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1. Introduction

The Euler number En is defined by

∑
n�0

En
xn

n! = sec x + tan x.

Thus E2n and E2n+1 are also called the secant number and the tangent number respectively. In 1879,
André [1] showed that En is equal to the number of alternating permutations of {1,2, . . . ,n}, i.e., the
permutations π = π1 . . .πn such that π1 < π2 > π3 < · · · .

There are several q-Euler numbers studied in the literature, for instance, see [5,7–9,15]. In this
paper we consider the following q-Euler number En(q) introduced by Han et al. [7]:
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∑
n�0

E2n(q)xn = 1

1 − [1]2
q x

1 − [2]2
q x

· · ·

,
∑
n�0

E2n+1(q)xn = 1

1 − [1]q[2]qx

1 − [2]q[3]qx

· · ·

, (1)

where [n]q = (1 − qn)/(1 − q). We will use the standard notations:

(a;q)n = (1 − a)(1 − aq) · · · (1 − aqn−1), [
n
k

]
q
= (q;q)n

(q;q)k(q;q)n−k
.

This q-Euler number also has a nice combinatorial expression found by Chebikin [2]:

En(q) =
∑

π∈An

q31-2(π),

where An denotes the set of alternating permutations of {1,2, . . . ,n} and 31-2(π) denotes the num-
ber of 31-2 patterns in π .

Recently, Josuat-Vergès [9] found a formula for En(q). In Section 6 we show that, by elementary
manipulations, his formula can be rewritten as follows:

E2n(q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
qk(k+1)

k∑
i=−k

(−q)−i2
, (2)

E2n+1(q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
qk(k+2) Ak

(
q−1), (3)

where A0(q) = 1 and for k � 1,

Ak(q) = 1

1 − q

k∑
i=−k

(−q)i2 + q2k+1

1 − q

k−1∑
i=−(k−1)

(−q)i2
.

Shin and Zeng [15, Theorem 12] found a parity-independent formula for En(q).
We note that (2) is similar to the following formula of Touchard [17] and Riordan [14]:

dn = 1

(1 − q)n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
(−1)kq

k(k+1)
2 , (4)

where dn is defined by

∑
n�0

dnxn = 1

1 − [1]qx

1 − [2]qx

· · ·

. (5)

In this paper we introduce the (t,q)-Euler numbers En(t,q) defined by
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∑
n�0

En(t,q)xn = 1

1 − [1]q[1]t,qx

1 − [2]q[2]t,qx

· · ·

, (6)

where [n]t,q = (1 − tqn)/(1 − q). Note that (1 − q)2n En(0,q) = (1 − √
q )2n En(−1,

√
q ) = (1 − q)ndn ,

En(1,q) = E2n(q), and En(q,q) = E2n+1(q). In fact En(t,q) is a special case of the 2nth moment
μ2n(a,b;q) of Al-Salam–Chihara polynomials Q n(x) defined by the recurrence

2xQ n(x) = Q n+1 + (a + b)qn Q n(x) + (
1 − qn)(1 − abqn−1)Q n−1(x),

and the initial conditions Q −1(x) = 0 and Q 0(x) = 1. If a = √−qt and b = −√−qt , then the 2nth
moment μ2n(a,b;q) satisfies (1 − q)2n En(t,q) = 22nμ2n(

√−qt,−√−qt;q). Josuat-Vergès [10, Theo-
rem 6.1.1 or Eq. (46)] found a formula for μn(a,b;q), which implies that

En(t,q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))

×
∑

i, j�0

(−1)k+iq( j+1
2 )(qt)k− j

[
2k − j

j

]
q

[
2k − 2 j

i

]
q
. (7)

In the same paper, Josuat-Vergès showed that (2) and (3) can be obtained from (7) using certain
summation formulas.

The original motivation of this paper is to find a formula from which one can easily obtain (2), (3),
and (4). The main results in this paper are Theorems 1.1 and 1.3 below.

Theorem 1.1. We have

En(t,q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
tkqk(k+1)Tk

(
t−1,q−1),

where {Tk(t,q)}k�0 is a family of polynomials in t and q determined uniquely by the recurrence relation:
T0(t,q) = 1 and for k � 1,

Tk(t,q) = Tk−1(t,q) + (1 + t)(−q)k2 + (
1 − t2) k−1∑

i=1

(−q)k2−i2
Ti−1(t,q). (8)

From the recurrence of Tk(t,q), we immediately get Tk(−1,q) = 1 and Tk(1,q) = ∑k
i=−k(−q)i2

,
which imply (4) and (2) respectively. Using certain weighted lattice paths satisfying the same recur-
rence relation we obtain the following formula for Tk(t,q).

Corollary 1.2. We have

Tk(t,q) =
k∑

j=0

j∑
i=0

(−1) j+it2iq j2+i2+i
[

k − j
i

]
q2

([
k − i
j − i

]
q2

+ t

[
k − i − 1
j − i − 1

]
q2

)
.
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As a consequence of the proof of Corollary 1.2 we can express Tk(t,q) using what we call self-
conjugate overpartitions, see Theorem 4.1. This combinatorial expression allows us to find a functional
equation for Tk(t,q) which gives a recurrence relation for Tk(±qr,q), see Corollary 4.2. Solving the
recurrence relation, we get the following formulas for Tn(±qr,q) for any integer r.

Theorem 1.3. For b � 0 and k � 1, we have

Tk
(
qb,q

) =
k−1∑
i=0

qi(2k+1)

(q;q)b

[
b
i

]
q2

k−i∑
j=−(k−i)

(−q) j2 +
b−1∑
i=0

(q;q)i

(q;q)b
qk(2k+2i+1)

[
b − i − 1

k − 1

]
q2

, (9)

Tk
(−qb,q

) =
k−1∑
i=0

qi(2k+1)

(−q;q)b

[
b
i

]
q2

+
b−1∑
i=0

(−q;q)i

(−q;q)b
qk(2k+2i+1)

[
b − i − 1

k − 1

]
q2

, (10)

and for b � 1 and k � 0, we have

Tk
(
q−b,q

) =
b−1∑
i=0

(
q1−b;q

)
i(−q)k(k−2b+2)+2i

[
k + i − 1

i

]
q2

, (11)

Tk
(−q−b,q

) =
k−1∑
i=0

(−q1−b;q
)

b(−q)i(2k−2b−i+2)

[
b + i − 1

i

]
q2

+ (−q)k2+2k−2kb
b−1∑
i=0

(−q1−b;q
)

iq
2i

[
k + i − 1

i

]
q2

. (12)

Note that (2) and (3) follows immediately from (9) when b = 0 and b = 1, and (4) from (10) when
b = 0. When t = −q and t = −1/q, we get simple formulas, see Propositions 5.9 and 5.16.

