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Recent Research Advances in Childhood Acute
Lymphoblastic Leukemia
Ching-Hon Pui*

Recent progress in risk-adapted treatment for childhood acute lymphoblastic leukemia has secured 5-year
event-free survival rates of approximately 80% and 5-year survival rates approaching 90%. With improved
systemic and intrathecal chemotherapy, it is now feasible to omit safely in all patients prophylactic cranial
irradiation, which was once a standard treatment. As high-resolution, genome-wide analyses of leukemic
and normal host cells continue to identify novel subtypes of lymphoblastic leukemia and provide new in-
sights into leukemogenesis, we can look forward to the time when all cases of this disease will be classified
according to specific genetic abnormalities, some of which will yield “druggable” targets for more effective
and less toxic treatments. Meanwhile, it is sobering to consider that a significant fraction of leukemia sur-
vivors will develop serious health problems within 30 years of their initial diagnosis. This underlines the
need to introduce early countermeasures to reduce late therapy-related effects. The ultimate challenge is 
to gain a clear understanding of the factors that give rise to childhood leukemia in the first place, and 
enable preventive strategies to be devised and implemented.
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treatment resistance

Acute lymphoblastic leukemia (ALL) is the most

common pediatric cancer, accounting for a quarter

of all malignancies diagnosed among children aged

< 15 years. This potentially catastrophic disease

was once fatal in four-fifths of patients, but its clin-

ical outcome has improved remarkably over the

past 50 years (Figure), with event-free and overall

survival rates in contemporary trials ranging from

72.1% to 85.6% and 83.0% to 93.5%, respectively

(Table 1).1–14 As treatment efficacy has reached

optimal levels for most patients, the prognostic

significance of conventional risk factors such as

male sex, black race and hyperleukocytosis has

diminished or disappeared.11,15 We are left with

only a few disease subtypes that remain a challenge

to therapists [infant ALL with MLL (mixed lineage

leukemia) rearrangement, hypodiploidy with < 44

chromosomes, and cases resistant to early treat-

ment are good examples]. Major concerns of the

leukemia research community include the develop-

ment of strategies to combat these cases effectively

and to target crucial leukemogenic pathways in
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individual patients, and minimizing the risk of

acute or late side effects. This article reviews the

progress that has been made towards achieving

these and other goals.

Diagnosis, Classification and 

Genetic Alterations

Immunophenotyping by flow cytometry is es-

sential to make a diagnosis of ALL and distin-

guish subtypes with therapeutic implications,

including B-cell precursor ALL, mature (Burkitt)

ALL and T-cell ALL. Recently, using a combina-

tion of flow cytometry, gene expression profiling

and single nucleotide polymorphism (SNP) array

analysis, Coustan-Smith et al16 have identified a

unique T-cell ALL subtype termed early T-cell

precursor (ETP) leukemia, with an exceptionally

poor response to lymphoid-cell-directed therapy.

The transformed thymocytes in ETP-ALL appear

to arise from stem-cell-like thymic precursors that

have recently migrated from the bone marrow to

the thymus. Early recognition of these cases, using

immunophenotypic criteria, is essential for the
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Table 1. Results of recently completed clinical trials for acute lymphoblastic leukemia

Study Years of study
No. of Age range Event-free survival Survival at

Reference
patients (yr) at 5 yr (% ± SE) 5 yr (% ± SE)

