the delta-Dirac distribution at the
origin. Fundamental solutions play a major role in the theory of PDE. For a large overview on
this subject, and applications, we refer to [5] vols. 1 and 2. It is well known, see e.g. [1,4,5], that
differential operators with constant coefficients have temperate fundamental solutions. But, apart
in very trivial cases like the Laplacian, it is difficult to produce explicitly a solution. The case
of order 3 homogeneous operators, in dimension 3, was treated in [6]. Always in dimension 3,
the case of elliptic quartic operators was considered in [7] and our contribution in [2] was to
obtain temperate fundamental solutions for homogeneous elliptic operators of any degree and in
any dimension. Also, we mention that the book of J.E. Björk [1] contains a very nice study of
the algebraic and analytic properties of fundamental solutions for operators with polynomial or
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analytic symbols and constant coefficients. In particular the presence of logarithmic distributions,
as occurring in the present contribution, is predicted in a very general setting.

1.1. Hypotheses and definitions

We are here interested in the case of a non-definite homogeneous polynomial p on R
n, i.e.,

p(λξ) = λkp(ξ). In all this article k is the degree of p. To simplify, we restrict our study to a real
principal type singularity, i.e. we assume that:

(H):
{

p is real valued,

p(x) = 0 and ∇p(x) = 0 ⇔ x = 0.

But p complex valued is admissible, see Section 2. In what follows, we write:

C(p) = {
θ ∈ S

n−1 | p(θ) = 0
}
,

the trace of the characteristic set of p on the unit-sphere. In terms of polar coordinates, (H)

implies that the restriction of p to S
n−1 satisfies:

∇θp(θ) �= 0 near C(p).

By a standard result of differential geometry, see e.g. [4] Chapter 3, condition (H) insures the
existence of a canonical (n − 2)-dimensional measure dL smooth on the level sets p(θ) = ε, for
ε > 0 small enough. This measure, traditionally called Liouville or Guelfand–Leray measure,
satisfies the coarea formula:∫

Sn−1

h(θ) dθ =
∫
R

( ∫
p(θ)=u

hdL

)
du,

for all h with support in Kε = {θ ∈ S
n−1 | |p(θ)| � ε}. This relation defines a new func-

tion: u �→ L(h)(u), obtained by integration of f in the fibers p−1(u) w.r.t. dL. By Sard’s
Theorem this function is finite almost everywhere and for any h ∈ C∞(Sn−1) it is easy to
check that L(h) can be extended as an integrable function with compact support supp(L(h)) ⊂
[infSn−1 p(θ), supSn−1 p(θ)]. With these elementary facts in mind we introduce:

Definition 1. For a general function g ∈ S(Rn) we define the polar Guelfand–Leray transform
of g as:

L
(
g(rθ)

)
(u) := L(g)(r, u) =

∫
p(θ)=u

g(rθ) dL(θ),

simply by viewing the radius r as a parameter.

In all what follows the map L is defined w.r.t. the restriction of p to S
n−1 and:

L(l)
(
g(rθ)

)
(u) = dl

dul

( ∫
p(θ)=u

g(rθ) dL(θ)

)
,

is the exterior derivative of degree l w.r.t. the argument u. Finally:

ĥ(ξ) =
∫
Rn

e−i〈x,ξ〉h(x)dx,

stands for the Fourier transform.
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1.2. Main results

Theorem 2. Assume that n � 2 and that the symbol p satisfies condition (H). A fundamental
solution s ∈ S ′(Rn) to P is respectively given by:

(A) If k < n (locally integrable singularity):

〈s, f 〉 = 1

(2π)n

∞∫
0

〈
log

(|u|); L(1)
(
f̂

(
rθ

))
(u)

〉
rn−k−1 dr.

(B) If k � n (non-integrable case) then we have:

〈s, f 〉 = 1

(2π)n

γ + Ψ (k)


(2k)

∂2k−1

∂r2k−1

(
rk+n−1〈log

(|u|); L(1)
(
f̂ (rθ)

)
(u)

〉)
|r=0

+ 1

(2π)n
(1 + 2k)

∂2k−1

∂r2k−1

(
rk+n−1〈log

(|u|)2; L(1)
(
f̂ (rθ)

)
(u)

〉)
|r=0

+ 1

(2π)n
(k)

∫
R+

log(r)
∂2k

∂r2k

(
rk+n−1〈log

(|u|); L(1)
(
f̂ (rθ)

)
(u)

〉)
dr.