We note that it is possible to obtain another formula for Tk(qb,q) for a positive integer b from a
result in [13, Section 6], see Section 7.

The rest of this paper is organized as follows. In Section 2 we interpret En(t,q) using δk-configu-
rations introduced in [11]. In Section 3 we prove Theorem 1.1 and Corollary 1.2. In Section 4 we show
that Tk(t,q) can be expressed as the sum of certain weights of symmetric overpartitions. Using this
expression we also find a functional equation for Tk(t,q). In Section 5 using the functional equation
obtained in the previous section we prove Theorem 1.3 which is divided into Corollaries 5.7, 5.8, 5.14,
and 5.15. In Section 6 we show that the original formula of En(q) in [9] is equivalent to (2) and (3).
In Section 7 we propose some open problems.

2. Interpretation of En(t,q) using δk-configurations

In this section we interpret En(t,q) using δk-configurations introduced in [11]. The idea is basically
the same as in [11].

2.1. S-fractions and weighted lattice paths

An S-fraction is a continued fraction of the following form:

1

1 − c1x

1 − c2x

.

· · ·
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Thus all continued fractions appeared in the introduction are S-fractions. There is a simple combinato-
rial interpretation for S-fractions using weighted Dyck paths. In this subsection we will find formulas
equivalent to Theorem 1.1 using this combinatorial interpretation.

Definition 1. A Dyck path of length 2n is a lattice path from (0,0) to (2n,0) in N
2 consisting of up

steps (1,1) and down steps (1,−1). We denote by Dn the set of Dyck paths of length 2n. A marked
Dyck path is a Dyck path in which each up step and down step may be marked. We denote by Dn

the set of marked Dyck paths of length 2n. We also denote by D∗
n the subset of Dn consisting of the

marked Dyck paths without marked peaks. Here, a marked peak means a marked up step immediately
followed by a marked down step. Given two sequences A = (a1,a2, . . .), B = (b1,b2, . . .) and p ∈ Dn ,
we define the weight wt(p;A,B) to be the product of ah (resp. bh) for each non-marked up step
(resp. non-marked down step) between height h and h − 1.

Observe that every marked step can be considered as a step of weight 1. We will consider a Dyck
path as a marked Dyck path without marked steps. In this identification we have Dn ⊂Dn .

The following combinatorial interpretation of S-fractions is well-known, see [4].

Lemma 2.1. For two sequences A= (a1,a2, . . .), B = (b1,b2, . . .), we have

1

1 − a1b1x

1 − a2b2x

· · ·

=
∑
n�0

xn
∑

p∈Dn

wt(p;A,B).

The reader may have noticed that every formula in the introduction has the factor
( 2n

n−k

) − ( 2n
n−k−1

)
in its summand. This can be explained by the following lemma.

Lemma 2.2. (See [11, Lemma 1.2].) For two sequences A and B we have

∑
p∈Dn

wt(p;A,B) =
n∑

k=0

((
2n

n − k

)
−

(
2n

n − k − 1

)) ∑
p∈D∗

k

wt(p;A− 1,B − 1),

where, if A= (a1,a2, . . .), the sequence A− 1 means (a1 − 1,a2 − 1, . . .).

From now on we fix the following sequences:

U = (−q,−q2, . . .
)
, Vt = (−tq,−tq2, . . .

)
.

By Lemmas 2.1 and 2.2, we have

En(t,q) =
∑

p∈Dn

wt
(

p; ([1]q, [2]q, . . .
)
,
([1]t,q, [2]t,q, . . .

))

= 1

(1 − q)2n

∑
p∈Dn

wt
(

p; (1 − q,1 − q2, . . .
)
,
(
1 − tq,1 − tq2, . . .

))

= 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

)) ∑
p∈D∗

k

wt(p;U,Vt). (13)
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2.2. δ+
k -configurations

We now recall δk-configurations. We first need some terminologies on integer partitions.

Definition 2. A partition is a weakly decreasing sequence λ = (λ1, λ2, . . . , λ�) of positive integer. Some-
time we will consider that infinitely many zeros are attached at the end of λ so that λi = 0 for all
i > �. Each integer λi is called a part of λ and the size of λ, denoted |λ|, is the sum of all parts. The
Ferrers diagram of λ is the arrangement of left-justified square cells in which the ith topmost row
has λi cells. We will identify a partition with its Ferrers diagram. Row i (resp. Column i) means the
ith topmost row (resp. leftmost column). The (i, j)-cell means the cell in Row i and Column j. An
inner corner (resp. outer corner) of λ is a cell c ∈ λ (resp. c ∈ δk/λ) such that λ \ {c} (resp. λ ∪ {c}) is a
partition. For a partition λ, the transpose (or conjugate) of λ is the partition, denoted λtr, such that λtr

has the (i, j)-cell if and only if λ has the ( j, i)-cell. For two partition λ and μ we write μ ⊂ λ if the
Ferrers diagram of μ is contained in that of λ. In this case we denote their difference as sets by λ/μ.

Let δk denote the staircase partition (k,k − 1, . . . ,1). Let B(m,n) denote the box with m rows and

n columns, that is, B(m,n) = (

m︷ ︸︸ ︷
n,n, . . . ,n ). It is well-known, for instance see [16], that

∑
λ⊂B(m,n)

q|λ| =
[

m + n
m

]
q
. (14)

Definition 3. A δk-configuration is a pair (λ, A) of a partition λ ⊂ δk−1 and a set A of arrows each
of which occupies a whole row or a whole column of δk/λ or δk−1/λ. If an arrow occupies a whole
row or a whole column of δk/λ (resp. δk−1/λ), we call the arrow a k-arrow (resp. (k − 1)-arrow). The
length of an arrow is the number of cells occupied by the arrow. A fillable corner is an outer corner
which is occupied by one k-arrow and one (k − 1)-arrow. A forbidden corner is an outer corner which
is occupied by two k-arrows. A δ+

k -configuration is a δk-configuration without forbidden corners nor
(k − 1)-arrows.

We note that an arrow in a δk-configuration can have length 0. We will represent an arrow of
length 0 as a half dot as shown in Fig. 1.

There is a natural bijection between D∗
k and �+

k as follows. For (λ, A) ∈ �+
k , the north-west border

of δk/λ defines a marked Dyck path of length 2k where the marked steps correspond to the segments
on the border with arrows, see Fig. 2.

