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Short Communication 

Bimodal granulocyte transit time through the 
human lung demonstrated by deconvolution 
analysis 

W. Y. Ussov”‘, A. M. PETERS+, M. J. MYERS+, D. M. GLASS+ AND 

J. M. B. HUGHES” 

Departments of “Medicine and tImaging, Hammevsmith Hospital, London, U. U. 

The lungs are an important site of granulocyte pooling. The aim of the study is to quantify pulmonary vascular 
granulocyte transit time using deconvolution analysis, as has previously been performed to measure pulmonary red 
cell transit time. Granulocyte and red cell studies were performed in separate groups of patients. Both cell types were 
labelled with Tc-99m, which for granulocyte labelling was complexed with hexamethylpropyleneamine oxime 
(HMPAO). The red cell impulse response function (IRF) was monoexponential with a median transit time of 4.3 s. 
The granulocyte IRF was biexponential in 19 of 22 subjects, 18 of whom had systemic inflammation (inflammatory 
bowel disease, systemic vasculitis or graft-lis-host disease) and four were controls without inflammatory disease. The 
median transit time of the fast component ranged from 20 to 25 s and of the slow component 120-I 38 s in the four 
patient groups. The fraction of cells undergoing slow transit correlated significantly with (a) mean granulocyte 
transit time and (b) the fraction showing shape change in vitro. We conclude that granulocyte transit time through 
the pulmonary circulation is bimodal and that shape-changed (activated) cells transit more slowly that non-activated 
cells. The size of the fraction undergoing slow transit is closely related to mean granulocyte transit time and is an 
important determinant of the size of the pulmonary vascular granulocyte pool. 
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Introduction 

It is believed that a significant proportion of circulating 
granulocytes are present in the lungs (1,2). The size of this 
pool in relation to other sites of granulocyte pooling is 
controversial. Since granulocytes may have a role in lung 
damage in a range of inflammatory conditions (3-5), quan- 
tification of pulmonary vascular transit time is important 
and several techniques using labelled granulocytes have 
been described (5-9). Deconvolution analysis has been used 
in man to measure pulmonary vascular transit time of 
erythrocytes (10) but not granulocytes. Here we have quan- 
tified pulmonary vascular granulocyte transit time by de- 
convolution analysis. The impulse response function (IRF) 
so generated reproduces the time-activity curve that would 
be obtained following instantaneous deposition of cells in 
the lungs with no recirculation. Similarly, we also measured 
the pulmonary vascular transit time of erythrocytes. 
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Patients and Methods 

Granulocyte transit time was measured in 22 patients: six 
with active inflammatory bowel disease (IBD), five with 
graft-vs-host disease after bone marrow transplantation 
(BMT), seven with systemic vasculitis (SV) and four 
referred with suspected prosthetic joint infection but who 
had negative granulocyte scintigraphy and negative clinical 
follow-up (controls). Erythrocyte transit time was measured 
in nine more patients undergoing radionuclide ventriculog- 
raphy. No patient had radiological evidence of focal lung 
disease, none had heart failure and none were cigarette 
smokers. Differential white cell counts with respect to 
eosinophils were not significantly elevated. 

Granulocytes were labelled with Tc-99m-hexamethylpro- 
pylenamine oxime (HMPAO) (Amersham International, 
U.K.) without isolation from plasma (11) and erythrocytes 
in vitro with Tc-99m using a standard technique. Although 
the granulocyte isolation technique eliminates mononuclear 
leukocytes, the population of cells labelled includes 
eosinophils, for which Tc-99mHMPAO displays some 
selectivity (12), as well as neutrophils. Cells were injected as 
a bolus in a volume of less than 2.5 ml with the patient 
supine [N 185 MBq (granulocytes); - 740 MBq (erythro- 
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TABLE 1. Parameters of the pulmonary granulocyte impulse response function (IRF) and granulocyte 
shape change 

IBD sv BMT Controls 

Median transit time 
fast fraction (s)* 20 
range 9-38 
PC n.s. 

Median transit time 
slow fraction (s) 120 
range 69-310 
Pi ns. 

Median MTT (s) 37 
range 20-247 
P< n.s. 

Median slowly-passing 
fraction*? 0.18 
range 0.06-0.35 
PC n.s. 

Median fraction of cells showing shape 
change 0.22 
range 0.07-O 34 
PC n.s. 

24 23 
22-100 10-30 
n.s. n.s. 

128 138 
66-408 99-193 
n.s. ns. 
66 52 

39-196 39-69 
ns. ns. 

0.32 0.24 
02-0.33 0.19-0.32 

0.01 0.05 

0.32 0.41 
0.19-0.58 0.33-0.82 

0.005 0.01 

25 
7-43 

130 
62-266 

36 
1 l-87 

0.11 
0.08-O. 19 

0.11 
0.0990.15 

MTT in patients (two SV, one IBD) with monoexponential IRF were 66, 147 and 247 s, respectively. 
*Excludes patients with monoexponential IRF. 
P values are given in comparison to control group; n.s., not significant. 
Fast fraction corresponds to first exponential with intercept A. 
Slow fraction corresponds to second exponential with intercept B. 
tEqua1 to B/(A + B). 
MTT, mean granulocyte transit time; IBD, inflammatory bowel disease; SV, systemic vasculitis; 
BMT, bone marrow transplant recipients. 

cytes)]. Dynamic gamma camera scintigraphy was 
performed at a frame rate of 1 s- ’ for 2 min followed 
by 1 20 s- i up to 1 h (granulocytes) or I s- ’ for 30 s 
(erythrocytes). 