Here γ is Euler’s constant and Ψ (z) = 
′(z)/
(z).

The trivial case n = 1, i.e. a monomial symbol, can be treated directly and for n = 2 the map L

is simply related to Dirac masses at S
1 ∩ {p = 0}. Note that the results are very different from

the case of an elliptic operator. In particular observe the presence of singularities supported in
the lacuna set of p since distributions log(|u|)j , j = 1,2, are not smooth in u = 0.

For non-integrable singularities we can say more and the method we use allows to produce a
one-parameter family of solutions:

Corollary 3. Under the conditions of Theorem 2 and if k � n a temperate solution of P(D)s0 = 0
is given by:

〈s0, f 〉 = ∂2k−1

∂r2k−1

(
rk+n−1〈log

(|u|); L(1)
(
f̂ (rθ)

)
(u)

〉)
|r=0.

Hence each s + λs0, λ ∈ C, is a temperate fundamental solution to P(D).

2. Proof of the main result

The strategy is as follows. If p is positive for all f ∈ S(Rn) we have:

lim
ζ→0

1

(2π)n

∫
Rn

p(ξ)ζ f̂ (ξ) = f (0) = 〈δ, f 〉. (1)

If p is a polynomial, or more generally an analytic function, the integral in Eq. (1) defines a
meromorphic distribution P(ζ ). See [1] for this point. The Laurent development around ζ = −1
can be written:

P(ζ − 1) =
−d∑

μjζ
j + μ0 +

∞∑
μjζ

j . (2)

j=−1 j=1
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But, according to Eq. (1), we have:

lim
ζ→0

〈
P(D)f,P(ζ − 1)

〉 = 〈δ, f 〉,

and it follows that μ0 is a temperate fundamental solution to P(D).

Remark 4. Eq. (1), combined with Eq. (2), provides the set of relations:

P(D)μj = 0, ∀j < 0,

in the sense of distributions of S ′(Rn). If such non-zero terms exist, any affine combination μ0 +∑d
j=1 αjμ−j , (α1, . . . , αd) ∈ C

d , is a temperate fundamental solution. This remark provides the
basic strategy to establish Corollary 3.

When p is no more positive, or complex valued, the trick is to compute the fundamental
solution ρ0 attached to |p|2. With |p|2 = p(ξ)p̄(ξ), it is easy to check that:

μ0 = P̄ (D)ρ0,

is a fundamental solution to P . Hence, to attain our objective we have to construct meromorphic
extensions of the family of distributions:

ζ �→
∫
Rn

(∣∣p(ξ)
∣∣2)ζ

g(ξ) dξ, g ∈ S(Rn).

To solve a non-elliptic equation we transform the problem into a positive, and hence simpler,
problem. The expense is that |p(ξ)|−2 is more singular than |p(ξ)|−1 and this induces extra
computations in the proof. We start by solving, locally, the singularities of p. We have:

Lemma 5. If p satisfies (H) there exists local coordinates ω (strictly speaking outside of the
origin), such that we have the local diffeomorphism:

p(ξ) �
{−ωk

1 or ωk
1, outside of C(p)×]0,∞[,

ωk
1ω2 in a neighborhood of C(p)×]0,∞[.

Proof. To blow up the singularity, we use polar coordinates ξ = (r, θ). By homogeneity we have
p(rθ) = rkp(θ). First if θ0 /∈ C(p) we choose:

(ω1,ω2, . . . ,ωn)(r, θ) = (
r
∣∣p(θ)

∣∣1/k
, θ

)
. (3)

We have p(ξ) � ±ω1(r, θ)k in a conical neighborhood of θ0. The sign is obviously given by the
sign of p(θ0) and the Jacobian is |Jω|(r, θ) = |p(θ)|1/k �= 0. Next, if θ0 ∈ C(p) by condition
(H) and by homogeneity we have ∇θp(θ0) �= 0. We can assume that ∂θ1p(θ) �= 0 and we chose:

(ω1,ω2,ω3, . . . ,ωn)(r, θ) = (r,p(θ), θ2, . . . , θn1).

We have:

|Jω|(r, θ0) =
∣∣∣∣ ∂p

∂θ1
(θ0)

∣∣∣∣dr dθ �= 0.