For a δk-configuration C = (λ, A), we define the weight wtt,q(C) by

wtt,q(C) = (−1)|A|th(A)q2|λ|+‖A‖,

where ‖A‖ is the sum of the arrow lengths and h(A) is the number of horizontal arrows. For example,
if C is the δk-configuration in Fig. 2, we have wtt,q(C) = (−1)7t4q2·8+1+3+4+3+3+3+2.

Lemma 2.3. Suppose that C ∈ �+
k corresponds to p ∈D∗

k in the bijection described above. Then we have

wt(p;U,Vt) = tkqk(k+1) wtt−1,q−1(C), (15)

which implies that

∑
p∈D∗

k

wt(p;U,Vt) = tkqk(k+1)
∑

C∈�+
k

wtt−1,q−1(C). (16)
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Fig. 1. An example of δk-configuration.

Fig. 2. A δ+
k -configuration and the corresponding marked Dyck path, where the marked steps are the thicker steps.

Proof. Let C = (λ, A). By the construction of the bijection sending C to p, it is easy to see that

wt(p;U,Vt) =
k∏

i=1

r(i)c(i),

where r(i) = −tq(k+1−i)−λi if there is no horizontal arrow in Row i and r(i) = 1 otherwise, and c(i) =
−tq(k+1−i)−λtr

i if there is no vertical arrow in Column i and c(i) = 1 otherwise.
Now consider tkqk(k+1) wtt−1,q−1 (C). By the identities

tkqk(k+1) =
k∏

i=1

(−tqk+1−i)(−qk+1−i),
2|λ| =

k∑
i=1

λi +
k∑

i=1

λtr
i ,

and the fact that if there is an arrow in Row i (resp. Column i) then its length is (k + 1 − i) − λi
(resp. (k + 1 − i) − λtr

i ), it is easy to check

tkqk(k+1) wtt−1,q−1(C) =
k∏

i=1

r(i)c(i),

which finishes the proof. �
3. Proofs of Theorem 1.1 and Corollary 1.2

From now on we denote

Tk(t,q) =
∑

C∈�+
k

wtt,q(C).

For brevity we will also write Tk instead of Tk(t,q).
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By (13) and (16), we have

En(t,q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
tkqk(k+1)Tk

(
t−1,q−1).

Thus in order to prove Theorem 1.1, it remains to prove the recurrence relation (8). We need some
results in [11]. We begin by defining a set which is in bijection with �+

k .
A miniature of a δk-configuration is the restriction of it to the (k− i, i)-cell, the (k− i, i +1)-cell, and

the (k − i +1, i)-cell for some 1 � i � k −1, where any (k −1)-arrows in Column i +1 or Row k − i +1
are ignored. For example, the miniatures of the δk-configuration in Fig. 1 are

, , , ,

where the bottommost miniature appears first.

Definition 4. A δ−
k -configuration is a δk-configuration (λ, A) satisfying the following conditions.

1. There is neither fillable corner nor forbidden corner.
2. Every k-arrow has length 1.
3. For any miniature, if there is a horizontal (resp. vertical) k-arrow in the bottom (resp. right) cell,

then the middle cell is contained in λ. Moreover, if the bottom (resp. right) cell has a horizontal
(resp. vertical) k-arrow and a vertical (resp. horizontal) (k−1)-arrow, then the right (resp. bottom)
cell has a horizontal (resp. vertical) k-arrow. Pictorially, these mean the following:

⇒ , ⇒ ,

⇒ , ⇒ .

The set of δ−
k -configurations is denoted by �−

k .

Josuat-Vergès and the author [11, Proposition 4.1] found a bijection ψ : �+
k → �−

k preserving wt1,q ,
i.e. wt1,q(ψ(C)) = wt1,q(C) for all C ∈ �+

k . From the construction of ψ in their paper, it is clear that
ψ also preserves the number of horizontal arrows. Thus we also have wtt,q(ψ(C)) = wtt,q(C) for all
C ∈ �+

k , which implies

Tk =
∑

C∈�−
k

wtt,q(C). (17)

Since �+
k−1 ⊂ �−

k , we can rewrite (17) as

Tk = Tk−1 +
∑

C∈�−
k \�+

k−1

wtt,q(C). (18)

In order to compute the sum in (18), we need a property of the elements in �−
k \ �+

k−1.
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Fig. 3. List of exceptions.

Fig. 4. The sign-reversing involution φ on �−
k \ �+

k−1. The topmost good exception is colored red. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Lemma 3.1. (See [11, Lemma 4.2].) Let C ∈ �−
k . Then C ∈ �−

k \ �+
k−1 if and only if C has a miniature listed in

Fig. 3.

We call the miniatures in Fig. 3 exceptions. The exceptions B1, B2, B3, and B4 are called bad
exceptions, and the others are called good exceptions.

Now we can compute the sum in (18).

Lemma 3.2. We have

∑
C∈�−

k \�+
k−1

wtt,q(C) = (1 + t)(−q)k2 + (
1 − t2) k−1∑

i=1

(−q)k2−i2
Ti−1.

Proof. We will construct a sign-reversing involution φ on �−
k \ �+

k−1, i.e. an involution satisfying
wtt,q(φ(C)) = −wtt,q(C) if φ(C) 
= C . If φ(C) = C , we call C a fixed point of φ.

Suppose C ∈ �−
k \ �+

k−1. By Lemma 3.1, C has an exception. If C has a good exception, find the

topmost good exception. If the topmost good exception is G(i)
0 (resp. G(i)

1 ) for some i = 1,2, . . . ,7,
we define φ(C) to be the configuration obtained from C by replacing the topmost good exception
with G(i)

1 (resp. G(i)
0 ), see Fig. 4. If C has no good exceptions, we define φ(C) = C . The map φ is

certainly a sign-reversing involution whose fixed points are those containing only bad exceptions.
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Fig. 5. The elements in �−
k \ �+

k−1 containing only bad exceptions.

Now suppose that C has only bad exceptions. Note that the topmost bad exception determined
the miniatures below it because the miniature below B1, B2, B3 must be B1 and the miniature below
B4 must be B2. Furthermore, B1 or B2 can be the topmost exception only if it intersects with the
first row. Thus C looks like one of the configurations in Fig. 5. Since there is no exception above the
topmost bad exception, the sub-configurations consisting of ?’s in the last two configurations in Fig. 5
are contained in �+

i−1, where i can be any integer in {1,2, . . . ,k − 1}. Thus the weight sum of the
configurations in Fig. 5 are, from left to right,

(−q)k2
, t(−q)k2

,

k−1∑
i=1

(−q)k2−i2
Ti−1,

k−1∑
i=1

−t2(−q)k2−i2
Ti−1.

