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We find that charged unstable particles as well as neutral unstable particles with non-zero magnetic
moment which live sufficiently long may emit electromagnetic radiation. This new mechanism is
connected with the properties of unstable particles at the post exponential time region. Analyzing the
transition times region between exponential and non-exponential form of the survival amplitude it is
found that the instantaneous energy of the unstable particle can take very large values, much larger than
the energy of this state for times from the exponential time region. Based on the results obtained for the
model considered, it is shown that this purely quantum mechanical effect may be responsible for causing
unstable particles to emit electromagnetic-, X- or γ -rays at some time intervals from the transition time
regions.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.
1. Introduction

Not all astrophysical mechanisms of the emission of electro-
magnetic radiation including X- and γ -rays coming from the space
are clear. Typical physical processes in which cosmic microwave
and other electromagnetic radiation, X-, or γ -rays are generated
have purely electromagnetic nature (an acceleration of charged
particles, inverse Compton scattering, etc.), or have the nature of
nuclear and particle physics reactions (particle–antiparticle annihi-
lation, nuclear fusion and fission, nuclear or particle decay). The
knowledge of these processes is not sufficient for explaining all
mechanisms driving the emission from some galactic and extra-
galactic X- or γ -rays sources, e.g. the mechanism that generates
γ -ray emission of the so-called “Fermi bubbles” remains contro-
versial, the mechanisms which drive the high energy emission
from blazars is still poorly understood, etc. (see, e.g., [1–4]). Similar
problems can be encountered when trying to explain the mecha-
nism of radiation of some cosmic radio sources: Origin of some
radio bursts and many of other sources is still unknown (see, e.g.,
[5,6]) and the radiation mechanism is unclear and, at the best, in-
sufficiently clear. Astrophysical processes are the source of not only
electromagnetic, X- or γ -rays but also a huge number of elemen-
tary particles including unstable particles of very high energies
(see, e.g., [4]). The numbers of created unstable particles during
these processes are so large that many of them can survive up to
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times t at which the survival probability depending on t trans-
forms from the exponential form into the inverse power-like form.
It appears that at this time region a new quantum effect is ob-
served: A very rapid fluctuations of the instantaneous energy of
unstable particles take place. These fluctuations of the instanta-
neous energy should manifest themselves as fluctuations of the
velocity of the particle. We show that this effect may cause un-
stable particles to emit electromagnetic radiation of a very wide
spectrum: from radio- up to ultra-high frequencies ν including
X-rays and γ -rays.

To make the Letter easily understandable we start in Section 2
with a brief introduction into the problem of the late time behav-
ior of unstable states. In Section 3 late time properties of the a
energy of unstable states are analyzed. In Section 4 observable ef-
fects are discussed: The emission of electromagnetic radiation by
unstable particles created in astrophysical processes. Final section
provides a short summary and suggestions where to look for signs
of the effect described in Section 4.

2. Late time properties of unstable states

Searching for the properties of unstable states one usually an-
alyzes their decay law, i.e. their survival probability: If |φ〉 is an
initial unstable state then the survival probability, P(t), equals
P(t) = |a(t)|2, where a(t) is the survival amplitude, a(t) = 〈φ|φ; t〉,
and |φ; t〉 = e−it H |φ〉, H is the total Hamiltonian of the system
under considerations, |φ〉, |φ; t〉 ∈ H and H is the Hilbert space
of states of the considered system. The spectrum, σ(H), of H
is assumed to be bounded from below, σ(H) = [Emin,∞) and
 Funded by SCOAP3.
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Fig. 1. Axes: x = t/τφ , y = P(t) — the logarithmic scale, z = P(t). (a) The general,
typical form of the decay curve P(t). (b) An enlarged part of (a) showing a typical
behavior of the survival probability P(t) at the transition times region when t ∼ T .