AIEOP-95 1995–2000 1743 0–17 75.9 ± 1.0 85.5 ± 0.8 Conter et al [1]
BFM-95 1995–2000 2169 0–18 79.6 ± 0.9 86.3 ± 0.6 Möricke et al [2]
CCG-1900 1996–2002 4464 0–21 76.0 ± 0.7 86.3 ± 0.6 Gaynon et al [3]
COALL-7 1997–2003 667 0–18 76.7 ± 1.7 85.4 ± 1.4 Escherich et al [4]
CPH-95 1996–2002 380 0–18 72.1 ± 2.3 83.0 ± 1.9 Stary et al [5]
DCOG-9 1997–2004 859 1–18 80.6 ± 1.4 86.4 ± 1.2 Kamps et al [6]
DFCI 00-01 2000–2004 492 0–18 80.0 ± 2.0 91.0 ± 1.0 Vrooman et al [7]
INS 98 1998–2003 315 0–18 78.7 ± 2.3 83.8 ± 2.1 Stark et al [8]
NOPHO-2000 2002–2007 1023 1–15 79.4 ± 1.5 89.1 ± 1.1 Schmiegelow et al [9]
SJCRH-13B 1994–1998 247 0–18 80.1 ± 2.6 85.7 ± 2.2 Pui et al [10]
SJCRH-15 2000–2007 498 1–18 85.6 ± 2.9 93.5 ± 1.9 Pui et al [11]
TCCSG-95-14 1995–1999 597 1–15 76.8 ± 1.8 84.9 ± 1.5 Tscuhida et al [12]
TPOG-2002 2002–2007 788 0–18 77.4 ± 1.7 83.5 ± 1.6 Liang et al [13]
UKALL-97/99 1999–2002 938 1–18 80.0 ± 1.2 88.0 ± 1.1 Mitchell et al [14]

AIEOP = Associazione Italiana di Ematologia ed Oncologia Pediatrica; BFM = Berlin–Frankfurt–Münster ALL Study Group; CCG = Children’s
Cancer Group; COALL = Cooperative ALL Study Group; CPH = Pediatric Hematology in the Czech Republic; DCOG = Dutch Childhood Oncology
Group; DFCI = Dana–Farber Cancer Institute ALL Consortium; INS = Israeli National Studies of Childhood ALL; NOPHO = Nordic Society of
Pediatric Hematology and Oncology; SJCRH = St. Jude Children’s Research Hospital; TCCSG = Tokyo Children’s Cancer Study Group; TPOG =
Taiwan Pediatric Oncology Group; UKALL = UK Medical Research Council Working Party on Childhood Leukaemia. SE = Standard error.
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Figure. Kaplan–Meier analysis of survival for 2852 children
with newly diagnosed acute lymphoblastic leukemia treated
in 15 consecutive studies at St. Jude Children's Research
Hospital from 1962 to 2007. Five-year survival estimates
are shown. The results demonstrate steady improvement
in outcome over the past 40 years.

development of an effective clinical management

strategy for ETP-ALL.

Leukemic lymphoblasts often express myeloid-

associated antigens, whose pattern of expression

can be correlated with specific genetic subtypes

of ALL. For example, MLL-rearranged ALL cases

express CD15, CD33 and CD65, and those with

the ETV6-RUNX1 (also known as TEL-AML1) 

fusion gene express CD13 and CD33. Expression
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of myeloid-associated antigens can be useful in im-

munological monitoring of patients for minimal

residual leukemia, although it lacks prognostic

significance in ALL.17 By contrast, a subset of cases

co-express lymphoid- and myeloid-associated

markers but do not cluster with T-cell, B-cell pre-

cursor or acute myeloid leukemia in gene expres-

sion profiling. It is important to recognize these

cases at diagnosis because they might respond

poorly to myeloid-directed therapy, which requires

a switch to ALL-directed induction treatment.18

ALL arises from lymphoid progenitor cells that

carry specific genetic and epigenetic alterations.

Therefore, analysis of these changes yields more

relevant biological information than does any

other approach. Using standard molecular meth-

ods, one can detect primary genetic abnormalities

in approximately 75% of ALL cases but cannot

identify the full repertoire of genetic alter-

ations.17,19 With the availability of high-resolution,

genome-wide analysis of gene expression, DNA

copy number alterations (CNAs) and epigenetic

changes, the potential to fully characterize a pa-

tient’s genetic makeup fully has increased enor-

mously. Currently, virtually all patients with ALL

can be classified according to specific genetic 

abnormalities.20

Experimental models have established that

cooperative mutations are necessary to induce

leukemia and contribute to the development of

drug resistance. Using SNP arrays, Mullighan et al21

identified an average of six CNAs per case of child-

hood ALL. These lesions target genes that regu-

late lymphoid differentiation, tumor suppression,

the cell cycle, apoptosis, signaling pathways,

MicroRNAs, and drug responsiveness. There are

substantial differences in the frequency of CNAs

among various leukemia subtypes. Although cases

with ETV6-RUNX1 or BCR-ABL1 have over six le-

sions per case, MLL-rearranged ALL has fewer than

one CNA per case, which suggests that MLL is a

potent oncogene that requires very few cooperat-

ing mutations to induce leukemic transformation.