Since the left hand side of the equation of the lemma is the weight sum of fixed points of φ, we are
done. �

From (18) and Lemma 3.2 we get the recurrence relation (8) for Tk , thus completing the proof of
Theorem 1.1.

In order to find a formula for Tk from the above recurrence relation, we introduce a lattice path
model for Tk . We consider the integer lattice Z× Z in which the unit length is defined to be

√
2 so

that the area of a unit square is 2. In this lattice the area of the right triangle with three vertices
(0,0), (1,0), and (0,−1) is 1.

For nonnegative integers k and j, let M[(k,0) → (0,− j)] denote the set of paths from (k,0) to
(0,− j) consisting of west steps (−1,0) and southwest steps (−1,−1). We define the weight w(p) of
p ∈ M[(k,0) → (0,− j)] to be

w(p) = (−1) jqA(R)
(
1 − t2)s

V , (19)

where A(R) is the area of the region R bounded by the x-axis, the y-axis, and p, s is the number of
southwest steps immediately followed by a west step, and V = 1 + t if the last step is southwest, and
V = 1 otherwise.

Lemma 3.3. For k � 0, we have

Tk =
∑
j�0

∑
p∈M[(k,0)→(0,− j)]

w(p).

Proof. Let T ′
k denote the right hand side of the equation. We will show that T ′

k satisfies the same
recurrence relation in (8).

Observe that T ′
k is the sum of w(p) for all paths p from (k,0) to a point on the y-axis consisting

of west steps and southwest steps. The weight sum of such paths p starting with a west step is T ′
k−1.

Suppose now that p starts with a southwest step. If p has only southwest steps, then p must be
a path from (k,0) to (0,−k) and w(p) = (−1)kqk2

(1 + t). Otherwise we may assume that the first
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Fig. 6. An example of p ∈ M[(b,k) → (0,− j)]. The region S obtained from R by removing the right triangle with three vertices
(0,0), (0,− j), and ( j,0) can be identified with the partition λ = (5,4,2,2) ⊂ B( j,k − j).

west step of p is the (i + 1)st step for some 1 � i � k − 1. Let p′ be the path obtained from p by
removing the first i + 1 steps and shifting the remaining path upwards by i units. Then p′ is a path
from (k − i − 1,0) to a point on the y-axis and w(p) = (−1)iqk2−(k−i)2

(1 − t2)w(p′). Summarizing
these, we get

T ′
k = T ′

k−1 + (1 + t)(−q)k2 + (
1 − t2) k−1∑

i=1

(−1)iqk2−(k−i)2
T ′

k−i−1.

Changing the index i to k − i in the above sum, we obtain that Tk and T ′
k satisfy the same recurrence

relation. Since T0 = T ′
0 = 1, we have Tk = T ′

k . �
Suppose p ∈ M[(k,0) → (0,− j)]. Then the region R in (19) contains the right triangle with three

vertices (0,0), ( j,0), and (0,− j) whose area is j2. If we remove this right triangle from R , the
remaining region S can be identified with a partition λ ⊂ B( j,k − j) as shown in Fig. 6. Then we
have A(S) = 2|λ|. Moreover, s equals the number of inner corners of λ, which is the number dist(λ)

of distinct parts, and V = 1 + t if λ j = 0, and V = 1 if λ j > 0. Therefore, we have

w(p) = (−q) j2
q2|λ|(1 − t2)dist(λ)

V , (20)

where V = 1 + t if λ j = 0, and V = 1 if λ j > 0. Since M[(b,k) → (0,− j)] = ∅ if j > k, we get

Tk =
k∑

j=0

(−q) j2
( ∑

λ⊂B( j,k− j)

q2|λ|(1 − t2)dist(λ) +
∑

λ⊂B( j−1,k− j)

tq2|λ|(1 − t2)dist(λ)
)

. (21)

Lemma 3.4. For nonnegative integers m and n, we have

∑
λ⊂B(m,n)

xdist(λ)q|λ| =
m∑

i=0

q(i+1
2 )

[
n
i

]
q

[
n + m − i

m − i

]
q
(x − 1)i .

Proof. Let Pn denote the set of partitions such that the largest part is at most n and every part is
nonzero. It is not hard to see that

∑
λ∈P

y�(λ)xdist(λ)q|λ| =
n∏

i=1

(
1 + yxqi

1 − yqi

)
=

n∏
i=1

(
1 + y(x − 1)qi) n∏

j=1

1

1 − yq j
,

n
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where �(λ) is the number of parts of λ. Then by the q-binomial theorem [6, Exercise 1.2(vi)], we have

n∏
i=1

(
1 + y(x − 1)qi) =

n∑
i=0

q(i+1
2 )

[
n
i

]
q

yi(x − 1)i .

Since the condition λ ⊂ B(m,n) is equivalent to λ ∈ Pn with �(λ) � m, we have

∑
λ⊂B(m,n)

xdist(λ)q|λ| = [
y�m](∑

λ∈Pn

y�(λ)xdist(λ)q|λ|
)

= [
y�m]( n∑

i=0

q(i+1
2 )

[
n
i

]
q

yi(x − 1)i
n∏

j=1

1

1 − yq j

)

=
min(m,n)∑

i=0

q(i+1
2 )

[
n
i

]
q
(x − 1)i · [y�m−i]( n∏

j=1

1

1 − yq j

)
,

where [y�m] f (y) means the sum of the coefficients of y j in f (y) for j � m. Note that it is no harm
to replace min(m,n) with m in the last sum of the above equation. Since

[
y�m−i]( n∏

j=1

1

1 − yq j

)
=

∑
λ⊂B(m−i,n)

q|λ| =
[

n + m − i
m − i

]
q
,

we are done. �
Now we can complete the proof of Corollary 1.2.

Proof of Corollary 1.2. Applying Lemma 3.4 to (21), we obtain that Tk is equal to

k∑
j=0

(−q) j2

( j∑
i=0

qi2+i
[

k − j
i

]
q2

[
k − i
j − i

]
q2

(−t2)i +
j−1∑
i=0

tqi2+i
[

k − j
i

]
q2

[
k − i − 1
j − i − 1

]
q2

(−t2)i

)
,

which gives the desired formula. �
4. Self-conjugate overpartitions

In this section we will express the sum Tk(t,q) in the previous section using overpartitions. Over-
partitions were first introduced by Corteel and Lovejoy [3]. We define overpartitions in a slightly
different way, but it should be clear that the two definitions are equivalent.

