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Abstract 

Kropholler, P.H., On groups of type (FP),, Journal of Pure and Applied Algebra 90 
(1993) 55-67. 

Let G be a group. A ZG-module M is said to be of type (FP)oo over ZG if and only if 
there is a projective resolution P, + M in which every P; is finitely generated. We show 
that if G belongs to a large class of torsion-free groups, which includes torsion-free linear 
and soluble-by-finite groups, then every ZG-module of type (FP)oo has finite projective 
dimension. We also prove that every soluble or linear group of type (FP), is virtually of 
type (FP). The arguments apply to groups which admit hierarchical decompositions. We 
also make crucial use of a generalized theory of Tate cohomology recently developed by 
Mislin. 

1. Introduction 

Throughout this paper, X denotes a class of groups and k denotes a non-zero 
commutative ring. In applications X will usually be a class of finite groups and 
k will usually be a subring of Q or a finite field. For a functor F between two 
module categories, we shall say that F is continuous if and only if the natural 
map l&, F (MA ) + F (14, MA ) is an isomorphism for all direct limit systems 
(MA ) of modules. 

It is shown in [ 121 that every soluble group of type (FP), has finite torsion- 
free rank. In this paper we combine the new methods of [ 121 with recent work 
of Mislin [ 131 to obtain results of far greater generality. In Section 2 we 
introduce a new closure operation H for classes of groups. The main theorem 
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concerns certain cohomological functors for groups which belong to LHX, the 
class of locally Hi&grOUpS. 

Theorem A. Let G be an LHfi-group and let M be a kG-module. Suppose that 
the functors Ext&(M,-) are continuous for infinitely many non-negative 1. 
Then the following are equivalent. 

(i) M has finite projective dimension over kG. 
(ii) A4 has finite projective dimension over kH for all X-subgroups H of G. 

The usefulness of this result depends on the fact that LHX is often a very 
much larger class of groups than X. For example, taking fi to be the class iJ of 
all finite groups, we shall show that 
- every soluble-by-finite group belongs to LHZ, 

- every linear group belongs to LHS, 

- LH8 is extension closed, subgroup closed and closed under directed unions, 
- if G is the fundamental group of a graph of LH&grOUpS then G belongs to 

LHS. 

Recall that a kG-module A4 is said to be of type (FP), over kG if and 
only if there is a projective resolution P, + A4 in which every Pi is finitely 
generated as a kG-module. Theorem A applies naturally to this class of modules 
because the (FP), property is equivalent to the assertion that all the functors 
Ext!& (M, -) are continuous. The group G is said to be of type (FP), over k 
if and only if the trivial module k is of type (FP), over kG. Bieri’s book [ 31 
provides an excellent introduction to the (FP), property for groups. We give 
a sample application which can be proved by applying Theorem A with k = Z 
and X = 5. 

Corollary. Let G be a torsion-free linear group. Then every ZG-module of type 
(FP) M has finite projective dimension. In particular, if G is of type (FP ) o. then 
it has finite cohomological dimension. 

We leave the reader to devise further applications. One can, for example, 
obtain results for groups in LH’ij which are not torsion-free by applying Theorem 
A with k = Q, although the conclusions are less strong than one might wish. 
However, one can obtain rather better results by combining Theorem A with 
the following general result: 

Proposition. Let G be a group of type (FP), over Z. Suppose that G has finite 

cohomological dimension over Q. Then there is a finitely generated subring S of 
Q such that G has finite cohomological dimension over S, and there is a bound 
on the orders of the finite subgroups of G. 

The consequence for (FP),-groups is as follows. 
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Theorem B. Zf G belongs to LH8 and is of type (FP), over Z then there is a 
finitely gene ra e t d b su ring S of Q such that G has finite cohomological dimension 
over S, and there is a bound on the orders of the finite subgroups of G. 

One corollary of Theorem B may be worth stating explicitly. This solves 
a question raised by Bieri in 1978, which appears as Problem 6.5 in the 
Kourovka Notebook [ lo]. 

Corollary. Every soluble group of type (FP), is constructible. 

The first step in this direction was taken by Bieri and Groves [4], who 
proved that every metabelian group of type (FP), is virtually of type (FP). 
In [ 121, the author proves that soluble groups of type (FP), have finite 
torsion-free rank. In this paper, we can use Theorems A and B to show that 
every soluble group of type (FP), is virtually of type (FP), and then the 
Corollary follows from results in the literature. The Proposition, Theorem B 
and its Corollary are discussed in detail in Section 5. 

