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Abstract

This paper investigates the inverse problem of determining a spacewise dependent heat source in the parabolic heat equation
using the usual conditions of the direct problem and information from a supplementary temperature measurement at a given single
instant of time. The spacewise dependent temperature measurement ensures that the inverse problem has a unique solution, but this
solution is unstable, hence the problem is ill-posed. For this inverse problem, we propose an iterative algorithm based on a sequence
of well-posed direct problems which are solved at each iteration step using the boundary element method (BEM). The instability
is overcome by stopping the iterations at the first iteration for which the discrepancy principle is satisfied. Numerical results are
presented for various typical benchmark test examples which have the input measured data perturbed by increasing amounts of
random noise.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The inverse problem of determining an unknown inhomogeneous spacewise dependent heat source function in the
heat conduction equation has been considered in a few theoretical papers concerned with the existence and uniqueness
of the solution, notably in [1,7,9]. However, as yet no numerical algorithms have been attempted under such rigorous
mathematical conditions. In this paper, the determination of the unknown heat source is sought from the usual conditions
of the direct problem and a temperature measurement over the domain at a given single instant of time. Although
sufficient conditions for the solvability of the inverse problem are provided, see Section 2.3, the problem is still ill-
posed since small errors, inherently present in any practical measurement, give rise to unbounded and highly oscillatory
solutions. Therefore, in this paper, in order to overcome the instability of the solution, an iterative regularizing algorithm
is proposed, see Section 3, which recasts the inverse problem into a sequence of direct problems which are well-posed
according to Section 4. These direct problems are solved numerically at each iteration step using the BEM, see Section
7, until a prescribed stopping criterion is satisfied. Convergence of the procedure is given in Section 5. The procedure is
applied to the reconstruction of several spacewise dependent heat sources, from infinitely differentiable to discontinuous
functions, see Section 8.
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2. Formulation of the inverse problem

2.1. Functional spaces

Let � be a bounded domain of Rn, where n�1, with Lipschitz boundary �. The space L2(�) consists of square
integrable functions on � with the usual norm ‖ ·‖L2(�) and scalar product (·, ·). The space Hk(�), where k=1, 2, . . . ,

denotes the standard Sobolev space on �, i.e., the space of functions with generalized derivatives of order �k in L2(�).
Since the boundary of � is Lipschitz the trace of functions in H 1(�) to the boundary is well-defined and H 1

0 (�) consists
of functions with u|� = 0.

Let T > 0 be a fixed number. The space L2(0, T ; X), where X is a Hilbert space, denotes the space of measurable
functions u(·, t) : (0, T ) → X, such that∫

�
‖u(·, t)‖2

X dt < ∞.

By C([0, T ]; X), we mean functions u such that the mapping u(·, t) : [0, T ] → X is continuous (in the usual norms).

2.2. Assumptions on the differential operator and its semigroup

We assume that

Lu = −
n∑

i,j=1

�xi
(ai,j (x)�xj

u) +
n∑

i=1

bi(x)�xi
u + c(x)u, (1)

where ai,j = āj,i (the bar denotes complex conjugation) and ai,j , bi ∈ C1(�) and c ∈ C(�). Moreover, we suppose
that the operator L is elliptic, i.e., there exists a constant C such that

Re
n∑

i,j=1

ai,j (x)�i�j �C|�|2

for every x ∈ � and all � ∈ Rn. Furthermore, since we can always change u into e�t u, the coefficients are assumed
chosen such that there exists a constant C > 0 with

Re a(u, u) + �‖u‖2
L2(�)

�C‖u‖2
H 1

0 (�)
(2)

for all u ∈ H 1
0 (�) and ��0, where

a(u, v) =
n∑

i,j=1

∫
�

ai,j (x)(�xi
u)(�xj

v̄) +
n∑

i=1

∫
�

bi(x)(�xi
u)v̄ +

∫
�

c(x)uv̄.

We briefly outline that under these assumptions the operator −L generates a contraction semigroup. Let D(L) = {u :
u ∈ H 1

0 (�), Lu ∈ L2(�)}. Then, clearly, D(L) is dense in L2(�) and L is a closed operator. Furthermore, the problem
of finding u ∈ D(L) with

Lu + �u = f for f ∈ L2(�),

is the equivalent of solving

a(u, v) + �(u, v) = (f, v),

for every v ∈ H 1
0 (�). Due to (2), this has a unique solution for every � > 0, and since Re a(u, u)�0,

‖u‖L2(�) �
1

�
‖f ‖L2(�).
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From the Hille–Yosida theorem, see for example [3, Theorem 2.6 in Chapter 1], the operator −L generates a C0 (con-
tinuous) contraction semigroup {G(t)}t∈R+ in L2(�), so in particular ‖G(t)‖�1. But since Re a(u, u)�C‖u‖2

H 1
0 (�)

,

it follows that −L is strictly dissipative and hence

‖G(T )‖ < 1. (3)

Moreover, using estimates for the resolvent operator of L, one can show that one can extend G(t) to an analytic
semigroup in the right half-plane, see [3, Theorem 4.5 in Chapter 2].