Definition 5. An overpartition is a partition in which each inner corner may be marked. For an over-
partition λ, we define the conjugate of λ in the natural way: the partition is transposed and the
cell (i, j) is marked if and only if the cell ( j, i) is marked in λ, see Fig. 7. A self-conjugate overpartition
is an overpartition whose conjugate is equal to itself. We denote by SOP(k) the set of self-conjugate
overpartitions whose underlying partitions are contained in B(k,k). A diagonal cell is the (i, i)-cell for
some i. For an overpartition λ, the number of diagonal cells is denoted by diag(λ), and the number of
marked cells is denoted by mark(λ). The main diagonal is the infinite set of (i, i)-cells (not necessarily
contained in λ) for all i.
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Fig. 7. An overpartition and its conjugate.

Fig. 8. The construction of ν ∈ SOP(k) from an overpartition λ whose underlying partition is contained in B( j,k − j).

Recall that by Lemma 3.3 and (20) we have

Tk(t,q) =
k∑

j=0

∑
λ⊂B( j,k− j)

(−q) j2
q2|λ|(1 − t2)dist(λ)

V , (22)

where dist(λ) is the number of distinct parts of λ, and V = 1 + t if λ j = 0, and V = 1 if λ j > 0. Since
dist(λ) is equal to the number of inner corners of λ, the factor (1− t2)dist(λ) in (22) can be understood
as marking each inner corner or not. Thus (22) can be rewritten as

Tk(t,q) =
k∑

j=0

∑
λ

(−1) j+mark(λ)t2 mark(λ)q j2
q2|λ|V , (23)

where the latter sum is over all overpartitions λ whose underlying partitions are contained in
B( j,k − j). For such an overpartition λ, we construct ν ∈ SOP(k) which is obtained from the box
B( j, j) by attaching λ to the right of the box and its conjugate to the bottom of the box as shown in
Fig. 8. Then ν always has even number of marked cells and

(−1) j+mark(λ)t2 mark(λ)q j2
q2|λ| = (−1)diag(ν)+ mark(ν)

2 tmark(ν)q|ν|.

On the other hand, in (23) V = 1 + t if λ j = 0, and V = 1 if λ j > 0, equivalently, V = 1 + t if ν has
an inner corner on the main diagonal, and V = 1 otherwise. Considering V = 1 + t as marking the
diagonal inner corner or not, we can express Tk(t,q) as follows.

Theorem 4.1. We have

Tk(t,q) =
∑

ν∈SOP(k)

(−1)diag(ν)+
 mark(ν)
2 �tmark(ν)q|ν|.
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We close this section by finding a functional equation for Tk(t,q) which will serve as a recurrence
relation in the next section.

Corollary 4.2. For k � 1, we have

(1 − tq)Tk(tq,q) = Tk(t,q) + t2q2k+1Tk−1(t,q).

Proof. For ν ∈ SOP(k), let ω(ν) = (−1)diag(ν)+
 mark(ν)
2 �tmark(ν)q|ν| . Then

Tk(t,q) =
∑

ν∈SOP(k)

ω(ν).

We can think of ω(ν) as the product of the weight of the cells and marks in ν , which are defined
as follows:

(1) every non-diagonal cell has weight q,
(2) every diagonal cell has weight −q,
(3) every mark above the main diagonal has weight −t , and
(4) every mark below or on the main diagonal has weight t .

In order to express the left hand side of the equation we define SOP ′(k) to be the set of ν ∈
SOP(k) in which the unique corner on the main diagonal may have a special mark. Note that the
corner of the main diagonal can be an inner corner or an outer corner depending on ν , and if it is an
inner corner, then this corner may have two marks, one is non-special and the other is special. For
ν ∈ SOP ′(k), we define ω′(ν) to be the product of weights of the cells and marks, which are defined
as follows:

(1) every non-diagonal cell has weight q,
(2) every diagonal cell has weight −q,
(3) every mark above the main diagonal has weight −tq,
(4) every mark below or on the main diagonal has weight tq, and
(5) if there is a special mark, it has weight −tq.

It is easy to see that

(1 − tq)Tk(tq,q) =
∑

ν∈SOP ′(k)

ω′(ν).

Let X be the set of ν ∈ SOP ′(k) which has an inner corner on the main diagonal with only one
mark. For ν ∈ X , we define ν ′ to be the element in X that is obtained by switching the mark in the
inner corner on the main diagonal to special one or non-special one. It is clear that ω′(ν ′) = −ω′(ν).
Thus the sum of ω′(ν) for all ν ∈ X is zero and we get

(1 − tq)Tk(tq,q) =
∑

ν∈SOP ′(k)\X

ω′(ν).

Now suppose ν ∈ SOP ′(k) \ X . For each mark above (resp. below) the main diagonal, if it is in
Row i (resp. Column i), delete the mark and add a cell in Row i + 1 (resp. Column i + 1) and mark
the new cell. If there is a special mark in the outer corner on the diagonal, then add a cell to ν to
fill this outer corner and change the special mark to a non-special mark, see Fig. 9. If there are one
non-special mark and one special mark in the inner corner on the main diagonal, which is in Row i
and Column i, then delete the two marks, add one cell to Row i + 1 and one cell to Column i + 1, and
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Fig. 9. Moving the marks in ν ∈ SOP ′(k) when there is a special mark in the outer corner on the main diagonal.

Fig. 10. Moving the marks in ν ∈ SOP ′(k) when there is a special mark in the inner corner on the main diagonal.

mark the two new cells, see Fig. 10. Let μ be the resulting overpartition. From the construction it is
clear that ω′(ν) = ω(μ). Also, it is not hard to see that μ is an element in SOP(k) or an element in
SOP(k + 1). Moreover, if μ ∈ SOP(k + 1), the (1,k + 1)-cell and the (k + 1,1)-cell of μ are marked
inner corners, and the overpartition μ′ obtained from μ by deleting Row 1 and Column 1 satisfies
μ′ ∈ SOP(k − 1) and ω(μ) = t2q2k+1ω(μ′). Note that the sign does not change because μ′ has one
less diagonal cells and two less marks than μ. Thus we have

∑
ν∈SOP ′(k)\X

ω′(ν) =
∑

ν∈SOP(k)

ω(ν) + t2q2k+1
∑

ν∈SOP(k−1)

ω(ν),

which finishes the proof. �

5. Another formula for Tk(±qr,q)

In this section we will find another formula for Tk(t,q) when t = ±qr for any integer r. To this end
we need to divide the cases when r � 0 and r � 0. For a sign ε ∈ {+,−}, and nonnegative integers b
and k, we define

αε(b,k) = Tk
(
εqb,q

)
, βε(b,k) = Tk

(
εq−b,q

)
.