The pulmonary IRF was derived by deconvolution 
analysis (13) using an input curve from a region of interest 
(ROI) over the right ventricle and an output curve from an 
ROI over the periphery of the mid-zone of the right lung. 
Mean transit time was calculated as the initial height of the 
IRF divided by the enclosed area. Most granulocyte IRFs 
were bi-exponential; the fraction of cells undergoing slow 
transit was accordingly calculated as the ratio B/(A+B) 
where A is the zero-time intercept of the fast exponential 
and B of the slow exponential. B/(A+ B) was taken as unity 
for monoexponential IRFs. Activation of labelled granulo- 
cytes was assessed using an in vitro shape-change assay 
which assesses, on an all-or-nothing basis for individual 
cells, the effect of stimuli upon polarization of cytoskeletal 
elements (14). Cell labelling itself has no activating effect by 
this assay (15). 

Statistical analysis was non-parametric: Wilcoxon 
ranked sum test and Spearman rank correlation coefficient 
(4. 

Results 

Erythrocytes gave monoexponential IRFs with a median 
transit time of 4.3 s (range 1.7-14.7) compared with about 
40 s for granulocytes (Table 1). The lung IRF was 
bi-exponential in 19 patients and monoexponential in three. 
The rapidly-passing fraction had a transit time of about 
20 s. No significant differences, compared with controls, 
could be identified in patients with inflammation with 
respect to the exponential rate constants or to mean granu- 
locyte transit time. However, even after exclusion of 
patients with monoexponential IRFs, the fraction of 
slowly-passing granulocytes [i.e. ratio BI(A+ B)] was 
significantly higher in patients with SV (P<O.Ol) and trans- 
plant recipients (PcO.05) compared with controls. B/(A+ B) 
correlated strongly with mean transit time (r=0.8, 
P<O.OOl). There was a weak but insignificant association 
between the eosinophil differential and transit times of both 
fractions. 

The fraction of granulocytes showing shape-change was 
significantly higher in patients with SV (P<O.O05) and 
transplant recipients (P<O.Ol) compared with controls. The 
shape-changed fraction was similar to B/(A+B) [with an 
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average ratio of the two of 0.95 (N= 19: SD 0.55)] and 
correlated significantly with B/(A+B) (1=0.58, n=22, 
P<O.Ol), but not with mean granulocyte transit time. There 
was no correlation between the eosinophil differential and 
either B/(A+ B) or the fraction of granulocytes showing 
shape change. 

Discussion 

Although similar in size to red cells, and larger than 
pulmonary capillary diameter, granulocytes transit the 
lungs more slowly than red cells because they are less 
deformable (16-21). Reducing deformability by exposure to 
cytokines or glutaraldehyde results in a prolongation of 
transit time which correlates with cell stiffness as measured 
by a cell ‘poker’ (19-21). 

Using videomicroscopy in the dog, Lien et al. (17,18) 
observed cells either passing through lung capillaries at the 
same speed as erythrocytes, without being arrested at any 
point, or to be completely immobilized for periods up to 
several minutes. Using the indicator dilution technique, 
Hogg’s group (9,22,23) measured a discrete fraction of 
granulocytes extracted in the lung on a single pass. Extrac- 
tion of granulocytes measured by outflow detection in the 
isolated perfused lung is also consistent with bimodal 
transit (24), in which the fast fraction has the same transit 
time as erythrocytes. 

The current findings fit well with the concept of bimodal 
transit in several respects. Thus, we found a fraction of cells 
with rapid transit which could be separately identified in 
the IRF from a fraction with more prolonged transit. 
However, the mean transit time of the rapidly-passing 
fraction was not the same as mean red cell transit time, but 
four to five times longer. This may be the result of labelling 
as we have previously shown that the transit time of 
labelled granulocytes decreases over about 30 min after 
injection by a factor of about 3 (8). In the controls, the 
rapidly-passing granulocytes represented about 85% of the 
total; this is in contrast to 50% with videomicroscopy 
[dog (17,18)], 1040% with indicator dilution [dog (22) 
rabbit (23), man (9)] and 12% with outflow detection 
[dog (24)]. It is not known whether bimodal granulocyte 
transit could be a reflection of differing transit times of 
granulocyte sub-populations. This is of relevance in 
the present study because Tc-99m-HMPAO has an 
element of selectivity for eosinophils (12). Although the 
eosinophil count did not correlate with the fraction of 
granulocytes showing slow transit, weak associations 
were observed with transit times of the rapidly and 
slowly passing fractions. In any event? it is unlikely that 
differential labelling of eosinophils and neutrophils with 
Tc-99m-HMPAO could explain the current findings 
because first oesinophil counts were not elevated 
and second the kinetics of granulocytes respectively 
labelled with Tc-99m-HMPAO and In-l 11 -tropolonate 
(which is not known to be selective for eosinophils) are 
indistinguishable (25). 

The fraction of slowly-passing cells and mean transit time 
were higher in SV and transplant recipients compared with 

controls, but the separate transit times of the two fractions 
did not differ between patient groups. The fraction of 
slowly-passing cells was similar to and correlated with the 
fraction showing shape change, suggesting that activated 
cells transit slowly. Because shape change is considered 
all-or-nothing, this in vitro assay is of direct relevance to the 
transit time of granulocytes through the pulmonary capil- 
laries in relation to reduced deformability (20). We do not 
know, however, whether neutrophils and eosinophils 
behave differently in the assay. 

We conclude that granulocyte transit time through the 
pulmonary circulation s bimodal and that shape-changed 
(activated) cells transit more slowly than non-activated 
cells. The size of the fraction undergoing slow transit is 
closely related to mean granulocyte transit time and is an 
important determinant of the size of the pulmonary 
vascular granulocyte pool. The relationships between 
granulocyte sub-populations and pulmonary vascular 
transit time deserves further study. 
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