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SUMMARY

Laboratory-created small-molecule-dependent in-
teins enable protein structure and function to be
controlled posttranslationally in living cells. Previ-
ously we evolved inteins that splice efficiently in
Saccharomyces cerevisiae only in the presence of
the cell-permeable small molecule 4-hydroxytamox-
ifen (4-HT). In mammalian cells, however, these in-
teins exhibited lower splicing efficiencies and slower
splicing in the presence of 4-HT, as well as higher
background splicing in the absence of 4-HT. Here
we further evolved ligand-dependent inteins in yeast
at 30�C and 37�C. The resulting second-generation
evolved inteins exhibit substantially improved
splicing yields and kinetics. The improvements
carried over to mammalian cells, in which the newly
evolved inteins spliced with substantially greater
(�2- to 8-fold) efficiency while maintaining low back-
ground splicing levels. These second-generation
inteins augment the promise of ligand-dependent
protein splicing for probing protein function in
mammalian cells.

INTRODUCTION

Methods to control protein structure and function inside living

cells have proven to be valuable tools to elucidate the roles of

proteins in their native biological contexts (Schreiber, 2003; Bus-

kirk and Liu, 2005; Banaszynski andWandless, 2006). Traditional

genetic methods that have been widely used to control protein

function by altering expression levels in mammalian cells include

knock-out and knock-in systems such as those mediated by

Cre-Lox recombination (Sauer and Henderson, 1988) and the

use of transcriptional regulators such as the tetracycline-respon-

sive tet-on/tet-off systems (Gossen and Bujard, 1992). These

methods are highly specific to the protein of interest and can

be applied to many proteins, but typically require days to reach

steady-state protein levels in mammalian cells, are irreversible

in the case of recombination-basedmethods, and are vulnerable

to transcriptional compensation (Shogren-Knaak et al., 2001;

Marschang et al., 2004; Wong and Roth, 2005; Acar et al.,

2010). Other methods such as RNA interference (Fire et al.,
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1998), chemical genetics (Specht and Shokat, 2002), molecule-

regulated protein stability or degradation (Stankunas et al.,

2003; Schneekloth et al., 2004; Banaszynski et al., 2006), and

small-molecule-induced proteolytic shunts (Pratt et al., 2007)

have also been used effectively by many researchers and offer

more rapid control over protein levels than strategies that exert

control before transcription, but can require the discovery of

small molecule modulators of protein function, necessitate the

involvement of other cellular machinery that may not be present

in the cells of interest, or are prone to off-target effects.

Protein splicing elements known as inteins are able to catalyze

their excision out of a single polypeptide and leave behind the

flanking sequences, or exteins, precisely ligated together

through a native peptide bond (Paulus, 2000). Inteins are attrac-

tive choices as tools for modulating protein expression because

they do not require any other cellular components, are able to

splice out of a wide variety of extein contexts (Xu et al., 1993),

and can undergo splicing in minutes (Paulus, 2000). Although

natural inteins splice spontaneously, inteins that undergo

splicing in a small-molecule-dependent manner have been

developed by fusing intein halves with proteins that dimerize in

the presence of a small molecule (Mootz and Muir, 2002; Mootz

et al., 2003; Shi andMuir, 2005), or by directed evolution in which

a library of intact inteins fused to a ligand-binding domain was

screened to splice in the presence, but not the absence, of

a small molecule (Buskirk et al., 2004). These small-molecule-

dependent inteins have enabled protein function in cells to be

controlled posttranslationally by the addition of an exogenous,

cell-permeable molecule (Mootz and Muir, 2002; Mootz et al.,

2003, 2004; Buskirk et al., 2004; Shi and Muir, 2005; Yuen

et al., 2006; Schwartz et al., 2007; Hartley and Madhani, 2009).

Previously we developed variants of the Mycobacterium

tuberculosis RecA intein that selectively splice in the presence

of the cell-permeable small molecule 4-hydroxytamoxifen

(4-HT) in a rapid, dose-dependent manner using directed evolu-

tion in Saccharomyces cerevisiae (Buskirk et al., 2004). The

M. tuberculosis RecA intein was chosen because it can effi-

ciently splice in a wide variety of contexts (Lew and Paulus,

2002), and the evolved 4-HT-triggered inteins retained this char-

acteristic. These evolved inteins have been successfully used as

a tool to study the role of histone H2A.Z in establishing chromatin

architecture around promoter regions in S. cerevisiae (Hartley

and Madhani, 2009).

We showed that these evolved inteins are functional in

mammalian cells at 37�C but splice with significantly reduced

speed, lower efficiency, and higher background splicing in the
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absence of 4-HT compared with splicing at 30�C in yeast (Yuen

et al., 2006). These limitations constrain the utility of these

evolved inteins as tools for mammalian cell biology; indeed,

only two studies (Mootz et al., 2003; Yuen et al., 2006) have re-

ported the use of small-molecule-dependent inteins in mamma-

lian cells. We therefore sought to develop improved intein vari-

ants that can splice efficiently, rapidly, and in a highly ligand-

dependent manner in mammalian cells at 37�C. In this work,

we describe the results of new directed evolution efforts to

improve the splicing characteristics of 4-HT dependent inteins

for use at 37�C and in mammalian cells. The resulting inteins in

yeast cells exhibit substantially improved splicing activity and

speed with no significant increase in background splicing at

both 30�C and 37�C. These second-generation inteins also

splice with much greater speed and efficiency in human cells

at 37�C in four different protein contexts compared with the

parental inteins. These new ligand-dependent inteins represent

more effective and broadly applicable tools for the small-mole-

cule-triggered, posttranslational modulation of protein activities

in living systems including mammalian cells.