Note that for b � 0, we have

αε(b,0) = βε(b,0) = 1. (24)

Recall that from the recurrence (8) of Tk(t,q), we immediately get Tk(−1,q) = 1 and Tk(1,q) =∑k
i=−k(−q)i2

. Thus we have
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α−(0,k) = β−(0,k) = Tk(−1,q) = 1, (25)

α+(0,k) = β+(0,k) = Tk(1,q) =
k∑

i=−k

(−q)i2
. (26)

Substituting t = εqb−1 in Corollary 4.2, we obtain

(
1 − εqb)Tk

(
εqb,q

) = Tk
(
εqb−1,q

) + q2k+2b−1Tk−1
(
εqb−1,q

)
.

If b � 1, we can divide the both sides of the above equation by 1 − εqb to get the following lemma.

Lemma 5.1. For integers b,k � 1, we have

αε(b,k) = 1

1 − εqb
αε(b − 1,k) + q2k+2b−1

1 − εqb
αε(b − 1,k − 1).

Substituting t = εq−b in Corollary 4.2, we obtain

(
1 − εq1−b)Tk

(
εq1−b,q

) = Tk
(
εq−b,q

) + q2k−2b+1Tk−1
(
εq−b,q

)
,

which implies the following lemma.

Lemma 5.2. For integers b,k � 1, we have

βε(b,k) = (
1 − εq1−b)βε(b − 1,k) − q2k−2b+1βε(b,k − 1).

Now we have recurrence relations and initial conditions for αε(b,k) and βε(b,k). Thus we can use
the idea in Section 4 to compute αε(b,k) and βε(b,k). As we did in Section 4 we define the unit
length in the lattice Z×Z to be

√
2.

5.1. Formula for Tk(±qr,q) when r � 0

Suppose m and n are nonnegative integers with m = 0 or n = 0. We define L[(b,k) → (m,n)] to
be the set of lattice paths from (b,k) to (m,n) consisting of west steps (−1,0) and southwest steps
(−1,−1) without any west steps on the x-axis. The condition that there is no west step on the x-axis
guarantees that the lattice path ends when it first touches the x-axis or the y-axis.

For p ∈ L[(b,k) → (m,n)] we define the weight w(p) by

w(p) = qA(R)

b∏
i=m+1

1

1 − εqi

k∏
i=n+1

q2i, (27)

where A(R) is the area of the upper region R of the rectangle with four vertices (0,0), (b,0), (0,k),
and (b,k) divided by the path p.

Lemma 5.3. For b,k � 0, we have

αε(b,k) =
∑

m,n�0
mn=0

αε(m,n)
∑

p∈L[(b,k)→(m,n)]
w(p).
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Fig. 11. An example of p ∈ L[(b,k) → (0,n)].

Proof. Let F (b,k) denote the right hand side and let fm,n(b,k) denote the latter sum there. Using a
similar argument as in the proof of Lemma 3.3, one can easily check that for b,k � 1,

fm,n(b,k) = 1

1 − εqb
fm,n(b − 1,k) + q2k+2b−1

1 − εqb
fm,n(b − 1,k − 1).

Thus F (b,k) and αε(b,k) satisfy the same recurrence relation. Since F (b,k) = αε(b,k) when b = 0 or
k = 0, we get F (b,k) = αε(b,k) for all b,k � 0. �

Since αε(m,0) = 1, the formula in the previous lemma can be written as

αε(b,k) =
∑
n�1

αε(0,n)
∑

p∈L[(b,k)→(0,n)]
w(p) +

∑
m�0

∑
p∈L[(b,k)→(m,0)]

w(p). (28)

Now we compute the weight sums in (28).

Lemma 5.4. For b,k � 0 and n � 1, we have

∑
p∈L[(b,k)→(0,n)]

w(p) = q(k−n)(2k+1)

(εq;q)b

[
b

k − n

]
q2

.

Proof. Let p ∈ L[(b,k) → (0,n)]. From the definition of w(p) in (27), we have

w(p) = qk(k+1)−n(n+1)

(εq;q)b
· qA(R).

Since p consists of west steps and southwest steps, the region contains the right triangle with three
vertices (0,n), (0,k), and (k − n,k), whose area is (k − n)2, see Fig. 11. Let S be the region obtained
from R by removing this right triangle. Then S is contained in the quadrilateral with four vertices
(0,n), (k−n,k), (b,k), and (b −k+n,n). Again by the fact that p consists of west steps and southwest
steps, one can identify S with a partition λ contained in B(k − n,b − k + n). In this identification we
have A(S) = 2|λ|. Thus, we get

∑
p∈L[(b,k)→(0,n)]

w(p) = qk(k+1)−n(n+1)

(εq;q)b
· q(k−n)2 ∑

λ⊂B(k−n,b−k+n)

q2|λ|

= q(k−n)(2k+1)

(εq;q)b

[
b

k − n

]
q2

. �
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Lemma 5.5. For b � 0, k � 1 and m � 0, we have

∑
p∈L[(b,k)→(m,0)]

w(p) = (εq;q)m

(εq;q)b
qk(2k+2m+1)

[
b − m − 1

k − 1

]
q2

.

Proof. This is similar to the proof of the previous lemma. The only difference is that since the last
step of p is always a southwest step, p visits (m + 1,1) right before its end point. Then the same
argument works, so we omit the details. �

Finally, we obtain a formula for αε(b,k).

Theorem 5.6. For b � 0 and k � 1, we have

αε(b,k) =
k−1∑
i=0

qi(2k+1)

(εq;q)b

[
b
i

]
q2

αε(0,k − i) +
b−1∑
i=0

(εq;q)i

(εq;q)b
qk(2k+2i+1)

[
b − i − 1

k − 1

]
q2

.

Proof. By (28) and Lemmas 5.4 and 5.5, we have

αε(b,k) =
∑
n�1

q(k−n)(2k+1)

(εq;q)b

[
b

k − n

]
q2

αε(0,n) +
∑
m�0

(εq;q)m

(εq;q)b
qk(2k+2m+1)

[
b − m − 1

k − 1

]
q2

.

In the first sum the summand is zero unless k − n � 0, and in the second sum the summand is zero
unless m � b − 1. Replacing k − n with i in the first sum and m with i in the second sum we get the
desired formula. �

By Theorem 5.6 with ε = + and (26), we get a formula for Tk(qb,q).

Corollary 5.7. For b � 0 and k � 1, we have

Tk
(
qb,q

) =
k−1∑
i=0

qi(2k+1)

(q;q)b

[
b
i

]
q2

k−i∑
j=−(k−i)

(−q) j2 +
b−1∑
i=0

(q;q)i

(q;q)b
qk(2k+2i+1)

[
b − i − 1

k − 1

]
q2

.