Indeed, MLL-rearranged leukemia often presents

during infancy and has a concordance rate close

to 100% in identical twins, which indicates in utero

development and transplacental metastasis from

one fetus to the other.17

In Philadelphia chromosome-positive (Ph+)

ALL with BCR-ABL1 fusion, IKZF1 is deleted in

approximately 80% of the cases.22 One high-risk

subtype of BCR-ABL1-negative ALL is characterized

by IKZF1 deletion, and has a genetic profile simi-

lar to that of cases with BCR-ABL1 fusion.23,24 In

studies to detect activated tyrosine kinase signaling

in this leukemia subtype, Mullighan et al25 identi-

fied activating JAK mutations in approximately

10% of high-risk BCR-ABL1-negative cases. Fur-

ther analyses have revealed CRLF2 overexpression

in 6–7% of B-cell precursor ALL cases, and notably,

in 50–60% of patients with Down-syndrome-

associated ALL.26–29 CRLF2 alteration is also as-

sociated with activating JAK mutations; indeed, 

a combination of these two genetic lesions re-

sults in the growth of cytokine-dependent mouse

B-progenitor cell lines in the absence of exogenous

cytokines, which indicates that they are cooperative

mutations in leukemogenesis.26,29

The most daunting challenge in the molecular

diagnosis of all subtypes of ALL is to distinguish

events that drive the continued growth or survival

of the leukemic clone from those that simply re-

flect genetic epiphenomena. Otherwise, it will be

difficult to translate the insights provided by emerg-

ing DNA and RNA technologies into improved

patient care.

Mechanisms of Treatment Resistance

and Relapse

Genome-wide studies using matched diagnosis

and relapse samples from the same patients have

shown that both sets of samples are clonally re-

lated, and that the relapse clones are often present

as minor populations at diagnosis, which suggests

that they are selected during treatment. Indeed,

many of the genetic alterations that emerge in

the dominant clone at relapse involve genes that

have been implicated in treatment resistance

(e.g. CDKN2A/B or IKZF1),30,31 and gene expres-

sion studies have identified a proliferative gene
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signature that emerges at relapse with consistent

upregulation of genes, such as survivin, that

could provide useful targets for novel therapeutic

intervention.32

Inherited Susceptibility to ALL

Inherited genetic syndromes, such as Down or

Bloom syndrome, account for only a small fraction

of ALL cases (< 5%). A more promising research

avenue is the notion that relatively frequent genetic

polymorphisms can interact with environmental,

dietary and other external factors to increase the

likelihood of leukemia induction.

Candidate gene approaches have implicated

inherited polymorphisms of several genes in leu-

kemogenesis but the findings have not been con-

sistent. Recent genome-wide studies on patients

of European ancestry have failed to confirm these

previously reported gene associations, but inde-

pendently they have identified that germline poly-

morphisms of the IKZF1 and ARID5B genes are

associated with an increased risk of childhood

ALL.33,34 The risk alleles of ARID5B are specifically

enriched in patients with hyperdiploid ALL, and

are also associated with greater methotrexate poly-

glutamate accumulation.33,34 Thus, the same ge-

netic variation of ARID5B that predisposes to the

development of hyperdiploid ALL also underlies

the superior response of this subtype of ALL to

methotrexate treatment. A subsequent study in

patients of African ancestry has shown that

ARID5B germline polymorphisms are also asso-

ciated with the risk of developing hyperdiploid

ALL in black patients.35 The lower frequency of

this risk allele in the control populations of

African ancestry compared to those of European

ancestry could also partly explain the lower inci-

dence of hyperdiploid ALL in black patients.