In view of the great generality of these results it is natural to ask whether 
there exist groups for which Theorem A fails. Such examples are known and 
have been studied by Brown and Geoghegan [5,6]. The simplest is the group 
r with presentation 

(x0,x1,x2,. . . 1 x,xl = x,+~ for all i < n). 

Brown and Geoghegan show that this group is torsion-free of infinite cohomo- 
logical dimension and of type (FP), over Z. One can deduce that r does not 
belong to LH8. 

2. Closure operations 

We shall adopt the usual convention that every class of groups contains the 
trivial group and contains a group G whenever it contains an isomorphic copy 
of G. Following Philip Hall, a closure operation A is defined to be an operation 
which associates a new class of groups AX to any class X in such a way that 

x 5 Ax = A2x, 

and for classes X 5 9, 

Amongst the most common closure operations are P, Q, S for extension, 
quotient and subgroup closure respectively. We also use LX to denote the 
class of locally X-groups: these are the groups for which every finite subset 
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is contained in an X-subgroup. Here we introduce a new closure operation 
H based on group actions on contractible spaces. We shall always consider 
cellular actions on cell complexes with the property that the setwise stabilizer 
of every cell coincides with the pointwise stabilizer. 

Definition 2.1. Let 3E be a class of groups. Then Hx denotes the smallest class of 
groups containing X with the property that whenever a group G acts cellularly 
on a finite-dimensional contractible complex with all isotropy groups in Hx 

then G itself belongs to HX. 

Classes of groups closely related to HS have been considered by Ikenaga [ 9 ] 
and by Gedrich and Gruenberg [ 8 1. 

It is immediate from the definition that H is a closure operation, but to 
understand H further we need the following hierarchical description. We define 
operations (which are not in general closure operations) H, for each ordinal 
Q inductively: 
- Hc,fi = I, 

and for ordinals cx > 0, 
- H,fi is the class of groups G which admit a cellular action on a linite- 

dimensional contractible cell complex in such a way that each isotropy 
group belongs to Hpx for some j3 < a (where jl may depend on the isotropy 

group ) . 
With these definitions it is automatic that a group G belongs to Hfi if and 

only if there is an ordinal cx such that G belongs to H& and many elementary 
facts can be established by transtinite induction on the least such CK. 

2.2. For any class X, 
(i) SHX 5 HSX, 

(ii) Hx is closed under countable directed unions, 
(iii) HX is closed under both free products with amalgamation and HNN- 

extensions. 

Proof. (i) can be proved by using transfinite induction to show that SHpfi 5 

Hpsfi for each ordinal 8. 
(ii) and (iii) follow from the more general fact that if G is the fundamental 

group of a graph of groups in which the vertex and edge groups belong to 
HiX then G itself belongs to Hx. The point is that such a G acts on a tree 
(a l-dimensional contractible complex) with isotropy groups in HX. We refer 
the reader to [7] for further information about fundamental groups of graphs 
of groups and group actions on trees. 0 

2.3. Hz is extension closed. 
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Proof. First we show that for any class 3E, 

Let G be a group with a normal H%subgroup H of finite index. There is an 
ordinal cr such that H belongs to H,X and we work by induction on Q. Let X 
be a finite-dimensional contractible H-complex for which each isotropy group 
belongs to Hpfi for some p < CK. There is a natural action of the wreath product 
H 1 G/H on the Cartesian product Y = X x ... x X of [G/HI copies of X, 
and using the canonical embedding of G into H 1 G/H, we obtain an action 
of G on Y. For this action of G, all the isotropy groups are finite extensions 
of subgroups of isotropy groups for the action of H on X, and so each one 
belongs to HpS (x8) for some p < Q. Thus G belongs to H,S (3%)) and this 
completes the induction. 