Emin > −∞. Studying the late time properties of unstable states
it is convenient to use the integral representation of a(t) as the
Fourier transform of the energy distribution function, ω(E),

a(t) =
∫

ω(E)e−it E dE, (1)

with ω(E) � 0 and ω(E) = 0 for E < Emin [7–16]. In the case of
quasi-stationary (metastable) states it is useful to express a(t) in
the following form [14,15], a(t) = aexp(t) + alt(t), where aexp(t) is
the exponential part of a(t), that is aexp(t) = N exp[−it(E0

φ − i
2 Γ 0

φ )]
(E0

φ is the energy of the system in the state |φ〉 measured at the
canonical decay times, i.e. when Pφ(t) has the exponential form,
Γ 0

φ is the decay width, N is the normalization constant), and alt(t)
is the late time non-exponential part of a(t).

From the literature it is known that the characteristic fea-
ture of survival probabilities P(t) is the presence of sharp and
frequent fluctuations at the transition times region, when con-
tributions from |aexp(t)|2 and |alt(t)|2 into P(t) are comparable
(see, e.g., [8,10–13]), and that the amplitude alt(t) and thus the
probability P(t) exhibits inverse power-law behavior at the late
time region for times t much later than the crossover time T .
(This effect was confirmed experimentally not long ago [17]). The
crossover time T can be found by solving the following equation,
|aexp(t)|2 = |alt(t)|2. In general T � τφ , where τφ = 1/Γ 0

φ is the
live-time of φ. Formulae for T depend on the model considered
(i.e. on ω(E)) in general (see, e.g., [9–11,14–16]). The standard
form of the decay curve, that is the form of the probability P(t) as
a function of time t is presented in Fig. 1. In this figure the calcu-
lations were performed using the Breit–Wigner energy distribution
function, ω(E) ≡ ωBW(E), where

ωBW(E)
def= N

2π
Θ(E − Emin)

Γ 0
φ

(E − E0
φ)2 + (Γ 0

φ /2)2
, (2)

and Θ(E) is the unit step function. In Fig. 1 calculations were per-
formed for (E0

φ − Emin)/Γ
0
φ = 20.

Deviations form the exponential decay law visible in Fig. 1 are
caused by the regeneration process [8,18,19]. A certain fixed pro-
portion between rates of decay and regeneration processes does
not change at canonical decay times, so there is a kind of a bal-
ance between these processes at this time region. This balance is
broken at transition times and later. Oscillations of the decay law
seen in the transition times region are a reflection of this fact. Time
intervals around local maxima of the decay curve presented in the
panel (b) of Fig. 1 are places where the regeneration process begins
to dominate temporarily and the decay process slows down. On the
other hand, times close to the local minima fix places where the
regeneration rate is minimal and the decay process accelerates.

Note that the survival amplitude a(t) obtained within quan-
tum mechanics share with the amplitude a(t) obtained as a result
of investigations on relativistic quantum field theory models, the
property (1) of being the Fourier transform of a positive definite
function ω(E) with a limited from below support (see, e.g., [9,
20–23]). This means that effects connected with the long time be-
havior at t ∼ T and t � T of the survival probability P(t) should
take place in the both cases: When they are considered at the level
of quantum mechanical processes as well as at the level of the pro-
cesses that require quantum field theory to describe them.

3. Energy of unstable states at late times

It is commonly known that the information about the decay
rate, Γφ , of the unstable state |φ〉 under considerations can be ex-
tracted from the survival amplitude a(t). In general not only Γφ

but also the instantaneous energy Eφ(t) of an unstable state |φ〉
can be calculated using a(t) [14,15]. In the considered case, Eφ(t)
can be found using the effective Hamiltonian, hφ(t), governing the
time evolution in an one-dimensional subspace of states spanned
by vector |φ〉 [14,15]:

hφ(t) = i

a(t)

∂a(t)

∂t
(3)

≡ 〈φ|H|φ; t〉
〈φ|φ; t〉 . (4)

The instantaneous energy Eφ(t) of the system in the state |φ〉 is the
real part of hφ(t), Eφ(t) = 
(hφ(t)). The imaginary part of hφ(t) de-
fines the instantaneous decay rate Γφ(t), Γφ ≡ Γφ(t) = −2�(hφ(t)),
[24,14,15].