Factors Influencing Risk Classification

Despite the promise of ALL management based on

specific genetic lesions, current approaches to risk

assessment still rely on a number of key clinical

and laboratory findings, such as the initial leuko-

cyte count, age at diagnosis and early treatment

response.36 Children aged 1–9 years have a better

outcome than infants and adolescents. Leukocyte

count is a continuous variable, with decreasing

counts conferring a better outcome. A presenting

age between 1–9 years and a leukocyte count

< 50 × 109/L are minimal criteria for low-risk B-cell

precursor ALL, but carry little prognostic value 

in T-cell ALL. The prognostic impact of age and

leukocyte count can be partly explained by their

association with specific genetic abnormalities.

For example, there is a preponderance of cases

with favorable genetic abnormalities of hyper-

diploidy > 50 chromosomes or ETV6-RUNX1 in

patients aged 1–9 years.36 It should be stressed

that even so-called low-risk ALL cases need a cer-

tain degree of treatment intensification to avoid

unacceptable rates of relapse. Table 2 lists the

factors commonly used for risk and therapeutic

stratification in current clinical trials.

Although many genetic abnormalities, includ-

ing some identified recently, are associated with

Table 2. Factors commonly used for risk stratification

Factors Favorable Adverse

Age (yr) 1–9 < 1 or ≥ 10
Leukocyte count (× 109/L) < 50 > 50
Immunophenotype B-cell precursor T-cell
Genotype Hyperdiploidy > 50 chromosomes Hypodiploidy < 44 chromosomes

ETV6-RUNX1 BCR-ABL1
MLL-AF4

Minimal residual disease after induction < 0.01% ≥ 1%
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clinical outcome, only a few are routinely used for

treatment stratification (Table 2), largely because

too few cases of these lesions have been studied to

validate any apparent effects on prognosis. Adverse

genetic abnormalities include MLL rearrangements

and hypodiploidy < 44 chromosomes.17,36 Ph+

ALL was once considered to be a very high-risk

form of leukemia, even when treatment included

matched-related hematopoietic stem cell trans-

plantation.37 The prospects for a favorable thera-

peutic outcome in patients with Ph+ ALL have

improved markedly, as demonstrated in a recent

study that has combined intensive chemotherapy

with a tyrosine kinase inhibitor (imatinib mesy-

late).38 It should be stressed that each specific ge-

netic subtype identified to date might show

considerable clinical heterogeneity. For example,

even among patients with Ph+ ALL, patients aged

1–9 years fare significantly better than older pa-

tients,37 and among patients with MLL-rearranged

ALL, young infants have the worst outcome.39

The basis of these differences might be related to

secondary genetic events, the developmental stage

of the target cell undergoing malignant transfor-

mation, and the pharmacogenetics or pharmaco-

kinetic features of the patient.

The most useful prognostic factor is the re-

sponse to early treatment, as determined by mea-

surements of the rate of clearance of leukemic cells

from the blood or bone marrow. This estimate of

minimal residual disease accounts for the drug

sensitivity or resistance of leukemic cells and the

pharmacodynamics of the drugs, which is affected

by the pharmacogenetics of the host.40 Flow cyto-

metric profiling of aberrant immunophenotypes

and polymerase chain reaction amplification of

fusion transcripts or antigen-receptor genes, which

are at least 100-fold more sensitive than conven-

tional morphological determinants, have allowed

minimal residual disease to be detected at very

low levels (< 0.01%). This provides a useful means

to identify patients at very low or high risk of re-

lapse. Patients with ≥ 1% leukemic cells after re-

mission induction fare almost as poorly as those

who fail to achieve clinical remission by the con-

ventional morphological standard (≥ 5% leukemic

cells), whereas those who achieve molecular or

immunologic remission (< 0.01%) have an excel-

lent outcome.40,41 Minimal residual disease can

be measured by the current techniques in nearly

all patients, and has become a crucial factor for

risk stratification in childhood ALL.