Note that since H 1
0 (�) can be compactly embedded into L2(�), it follows that G(t) is a compact operator for every

t > 0. We also point out that the above results hold under weaker assumptions on the coefficients, for example the
coefficients can be piecewise smooth, corresponding to a layered material.

2.3. The inverse problem and some of its properties

Assume that we have a non-homogenous and non-isotropic body represented by the domain �, where � is as above.
We consider the following inverse problem: find the temperature u and heat source f which satisfy the heat conduction
equation in � with a space-dependent heat source, namely

ut (x, t) + Lu(x, t) = f (x) for (x, t) ∈ � × (0, T ), (4)

subject to the Dirichlet boundary condition

u(x, t) = h(x, t) for (x, t) ∈ � × (0, T ), (5)

(similar analysis can be carried out also for Neumann or mixed boundary conditions), the initial condition

u(x, 0) = �0(x) for x ∈ �, (6)

and the overspecified (upper-base) condition

u(x, T ) = �T (x) for x ∈ �. (7)

The operator L is given by (1). Under suitable conditions, this inverse problem has a unique solution. Using the trace
theorem, it is sufficient to consider the case when h = 0 which will be assumed in the remainder of the paper. Using
that the operator −L generates a contraction semigroup and (3), we have the following result due to Theorem 1 in [8].

Theorem 1. Let h = 0 and assume that �0, �T ∈ H 1
0 (�) ∩ H 2(�). Then the inverse problem (4)–(7) has a unique

solution among sources f ∈ L2(�) and temperatures u with∫ T

0
(‖ut (·, t)‖2

L2(�)
+ ‖u(·, t)‖2

H 2(�)
) dt < ∞.

There also exist uniqueness results in Hölder spaces, see [9].
In order to overcome the instability of the inverse problem (4)–(7) with respect to noise in the data (7), we develop

an iterative BEM regularizing algorithm, as described in the next section.

3. An iterative algorithm for finding the source term

In what follows, we need the adjoint problem

ut (x, t) + L∗u(x, t) = g(x) for (x, t) ∈ � × (0, T ), (8)

where

L∗u = −
n∑

i,j=1

�xi
(ai,j (x)�xj

u) −
n∑

i=1

�xi
(bi(x)u) + c(x)u.
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The procedure for the stable reconstruction of the solution u and source term f in (4)–(7) runs as follows:

(i) Choose a function f0 ∈ L2(�). Let u0 be the solution to (4)–(6) with f = f0.
(ii) Assume that fk and uk have been constructed. Let vk solve (5), (6) and (8) with g(x) = uk(x, T ) − �T (x) and

�0 = 0.
(iii) Let

fk+1(x) = fk(x) − �vk(x, T ),

where � > 0, and let uk+1 solve (4)–(6) with f = fk+1.

The procedure continues by repeating the last two steps until a desired level of accuracy is achieved.

4. Well-posedness of the problems in the iterative procedure

Here, we discuss the well-posedness of the problems used in the iterative procedure given in the previous section.
The operator −L generates a contraction semigroup in L2(�) according to Section 2.2, so we consider (4) in an
appropriate weak sense. Using the properties of the contraction semigroup in combination with [5, Chapter 3], we have
the following lemma.

Lemma 2. Let h = 0. Suppose that �0 and f belong to L2(�). Then (4) has a unique solution u ∈ L2(0, T ; H 1
0 (�) ∩

C([0, T ]; H 1
0 (�)) in the distributional sense which satisfies (6), and

‖u‖L2(0,T ;H 1
0 (�)) �C(‖f ‖L2(�) + ‖�0‖L2(�)). (9)

Note that the boundary condition is satisfied since u(·, t) ∈ H 1
0 (�) for t ∈ (0, T ). Moreover, the restriction u(x, t0) is

well-defined for 0� t0 �T , since u ∈ C([0, T ]; H 1
0 (�)), so especially u(x, T ) is well-defined. We have thereby shown

that the problem (4)–(6) used in the iterative procedure given in the previous section is well-posed and the restriction
of solutions are well-defined. A similar result can be proved for the adjoint problem consisting of the equations (5),
(6), and (8).