There is Eφ(t) = E0
φ and Γφ(t) = Γ 0

φ at the canonical decay
times (see, e.g., [24]) and at asymptotically late times (see [15,14,
25]),

Eφ(t) � Emin + c2

t2
+ c4

t4
. . . (for t � T ), (5)

Γφ(t) � c1

t
+ c3

t3
+ · · · (for t � T ), (6)

where ci = c∗
i , i = 1,2, . . . (c1 > 0 and the sign of ci for i � 2

depends on the model considered), so limt→∞ Eφ(t) = Emin and
limt→∞ Γφ(t) = 0 [15,14,25]. Results (5) and (6) are rigorous. The
basic physical factor forcing the amplitude a(t) to exhibit in-
verse power law behavior at t � T is the boundedness from be-
low of σ(H). This means that if this condition is satisfied and∫ +∞
−∞ ω(E)dE < ∞, then all properties of a(t), including the form

of the time-dependence at t � T , are the mathematical conse-
quence of them both. The same applies by (3) to the properties
of hφ(t) and concerns the asymptotic form of hφ(t) and thus of
Eφ(t) and Γφ(t) at t � T .

The sharp and frequent of fluctuations of P(t) at the transition
times region (see Fig. 1) are a consequence of a similar behavior
of real and imaginary parts of the amplitude a(t) at this time re-
gion. Therefore the derivatives of a(t) may reach extremely large
negative and positive values for some times from the transition
time region and the modulus of these derivatives is much larger
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Fig. 2. Axes: y = (Eφ(t) − Emin)/(E0
φ − Emin), x = t/τφ . The dashed line denotes the

straight line y = 1. (a) The instantaneous energy Eφ(t) in the transitions time re-
gion: The case (E0

φ − Emin)/Γ 0
φ = 20. (b) Enlarged part of (a): The highest maximum

of (Eφ(t) − Emin)/(E0
φ − Emin) in the transition times region.

Fig. 3. The same as in Fig. 1 for (E0
φ − Emin)/Γ 0

φ = 10.

than the modulus of a(t), which is very small for these times.
This means that at this time region the real part of hφ(t) which
is expressed by the relation (3), i.e. by a large derivative of a(t)
divided by a very small a(t), can reach values much larger than
the energy E0

φ of the unstable state measured at the canonical de-
cay times. Using relations (1), (3) and assuming the form of ω(E)

and performing all necessary calculations numerically one can see
how this mechanism work. A typical behavior of the instantaneous
energy Eφ(t) at the transition time region is presented in Figs. 2
and 3. In these figures the calculations were performed for the
Breit–Wigner energy distribution function (2).

From (4) it follows that the effective Hamiltonian hφ(t) is the
so-called weak value of H [26–29]. Considering hφ(t) as a weak
value the behavior of Eφ(t) at transition times region and ex-
tremely large values reached by Eφ(t) at some times there that can
be seen in Figs. 2 and 3 are not extraordinary effects. Properties of
this kind are typical for many weak values of physical quantities
[26–29]. What is more experiments have verified aspects of the
theory of weak values (see, e.g., [28–33]).

It seems that one should observe a picture presented in Figs. 2,
3, or similar one, e.g., after performing a suitable modification of
the experiment described in [17]. This modification should allow
one to register not only the presence of the photons emitted by ex-
cited molecules but also energies of these photons (i.e. frequencies
of the registered radiation). Analogous modifications of possible
experiments based on the effects analyzed in [34] and proposed
there seems to make such the observation possible.

More detailed numerical analysis of Eφ(t) and P(t) within the
model considered shows that local maxima of (Eφ(t)− Emin)/(E0

φ −
Emin) correspond with the local minima of the survival probabil-
ity P(t) (see Fig. 4). It is just as one would expect: The higher
the energy Eφ(t), i.e., the greater the difference (Eφ(t) − Emin) the
higher the probability of a decay (i.e., the survival probability less).
Fig. 4. Axes: x = t/τφ, y = P(t), z = (Eφ(t) − Emin)/(E0
φ − Emin). The case (E0

φ −
Emin)/Γ 0

φ = 20. (a) The local minimum of P(t) corresponding with the highest local

maximum of the ratio (Eφ(t) − Emin)/(E0
φ − Emin). (b) The highest local maximum

of (Eφ(t) − Emin)/(E0
φ − Emin).