It follows that (Hs)s = Hz and now an easy induction, of which this is 
the initial case, shows that (H’ij) (Hag) = HB for each Q. This completes the 
proof. 0 

2.4. LHS is subgroup closed, extension closed, and closed under arbitrary directed 
unions. 

Proof. The subgroup closure follows from the subgroup closure of HE (2.2(i) ). 
Closure under directed unions is automatic. Now suppose that iV H G + Q is a 
group extension in which N and Q belong to LHS. It suffices to prove that every 
finitely generated subgroup of G belongs to H8, and so we may assume that G is 
tinitely generated. This implies that Q belongs to H8 and N is a countable LH& 
group. The finitely generated subgroups of N belong to H?j, and because H% is 
closed under countable directed unions, by 2.2 (ii), it follows that N actually 
belongs to Hs. Thus the extension closure of LHS follows from that of H8. 0 

2.5. (i) Every group ofjinite cohomological dimension over Z belongs to LHB. 
(ii) Every soluble-by-finite group belongs to LH’& 

(iii) Every linear group belongs to LHS. 

Proof. (i) Let Z denote the class of the trivial group. Then HiZ is the class 
of all groups which admit free actions on a finite-dimensional contractible 
cell complex, or equivalently, the class of all groups of finite cohomological 
dimension over Z. The assertion follows because HiI 5 LH8. 

(ii) By (i), LHS contains every free abelian group of finite rank. Since LH8 
also contains all finite groups and is extension and locally closed it follows 
that every soluble-by-finite group belongs to LHf?. 

(iii) We first show that if A is a finitely generated subring of 63 then SL, (A) 
belongs to LHS. This follows from the hierarchical description of finitely gener- 
ated linear groups established by Alperin and Shalen [ 11. Alperin and Shalen 
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distinguish the special class of linear groups of integral characteristic. These are 
the subgroups G of GL, (C) with the property that the coefficients of the char- 
acteristic polynomial of every element of G are algebraic integers. According 
to Proposition 3.2 of [ 11, every subgroup G of SL, (A) has a permutation- 
free (n - 1 )-dimensional hierarchy supported on a family of subgroups of G 
having integral characteristic. Translating into the language of this paper it is 
immediate that SL, (A) and all its subgroups belong to H& where X denotes 
the class of subgroups of SL, (A) having integral characteristic. 

Now it suffices to show that X is contained in LHS. Let G be a subgroup 
of SL, (A) of integral characteristic, and let F be the field of fractions of A. 
As in the proof of Theorem 3.3 of [ 11, we can consider the natural linear 
action of G on V = F”. Let Go be a normal subgroup of finite index in G 
whose action on V has a composition series of maximal length. Since LH8 is 
closed under finite extension, it is enough to prove that Go belongs to LHS. 

Let 0 = V, < V, < .. . < V, = V be a composition series for the action of 
Go on V, and let Gi denote the image of Ge in its representation on K/K-r. 
Then there is a homomorphism Go + Gr x . . . x G, with unipotent kernel. All 
unipotent subgroups belong to LHS, because they are soluble, and since LH8 is 
extension and subgroup closed, it now suffices to prove that each Gi belongs 
to LHS. This follows from Proposition 2.3 of [ 11, which shows that each Gi 
has finite virtual cohomological dimension. 

Thus every subgroup of SL, (A) belongs to LH8. The closure properties 
of LHTJ now guarantee that every characteristic-zero linear group belongs to 

LH%. 0 

3. Cohomological functors 

Let R and S be rings. Following Gedrich and Gruenberg [ 81, we define 
a (-co, oo)-cohomological functor from R-modules to S-modules to be a se- 
quence of additive functors (T’ 1 i E Z) from R-modules to S-modules together 
with natural connecting homomorphisms so that for each short exact sequence 
0 --f M” --+ A4 -+ M’ + 0 of R-modules, one obtains a corresponding long 
exact sequence of S-modules: 

. . . + ,+‘(,‘) + ,,(M”) + Tn(M) --t T"(M') --) . . . . 

The most common examples arising in group theory are 
(i) the cohomology functors 

(H'(G,-) 1 i E Z), 

where H’ (G, -) is defined to be zero for i < 0, 
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(ii) the homology functors 

(&(G,-) I i E z), 

where Hj (G, -) is defined to be zero for j < 0, and 
(iii) in case G is a finite group, the Tate cohomology functors 

(i?‘(G,-) 1 i E Z). 

These are all examples of (-co, oo)-cohomological functors from ZIG-modules 
to Z-modules. 

Notation. We fix the following notation for the remainder of this section: 
k denotes a non-zero commutative ring, G is a group, and T’ is a (--03, oo)- 
cohomological functor from kG-modules to k-modules such that T’ is contin- 
uous for all 1. 

We shall need the following variation on Lemma 1 of [ 121. This is a 
simple general fact which does not depend on the assumption that the T’ are 
continuous. 