By continuity, this result holds in a sufficiently small neighborhood of θ0. Since C(p) is a com-
pact subset of S

n−1 we can easily globalize the construction. �
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To use these normal forms, we construct an adapted partition of unity on S
n−1. We pick a family

of positive function Ωj on S
n−1 such that:

N∑
j=1

Ωj(θ) = 1 near C(p),

with the existence of a normal form ωk
1ω2 inside each supp(Ωj ). Next, since the previous con-

struction depends only on the set C(p), we can assume that supp(Ωj ) ⊂ Kε for ε > 0 chosen
small enough so that the measures dL are well defined on each supp(Ωj ). Finally we can com-
plete this finite set as partition of unity on S

n−1 with Ω0 = 1 − ∑
j Ωj . The support of Ω0 is

generally not connected, as shows the case n = 3. With this partition of unity we have:∫
Rn

(∣∣p(ξ)
∣∣2)ζ

g(ξ) dξ =
N∑

j=0

∫
Sn−1

∫
R+

Ωj(θ)
∣∣p(r, θ)

∣∣−2ζ
g(r, θ)rn−1 dr dθ.

With this localization argument we use Lemma 5 to trivialize locally the problem and we have to
study the elementary quantities:

μell(ζ ) =
∫

R+
ω

2kζ
1 G(ω1) dω1,

μ
sing
j (ζ ) =

∫
R+×R

ω
2kζ
1 (ω2

2)
ζ Gj (ω1,ω2) dω1 dω2.

These new functions are obtained by pullback and integration:

G(ω1) =
∫

ω∗(Ω0(θ)g(r, θ)rn−1)(ω1, . . . ,ωn) dω2 · · ·dωn,

Gj (ω1,ω2) =
∫

ω∗(Ωj(θ)g(r, θ)rn−1)(ω1, . . . ,ωn) dω3 · · ·dωn,

where ω∗ stands for the pullback including the multiplication by the Jacobian.

2.1. Trivial contribution

We start by the analytic continuation of the elliptic part μell(ζ ). We have:

∂2k

∂ω2k
1

ω
2kζ
1 = ω

2k(ζ−1)
1

2k−1∏
j=0

(2kζ − j),

and after 2k integrations by parts we obtain:

μell(ζ − 1) =
∫

R+
ω

2k(ζ−1)
1 G(ω1) dω1 =

(
2k−1∏
j=0

1

2kζ − j

) ∫
R+

ω
2kζ
1 ∂2k

ω1
G(ω1) dω1.

The integral in the r.h.s. defines an holomorphic function near ζ = 0. The constant term of the
Laurent series at the origin, determined by the rational function, is given by:

μell
0 = lim

∂ (
ζμell(ζ − 1)

)
.

ζ→0 ∂ζ
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With the holomorphic function near ζ = 0:

h(ζ ) = ζ

2k−1∏
j=0

1

2kζ − j
= 1

2k

2k−1∏
j=1

1

2kζ − j
,

we obtain:

μell
0 = h′(0)

∫
R+

∂2k
ω1

G(ω1) dω1 + 2kh(0)

∫
R+

log(ω1)∂
2k
ω1

G(ω1) dω1.

Clearly 2kh(0) = −1/
(2k) and a direct computation yields:

h′(0) = −γ + Ψ (2k)


(2k)
.

Here Ψ (ζ ) = 
′(ζ )/
(ζ ) is the usual polygamma function of order 0 and

γ = lim
L→∞

(
L∑

j=1

1

j
− log(L)

)
,

is Euler’s constant.

2.2. Non-trivial contribution

Now, we study the singular term μsing(ζ ) = ∑N
j=1 μ

sing
j (ζ ). We have:

∂2k+2

∂ω2k
1 ∂ω2

2

ω
2kζ
1 (ω2

2)
ζ = b(ζ )ω

2k(ζ−1)
1 (ω2

2)
ζ−1,

b(ζ ) = 2ζ(2ζ − 1)

2k−1∏
j=0

(2kζ − j).

Accordingly, ζ = 0 is a pole of order 2 of the meromorphic extension:

μ
sing
j (ζ − 1) = 1

b(ζ )

∫
R+×R

ω
2k(ζ−1)
1 (ω2

2)
ζ−1 ∂2k+2Gj

∂ω2k
1 ∂ω2

2

(ω1,ω2) dω1 dω2.