RESULTS

Evolution Scheme for Improved 4-HT-Dependent Inteins
To improve the splicing characteristics of the evolved 4-HT

dependent inteins, we modified the high-throughput fluores-

cence-activated cell sorting (FACS) screen that we previously

used to isolate active and inactive inteins from mixed starting

populations (Buskirk et al., 2004) (Figure 1A). We genetically in-

serted the 4-HT-dependent intein in place of Cys108 of green

fluorescent protein (GFP)(uv), a FACS-optimized GFP mutant,

which places the intein near the midpoint of a b strand and abol-

ishes fluorescence until splicing takes place (Ormo et al., 1996;

Buskirk et al., 2004). During positive screens for intein splicing

activity, we collected cells that exhibited GFP fluorescence in

the presence of 4-HT, whereas during negative screens we

collected cells that remained nonfluorescent in the absence of

4-HT (Figure 1B). Using error-prone PCR with mutagenic dNTPs

(Zaccolo et al., 1996), point mutations were randomly introduced

into the genes of the two best inteins (including the ligand-

binding domain) resulting from our first intein evolution effort,

the 2-4 and 3-2 inteins. The resulting intein gene library was

cloned into the p416Gal1 vector in S. cerevisiae RDY98 using

gap repair homologous recombination (Raymond et al., 1999)

to obtain a starting library size of 7 3 106 clones. This starting

library was subjected to two evolution efforts in parallel, one con-

ducted at 30�C and one at 37�C (Figure 1C).

Each round of evolution consisted of at least two positive

screens and one negative screen (Figure 1B). Positive screen 1

(P1) for each round collected the 5% most fluorescent library

members in the presence of 4-HT. The second positive screen

(P2) in each round collected library members that exhibited

better splicing activity than the parental 3-2 intein in the presence
Figure 1. Intein Evolution Approach

(A) Overview of the directed evolution strategy used to isolate improved small-m

(B) Each round of evolution consisted of mutagenesis followed by at least two pos

4-HT and one negative FACS screen in the absence of 4-HT. One set of FACS d

(C) Two intein evolution efforts were performed in parallel at 30�C and 37�C, com
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of 4-HT by collecting cells that were more fluorescent than cells

transformed with a 3-2 intein-GFP construct. In Round 2, a third

positive screen was carried out (P3) that further enriched for

library members with better splicing activity than the 3-2 intein

in the presence of 4-HT. As the final screening step in each round

of evolution, a single negative screen (N) collected library

members that did not generate spliced GFP (i.e., were not fluo-

rescent) in the absence of 4-HT. Surviving gene pools were

diversified after each round. After Round 1, the genes of the

surviving library members in each of the two libraries were sepa-

rately mutagenized using error-prone PCR before recloning into

yeast as the starting library for Round 2. After Round 2, surviving

genes from the 30�C and 37�C screens were combined and sub-

jected to in vitro homologous recombination using the StEP

method (Zhao and Zha, 2006). The resulting recombined library

was subjected to separate Round 3 screens at 30�C and at

37�C. Overall, the entire evolution process comprised three

complete rounds containing 10 individual screening steps each

for the 30�C and the 37�C efforts (Figure 1C).

Splicing Characteristics of Evolved Inteins
Clones from the 30�C and the 37�C libraries surviving each of the

rounds of evolution were isolated and the genes encoding their

inteins were sequenced. Three sequences each from the 30�C
and 37�C libraries after Round 3 were selected for detailed char-

acterization on the basis of their high degree of abundance in the

final evolved pools. These six intein sequences are summarized

in Table 1. The newly evolved clones are designated 30RX-Y

(from evolution at 30�C) or 37RX-Y (from evolution at 37�C),
where X refers to the round number from which the clone was

isolated and Y refers to the clone number within that round.

Mutations Val34Ala, Ile66Thr, Thr328Lys, and Glu375Gly are

shared among clones in both the 30�C and 37�C libraries.

Leu124Pro was observed only in the 30�C library, and As-

p129Asn and Cys178Arg are only observed in the 37�C library.

All six evolved inteins were assayed for splicing function in the

GFP context in yeast cells at both 37�Cand 30�C, and their activ-

ities were compared with those of the original 2-4 and 3-2 inteins

under the same conditions. We appended a FLAG-tag at the

C-terminal end of the GFP-intein sequence to facilitate detection

of both the spliced and unspliced protein products. Cells treated

with 1 mM 4-HT or without 4-HT at time points from 1 hr to 24 hr

were subjected to FACS analysis to detect accumulation of func-

tional GFP after the splicing reaction (see Figure S1 available

online), and the spliced and unspliced proteins in the corre-

sponding cell lysates were quantified by western blot (Figure 2A)

and densitometry. The percentage of spliced protein was calcu-

lated as the amount of spliced protein divided by the total

amount of spliced + unspliced protein for each sample.

In yeast cells at 37�C, all six newly evolved inteins exhibit

substantially faster production of spliced proteins as well as

a significantly higher percentage of spliced product in the pres-

ence of 4-HT as compared to the parental 2-4 and 3-2 inteins
olecule-dependent inteins.

itive fluorescence-activated cell sorting (FACS) screens in the presence of 1 mM

ata from the Round 1 positive and negative screens is shown.

prising 20 total screening steps.
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Table 1. Mutations Isolated in Evolved Inteins

Evolved Intein Clone Intein Mutations Ligand-Binding Domain Mutations Intein Mutation

30R3-1 Val34Ala lle66Thr Leu124Pro Thr328Lys Glu375Gly

30R3-2 Val34Ala lle66Thr Thr328Lys

30R3-3 Val34Ala lle66Thr Leu124Pro Thr328Lys

37R3-1 Val34Ala lle66Thr Asp129Asn Cys178Arg Thr328Lys Glu375Gly

37R3-2 Val34Ala lle66Thr Cys178Arg Thr328Lys

37R3-3 lle66Thr Cys178Arg Thr328Lys

Three clones each from the 30�C and 37�C evolution efforts were chosen based on their abundance among DNA sequences surviving Round 3.