3.1. Let 

o+M,+M,_~ +...---+A41 +Mo-+L+O 

be an exact sequence of kG-modules. If i is an integer such that T’(L) is 
non-zero then there exists a j with 0 5 j 2 r such that T’+j (Mj) is non-zero. 

Proof. We give a direct proof by dimension shifting: Let Kj denote the image 
of the map Mj+r -+ Mj for 0 5 j 2 r - 1. Thus we can express the exact 
sequence of modules as a series of r short exact sequences: 

0 + K. + MO -+ L + 0, 

0 * K, + MI --f K. + 0, 

Now suppose that T i+’ (Mj) = 0 for j 2 r - 1. The long exact sequence of 
cohomology applied to the first short exact sequence shows that T’ (L) imbeds 
in T’+ ’ ( KO ). Using the same argument with the second sequence shows that 
T’+’ (KC,) imbeds in T i+2 (K1 ). Continuing in this way we obtain a succession 
of embeddings 

T’(L) E Ti+‘(Ko) c ... E T’+‘(K,_,). 

Since T’ (L) is non-zero, it follows that T’ I+’ (K,_, ) is non-zero. This proves 
the assertion, because K,_l = M,. q 
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We now come to the main result of this section. Here, the continuity of 
the T’ plays a key role. As a matter of fact this is the 
continuity enters directly into the argument. 

3.2. Let G be an mX-group. If i is an integer and V is a 
T’ ( V) is non-zero, then there exist j > i and H 5 G such 
and Tj (Indz V) is non-zero. 

only point at which 

kG-module such that 
that H is an X-group 

Proof. Consider the collection 0 of ordinals /3 for which there exist j 2 i 
and H 5 G such that H is an H$-subgroup and Tj(Indg V) is non-zero. It 
suffices to prove that 0 belongs to 0. 

Step 1: 0 is non-empty. Let (GA 1 1 E A) be the family of all finitely generated 
subgroups of G. Then, just as G can be viewed as the direct limit of the GA, 
so V can be viewed as the direct limit of the induced modules Indgl V, 

V. 

Since T’ (-) is a continuous functor and T’(V) is non-zero, it follows that for 
some ;2, the induced map Ti (Ind$ V) + Ti (V) is non-zero. Fix this ;i. Since 
GA is finitely generated and G is locally HE, there is an H&subgroup H of G 
containing GA. The map T’ (Ind$ V) -+ Ti ( V) factors through Ti (Ind: V) 
and hence T’ (Indg V) is non-zero. Let /3 be an ordinal such that H belongs 
to Hgfi. Then p belongs to 0. 

Step 2: If /3 is a non-zero ordinal in 0 then there is an ordinal y < fl which 
also belongs to 0. Suppose that /3 is a non-zero ordinal which belongs to 0. 
Then there exists j 2 i and H E Hpx such that TJ (Indz V) is non-zero. By 
definition, there is a cellular action of H on a finite-dimensional contractible 
space with each isotropy group belonging to Hy for some y < /I. The cellular 
chain complex of this space is an exact sequence of H-modules: 

where each Cl is the permutation module coming from the action of H as a 
group of permutations of the Z-dimensional cells. Tensoring with V and then 
applying the induction functor Indg - yields the exact sequence 

O-Ind~(V@CC,) +...-+Ind~(V/Ci) 

-Ind$(V@Cc) +IndgV+O, 

of G-modules. Now we may apply 3.1 with L = Indg V and A41 = Ind$ V 8 Cl. 
The conclusion is that for some 1 > 0, 

Tj+’ ( Indg ( V @ C, )) is non-zero. 
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Let A be a set of H-orbit representatives for the I-dimensional cells. Then 

Cl = @GE‘4 IndgO Z, and hence 

Indg(V@Cl) = $Ind$(V@IndiUZ) = $Indgc V. 
UEA UEA 

Since the functor Tj+‘(-) is continuous, it commutes with direct sums and 
we conclude that there is a 0 E A such that 

Tj+’ (Ind$ V ) is non-zero. 

Since H0 belongs to HyX for some y < /3 we have established Step 2. 
By transfinite induction, 0 belongs to 0. This means that there exist j 1 i 

and H E X such that Tj (Indz V) is non-zero, as required. 0 

The principal application we need is as follows: Here, the continuity of the 
T’ has to be assumed solely because the argument uses 3.2. 