The constant term of the Laurent expansion is given by:

μ
sing
0,j = 1

2
lim
ζ→0

∂2

∂ζ 2

(
ζ 2μ

sing
j (ζ − 1)

)
.

Hence with the auxiliary functions:

m(ζ) = ζ 2

b(ζ )
= 1

4k(2ζ − 1)

2k−1∏
j=1

1

2kζ − j
,

Mj (ζ ) =
∫

+
ω

2k(ζ−1)
1 (ω2

2)
ζ−1 ∂2k+2Gj

∂ω2k
1 ∂ω2

2

(ω1,ω2) dω1 dω2,
R ×R
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we obtain that the term of interest is given by:

μ
sing
0,j = 1

2

(
m(0)M ′′

j (0) + 2m′(0)M ′
j (0) + m′′(0)Mj (0)

)
. (4)

By some elementary calculations we obtain respectively:

m(0) = 1

2
(1 + 2k)
,

m′(0) = 1 + k(γ + Ψ (2k))


(1 + 2k)
.

The coefficient m′′(0) plays no rôle here, see Eq. (5) below. The next step is to evaluate μ
sing
0,j in

the coordinates ω. After integration by parts w.r.t. ω2, we have:

Mj(0) =
∫

R+×R

∂2k+2Gj

∂ω2k
1 ∂ω2

2

(ω1,ω2) dω1 dω2 = 0. (5)

For the next distributional coefficient we find that:

M ′
j (0) =

∫
R+×R

(
2k log(ω1) + 2 log

(|ω2|
)) ∂2k+2Gj

∂ω2k
1 ∂ω2

2

(ω1,ω2) dω1 dω2

=
∫
R

2 log
(|ω2|

) ∂2k+1Gj

∂ω2k−1
1 ∂ω2

2

(0,ω2) dω2. (6)

Finally, we obtain similarly:

M ′′
j (0) =

∫
R+×R

(
2k log(ω1) + 2 log

(|ω2|
))2 ∂2k+2Gj

∂ω2k
1 ∂ω2

2

(ω1,ω2) dω1 dω2

= 4
∫
R

log
(|ω2|

)2 ∂2k+1Gj

∂ω2k−1
1 ∂ω2

2

(0,ω2) dω2

+ 8k

∫
R+×R

log(ω1) log
(|ω2|

) ∂2k+2Gj

∂ω2k
1 ∂ω2

2

(ω1,ω2) dω1 dω2. (7)

After expanding the square in the integral we have, once more, discarded the term attached to
log(ω1)

2, vanishing after integration w.r.t. ω2.

2.3. Invariant formulation

To achieve the proof we must formulate our distributions in a geometrical way, also indepen-
dent of the partition of unity attached to the coordinates ω. First, by construction, we have to eval-
uate our distribution on P(D)f so that after Fourier transformation g(ξ) = p(ξ)f̂ (ξ). Since p

is of degree k, we have G(ω1) = O(ωk+n−1
1 ) near ω1 = 0. Same remark for Gj(ω1,ω2) =

O(ωk+n−1
1 ) near ω1 = 0. These properties are important since several coefficient expressed be-

low are related to Dirac-delta distributions supported in ω1 = 0. According to Eqs. (6) and (7)
at worst 3 different terms occur which we treat separately distinguishing out the case of |p|−1

locally integrable or not.
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2.3.1. 1-contribution of the elliptic directions
We have:

∞∫
0

∂2k
ω1

G(ω1) dω1 = −∂2k−1
ω1

G(0).

If 2k − 1 < k + n − 1 this term vanishes and for k � n we have:

∂2k−1
ω1

G(0) = ∂2k−1

∂r2k−1

(
rn+k−1

∫
Sn−1

f̂ (rθ)Ω0(θ)
dθ

p(θ)

)
|r=0

.

This identity holds after inversion of our diffeomorphism and the substitution g(ξ) = p(ξ)f̂ (ξ).
When k < n, we can integrate by parts the logarithmic contribution to obtain:∫

R+
log(ω1)∂

2k
ω1

G(ω1) dω1 = (2k − 1)!
∫

R+
G(ω1)

dω1

ω2k
1

= (2k − 1)!
∫

R+×Sn−1

Ω0(θ)f̂ (rθ)rn−k−1 dr
dθ

p(θ)
.