The mutations compared with the 3-2 intein sequence are shown. Mutations in the intein are shown in red; those in the ligand-binding domain are

shown in blue.
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(Figure 2B). Compared to the original 2-4 or 3-2 inteins, the most

active inteins at 37�C generate up to 8-fold more spliced protein

3 hr after 4-HT addition and up to 5-fold more spliced protein at

6 hr after 4-HT addition (Figure 2B). For example, whereas the

2-4 and 3-2 inteins generated 17%–27% spliced GFP after 6 hr

at 37�C, the six newly evolved inteins resulted in 70%–86%

spliced GFP at the same time point. Likewise, whereas the 2-4

and 3-2 inteins did not generate significant amounts of spliced

protein 1 hr after 4-HT treatment, the newly evolved inteins

produced 25%–35% spliced protein at this early time point. For

five of the six clones (all but clone30R3-3), splicing in the absence

of 4-HT remained low (typically <10% after 24 hr; see Figure 2C).

Total protein expressionper yeast cell of all six inteinsat each time

point were within 10% of the expression levels observed with the

3-2 intein (unpublished data), suggesting that the newly evolved

inteins do not alter protein expression levels compared with the

3-2 intein and are not unusually susceptible to degradation.

In yeast cells grown at 30�C, five of the six newly evolved

inteins (all but clone 37R3-1) exhibit more efficient splicing

by the 6-hr time point compared to the 2-4 and 3-2 inteins

(Figure 2D). Splicing in the absence of 4-HT after 24 hr was

generally %15%, the level of background splicing observed for

the 3-2 intein after 24 hr (Figure 2E). The newly evolved inteins

generated 3.6- to 7-fold higher levels of spliced protein at 3 hr,

and 1.6- to 2.6-fold higher levels of spliced protein at 6 hr, relative

to the 3-2 or 2-4 inteins, respectively. At later time points (12 or

24 hr) splicing efficiencies for the newly evolved inteins excluding

37R3-1 were generally high (R70%), similar to that of the 3-2

intein. As observed in the 37�C assays, the protein expression

levels per yeast cell of each intein were within ±10% of the level

observed with the 3-2 intein at each of the time points. Taking

into consideration splicing rate, overall splicing efficiency in the

presence of 4-HT, and background splicing in the absence of

4-HT, the best performing evolved intein clone for use at 37�C
was 37R3-2, and the best clone at 30�C was 30R3-1. Together,

these results indicate that the evolution strategy described

above resulted in inteins with substantially improved splicing

speed and yields of spliced protein in yeast at 30�C and espe-

cially at 37�C, without significantly impairing 4-HT dependence.

Ligand-Dependent Splicing of Newly Evolved Inteins
in Mammalian Cells
All six evolved intein sequences described above in the GFP

context were cloned into a pCMV promoter-based mammalian

expression vector with a C-terminal FLAG-tag for western blot
622 Chemistry & Biology 18, 619–630, May 27, 2011 ª2011 Elsevier
analysis. HEK293 cells were transfected with these vectors,

incubated for 24 hr at 37�C, then treated with Dulbecco’s modi-

fied Eagle’s medium (DMEM):F12 with 10% fetal bovine serum

(FBS) containing 1 mM final concentration of 4-HT or with the

same medium lacking 4-HT. The cells were incubated at 37�C
for an additional 12–24 hr then harvested for qualitative assess-

ment of functional GFP accumulation by FACS (Figure S2) and

quantification by western blot analyses (Figure 3A). Consistent

with the characteristics of the newly evolved inteins in yeast

cells, the three assayed clones evolved at 37�C all exhibit faster

GFP splicing kinetics and higher overall splicing yields at both

the 12-hr and 24-hr time points compared with the 2-4 or 3-2

inteins (Figure 3B). The best 37�C clone, 37R3-2, exhibited

3.8-fold and 2.2-fold higher GFP splicing efficiency after 24 hr

than the original 2-4 and 3-2 intein, respectively (73% spliced

GFP for 37R3-2 versus 19% for 2-4 and 33% for 3-2). Back-

ground splicing in the absence of 4-HT was not observed for

37R3-2 (Figure 3B), further consistent with the high ratio of

ligand-induced splicing to background splicing of 37R3-2

observed in yeast cells. The inteins evolved at 30�C also exhibit

similarly improved (�2- to 6-fold) splicing kinetics and splicing

efficiencies at 12 and 24 hr relative to that of inteins 2-4 and

3-2 (Figure 3C). The best 30�C library clone (30R3-1) generated

72% spliced GFP after 24 hr, compared with 33% and 19%

spliced GFP for the 3-2 and 2-4 inteins, respectively, while

splicing with%3% efficiency in the absence of 4-HT (Figure 3C).