One meets an analogous effect in the case of the local minima of
(Eφ(t)− Emin)/(E0

φ − Emin): They correspond with the local maxima
of the survival probability. There is a simple and obvious interpre-
tation of this effect: The difference (Eφ(t)− Emin) smaller the decay
process slower and the regeneration process faster.

From the results presented in Figs. 2 and 3 one can see that the
ratio, (Eφ(t) − Emin)/(E0

φ − Emin), takes negative values for some
times at transition times region. This does not mean that the in-
stantaneous energy Eφ(t) of the unstable particle takes negative
values at these times t . The negative values of (Eφ(t)− Emin)/(E0

φ −
Emin) mean that Eφ(t) > 0 becomes smaller than Emin at these t .
The most negative values of this ratio occur in its local minima,
which correspond to local maxima of the survival probability P(t)
as it was mentioned above. This means that at these times the rate
of the decay process greatly slows down and even nearly stops but
the rate of the regeneration process becomes extremely fast.

4. Observable effects

Note that from the point of view of a frame of reference in
which the time evolution of the unstable system was calculated
the Rothe experiment as well as the picture presented in Figs. 2,
3 refer to the rest coordinate system of the unstable system con-
sidered. Astrophysical sources of unstable particles emit them with
relativistic or ultra-relativistic velocities in relation to an external
observer so many of these particles move in space with ultra high
energies. The question is what effects can be observed by an ex-
ternal observer when the unstable particle, say φ, which survived
up to the transition times region, t ∼ T , or longer is moving with
a relativistic velocity in relation to this observer. The distance d
from the source reached by this particle is of order d ∼ dT , where
dT = vφ · T ′ , T ′ = γL T and γL ≡ γL(vφ) = (

√
1 − β2)−1, β = vφ/c,

vφ is the velocity of the particle φ. (For simplicity we assume that
there is a frame of reference common for the source and observer
both and that they do not move with respect to this frame of ref-
erence.) The relation (4) explains why effects of type (5), (6) and
those one can see in Figs. 2, 3 are possible. In the case of mov-
ing particles created in astrophysical processes one should consider
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the effect shown in Figs. 2, 3 together with the fact that the par-
ticle gains extremely huge kinetic energy, W φ , which have to be
conserved. There is W φ = m0

φc2γL , where m0
φ is the rest mass of

the particle φ. We have m0
φc2 ≡ E0

φ at canonical decay times and

thus W φ ≡ E0
φγL at these times. At this time region E0

φ = Eφ(t) but

at times t � τφ , t ∼ T we have Eφ(t) �= E0
φ . A general relation be-

tween instantaneous energies of the unstable particle in the rest
system and in the system connected with the moving particle can
be found using a relation between the survival amplitude, av �=0(t),
of a moving unstable particle and the survival amplitude, av=0(t),
of the particle in the rest coordinate system of the observer O.
In such a case assuming that the rest system of the particle moves
with a velocity vφ relative to O one can find within the relativistic
quantum theory that (see, e.g., [35])

av �=0(t) = av=0
(

t

γL

)
. (7)

The relation (7) means that survival probabilities P v �=0(t) and
P v=0(t/γL) corresponding with the survival amplitudes av �=0(t),
av=0(t/γL) respectively are equal. This property and thus the re-
lation (7) was tested by numerous experiments. Now using (3) and
(7) it is easy to find that

hv �=0
φ (t) = 1

γL
hv=0

φ (t/γL), (8)

where hv �=0
φ (t) is obtained by inserting into (3) the survival am-

plitude av �=0(t), and so on. From this last relation is follows that
the instantaneous energy E v=0

φ (t/γL) = 
(hv=0
φ (t/γL)) of the mov-

ing particle φ measured by the observer O equals E v=0
φ (t/γL) =

γLE v �=0
φ (t). Taking into account that E v �=0

φ (t) = 
(hv �=0
φ (t)) is the

instantaneous energy measured in the rest system of the particle
one can identify it with the instantaneous energy Eφ(t) analyzed
in the previous section. So in the general case the kinetic energy of
the moving particle φ having the energy Ek

φ in its rest system mea-

sured by the observer O equals W φ

k = γ k
L Ek

φ and here γ k
L = γL(vφ

k ).