If b = 1 in Corollary 5.7, we have that for k � 1,

Tk(q,q) = 1

1 − q

k∑
i=−k

(−q)i2 + q2k+1

1 − q

k−1∑
i=−(k−1)

(−q)i2
,

which together with Theorem 1.1 implies (3).
By Theorem 5.6 with ε = − and (25), we get a formula for Tk(−qb,q).

Corollary 5.8. For b � 0 and k � 1, we have

Tk
(−qb,q

) =
k−1∑
i=0

qi(2k+1)

(−q;q)b

[
b
i

]
q2

+
b−1∑
i=0

(−q;q)i

(−q;q)b
qk(2k+2i+1)

[
b − i − 1

k − 1

]
q2

.
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If b = 1 in Corollary 5.8, we have that for k � 1,

Tk(−q,q) = 1 + q2k+1

1 + q
. (29)

Note that the above identity is also true for k = 0. This gives the following formula for En(−q,q).

Proposition 5.9. We have

En(−q,q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
(−1)k qk2 + q(k+1)2

1 + q
.

Proof. By Theorem 1.1,

En(−q,q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
(−q)kqk(k+1)Tk

(−q−1,q−1).
By (29) we get

(−q)kqk(k+1)Tk
(−q−1,q−1) = (−q)k2+2k 1 + q−2k−1

1 + q−1
= (−1)k qk2 + q(k+1)2

1 + q
,

which finishes the proof. �
5.2. Formula for Tk(±qr,q) when r � 0

Suppose m and n are nonnegative integers with m = 0 or n = 0. We define L′[(b,k) → (m,n)] to be
the set of lattice paths from (b,k) to (m,n) consisting of west steps (−1,0) and south steps (0,−1)

without west steps on the x-axis nor south steps on the y-axis. For p ∈ L′[(b,k) → (m,n)] we define
the weight w(p) by

w(p) = q−A(R)

b∏
i=m+1

(
1 − εq1−i) k∏

i=n+1

(−q2i+1), (30)

where A(R) is the area of the upper region R of the rectangle with four vertices (0,0), (b,0), (0,k),
and (b,k) divided by the path p.

Lemma 5.10. For b,k � 0, we have

βε(b,k) =
∑

m,n�0
mn=0

βε(m,n)
∑

p∈L′[(b,k)→(m,n)]
w(p).

Proof. Since this can be done similarly as in the proof of Lemma 5.3, we omit the proof. �
Notice that L′[(b,k) → (0,0)] = ∅ unless (b,k) = (0,0). Since βε(m,0) = 1, the formula in the

previous lemma can be written as follows: if (b,k) 
= (0,0), we have

βε(b,k) =
∑
n�1

βε(0,n)
∑

p∈L′[(b,k)→(0,n)]
w(p) +

∑
m�1

∑
p∈L′[(b,k)→(m,0)]

w(p). (31)
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Fig. 12. An example of p ∈ L′[(b,k) → (0,n)]. The lower region R ′ can be identified with a rotated partition contained in
B(k − n,b − 1).

Lemma 5.11. For b,k � 0 and n � 1 with (b,k) 
= (0,0), we have

∑
p∈L′[(b,k)→(0,n)]

w(p) = (
εq1−b;q

)
b(−q)(k−n)(k+n−2b+2)

[
b + k − n − 1

k − n

]
q2

.

Proof. Let p ∈ L′[(b,k) → (0,n)]. From the definition of w(p) in (30), we have

w(p) = q−A(R)
(
εq1−b;q

)
b(−1)k−nq(k+1)2−(n+1)2

.

Note that R is contained in the rectangle with four vertices (0,n), (0,k), (b,n), and (b,k), see Fig. 12.
Let R ′ be the region of this rectangle minus R . Then −A(R) = −2b(k − n) + A(R ′). Since the last step
of p is a west step, R ′ can be identified with a partition λ ⊂ B(k − n,b − 1), which is rotated by an
angle of 180◦ , and A(R ′) = 2|λ|. Therefore,

∑
p∈L′[(b,k)→(0,n)]

w(p) = (
εq1−b;q

)
b(−1)k−nq(k−n)(k+n+2)−2b(k−n)

∑
λ⊂B(k−n,b−1)

q2|λ|

= (
εq1−b;q

)
b(−q)(k−n)(k+n−2b+2)

[
b + k − n − 1

k − n

]
q2

. �

Lemma 5.12. For b,k � 0 and m � 1 with (b,k) 
= (0,0), we have

∑
p∈L′[(b,k)→(m,0)]

w(p) = (
εq1−b;q

)
b−m(−q)k(k−2b+2)+2(b−m)

[
k + b − m − 1

b − m

]
q2

.

Proof. This can be done by the same argument as in the proof of the previous lemma. �
Now we can find a formula for βε(b,k).

Theorem 5.13. For b,k � 0 with (b,k) 
= (0,0), we have

βε(b,k) =
k−1∑
i=0

(
εq1−b;q

)
b(−q)i(2k−2b−i+2)

[
b + i − 1

i

]
q2

βε(0,k − i)

+
b−1∑
i=0

(
εq1−b;q

)
i(−q)k(k−2b+2)+2i

[
k + i − 1

i

]
q2

.
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Proof. By (31) and Lemmas 5.11 and 5.12, we have

βε(b,k) =
∑
n�1

(
εq1−b;q

)
b(−q)(k−n)(k+n−2b+2)

[
b + k − n − 1

k − n

]
q2

βε(0,n)

+
∑
m�1

(
εq1−b;q

)
b−m(−q)k(k−2b+2)+2(b−m)

[
k + b − m − 1

b − m

]
q2

.

In the first sum the summand is zero unless k − n � 0, and in the second sum the summand is zero
unless b − m � 0. By replacing k − n with i in the first sum and b − m with i in the second sum, we
get the desired formula. �

By Theorem 1.1 with ε = + and (26), we get a formula for Tk(q−b,q).

Corollary 5.14. For b � 1 and k � 0, we have

Tk
(
q−b,q

) =
b−1∑
i=0

(
q1−b;q

)
i(−q)k(k−2b+2)+2i

[
k + i − 1

i

]
q2

.

If b = 1 in Corollary 5.14, we get

Tk(1/q,k) = (−q)k2
,

which together with Theorem 1.1 implies

En(1/q,q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
(−1)k,

which is equal to 1 if n = 0, and 0 otherwise. Notice that this corresponds to the trivial identity:

∑
n�0

En(1/q,q)xn = 1.

By Theorem 1.1 with ε = − and (25), we get a formula for Tk(−q−b,q).