Interestingly, the fraction of protein splicing that was com-

pleted by 12 hr relative to an endpoint of 24 hr was also greater

for the newly evolved inteins compared with the 2-4 and 3-2

inteins. For example, an average of 59% of the total amount of

spliced GFP in mammalian cells after 24 hr was present after

12 hr among the three 37�C library clones, and an average of

57% of the total amount of spliced GFP after 24 hr was present

after 12 hr among the three 30�C library clones. For comparison,

45% and 31% of the total spliced GFP after 24 hr was present at

12 hr for the 3-2 and 2-4 inteins, respectively. These results

collectively indicate that in livemammalian cells at 37�C thenewly

evolved inteins exhibit increased splicing rate and higher extent

of splicing compared with the original evolved inteins, while

maintaining low background splicing in the absence of 4-HT.

Evolved Intein Properties in Different Proteins
in Mammalian Cells
Next we studied the generality of 4-HT-dependent splicing of the

two best evolved inteins (30R3-1 and 37R3-2) by inserting these
Ltd All rights reserved
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Figure 2. Characterization of Newly Evolved Inteins in Yeast Cells

(A) Representative western blot of lysates from yeast cells expressing evolved intein variants in the context of green fluorescent protein (GFP). Each lane shows

lysate from 2.53 106 cells after 6 hr of growth at 30�C in the absence or presence of 1 mM4-HT visualized with an anti-FLAG-tag antibody. Quantitation of spliced

and unspliced protein bands by densitometry was used to calculate the percent spliced protein shown in the rest of the figure.

(B–E) Intein splicing characteristics in yeast at various time points in the context of GFP at 30�C (D and E) or 37�C (B and C), either with 1 mM 4-HT (B and D)

or without 1 mM 4-HT (C and E). Error bars represent the standard deviation of at least three independent experiments. See also Figure S1.
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inteins into three other protein contexts in addition to GFP in

mammalian cells. The inteins were inserted into mCherry, a red

fluorescent protein, in place of Thr113, the residue in mCherry

that corresponds to the Cys residue used for intein insertion in

GFP. As in the case of GFP, this placement positions the intein

near the mid-point of a b strand and abolishes mCherry fluores-

cence until splicing takes place (vide infra). The corresponding

genes were introduced into HEK293 cells as described above

for the GFP-intein genes, then treated with media containing
Chemistry & Biology 18,
1 mM 4-HT or with media lacking 4-HT. These cells were incu-

bated at 37�C for an additional 12 to 24 hr, then harvested for

detection of functional mCherry accumulation by FACS (Fig-

ure S3) and quantification by western blot analysis.

Both of the 37R3-2 and the 30R3-1 evolved inteins continued

to exhibit significant improvement in splicing performance over

the 2-4 and 3-2 inteins in the context of mCherry (Figure 4A).

The 37R3-2 intein resulted in 72% spliced mCherry protein after

24 hr and 43% spliced protein after 12 hr. The 30R3-1 intein
619–630, May 27, 2011 ª2011 Elsevier Ltd All rights reserved 623
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Figure 3. Characterization of Newly Evolved Inteins in Mammalian Cells

(A) Representative western blot of lysates fromHEK293 cells expressing evolved intein variants in the context of GFP. Each lane shows lysate from cells after 12 hr

of growth at 37�C in the absence or presence of 1 mM4-HT processed with an anti-FLAG-tag antibody to visualize spliced and unspliced GFP, and an anti-b-actin

antibody to visualize b-actin, which served as a loading control. Quantitation of spliced and unspliced protein bands by densitometry was used to calculate the

percent spliced protein shown in the rest of the figure.

(B and C) Splicing characteristics of inteins in the GFP context in HEK293 cells at 37�C after 12 and 24 hr incubation in the presence or absence of 1 mM 4-HT.

Three evolved inteins from the 37�C evolution effort are shown in (B), and three evolved inteins from the 30�C evolution effort are shown in (C). Error bars represent

the standard deviation of at least three independent experiments. See also Figure S2.
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resulted in 54% and 33% spliced mCherry after 24 and 12 hr,

respectively. Thus the percentage of spliced mCherry generated

by the 37R3-2 intein at 24 hr or 12 hr was�3-fold higher than that

of 3-2 intein, and�5-fold higher than that of the 2-4 intein. Back-

ground splicing in the absence of 4-HT was %3% for all inteins

assayed in this context.

We evaluated the splicing characteristics of the newly evolved

inteins in the contexts of two additional mammalian proteins,

Gli1 and Gli3T. Gli1 and Gli3 are transcription factors that

mediate Hedgehog signaling (Koebernick and Pieler, 2002) and

are important in many key developmental processes such as

spinal cord patterning (Bai et al., 2004) and limb development

(Barna et al., 2005). Gli3T is a C-terminally truncated form of

the transcription factor Gli3 that is used as a transcriptional

repressor (Wang et al., 2000). Gli1 and Gli3T are large proteins,

122 kDa and 85 kDa respectively, and are both structurally unre-

lated to GFP, mCherry, and structurally distinct from each other.

The 37R3-2 and 30R3-1 inteins were inserted genetically in place

of Cys273 of the Gli1 protein and in place of Cys515 of the Gli3T

protein as described previously (Yuen et al., 2006). We previ-

ously showed that the insertion of inteins into these proteins at

these positions abolishes their activities until splicing takes place
624 Chemistry & Biology 18, 619–630, May 27, 2011 ª2011 Elsevier
(Yuen et al., 2006). The resulting constructs were introduced into

HEK293 cells and splicing was evaluated by western blot as

described above.

Consistent with their enhanced performance characteristics in

the GFP and mCherry contexts, the newly evolved inteins in Gli1

and in Gli3T resulted in significantly higher (�2- to 4-fold in Gli1,

and �3- to 8-fold in Gli3T) percentages of spliced protein

compared with the 3-2 or 2-4 inteins (Figures 4B and 4C). Up

to 48% and 60% of Gli1 protein was spliced by the newly

evolved inteins after 12 and 24 hr, respectively, whereas the

previously evolved 3-2 intein resulted in 22% and 32% splicing

under the same conditions. Likewise, the newly evolved inteins

generated up to 43% and 51% spliced Gli3T protein after 12

and 24 hr, compared with 10% and 18% for the 3-2 intein.