Similarly there is W φ

l = γ l
LE l

φ for the other particle moving with

the velocity vφ

l �= vφ

k and having the energy E l
φ . Now if to assume

that we observe the particle φ at different instants tk �= tl of time
t then we can use the following identification: Ek(l)

φ = Eφ(tk(l)). Of

course the kinetic energies W φ , W φ

k , W φ

l of φ have to be the same
at the canonical decay times region and at the transition times
tk, tl ∼ T : W φ ≡ W φ

k ≡ W φ

l , that is there should be

W φ ≡ γ k
L Ek

φ = const. (9)

From relation (9) one can infer that this is possible only when
the changes of Eφ(tk) at times tk ∼ T are balanced with suitable

changes of γ k
L (i.e. of the velocity vφ

k of the considered particle).
So, in the case of moving unstable particles, an external observer
should detect rapid fluctuations (changes) of their velocities at
distances d ∼ dT from their source. These fluctuations of the ve-
locities mean for the observer that the particles are moving with a
nonzero acceleration in this space region, v̇φ �= 0. So we can expect
that this observer will register electromagnetic radiation emitted
by charged unstable particles, which survived up to times t ∼ T ,
i.e. which reached distances d ∼ dT from the source (see Fig. 5).
This follows from the Larmor formula and its relativistic general-
ization, which state that the total radiation power, P , from the con-
sidered charged particle is proportional to (v̇φ)2 (see, e.g., [36]):

P = 1 q2(v̇φ)2

2
γ 6

L (10)

6πε0 c
Fig. 5. Time regions: (i) Canonical decay, (ii) transition, (iii) asymptotically late.
W φ

i = γ i
LE i

φ (i = 1,2,3) and W φ

i is the energy of moving relativistic particle φ

measured by the observer, E i
φ = Eφ(ti), t1 � t2 � t3, t1 ∼ τφ , t2 ∼ T , t3 � T and

W φ
1 = E0

φγ 1
L , ν is the frequency of the emitted electromagnetic rays.

(where q is the electric charge, ε0 — permittivity for free space),
and v̇φ �= 0 implies that there must be P �= 0. The same conclusion
also concerns neutral unstable particles with non-zero magnetic
moment [36,37]. One should expect that the spectrum of this ra-
diation will be very wide: From high radio frequencies, through
X-rays up to high energy γ -rays depending on the scale of the
fluctuations of the instantaneous energy Eφ(t) in this space region.

Within the model defined by ωBW(E) the cross-over time T
can be found using the following approximate relation valid for
E0

φ/Γ 0
φ � 1, [14]:

Γ 0
φ T ≡ T

τφ

∼ 2 ln

[
2π

( E0
φ − Emin

Γ 0
φ

)2]
, (11)

whereas for the model considered in [16,9] one has T /τφ ∼
5 ln[(E0

φ − Emin)/Γ
0
φ ] (see (11) in [16]). Considering a meson μ±

as an example and taking E0
φ − Emin = mμ± − (me + mν̄e + mνμ) �

105 [MeV], then using (11) one finds T = Tμ ∼ 165.3τμ . (The for-
mula (11) from [16] gives Tμ ∼ 202τμ .) The distance dTμ from
the source reached by muon, which survived up to the time
Tμ � 165.3τμ depends on its kinetic energy W μ and equals:
from dTμ � 106 [m] if W μ = 109 [eV], up to dTμ � 0.033 [pc] if
W μ = 1018 [eV]. Similarly, there is for π -mesons E0

φ − Emin =
mπ± − (mμ± + mνμ) � 33.83 [MeV], which leads by (11) to the
results: Tπ± � 143τπ± and dTπ± 7.9 � ×103 [m] if W π = 109 [eV]

and dTπ± � 8 × 1012 [m] � 53.45 [au] if W π = 1018 [eV]. For the

neutron E0
φ − Emin = mn − (mp +me +mνe ) � 0.78 [MeV] and using

(11) one finds: Tn � 225τn and dTn � 130.6 [au] if W n = 109 [eV]
and dTn � 2.05 [Mpc] if W n = 1018 [eV].