Observe that the integral w.r.t. r is precisely convergent, for any f ∈ S(Rn), if and only if k < n.
If k � n this argument does not holds, but we can write:

∂2k
ω1

G(ω1) = 1

2π

∫
R

eipω1(ip)2kĜ(p)dp.

After inversion of our diffeomorphism and scaling out the spherical term p(θ) in the phase, we
obtain the contribution:∫

R+
log(ω1)∂

2k
ω1

G(ω1) dω1 =
∫

R+×Sn−1

log
(
r
∣∣p(θ)

∣∣1/k) ∂2k

∂r2k

(
f̂ (rθ)rn+k−1)Ω0(θ) dr

dθ

p(θ)
.

2.3.2. 2-contribution of the non-elliptic directions
To express our amplitudes, we use the Schwartz kernel technique. Let α = (α1, α2) ∈ N

2,
yα = y

α1
1 y

α2
2 , then:

DαGj (ω1,ω2) = 1

(2π)2

∫
ei(y1ω1+y2ω2)yαĜj (y1, y2) dy

= 1

(2π)2

∫
ei(y1(ω1−x1)+y2(ω2−x2))yαGj (x1, x2) dy dx.

For this integral we can inverse our diffeomorphism via x1(r, θ) = r and x2(r, θ) = p(θ), locally
on supp(Ωj ). For the r-integration we can extend the integrand by 0 for r < 0 and we obtain
first:

DαGj (ω1,ω2) = 1

(2π)

∫
ei〈y2,ω2−p(θ)〉yα2

2
∂

∂ω
α1
1

∫
Ωj(θ)g(ω1θ)ωn−1

1 dθ dy2

= 1

(2π)

∫
ei〈y2,ω2−p(θ)〉yα2

2
∂

∂ω
α1

∫
ω2Ωj(θ)f̂ (ω1θ)ωk+n−1

1 dθ dy2.

1
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The remaining integral is simply the exterior derivative, of order α2, of the Liouville measure on
the surface p(θ) = ω2. For α2 = 2, observe that:

L(2)
(
p(θ)Ωj (θ)f̂ (ω1θ)

)
(ω2) = ∂2

∂ω2
2

(
ω2L

(
Ωj(θ)f̂ (ω1θ)

)
(ω2)

)
= ω2L

(2)
(
Ωj(θ)f̂ (ω1θ)

)
(ω2) + 2L(1)

(
Ωj(θ)f̂ (ω1θ)

)
(ω2),

and that by construction the functions L(Ωj f̂ ) are smooth. Choosing α1 = 2k, we have obtained:

∂2k+2Gj

∂ω2k
1 ∂ω2

2

(ω1,ω2) = ∂2k

∂ω2k
1

(
ωk+n−1

1 L(2)
(
p(θ)Ωj (θ)f̂ (ω1θ)(ω2)

))

= ∂2k

∂ω2k
1

(
ωk+n−1

1

(
ω2L

(2)
(
Ωj(θ)f̂ (ω1θ)(ω2)

)
+ 2L(1)

(
Ωj(θ)f̂ (ω1θ)(ω2)

)))
. (8)

By degree considerations w.r.t. ω1 we have respectively:∫
R

log
(|ω2|

)
)

∂2k+1Gj

∂ω2k−1
1 ∂ω2

2

(0,ω2) dω2 =
{

0 if k < n,

C(f ) �= 0 if k � n.

∫
R

log
(|ω2|

)2 ∂2k+1Gj

∂ω2k−1
1 ∂ω2

2

(0,ω2) dω2 =
{

0 if k < n,

D(f ) �= 0 if k � n.

Where C and D are obtained by inserting Eq. (8) in the integrals. Finally, in Eq. (7) the term
attached to the product of logarithms is given by:∫

R+×R

log(ω1) log
(|ω2|

) ∂2k+2Gj

∂ω2k
1 ∂ω2

2

(ω1,ω2) dω1 dω2, if k � n,

(2k − 1)!
∫

R+×R

log
(|ω2|

)∂2Gj

∂ω2
2

(ω1,ω2)
dω1

ω2k
1

dω2, if k < n.

For k � n integrations by parts are not allowed but we can anyhow conclude with Eq. (8). We
treat now separately parts (A) and (B) of Theorem 2.