We previously noted (Yuen et al., 2006; unpublished data) that

the 3-2 intein undergoes background splicing in the absence of

4-HT to a greater extent than the 2-4 intein, and the Gli1 and

Gli3T data in Figures 4B and 4C replicated these observations.

The background splicing of newly evolved clone 37R3-2 across

all four proteins tested (GFP,mCherry, Gli1, andGli3T) is very low

and often was not detectable. Clone 30R3-1 in general resulted

in a slightly higher degree of background splicing, but this level of
Ltd All rights reserved
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Figure 4. Splicing Characteristics of the 30R3-1 and 37R3-2 Evolved Inteins in Mammalian Cells in Three Different Protein Contexts

HEK293 cells expressing the inteins shown in the context of mCherry (A) (see also Figure S3), Gli1 (B), or Gli3T (C) were incubated for 12 hr or 24 hr in the presence

or absence of 1 mM 4-HT. Unspliced and spliced protein was quantitated as described in Figure 3. Error bars represent the standard deviation of at least three

independent experiments.
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splicing in the absence of 4-HT remained %3% in all four pro-

teins tested in this work, and generally was similar to or slightly

lower than the background splicing of the 3-2 intein. Taken

together, these results establish the overall superior splicing

kinetics and splicing efficiency without significant background

splicing for both newly evolved inteins 37R3-2 and 30R3-1 in a

variety of protein contexts in mammalian cells.

Mutational Analysis of Evolved Inteins 30R3-1
and 37R3-2
To probe which mutations were responsible for the improved

properties of evolved inteins 30R3-1 and 37R3-2, we systemat-

ically reverted each of the mutations (five in 30R3-1 and four in

37R3-2) to the corresponding amino acid present in the original

3-2 intein. Each of these reversion mutants was inserted genet-

ically into GFP and transformed into RDY98 yeast cells. Protein

expression was induced for 24 hr at 30�C and the resulting cells

were incubated for six hours in the presence or absence of 4-HT

at 30�C and 37�C. Protein splicing was assessed by FACS and

western blot analysis as described above.

Compared with the 3-2 intein, both newly evolved intein vari-

ants contain Val34Ala and Thr328Lys mutations. These two

changes also correspond to the two differences between the
Chemistry & Biology 18,
2-4 intein and the 3-2 intein, which evolved from the 2-4 intein.

In both newly evolved inteins the amino acids at these two posi-

tions were the residues present in the 2-4 intein. Consistent with

the lower splicing activity in the absence or presence of 4-HT of

the 2-4 intein relatively to the 3-2 intein, the reversion of Ala34

back to Val and Lys328 back to Thr resulted in significantly

higher background splicing, especially in the 37R3-2 intein,

together with slightly higher splicing efficiency in the presence

of 4-HT (Figures 5A–5D). These results suggest that residues

34 and 328 in the newly evolved inteins modestly modulate

splicing activity in a ligand-independent manner, and that the

presence of Ala34 and Lys328 serves to decrease background

splicing by a significant fraction (�2- to 4-fold), while lowering

splicing efficiency in the presence of 4-HT by a much smaller

relative fraction (�10% lower).

The Glu375Gly mutation was also present in both the 30R3-1

and the 37R3-2 inteins. Reversion of this mutation resulted in

substantially increased (2- to 10-fold) background splicing in

the absence of 4-HT without any significant change in splicing

efficiency in the presence of 4-HT (Figures 5A–5D). This muta-

tion therefore likely serves to suppress splicing activity in a

manner that is selective for the conformation of the ligand-free

intein.
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Figure 5. Reversion Mutant Analysis of Evolved Inteins 30R3-1 and 37R3-2

Eachmutation in 30R3-1 (A) and (B) and 37R3-2 (C) and (D) relative to the original 3-2 intein was reverted separately and the resulting intein variants in the context

of GFP were characterized in yeast cells at 30�C (A) and (C) and at 37�C (B) and (D). Yeast cell lysates were prepared and analyzed by western blot and

densitometry after 6 hr as described in Figure 2. Error bars represent the standard deviation of at least three independent experiments.
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Among the other twomutations in 30R3-1, neither was present

in 37R3-2. Reverting the Thr at residue 66 to Ile in 30R3-1 re-

sulted in no significant change in intein activity other than a slight

decrease in 4-HT-triggered splicing at 30�C (Figure 5A). Like-

wise, reversion of Pro124 to Leu also resulted in similar splicing

activities in the presence or absence of 4-HT as the 30R3-1 intein

(Figures 5A and 5B). These results suggest that Thr66 and

Pro124 may not contribute to the observed changes in splicing

activity, or may only contribute to improved splicing in combina-

tion with one or more additional mutations.

The Cys178Arg mutation is the sole change in 37R3-2 that is

not present in 30R3-1. Reversion of this mutation modestly

decreases splicing efficiency in the presence of 4-HT and may

also slightly increase background splicing (Figures 5C and 5D).