Let us now analyze Fig. 2 in more details. Coordinates of the
highest maximum in Fig. 2 are equal: (xmx, ymx) = (21.60,10.27).
Coordinates of points of the intersection of this maximum with the
straight line y = 1 are equal: (x1, y1) = (21.58,1.0) and (x2, y2) =
(21.62,1.0). From these coordinates one can extract the change
�vφ = vφ

M − vφ
1 of the velocity vφ of the considered particle and

the time interval �t = tM − t1 at which this change occurred (here
tM = tmx and vφ

1 = vφ(t1)). Indeed, using (9) one finds

γ 1
L = EM

φ

E1
φ

γ M
L . (12)

There are EM
φ = Eφ(tM) and E1

φ = Eφ(t1) ≡ E0
φ in the considered

case. This means that we can replace γ 1
L by γL measured at

the canonical decay times and then taking the value of the ra-
tio EM

φ /E0
φ from Fig. 2 we can use (12) to calculate γ M

L . Figs. 2, 3

show how the ratio (Eφ(t) − Emin)/(E0
φ − Emin)

def= κ(t) varies in
time and this κ(t) can be easy extracted form these figures, e.g.,
for t = tM and for t = t1 �= tM . If one wants to use the relation (12)



240 K. Urbanowski, K. Raczyńska / Physics Letters B 731 (2014) 236–241
in order to calculate γ M
L , one needs the ratio Eφ(t)/E0

φ instead of

κ(t). Using κ(t) it is easy to express Eφ(t)/E0
φ in terms of known

parameters of unstable particles considered. We have

Eφ(t)

E0
φ

= κ(t) − (
κ(t) − 1

) Emin

E0
φ

. (13)

In the considered case κ(tM) ≡ ymx = 10.27 which, e.g., for the
muon gives EM

μ /E0
φ � 10.21. Hence using (12) within the consid-

ered model one finds that for the muon there is γ 1
L � 10.21γ M

L .

Next having γ 1
L ≡ γL and γ M

L it is easy to find �vφ = vφ
M − vφ

1 .
Now using (10) one can estimate the energy P of the electro-
magnetic radiation emitted in unit of time by an unstable charged
relativistic particle φ during the time interval �t . In other words,
one can find �vφ/�t and thus P ∝ (�vφ/�t)2. This procedure,
formulae (9), (12) and parameters describing the highest maxi-
mum in Fig. 2 lead to the following (simplified, very conserva-
tive) estimations of the energies of the electromagnetic radiation
emitted by ultra relativistic muon at the transition times region
(in a distance d ∼ dT from the source): P ∼ 4.6 [eV/s]. Analo-
gously coordinates of the highest maximum in Fig. 3 are equal:
(xmx, ymx) = (18.69,37.68) and coordinates of points of the in-
tersection of this maximum with the line y = 1 are: (x1, y1) =
(18.67,1.0) and (x2, y2) = (18.72,1.0). This leads to the follow-
ing estimation: P ∼ 0.84 [keV/s]. Similar estimations of P can be
found for neutral ultra-relativistic unstable particles with non-zero
magnetic moment.

The question is where the above described effect may be ob-
served. Astrophysical and cosmological processes in which ex-
tremely huge numbers of unstable particles are created seem to
be a possibility for the above discussed effect to become manifest.
The fact is that the probability Pφ(t) = |a(t)|2 that an unstable par-
ticle φ survives up to time t ∼ T is extremely small. Let Pφ(t) be
Pφ(t)|t∼T ∼ 10−k , where k � 1, then there is a chance to observe
some of particles φ survived at t ∼ T only if there is a source cre-
ating these particles in Nφ number such that Pφ(t)|t∼TNφ � 1. So
if a source exists that creates a flux containing Nφ ∼ 10l , unstable
particles and l � k then the probability theory states that the num-
ber Nsurv of unstable particles Nsurv = Pφ(t)|t∼TNφ ∼ 10l−k � 1,
has to survive up to time t ∼ T . Sources creating such numbers
of unstable particles are known from cosmology and astrophysics:
as example of such a source can be considered processes taking
place in galactic nuclei (galactic cores), inside stars, etc. Accord-
ing to estimations of the luminosity of some γ -rays sources the
energy emitted by these sources can even reach a value of order
1052 [erg/s], [4,38–40], and it is only a part of the total energy pro-
duced there. So, if one has a source emitting energy 1050 [erg/s]
then, e.g., an emission of N0 � 6.25 × 1047 [1/s] particles of en-
ergy 1018 [eV] is energetically allowed. The same source can emit
N0 � 6.25 × 1056 [1/s] particles of energy 109 [eV] and so on. If
one follows [16] and assumes that for laboratory systems a typical
value of the ratio (E0