Advances in Treatment

Supportive care
Optimal management of patients with ALL re-

quires careful attention to supportive care. Hyper-

uricemia and hyperphosphatemia with secondary

hypocalcemia are frequently encountered, even

before chemotherapy is initiated, especially in pa-

tients with a high leukemic cell burden and those

with T-cell or mature B-cell ALL. Rasburicase (re-

combinant urate oxidase), a potent uricolytic agent,

rapidly decreases serum uric acid level, improves

renal function and facilitates the excretion of phos-

phorus.42 Even in patients with massive tumor

lysis, the combined use of rasburicase (followed by

allopurinol), adequate hydration and a phosphate

binder can prevent acute renal failure and avoid

the need for hemodialysis in the vast majority 

of patients.

Remission induction
Rates of complete remission range from 97% to

99% with the use of contemporary chemother-

apy.1–14 Induction regimens typically include a

glucocorticoid (prednisone, prednisolone or dex-

amethasone), vincristine, and asparaginase. Chil-

dren with high- or very-high-risk ALL receive one

or more additional drugs including an anthracyline

and cyclophosphamide; however, intensification

of induction therapy can lead to increased mor-

bidity and mortality. In one study, the use of high-

dose dexamethasone (10 mg/m2/day) instead of

prednisone (60 mg/m2/day) improved leukemia

control in patients with T-cell ALL but resulted in

a high mortality rate, especially in adolescent pa-

tients.43 Although in most randomized trials, pa-

tients treated with dexamethasone have had a

better outcome than those treated with prednisone,
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it is debatable whether dexamethasone is more ef-

fective than prednisone, and one could argue that

the dose of prednisone might have been too low

in these studies.44 Whether intensification of re-

mission induction is even necessary for children

with standard-risk ALL, particularly if they receive

intensive post-induction therapy,3 is also debat-

able. As a result of its lower immunogenicity, less

frequent dosing, and feasibility of intravenous ad-

ministration, pegaspargase (a polyethylene glycol

form of Escherichia coli asparaginase) has replaced

the native product as the first-line treatment for

children in the United States, and it is increasingly

used in clinical trials worldwide.45 Antibodies to

E. coli asparaginase cross-react with pegaspargase;

therefore, patients with allergic reactions to either

form of the enzyme should be treated with a prod-

uct derived from Erwinia chrysanthemi.45 A final

caveat is that antibodies can develop against poly-

ethylene glycol and adversely affect drug efficacy.46

Intensification (consolidation) therapy
Post-remission intensification (consolidation)

therapy improves outcomes, even in patients with

low-risk ALL.3 Commonly used regimens include

high-dose methotrexate with daily mercaptop-

urine, and a combination of high-dose asparagi-

nase given for an extended period together with

vincristine, dexamethasone or lower-dose metho-

trexate.2,3,7,11,36 Patients with ALL and ETV6-RUNX1

fusion had an especially good outcome in clinical

trials that featured intensive post-remission treat-

ment with glucocorticoids, vincristine and as-

paraginase.11,47 Although high-dose methotrexate

(5 g/m2) is associated with improved outcome in

T-cell ALL, lower doses appear to be sufficient for

low-risk B-cell precursor ALL.3,11

Delayed intensification (or re-induction),

which consists of repetition of the initial remission-

induction therapy approximately 3 months after

the end of remission induction, has been an es-

sential treatment component. Although extended

and stronger intensification therapy with aspara-

ginase, methotrexate and vincristine has improved

outcomes for children and adolescents with high-

risk ALL and slow responses to initial induction

therapy, recent studies have demonstrated that early

intensive (rather than extended) post-induction

treatment benefits most patients.11,48,49

Continuation therapy
Weekly methotrexate and daily mercaptopurine

for 2–2.5 years constitute the usual continuation

regimen for ALL. Administration of this combina-

tion to the limits of tolerance (i.e. leukocyte counts

consistently < 3.5 × 109/L) and compliance has

been associated with improved clinical outcomes.50

Approximately 10% of the patients have an

inherited heterozygous deficiency of thiopurine

S-methyltransferase; the enzyme that catalyzes the

S-methylation (inactivation) of mercaptopurine.