Interestingly, these results suggest that no single mutation in

the 30R3-1 or 37R3-2 inteins is responsible for the substantial

majority of the observed �2- to 5-fold improved splicing of

GFP in yeast at 30�C or 37�C compared with the parental 2-4

or 3-2 inteins. Instead, our observations suggest that the combi-

nation of four or five mutations, each of which contribute modest

improvements in isolation, together result in the substantially

faster and more efficient splicing in the presence of 4-HT while

preserving or decreasing the extent of background splicing

relative to the 3-2 intein.
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DISCUSSION

The intein evolution efforts described herewere performed under

the hypothesis that inteins evolved under more stringent selec-

tion conditions and at 37�C may yield ligand-dependent inteins

with superior splicing yields, faster splicing kinetics, and/or lower

background splicing than those previously reported. We used

parallel 37�C and 30�C screening conditions to explore a wider

range of possible advantageous mutations than might have

been surveyed through 37�C screens alone. Indeed, mutations

in the two evolved inteins with the best overall properties, clones

30R3-1 and 37R3-2, arose from both the 30�C and 37�C
libraries. These two inteins in the presence of 4-HT exhibited

substantially higher yields of spliced protein and faster splicing,

while maintaining comparable or slightly improved (decreased)

amounts of background splicing in the absence of 4-HT.

It is interesting that the newly evolved inteins exhibited faster

splicing kinetics (i.e., reached a higher percentage of final

spliced protein levels at early time points) compared with the

parental inteins even though the methods used in this work did

not explicitly screen for improved splicing kinetics. It is possible

that some of the mutations discovered in this work improve

the kinetics of the splicing reaction itself, but it is equally likely

that these mutations increased the rate of other steps in the
Ltd All rights reserved
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ligand-induced splicing process such as protein folding, binding

or dissociation from Hsp90 or other proteins (Feil et al., 1996;

Kellendonk et al., 1996; Zhang et al., 1996; Danielian et al.,

1998; Picard, 2000; Buskirk et al., 2004; Yuen et al., 2006), or

conformational changes that influence the ability of the intein

to undergo splicing. Because in vitro data on these ER-LBD con-

taining inteins is currently not available due to the known difficul-

ties of purifying the ER-LBDwithout fragmentation of the protein,

mutagenesis, or binding to other stabilizing ligands (Nygaard and

Harlow, 2001; Huang et al., 2006), more detailed mechanistic

insights will likely require the biophysical analysis of the evolved

inteins in living cells.

The FACS-based screening method used here, in which intein

activity is coupled to an increase in GFP fluorescence, is ideally

suited for this type of laboratory evolution in which starting

proteins possessing detectable activities are evolved to higher

levels of activity under specific sets of conditions. FACS offers

a large dynamic range that is crucial for distinguishing active

and highly active library members, allows analysis of individual

library members at the single-cell level, and supports very

high-throughput screens; in this work,�107 cells were screened

in a few hours. FACS is also a nondestructive method, and yeast

cells collected in this manner are robust enough to be cultured in

liquid or on solid media immediately after the screening process.

The ability to culture and thus amplify the cells resulting from

each screen simplifies the process of enriching desired library

members. These features together enabled improved variants

to emerge by tuning the screen to capture progressively more

fluorescent cells with progressively higher intein activity levels.

Moreover, the fact that our reversion mutational analysis re-

vealed that no single mutation resulted in most of the substantial

improvements in splicing properties highlights the appropriate-

ness of the function-based evolutionary approach taken in this

study.

The use of small molecules tomodulate protein structure post-

translationally in living cells remains an attractive approach to

studying protein function. The ligand-dependent intein, like other

posttranslationally triggered protein manipulation methods

(Stankunas et al., 2003; Wang et al., 2003; Bayle et al., 2006),

facilitates temporal control of protein structure as well as dose-

dependent titration of spliced protein levels (Buskirk et al.,

2004; Yuen et al., 2006). The intein offers some features that

may make this tool particularly well suited for certain applica-

tions, especially given the improvements in splicing characteris-

tics resulting from this work. Whereas traditional chemical

genetic approaches require the discovery of small molecules

that perturb the activity of each protein of interest, the ligand-

dependent intein confers dependence on a single small mole-

cule (here, 4-HT) on a variety proteins of interest with single-

target specificity, albeit while requiring genetic modification.

The protein splicing process leaves behind only a single Cys

residue, or no scar in cases in which the target protein naturally

contains a Cys residue in a location that results in loss of protein

function on intein insertion. Moreover, small-molecule-triggered

protein splicing is pseudo-autocatalytic and does not require

additional cellular components or specific conditions that may

not be easy to establish for some intracellular proteins.

The small-molecule-dependent inteins developed here may

be particularly suited for studying signaling pathways because
Chemistry & Biology 18,
of the minimal cellular perturbations required to achieve control

over protein function. The use of the evolved inteins does not

require changes to regulatory regions of genes and does not

require the expression of any other proteins or nucleic acids.

Because cell disruption is minimized, proteins that are a part of

complex mammalian signaling pathways—for example those in

which feedback regulation plays a significant role—have

a greater chance of maintaining their native regulatory networks.