Proof of part (A). To obtain the final result we sum over the partition of unity. According to
the considerations of homogeneity above, for k < n the full contribution is generated by μell

0 and
M ′′

j (0). With the explicit values of h(0) and m(0), we obtain that (2π)nμ0(f ) equals:∫
R+×Sn−1

Ω0(θ)f̂ (rθ)rn−k−1 dθ

p(θ)
dr +

∑
j

∫
R+×R

log
(|ω2|

)∂2Gj

∂ω2
2

(ω1,ω2)
dω1

ω2k
1

dω2.

With Ω0 = 0 near C(p) ∩ S
n−1, we have L(Ω0(θ)f̂ (rθ))(u) = 0 in a neighborhood of u = 0.

Hence, in the first term, the integral w.r.t. θ equals:∫
L

(
Ω0(θ)f̂ (rθ)

)
(u)

du

u
= 〈

log
(|u|); L(1)

(
Ω0(θ)f̂ (rθ)

)
(u)

〉
.

u∈R
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The derivation is in sense of distributions. For the coefficients attached to M ′′
j (0) we obtain:∫

R

u log
(|u|)L(2)

(
Ωj(θ)f̂ (rθ)

)
(u) du + 2

∫
R

log
(|u|)L(1)

(
Ωj(θ)f̂ (rθ)

)
(u) du.

Since (u log(|u|))′ = log(|u|) + 1, via one integration by parts:∫
R

u log
(|u|)L(2)

(
Ωj(θ)f̂ (rθ)

)
(u) du = −

∫
R

L(1)
(
Ωj(θ)f̂ (rθ)

)
(u)

(
log

(|u|) + 1
)
du.

Observe the minus sign which fits with the weak derivation above. Since for each r and j > 0,
u �→ L(Ωj (θ)f̂ (rθ))(u) ∈ C∞

0 (R), we get:∫
R

L(1)
(
Ωj(θ)f̂ (rθ)

)
(u) du = 0.

By integration w.r.t. r and summation over the partition of unity we obtain:

μ0(f ) = 1

(2π)n

∞∫
0

〈
log

(|ω2|
); L(1)

(
f̂ (rθ)

)
(ω2)

〉
rn−k−1 dr,

which is the desired result when k < n.

Proof of part (B). Now, we consider k � n. All coefficients contribute via:

(2π)nμ0(f ) = −h′(0)
∂2k−1

∂r2k−1

(
rn+k−1

∫
Sn−1

f̂ (rθ)Ω0(θ)
dθ

p(θ)

)
|r=0

+ 2kh(0)

∫
R+×Sn−1

log
(
r
∣∣p(θ)

∣∣1/k) ∂2k

∂r2k

(
f̂ (rθ)rn+k−1)Ω0(θ)

dθ

p(θ)
dr

+ 1

2

∑
j

(
m(0)M ′′

j (0) + 2m′(0)M ′
j (0)

)
.

If we split the integral with the logarithm we obtain two terms:∫
R+×Sn−1

log(r)
∂2k

∂r2k

(
f̂ (rθ)rn+k−1)Ω0(θ)

dθ

p(θ)
dr

− 1

k

∂2k−1

∂r2k−1

( ∫
Sn−1

f̂ (rθ) log
(∣∣p(θ)

∣∣)Ω0(θ)
dθ

p(θ)

)
|r=0

.

Observe that, by construction, all integrals are well defined. First, we express the contributions
near C(p). Combining Eqs. (6) and (8), we find that:

M ′
j (0) = 2

∫
R

log
(|ω2|

) ∂2k−1

∂ω2k−1
1

(
ωk+n−1

1

(
ω2L

(2)
(
Ωj(θ)f̂ (ω1θ)(ω2)

)))
|ω1=0 dω2

+ 4
∫

log
(|ω2|

) ∂2k−1

∂ω2k−1
1

(
ωk+n−1

1 L(1)
(
Ωj(θ)f̂ (ω1θ)(ω2)

))
|ω1=0 dω2.
R
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2

This term can be treated as in part (A) and we obtain:

M ′
j (0) = 2

∫
R

log
(|ω2|

) ∂2k−1

∂ω2k−1
1

(
ωk+n−1

1 L(1)
(
Ωj(θ)f̂ (ω1θ)(ω2)

))
|ω1=0 dω2.