Almost half of these patients require moderate re-

ductions in mercaptopurine dosage to prevent se-

vere myelosuppression. Patients with this enzyme

deficiency are also at risk for therapy-related

leukemia.51 A reduction of mercaptopurine dose

might reduce the risk of therapy-related leukemia

in these patients.

Intermittent pulses of vincristine and a gluco-

corticoid have been widely adopted in the treat-

ment of childhood ALL. In an intergroup trial of

initial intensive chemotherapy, the addition of six

pulses of vincristine and dexamethasone during

early continuation treatment failed to improve

clinical outcomes in children with intermediate-

risk ALL.52 However, with a longer follow-up, one

of the groups showed that the pulses of vincris-

tine and corticosteroids improved disease-free

survival, without an accompanying gain in over-

all survival.53 Thus, whether this pulse therapy 

is necessary in contemporary regimens that fea-

ture early intensification of therapy remains to be

determined.

CNS-directed treatment
Systemic treatment including high-dose methotrex-

ate, intensive asparaginase, and dexamethasone,

as well as optimal intrathecal therapy, are impor-

tant in the control of CNS leukemia.54 Thus, triple

intrathecal therapy with methotrexate, cytarabine

and hydrocortisone is more effective than intra-

thecal methotrexate in preventing CNS relapse.55
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Two recent studies have shown that, with effective

intrathecal and systemic chemotherapy, prophy-

lactic cranial irradiation, once a standard CNS-

directed treatment, can be safely omitted from

first-line protocols, even in patients with T-cell

ALL, hyperleukocytosis, or overt CNS leukemia at

diagnosis, all high-risk features for CNS relapse.11,56

The reported 5-year event-free survival rates were

85.6% and 81%, and the isolated CNS relapse

rates were only 2.7% and 2.6%, respectively. Im-

portantly, all 11 patients with isolated CNS relapse

in the first study remained in second remission for

0.4–5.5 years after salvage therapy. This innovative

treatment approach promises to improve the qual-

ity of life of survivors of childhood ALL.

Stem cell transplantation
The indications for hematopoietic stem cell trans-

plantation during first remission must be con-

tinuously reviewed as treatment improves and new

agents become available. Currently, failure to re-

spond, or a poor early response to initial remission

induction treatment (e.g. ≥ 1% blasts), is the most

frequent indication for transplantation. Although

transplantation does not appear to improve out-

come in hypodiploid ALL57 or MLL-rearranged

ALL in infants,39,58,59 many leukemia therapists

still recommend transplantation for patients with

poor early responses to treatment. In view of the

markedly improved early treatment results with

combined use of intensive chemotherapy and a

tyrosine kinase inhibitor (imatinib),38 many in-

vestigators do not recommend transplantation

in first remission for children with BCR-ABL1-

positive ALL, unless they have poor response to

remission induction treatment. Whether transplan-

tation benefits patients with ETP-ALL remains to

be determined.

Targeted therapeutics
Targeted cancer therapy is best defined as a treat-

ment that is designed to modulate a single mo-

lecular target, usually through inhibition but

sometimes through activation. Use of the tyrosine

kinase inhibitor imatinib in BCR-ABL1-positive

ALL offers an excellent example of this approach.