Further, the dose-dependent nature of ligand-dependent intein-

splicing allows for the fine control of functional protein levels. The

newly evolved inteins, which in the presence of 4-HT generated

�40%–70% of total expressed target protein as spliced protein

in mammalian cells, are thus significantly better equipped than

the first generation inteins to study protein function in cases in

which the modest levels of spliced protein generated by the

2-4 and 3-2 inteins (typically 10%–30% of total expressed target

protein) are insufficient to result in a meaningful physiological

response.
SIGNIFICANCE

Elucidating the function of proteins in mammalian cells is

particularly challenging due to the inherent complexity of

these systems. Methods to study protein function in living

cells ideally perturb the activity of only the protein of interest

but otherwise maintain the natural state of the host cell or

organism. Small-molecule-triggered inteins offer single-

protein specificity and other desirable features as an

approach to control protein function in cells posttranslation-

ally. The second-generation ligand-dependent inteins

evolved in the present work splice to substantially higher

yields and with faster kinetics in the presence of the cell-

permeable small molecule 4-HT, especially at 37�C, while

exhibiting comparable or improved low levels of background

splicing in the absence of 4-HT. These improvements were

observed in all four protein contexts tested in mammalian

cells at 37�C, as well as in yeast cells assayed at 30�C or

37�C. The newly evolved inteins described in this work are

therefore promising tools as conditional modulators of

protein structure and function in yeast andmammalian cells.
EXPERIMENTAL PROCEDURES

Yeast Strains and Media

Media consisted of yeast nitrogen base (Sigma), 4% dextrose, and synthetic

drop out supplements lacking uracil (MP Biomedical). Yeast were cultured in

liquid medium or on agar plates at 30�C. The yeast strain RDY98 (Erg6

del::TRP1 pdr1 del::KanMX pdr3::HIS3 ade2-1 trp1-1 his3-11,15 ura3-52

leu2-3,112 can1-100) was provided by Professor Allen Buskirk at Brigham

Young University. Protein induction was performed in media consisting of

yeast nitrogen base (Sigma), 4% galactose, 4% raffinose, 0.4% dextrose,

synthetic drop out supplements lacking uracil (MP Biomedical), and 1% of

1003 penicillin-streptomycin solution (Cellgro) at 30�C.
Mammalian Cell Culture

HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium

(DMEM):F12 medium with 10% fetal bovine serum (FBS) and 1% of 1003

penicillin-streptomycin solution (Cellgro) according to standard protocols.

Transient transfections were performed using Effectene (QIAGEN) following

the manufacturer’s protocol.
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Protein Expression and 4-HT Treatment

All cell cultures were handled in parallel for each independent splicing effi-

ciency experiment to ensure comparable levels of protein expression across

the different samples.

Yeast cell cultures of the different intein constructs were started at the same

time by inoculating colonies of transformed cells into the same preparation of

yeast media and incubating the resulting cultures at 30�C for 24 hr. To make

cell growth phases more homogeneous, 107 cells from each of these cultures

were incubated at the same time at 30�C for an additional 24 hr. These cultures

were then induced for protein expression at 30�C in protein inductionmedia for

24 hr. After 24hr of induction, a sample of 107 cells fromeachof thecultureswas

resuspended into protein induction media and incubated with or without 1 mM

4-HT in 30�C or 37�C for the appropriate number of hours until harvesting for

FACS or western blot analysis. Yeast cells were harvested in stationary phase.

Mammalian cells were prepared by plating the same number of cells for

transfection from the same parent plate to ensure all cells had been passaged

at the same time and also the same number of times. After 24 hr in 37�C after

plating, these cells were transfected with the appropriate intein construct at

the same time, then incubated at 37�C for 24 hr. After 24 hr, all of the plates

were washed once with 37�C phosphate buffered solution (PBS). The media

was replaced with fresh media with or without 1 mM 4-HT and incubated for

12 hr or 24 hr until harvesting for FACS or western blot analysis.

Library Construction

Error-prone PCR was carried out using 2-4 and 3-2 intein sequences as

templates using DNA bases 8-oxo-20deoxyguanosine (8-oxo-dGTP) and

6-(2-deoxy-b-D-ribofuranosyl)-3,4-dihydro-8H-pyrimido-[4,5-C][1,2]oxazin-7-

one (dPTP) purchased from TriLink BioTechnologies as previously described

(Zaccolo et al., 1996) using oligonucleotides 50-TATGTACAGGAACGCACTAT

ATCTTTCAAAGATGACGGGAACTACGCATGC-30and 50-GTGCACGACAACC

CCTTCGGCGACGAGGGTGTGCAGTTCCTCGACCTCGAG-30. Mutagenized

intein PCR products were inserted into p416Gal1 GFP-intein vector precut

with SphI and XhoI (to remove the existing intein sequence) by in vivo homol-

ogous recombination of overlapping PCR fragments as previously described

(Raymond et al., 1999).

Plasmid Construction

GFP-intein library members were amplified by PCR from the corresponding

p416Gal1 library vector using oligonucleotides 50-CTCGTTTAGTGAACCGTC

AGAGCCGCCATGGCAAGCAAAGGAGAA-30 and 50-CTACTTGTCATCGTC

GTCCTTGTAATCTTTGTAGAGCTCATCCAT-30. pFLAG-CMV-5.1 (Sigma)

was amplified by PCR using oligonucleotides 50-ACACATGGCATGGATGA

GCTCTACAAAGATTACAAGGACGACGAT-30 and 50-TTCTTCTCCTTTGCTT

GCCATGGCGGCTCTGACGGTTCACTAAAC-30. The PCR products were

ligated together through isothermal assembly (Gibson et al., 2009). The result-

ing ligated vectors were purified usingMin-Elute columns (QIAGEN) and eluted

with 10 ml deionized water. One microliter of this elution was transformed into

NEB Turbo chemically competent Escherichia coli cells (New England BioL-

abs) and plated onto LB + carbenicillin agar plates. Plates were incubated

overnight at 37�C, and individual colonieswere picked and sequenced to verify

correct plasmid construction.

p3XFlag-CMV-14 (Sigma) vectors with Gli1-intein (2-4 and 3-2), and Gli3T-

intein (2-4 and 3-2) sequences were previously described (Yuen et al., 2006).

p3XFlag-CMV-14 mCherry-intein (2-4 and 3-2) vectors were constructed by

cloning the 2-4 and 3-2 intein sequences into the pRSET-B mCherry vector

provided by Professor Roger Tsien (University of California at San Diego).