Next, combining Eqs. (7) and (8) we have:

M ′′
j (0) = 4

∫
R

log
(|ω2|

)2 ∂2k−1

∂ω2k−1
1

(
ωk+n−1

1

(
ω2L

(2)
(
Ωj(θ)f̂ (ω1θ)(ω2)

)))
|ω1=0 dω2

+ 8
∫
R

log
(|ω2|

)2 ∂2k−1

∂ω2k−1
1

(
ωk+n−1

1 L(1)
(
Ωj(θ)f̂ (ω1θ)(ω2)

))
|ω1=0 dω2

+ 8k

∫
R+×R

log(ω1) log
(|ω2|

) ∂2k

∂ω2k
1

(
ωk+n−1

1

(
ω2L

(2)
(
Ωj(θ)f̂ (ω1θ)(ω2)

)))
dω1 dω

+ 16k

∫
R+×R

log(ω1) log
(|ω2|

) ∂2k

∂ω2k
1

(
ωk+n−1

1 L(1)
(
Ωj(θ)f̂ (ω1θ)(ω2)

))
dω1 dω2.

The last two integrals can be combined as above. For the others, we use:(
u log

(|u|)2)′ = log
(|u|)2 + 2 log

(|u|), ∀u �= 0,

and proceed to integrations by parts, which is legal since the factors L(k)(·)(ω2) vanish for ω2
large and ω2 log(|ω2|) also vanishes at the origin. We obtain:

M ′′
j (0) = 4

∫
R

log
(|ω2|

)2 ∂2k−1

∂ω2k−1
1

(
ωk+n−1

1 L(1)
(
Ωj(θ)f̂ (ω1θ)(ω2)

))
|ω1=0 dω2

− 8
∫
R

log
(|ω2|

) ∂2k−1

∂ω2k−1
1

(
ωk+n−1

1 L(1)
(
Ωj(θ)f̂ (ω1θ)(ω2)

))
|ω1=0 dω2

+ 8k

∫
R+×R

log(ω1) log
(|ω2|

) ∂2k

∂ω2k
1

(
ωk+n−1

1

(
L(1)

(
Ωj(θ)f̂ (ω1θ)(ω2)

)))
dω1 dω2.

Observe that we have 3 different coefficients, like for the coefficients attached to the set Ω0. We
combine each of these contributions by nature and by gathering carefully the constants. First, we
consider the term involving two logarithms:

2kh(0)

∫
R+×Sn−1

log(r)
∂2k

∂r2k

(
f̂ (rθ)rn+k−1)Ω0(θ)

dθ

p(θ)
dr

+ 4km(0)
∑
j

∫
R+×R

log(ω1) log
(|ω2|

)

× ∂2k

∂ω2k
1

(
ωk+n−1

1 L(1)
(
Ωj(θ)f̂ (ω1θ)

)
(ω2)

)
dω1 dω2

= 1

(k − 1)!
∫
+

log(ω1)
∂2k

∂ω2k
1

(
ωk+n−1

1

〈
log

(|ω2|
); L(1)

(
f̂ (ω1θ)

)
(ω2)

〉)
dω1.
R
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The change of sign for comes from a derivation in the sense of distributions, a similar comment
applies below. Next, we have:

−2kh(0)

k

∫
Sn−1

log
(∣∣p(θ)

∣∣) ∂2k−1

∂r2k−1

(
f̂ (rθ)rn+k−1)

|r=0Ω0(θ)
dθ

p(θ)

+ 2m(0)
∑
j

∫
R

log
(|ω2|

)2 ∂2k−1

∂ω2k−1
1

(
ωk+n−1

1 L(1)
(
Ωj(θ)f̂ (ω1θ)

)
(ω2)

)
|ω1=0 dω2

= 1

(2k)!
∂2k−1

∂ω2k−1
1

(
ωk+n−1

1

〈
log

(|ω2|
)2; L(1)

(
f̂ (ω1θ)

)
(ω2)

〉)
|ω1=0.

Finally, we combine the remaining terms to obtain:

−h′(0)

∫
Sn−1

∂2k−1

∂r2k−1

(
rn+k−1f̂ (rθ)

)
|r=0Ω0(θ)

dθ

p(θ)
+ (

2m′(0) − 4m(0)
)

×
∑
j

∫
R

log
(|ω2|

) ∂2k−1

∂ω2k−1
1

(
ωk+n−1

1 L(1)
(
Ωj(θ)f̂ (ω1θ)

)
(ω2)

)
|ω1=0 dω2

= γ + Ψ (k)


(2k)

∂2k−1

∂ω2k−1
1

(
ωk+n−1

1

〈
log

(|ω2|
); L(1)

(
f̂ (ω1θ)

)
(ω2)

〉)
|ω1=0.