Corollary 5.15. For b � 1 and k � 0, we have

Tk
(−q−b,q

) =
k−1∑
i=0

(−q1−b;q
)

b(−q)i(2k−2b−i+2)

[
b + i − 1

i

]
q2

+ (−q)k2+2k−2kb
b−1∑
i=0

(−q1−b;q
)

iq
2i

[
k + i − 1

i

]
q2

.

If b = 1 in Corollary 5.15, we get
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Tk(−1/q,q) = 2
k−1∑
i=0

(−q)i(2k−i) + (−q)k2

= (−q)k2 + 2
k∑

i=1

(−q)(k−i)(k+i)

= (−q)k2
k∑

i=−k

(−q)−i2
,

which together with Theorem 1.1 implies the following formula for En(−1/q,q).

Proposition 5.16. We have

En(−1/q,q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

)) k∑
i=−k

(−q)i2
.

We note that Proposition 5.16 was first discovered by Josuat-Vergès (personal communication).

6. The original formula of Josuat-Vergès for En(q)

The original formula for En(q) in [9] is the following:

E2n(q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

)) 2k∑
i=0

(−1)i+kqi(2k−i)+k, (32)

E2n+1(q) = 1

(1 − q)2n+1

n∑
k=0

((
2n + 1

n − k

)
−

(
2n + 1

n − k − 1

)) 2k+1∑
i=0

(−1)i+kqi(2k+2−i). (33)

In this section we prove that (2) and (3) are equivalent to (32) and (33) respectively. By changing
the index i with i + k in (32) we obtain (2). For the second identity, let

f (k) = 1

1 − q

2k+1∑
i=0

(−1)i+kqi(2k+2−i).

Using Pascal’s identity, we obtain that (1 − q)2n E2n+1(q) is equal to

n∑
k=0

((
2n + 1

n − k

)
−

(
2n + 1

n − k − 1

))
f (k)

=
n∑

k=0

((
2n

n − k − 1

)
−

(
2n

n − k − 2

))
f (k) +

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
f (k)

=
n+1∑
k=1

((
2n

n − k

)
−

(
2n

n − k − 1

))
f (k − 1) +

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
f (k).

Since
(( 2n

n−k

) − ( 2n
n−k−1

))
f (k − 1) = 0 when k = 0 and k = n + 1, we have
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E2n+1(q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))(
f (k) + f (k − 1)

)
. (34)

Thus in order to get (3) it suffices to show f (k) + f (k − 1) = qk(k+2) Ak(q−1). Since

(1 − q) f (k) =
2k+1∑
i=0

(−1)i+kqi(2k+2−i) =
k∑

i=−(k+1)

(−1)i+2k+1q(i+k+1)(k+1−i)

= −q(k+1)2
k∑

i=−(k+1)

(−q)−i2 = (−1)k − q(k+1)2
k∑

i=−k

(−q)−i2
,

we have f (k) + f (k − 1) = 1 if k = 0, and for k � 1,

f (k) + f (k − 1) = −q(k+1)2

1 − q

k∑
i=−k

(−q)−i2 − qk2

1 − q

k−1∑
i=−(k−1)

(−q)−i2
,

which is easily seen to be equal to qk(k+2) Ak(q−1). Thus we get (3).

7. Concluding remarks

In this paper we have found a formula for the coefficient En(t,q) of xn in the continued fraction

1

1 − [1]q[1]t,qx

1 − [2]q[2]t,qx

· · ·

.

Since En(t,q) is a generalization of the q-Euler number, it is natural to consider a similar general-
ization of (5). Thus we propose the following problem.

Problem 1. Find a formula for the coefficient of xn in the following continued fraction:

1

1 − [1]t,qx

1 − [2]t,qx

· · ·

.

Also, we can consider a generalization of En(t,q) as follows.

Problem 2. Find a formula for the coefficient of xn in the following continued fraction:

1

1 − [1]y,q[1]t,qx

1 − [2]y,q[2]t,qx

· · ·

.

Recently Prodinger [13] expressed the continued fractions (in fact the corresponding T -fractions,
see [11, Lemma 6.1] for the relation between S-fractions and T -fractions) in the above two problems
as fractions of formal power series when both y and t are equal to qd for a positive integer d. From
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another result of Prodinger [13, Section 11], one can obtain the following formula for Tk(qb,q) for a
positive integer b:

Tk
(
qb,q

) =
b∑

i=0

q(i+1
2 )

[
b
i

]
q

k−i∑
j=−k

(−1) jq j2+i(k+ j)
[

k + j + b
b

]
q
. (35)

Problem 3. Find a direct proof of the equivalence of (9) and (35).

In the introduction we have two formulas (7) and Corollary 1.2 for En(t,q). Using hypergeometric
series Kim and Stanton [12] showed that these are equivalent and simplified to the following formula:

En(t,q) = 1

(1 − q)2n

n∑
k=0

((
2n

n − k

)
−

(
2n

n − k − 1

))
(−q)k

k∑
i=0

tiq(k−i
2 )

(
q;q2)

i

[
k + i
k − i

]
q
. (36)

Han et al. [7] introduced the polynomials Pα
n (x,q) defined by Pα

0 (x,q) = 1 and

Pα
n (x,q) = [x,a]q

[x,b]q Pα
n−1([x, c]q,q) − [x,d]q Pα

n−1(x,q)

1 + (q − 1)x
,

where α = (a,b, c,d) is a tuple of nonnegative integers and [x,n]q = xqn + [n]q . They proved that

∑
n�0

Pα
n (x,q)zn = 1

1 − qd[b − d]q[x,a]q z

1 − qa[c]q[x,b]q z

1 − qd[b − d + c]q[x,a + c]qz

1 − qa[2c]q[x,b + c]qz

· · ·

.

One can easily check that En(t,q) = P (0,1,2,0)
n ([1]t,q,q). Thus as a special case of [7, Proposition 1] we

have

∑
n�0

En(t,q)zn =
∑
m�0

tq2m+1[2m]t,q!∏m
i=0(tq2i+1 + [2i + 1]2

t,q z)
zm.

Using the idea in the last section of [15] Zeng proved the following formula (personal communica-
tion):

En(t,q) = t−n
n∑

m=0

m∑
i=0

(−1)n−i
q2m−2in+i2−n−i[2m]t,q![2i + 1]2n

t,q

[2i]q!![2m − 2i]q!!∏m
k=0,k 
=i[2k + 2i + 2]t2,q

, (37)

where [2m]t,q! = ∏2m
i=1[i]t,q and [2i]q!! = ∏i

k=1[2k]q .

Problem 4. Find a direct proof of the equivalence of (36) and (37).
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