The mCherry-intein 2-4 and mCherry-intein 3-2 sequences were then

amplified using oligonucleotides introducing a 50 EcoRI site and a 30 BamHI

site and ligated into EcoRI- and BamHI-digested p3XFlag-CMV-14 vector.

30R3-1 intein sequence and 37R3-2 intein sequence were amplified using

the following oligonucleotides compatible withmCherry, Gli1, or Gli3 contexts.

mCherry: 50-TTCGAGGACGGCGGCGTGGTGACCGTGTGCCTTGCCGA

GGGTACC-30 and 50-GCCGTCCTGCAGGGAGGAGTCCTGGCAGTTGTG

CACGACAACCCC-30

Gli1: 50-ATCCACGGGGAGCGGAAGGAATTCGTGTGCCTTGCCGAGGG

TACC-30 and 50-CTCCCTCGAGCAACCTCCCCAATGGCAGTTGTGCAC

GACAACCCC-30
628 Chemistry & Biology 18, 619–630, May 27, 2011 ª2011 Elsevier
Gli3: 50-ATTCATGGAGAAAAGAAGGAATTCGTGTGCCTTGCCGAGGG

TACC-30 and 50-CTCTCGAGAACAATCAAGCCAGCGGCAGTTGTGCAC

GACAACCCC-30

The p3XFlag-pCMV-14 vector was amplified using oligonucleotides

50-CTCGTCGCCGAAGGGGTTGTC-30 and 50-ATCGAAGATTCGGGTACC

CTC-30. The intein PCR products and the vector PCR product were ligated

together through the isothermal assembly method (Gibson et al., 2009) and

the resulting ligated material was treated as discussed above.

FACS Screening and Analysis

Yeast cells transformed with library plasmids were cultured for 24 hr in the

appropriate synthetic drop out media in 30�C. Cells were washed and resus-

pended in protein induction media and cultured for another 24 hr at 30�C. After
24 hr of protein induction, cells were treated with 1 mM 4-HT or left untreated

with 4-HT as appropriate for the prescribed amount of time in either 30�C or

37�C. After the appropriate length of time, cells were harvested by washing

once in PBS, then resuspended in PBS with 0.1% bovine serum albumin

(BSA) (Sigma). Cell sortingwas performed using aMoFlo cell sorter (DakoCyto-

mation). Cell fluorescence analysis was carried out on a BD LSRII cell analyzer.

HEK293 cells were grown in 10-cm dishes or 6-well plates and transfected

with relevant mammalian vectors using Effectene. After growth in the absence

of 4-HT or in the presence of 1 mM 4-HT for 24 hr, cells were trypsinized and

resuspended in 500 ml of PBSwith 1%FBS and 75U/ml DNAase (NewEngland

BioLabs). Cell fluorescence analysis was carried out on a BD LSRII cell

analyzer.

Western Blots

Western blots were performed using Nu-PAGE 12% Bis-Tris gels (Invitrogen)

in 3-(N-morpholino)propane sulfonic acid (MOPS)-sodium dodecyl sulfate

(SDS) buffer (Invitrogen). SDS-polyacrylamide gel electrophoresis (PAGE)

and western blotting were performed using standard protocols. Gels were

transferred onto polyvinylidene fluoride (PDVF) membranes (Millipore).

Western blots were processed using a mouse anti-FLAG antibody (Sigma)

as the primary antibody and a secondary Alexa Fluor 800-conjugated goat

anti-mouse antibody (Li-Cor Biosciences), then visualized and quantitated

using an Odyssey imager (Li-Cor Biosciences).

Reversion Mutant Construction

Each evolved amino acid change was the result of a single nucleotide muta-

tion. Each reversion mutant was generated using the QuikChange method

(Stratagene) with Pfu Turbo and the following oligonucleotides (the mutated

base pair is underlined in each oligonucleotide pair).

A34V: 50-CGCAAGCCTATTCATGTCGTGGCTGTTGCCAAGGACGGAA

CGCTGCTCGCG-30 and 50-CGCGAGCAGCGTTCCGTCCTTGGCAACA

GCCACGACATGAATAGGCTTGCG-30

T66I: 50-GGGTTGCGGATCGCCGGTGGCGCCATCGTGTGGGCGACAC

CCGATCACAAG-30 and 50-CTTGTGATCGGGTGTCGCCCACACGATG

GCGCCACCGGCGATCCGCAACCC-30

P124L: 50-TTGTTGGATGCTGAGCCCCCCATACTCTATTCCGAGTATGA

TCCTACCAGT-30 and 50-ACTGGTAGGATCATACTCGGAATAGAGTAT

GGGGGGCTCAGCATCCAACAA-30

C178R: 50-CCATGATCAGGCCCACCTTCTAGAACGTGCCTGGCTAGAG

ATCCTGATGAT-30 and 50-ATCATCAGGATCTCTAGCCAGGCACGTTCT

AGAAGGTGGGCCTGATCATGG-30

K328T: 50-GAGCATCTGTACAGCATGAAGTACACGAACGTGGTGCCCCT

CTATGACCTG-30 and 50-CAGGTCATAGAGGGGCACCACGTTCGTGTA

CTTCATGCTGTACAGATGCTC-30

G375E: 50-TTCCTGCACGACATGCTGGCGGAAGAACTCCGCTATTCC

GTGATCCGAGAA-30 and 50-TTCTCGGATCACGGAATAGCGGAGTTCTT

CCGCCAGCATGTCGTGCAGGAA-30
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