More potent second generation tyrosine kinase

inhibitors (dasatinib and nilotinib) have been

developed to address the problem of resistance to

imatinib.60 Other novel agents with potential roles

in ALL include FLT3 (FMS-like tyrosine kinase 

receptor-3) inhibitors, farnesyltransferase inhib-

itors, proteasome inhibitors, demethylating agents

and histone deacetylase inhibitors.60 Immuno-

therapeutic options are also emerging. Rituximab

(anti-CD20), alemtuzumab (anti-CD52), ino-

tuzumab (anti-CD22) and epratuzumab (anti-

CD22) have already been incorporated into some

clinical trials,20 and recombinant immunotoxins

and bispecific antibodies (blinatumomab) are

being tested.61,62 The chief difficulty with targeted

therapeutics for any cancer is that the molecules

or signaling pathways selected for manipulation

might not be crucial drivers of the malignancy

process. This means that their inhibition or acti-

vation might produce only transient effects on

the cancer, while introducing excessive toxicity in

normal tissues. Also, the curative potential of cy-

totoxic chemotherapy in most cases of childhood

ALL is high, which makes the selection of pediatric

patients for trials of targeted therapies more chal-

lenging, and raises the required level of activity

necessary for success.

Late Complications of Therapy

Cranial irradiation causes many serious late seque-

lae and occasional fatal complications, such as

second cancers, neurocognitive deficits, and endo-

crine abnormalities that can lead to obesity, short

stature, precocious puberty, and osteoporosis.63–66

In general, these complications are seen in girls

more often than in boys, and in young children

more often than in older children. Survivors of

childhood ALL who were treated 20–40 years ago

face a considerable mortality risk during adult-

hood; by one estimate they have an average loss in

life expectancy of 10 years, which is most probably

due to the use of cranial irradiation.67

Contemporary treatment programs have largely

abandoned the use of cranial irradiation and 
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replaced it with intensive systemic and intrathecal

treatment with methotrexate and glucocorticoids,

which leads to a different set of complications.

Short-term complications of glucocorticoid use

include myopathy, myalgia, infection, behavioral

problems, hyperglycemia, and adrenal axis sup-

pression.68 Although these complications are tran-

sient, osteonecrosis induced by glucocorticoids

can be a severely debilitating toxicity that results

in joint collapse that requires total joint replace-

ment.69,70 The pathogenesis of glucocorticoid-

induced osteonecrosis is still being investigated,

but has been variously attributed to intravascular

thrombotic occlusion, adipocyte hypertrophy and

marrow ischemia, as well as apoptosis of endo-

thelial cells, osteoblasts, and osteoclasts.68 Risk

factors for osteonecrosis include age 10–20 years,

high body mass index, female sex, and white

race.69–71 Early identification of bone and joint

lesions for therapeutic intervention is important

for minimizing toxicity. To this end, intermittent

use of dexamethasone (i.e. days 1–7 and 15–21 of

re-induction treatment), even at higher total doses,

appears to have reduced the risk of osteonecrosis

compared with continuous administration of the

drug.49 Additional studies are needed to deter-

mine if such intermittent administration might

compromise leukemia control.

Treatment with anthracyclines can produce se-

vere cardiomyopathy, especially when these agents

are given in high cumulative and peak doses 

to young girls. Cardiac abnormalities are persist-

ent and progressive for years following anthracy-

cline therapy.72 Although dexrazoxane can reduce

anthracycline-induced cardiotoxicity without in-

terfering with antileukemic activity73 or causing

secondary malignant neoplasms,74 the use of an-

thracyclines in current clinical trials is limited,

even for high-risk cases.

Summary

Cure rates for childhood ALL have improved re-

markably over the past 40 years; largely through

intensive use of conventional chemotherapy in the

context of rigorous clinical trials. Clinical factors,

genetic features of the leukemia, initial response

to therapy, and in some clinical trials, pharmaco-

genetics are now used in concert to select treatment

plans for increasingly smaller subsets of patients.

However, the side effects of cytotoxic chemotherapy

remain significant, and a useful mechanistic un-

derstanding of non-responding and drug-resistant

cases is often lacking. Rapid advances in functional

and chemical genomics have made it possible to

identify ever-larger numbers of genetic lesions in

leukemic cells. This, in turn, will soon enable pre-

cise discrimination between patients who are likely

to be cured with antimetabolite-based therapies,

and those who will require more intensive treat-

ment. It will also provide an expanding repertoire

of therapeutic targets for clinical evaluation. Finally,

the recognition of host factors associated with the

risk of leukemic transformation and the response

to therapy will probably lead to more sophisticated

treatment strategies in the near future.
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