This proves parts (B) of Theorem 2.

Proof of Corollary 3. We start by the analytic continuation of the elliptic part μell(ζ ). The pole
ζ = −1 is simple and the term of interest is given by:

μell
0,−1 = lim

ζ→0

(
ζμell(ζ − 1)

) = 1


(2k + 1)
∂2k−1
ω1

G(0).

The value of this coefficient was determined in the proof of Theorem 2.
As concerns the singular term μsing(ζ ) = ∑N

j=1 μ
sing
j (ζ ), ζ = −1 is a pole of order 2. Ac-

cordingly, the coefficients of degree −2 and −1 are respectively given by:

a
sing
−2,j = lim

ζ→0

(
ζ 2μ

sing
j (ζ − 1)

)
,

a
sing
−1,j = lim

ζ→0

∂

∂ζ

(
ζ 2μ

sing
j (ζ − 1)

)
.

Since Mj(0) = 0, we have a
sing
−2,j = 0 and a

sing
−1,j = m(0)M ′

j (0). To evaluate this distributional
coefficient we proceed exactly as above and obtain:

a
sing
−1,j = 1


(1 + 2k)

∫
R

log
(|ω2|

) ∂2k+1Gj

∂ω2k−1
1 ∂ω2

2

(0,ω2) dω2.

The discussion concerning the value of this term, established in the proof of Theorem 2, gives
the announced result. �
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2.4. Duality brackets

Condition (H) only insures that the Liouville measure is smooth in a neighborhood of the
origin. But the distributions log(|y|)α , α > 0, are smooth away from the origin. With a smooth
cut-off χ , supported in a neighborhood of the origin, we write 〈log(|y|)α; L(p)(f )(y)〉 as:〈

log
(|y|)α; χ(y)L(p)(f )(y)

〉 + 〈
log

(|y|)α; (
1 − χ(y)

)
L(p)(f )(y)

〉
.

Away from the origin, we can integrate by part the logarithmic distribution. On the other side, we
use that y �→ L(f )(y) is smooth on supp(χ) if this support is chosen small enough. This duality
bracket is well defined since both distribution have disjoint singular support.

Finally, this construction is independent from the cut-off χ if supp(χ) is small enough with
respect to the covering of C(p) introduced before. Conversely, for any covering of C(p) chosen
such that |p(θ)| � ε on each supp(Ωj ), j � 1, there exists a cut-off χ with the previous proper-
ties. Hence the final value is independent from the choice of our partition of unity on Sn−1.

2.5. Comments

• The relation between special functions, in particular 
 and hypergeometric, and fundamental
solutions has attracted much attention by the past. That’s why we have greatly detailed the
coefficients appearing in our setting.

• Residuum, and poles, of meromorphic distributions play also an important rôle in asymptotic
expansion of oscillatory and fiber integrals. For example, the value of m′′(0) is exactly:

12 + k(6γ (2 + kγ ) + kπ2) + 6k(Ψ (2k)(2 + 2kγ + kΨ (2k)) − kΨ (1)(2k))

3
(1 + 2k)
,

where Ψ (1)(ζ ) = ∂ζ Ψ (ζ ) is the polygamma-function of order 1. Such a coefficient is useful
to compute the second term of the asymptotic expansion of oscillatory integrals with phase
p(ξ) or p(ξ)2. See [8] for this point.

• The determination of Liouville measures, and a fortiori of their exterior differentials, is
generally not possible. In the case of homogeneous singularity, the determination of these
measures is sometimes possible in terms of generalized elliptic integrals. See [6] or [3] for
different examples.

• The condition that k ∈ N can be relaxed. We can consider operators with a singularity at
the origin providing that their symbols are regular enough. If α > 1 is the degree, a similar
proof holds by using the integer part k = [α] + 1. All constants are well defined as analytic
functions of α and one has to replace the radial derivations by the action of some pseudo-
differential operators with homogeneous symbol. If α � 1 the symbol p is generally not C1

and our approach fails.
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