3.3. Let G be an LHX-group. Let M be a kG-module which has finite projective 
dimension over kH for all X-subgroups H of G. If the T’ vanish on projectives 
for all 1 2 0 then To (n/i) = 0. 

Proof. If To(M) is non-zero then 3.2 shows that there exist i 2 0 and H 5 G 
such that H belongs to X and T’(IndzM) is non-zero. Now M has finite 
projective dimension as a kH-module, and hence Indg M has finite projective 
dimension as a kG-module. Let 

0 + P, + . . . -PI +Po-+Ind$M+O 

be a projective resolution. Since T’ (Indg M) is non-zero, an application of 3.1 
shows that for some j 2 0, T i+j (Pj ) is non-zero. This contradiction completes 

the proof. •I 

4. Mislin’s generalization of Tate cohomology 

In [2] Benson and Carlson formulate Tate cohomology of finite groups in 
a way that applies to any group, finite or infinite. Mislin [ 131 has now laid 
down an axiomatic approach to this generalized Tate cohomology theory. For 
groups of finite virtual cohomological dimension this coincides with the usual 
Tate-Farrell cohomology. 

Throughout this section, let R and S be rings and let T* be a (-co, co)- 

cohomological functor from R-modules to S-modules. Mislin defines a new 
cohomological functor ?, in terms of left satellite functors, by the formula 

e(M) = l%S-‘T”+‘(M). 
i>O 
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This new functor has the property that it vanishes on all projective R- 
modules. Moreover, there is a natural map T* -+ ?*, and T” satisfies the 
universal property that given any other cohomological functor U* which van- 
ishes on projectives then every natural map T* + U* factors uniquely through 
the map T’ + ?*. We refer the reader to Mislin’s paper [ 131 for further 
details. 

4.1. (i) If Ti is zero for infinitely many non-negative i then ? is zero for all i. 
(ii) If T’ is continuous for infinitely many non-negative i then ? is contin- 

uous for all i. 
(iii) If Ti commutes with direct sums for injinitely many non-negative i then 

Fi commutes with direct sums for all i. 

Proof. (i) This is clear. 
(ii) We first show that if T is any half-exact continuous additive functor 

then its left satellite S-t T is continuous. Following Mislin [ 131, we define 
S-‘T(M) to be the kernel of the induced map T(SZM) -+ T(FM), where 
FM denotes the free module on the underlying set of M and OM denotes the 
kernel of the natural surjection FM + M. It is easy to see that the functor 
F : A4 H FM is continuous, and therefore so is Q. Let (MA 1 A E A) be a direct 
limit system of modules. The continuity of T, F and Q ensures that the natural 
maps lirnAT(FMA) + T(F(l&MA)) and limAT(SZMl) + T(S2(lin&Ml)) 
are isomorphisms, and consequently the natural map 

l&S-‘T(MA) + S -‘T(limMA) 
1 A 

is an isomorphism. Thus S-l T is continuous. It also half exact and additive. 
The higher left satellites S-’ T are defined inductively by S-‘T = S- ‘S-‘+ ’ T 
and so the continuity of all these follows by induction. 

Combining this argument with the fact that the T’ are continuous for 
infinitely many non-negative i, we see that for any fixed n, the functors 
S-iTn+i are continuous for infinitely many non-negative i. Continuity now 
follows: if I is the set of i for which S-iTn+i is continuous then we have 

l&pn(M~) = limlimS-‘T”+‘(Mk) = limlimS-iT”fi(M~) 
A 

= hmlimS_‘T”+‘(A&) = lm~S’~T~+~(lm~Ml) -----f 
iEZ i iEZ 1 

= P(l&lMA), 

as required. 
(iii) can be proved in a similar way to (ii). 0 

4.2. Let M be an R-module. Then the following are equivalent. 
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(i) M has finite projective dimension over R. 
(ii) Extk (M, -) is zero for all suf$ciently large i. 

(iii) I@ (M, - ) is zero for all i. 
(iv) i%$(M,M) = 0. 

Proof. The implications (i) + (ii) and (iii) + (iv) are elementary, and 
(ii) + (iii) is an application of 4.1(i). We shall prove (iv) + (i). 