φ − Emin)/Γ
0
φ is (E0

φ − Emin)/Γ
0
φ � O (103–106)

and then taking, e.g., (E0
φ − Emin)/Γ

0
φ = 106 one obtains from

(11) that Nφ(T ) ∼ 2.53 × 10−26N0 and from the estimation of T
used in [16] (see (11), (12) in [16]) that Nφ(T ) ∼ 10−30N0. This
means that there are Nφ(T ) ∼ 14 × 1021 particles per second of
energy W φ = 1018 [eV] or Nφ(T ) ∼ 14 × 1030 particles of en-
ergy W φ = 109 [eV] in the case of the considered example and
T calculated using (11). On the other hand, from T obtained for
the model considered in [16] one finds Nφ(T ) ∼ 6.25 × 1017 and
Nφ(T ) ∼ 6.25 × 1026 respectively. These estimations show that as-
trophysical sources are able to create such numbers N0 of unstable
particles that sufficiently large number Nφ(T ) � 1 of them has
to survive up to times T when the effect described above should
occur. So the numbers of unstable particles produced by some as-
trophysical sources are sufficiently large in order that a significant
part of them had to survive up to the transition times and there-
fore to emit electromagnetic radiation. The expected spectrum of
this radiation can be very wide: From radio frequencies up to
γ -rays depending on energy distribution function ω(E) of the un-
stable particle emitting this radiation.

5. Final remarks

We have shown that charged unstable particles or neutral un-
stable particles with non-zero magnetic moment, which survived
up to transition times or longer, should emit electromagnetic ra-
diation. We have also shown that only astrophysical processes can
generate sufficiently huge number of unstable particles in order
that this emission could occur. From our analysis it seems to be
clear that the effect described in this Letter may have an astro-
physical meaning and help explain the controversies, which still
remain, concerning the mechanisms that generates the cosmic mi-
crowave, or X-, or γ -rays emission, e.g., it could help explain
why some space areas (bubbles) without visible astronomical ob-
jects emit microwave radiation, X- or γ -rays. Indeed, let us con-
sider active galactic nuclei as an example. They emit extremely
huge numbers of stable and unstable particles including neutrons
(see, e.g., [2]) along the axis of rotation of the galaxy. The un-
stable particles, which reached distances d ∼ dT from the galactic
plane, should emit electromagnetic radiation. So a distant observer
should detect enhanced emission of this radiation coming from
bubbles with the centra located on the axis of the galactic rotation
at average distances dT from the galactic plane (see Fig. 5). In the
case of neutrons dTn can be extremely large. Therefore a possible
emission of the electromagnetic radiation generated by neutrons
surviving sufficiently long seems to be relatively easy to observe
and it should be possible to determine dTn . Now having realistic
sufficiently accurate ω(E) for neutrons we are able to calculate Tn

and to find En(t) and its local maxima at transition times. Thus if
the energies W n (i.e., γL ), are known then in fact we know veloc-
ities vn and we can compute dTn and distances where En(t) has
maxima. All these distances fix the space areas where the mech-
anism discussed should manifest itself. This suggests how to test
this mechanism: The computed dTn can be compared with obser-
vational data and thus one can test if the mechanism described in
our Letter works in astrophysical processes.

Note that all possible effects discussed in this Letter are the
simple consequence of the fact that the instantaneous energy Eφ(t)
of unstable particles becomes large for suitably long times com-
pared with E0

φ and for some times even extremely large. This
property of Eφ(t) is a purely quantum effect resulting from the
assumption that the energy spectrum is bounded from below and
it was found by performing an analysis of the properties of the
quantum mechanical survival probability a(t).
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