For R-modules L and N, [L, N] denotes the quotient of HomR (L, N) by 
the additive subgroup of homomorphisms which factor through a projective 
module. The functor 52 induces maps [L, N] -+ [QL, QN]. It can be shown 
that Gi (L, N) is naturally isomorphic to the direct limit l& [afl+‘L, Q’N]. 
Mislin proves this in the case when R is a group ring and L is the trivial module, 
in Section 4 of [ 131, but the argument applies essentially without change to 
the general situation. Thus the vanishing of 6$ (M, M) is equivalent to 
the assertion limi[SZ’M, Q’M] = 0. This implies that there exists i > 0 
such that the identity endomorphism of M becomes zero under the natural 
map HomR(M, M) + [M,M] + [SZiM,QiM]. For such an i, the identity 
endomorphism of !CJ2’M factors through a projective module and hence S2’M 
is projective and M has projective dimension at most i. 0 

Proof of Theorem A. Let G and M be as in the statement of Theorem A. If 
M has finite projective dimension over kG then it automatically has finite 
projective dimension over kH for all subgroups H of G. Conversely, assume 
that M has finite projective dimension over kH for .all X-subgroups H of G. 
The functors 6$, (M, -) are continuous for all 1, by 4.1 (ii).S?nKthe Tate- 
Mislin cohomology always vanishes on projective modules, 3.3 can be applied, 
and the conclusion is that s”,, (M, M) = 0. The theorem now follows from 
4.2, (iv) + (i). 0 

It is perhaps worth remarking that one has the following variation on Theo- 
rem A: 

Theorem A’. Let G be an Hfi-group and let M be a kG-module. Suppose 
that the functors Ext;, (M, - ) commute with direct sums for infinitely many 
non-negative 1. Then the following are equivalent. 

(i) M has finite projective dimension over kG. 
(ii) M has jinite projective dimension over kH for all 3E-subgroups H of G. 

Proof (Outline). The reason is that in the crucial Step 2 of the proof of 3.2, 
the argument uses only the fact that the functors commute with direct sums, 
and not the stronger assumption of continuity. Continuity is used in Step 1 
of that proof, but if we assume that G belongs to Hfi rather than LHX, then 
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this step becomes unnecessary. One must, of course, use 4.1 (iii) in proving 
Theorem A’, instead of 4.1 (ii). 0 

5. Some general properties of (FP),-groups 

We begin by proving the proposition mentioned in the Introduction: 

Proposition. has finite 

cohomological dimension over Q. Then there is a finitely generated subring S of 
Q such that G has finite cohomological dimension over S, and there is a bound 
on the orders of the finite subgroups of G. 

Proof. Since G is of type (FP),, the functors Hi (G, -) are continuous for 
all i, and hence, by 4.1 (ii), it follows that %‘)(G, -) is continuous. This shows 
that %O(G,Q) = gO(G,Z) @Cl. But cdo(G) <CC implies that fiO(G,Q) = 0, 
by 4.2. Hence go (G, h) is a torsion group. 

Now fi”( G, E) is also a ring. Being torsion, the subring generated by 1 
is isomorphic to Z/nZ for some positive integer n. Let S be the subring 
of Q generated by A. Then 2’ (G, S) = go (G, Z) & S = 0, and it follows 
from 4.2 that G has finite cohomological dimension over S. Finally, if H 
is a finite subgroup of G then the restriction map fro (G, E) * i?O (H, Z) 
is a ring homomorphism and the Tate-Mislin cohomology of H coincides 
with the classical Tate cohomology. Thus there is a ring homomorphism 
Z/nZ + go (H, Z) = h/lHIZ and hence ]H] divides n. 0 

Proof of Theorem B. If G belongs to LHG and has type (FP), then Theorem A, 
applied with k = Q and M = Q, shows that cdo (G) < CX. Now the Proposition 
can be applied, and the result follows. 0 

Proof of the Corollary. Let G be a soluble group of type (FP), over Z. 
By Theorem B, G has finite cohomological dimension over Q and there is a 
bound on the orders of the finite subgroups of G. We deduce that G is a soluble 
group of finite rank, and using Theorem 10.33 of [ 141 that G has a torsion- 
free subgroup H of finite index. Now H is again of type (FP),. Applying 
Theorem A to H with k = E and M = H shows that H has finite cohomological 
dimension over Z. Therefore, H is of type (FP) and G is virtually of type 
(FP). The main theorem of [ 111 now shows that G is constructible in the 
sense that it can be built up from the trivial group by a finite sequence of 
finite extensions and ascending HNN-extensions. 0 
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