5. Convergence of the procedure given in Section 3

Let {G(t)}t∈R+ be the semigroup generated by the operator −L, see Section 2.2. Moreover, let u be the unique
solution to (4)–(6) given by Lemma 2 with initial data �0 = 0. We introduce the linear operator K(t) : L2(�) →
L2(0, T ; H 1

0 (�) ∩ C([0, T ]; H 1
0 (�)), by

K(t)f =
∫ t

0
G(t − s)f ds. (10)

Then the solution u to (4)–(6) is formally given by u(t)=G(t)�0 +K(t)f , so finding a solution to the inverse problem
is equivalent of solving the operator equation

K(T )f = �T − G(T )�0. (11)

Note that this recasts the ill-posedness of our inverse problem. Now, according to [5, Section 1.3 of Chapter 3], the
semigroup {G∗(t)}t∈R+ , where G∗(t) is the adjoint of G(t), is the semigroup generated by −L∗. Thus, one can check
that K∗(T )� = v(T ), where v solves (5), (6) and (8) with �0 = 0 and g = �. We are now in a position to prove the
following theorem.

Theorem 3. Let �0, �T ∈ L2(�) and let u be the unique solution to the inverse problem according to Theorem 2.1.
Assume that � satisfies 0 < � < 1/‖K(T )‖2. Let uk be the kth approximation in the iterative procedure of Section 3.



70 T. Johansson, D. Lesnic / Journal of Computational and Applied Mathematics 209 (2007) 66–80

Then

lim
k→∞ ‖u − uk‖L2(0,T ;H 1

0 (�)) = 0 (12)

for every function f0 ∈ L2(�).

Proof. From the iterative procedure and the properties of the operator K(t) given above, we have

fk+1 = fk − �vk(x, T ) = fk − �K∗(T )(uk(x, T ) − �T (x))

= fk − �K∗(T )(K(T )fk − (�T − G(T )�0)).

This is precisely the Landweber–Fridman iteration for solving (11), see [4, p. 155]. Now, the sequence fk converges
to f in L2(�) from the assumption 0 < � < 1/‖K(T )‖2. The inequality (9) then implies that uk converges to u in
L2(0, T ; H 1

0 (�)). �

Note that since the operator −L generates a contraction semigroup, it follows that ‖K(T )‖�T , so the procedure is
convergent for 0 < � < T −2. This estimate for � is far from being sharp.

6. A stopping rule

The procedure proposed in this paper is a regularization method and it therefore works with inexact data. More
precisely, consider the case when there is some error in �T in (7), namely

‖�T − ��
T ‖L2(�) ��, (13)

with � > 0. The elements u�
k and f �

k , are obtained by using the procedure of Section 3 with data �0 and ��
T . We do not

include errors in the boundary temperature (4) and the initial temperature (5) since the inverse problem is stable with
respect to small pertubations in these data.

Given the noise level �, we can use the discrepancy principle of [6], to obtain a stopping criterion for ceasing the
iterations of Steps (ii) and (iii) of the iterative algorithm of Section 3. This suggests choosing the stopping index
k = k(�, �) as the smallest index for which

‖u�
k(·, T ) − ��

T ‖L2(�) ≈ �. (14)

7. The boundary element method (BEM)

In this section, for simplicity, we briefly describe the BEM for the one-dimensional time-dependent heat equation
and therefore let � be the interval (0, �) and let L = −�2

xx . Then (4) becomes

�u

�t
− �2u

�x2 = f (x) for (x, t) ∈ (0, �) × (0, T ). (15)

By applying Green’s formula we can recast Eq. (15) in the integral form

	(x)u(x, t) =
∫ t

0

[
G(x, t, �, 
)

�u

�n(�)
(�, 
) − u(�, 
)

�G

�n(�)
(x, t, �, 
)

]
�=0,�

d


+
∫ �

0
G(x, t, y, 0)u(y, 0) dy +

∫ �

0
f (y)

∫ t

0
G(x, t, �, 
) d
 dy, (16)

for (x, t) ∈ [0, �] × (0, T ], where 	(0) = 	(�) = 1
2 , 	(x) = 1 for x ∈ �, n is the outward unit normal to the space

boundary {0, �} × [0, T ], i.e., n(0) = −1 and n(�) = 1, and G is the fundamental solution of the one-dimensional heat
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equation, namely,

G(x, t, y, 
) = H(t − 
)√
4�(t − 
)

e−(x−y)2/(4(t−
)),

where H is the Heaviside function.
Then the BEM, see [2], based on the boundary integral equation (16) is employed for solving the direct well-posed

problems at each iteration of the recursive algorithm described in Section 3.

8. Numerical results and discussion

We have applied the algorithm of the present paper to the reconstruction of several spacewise dependent heat sources,
from infinitely differentiable to discontinuous functions f (x). In the four examples presented below, the domain � is
one dimensional, i.e., an interval (0, �) and T = 1, and we consider homogeneous Dirichlet boundary conditions

u(0, t) = 0 = h0(t) and u(1, t) = 0 = h1(t) for t ∈ [0, 1]. (17)

The initial condition (6) is given by

u(x, 0) = sin(�x) = �0(x) for x ∈ [0, 1]. (18)

In order to investigate the stability of the numerical solution, the upper-base data �T in Eq. (7) was perturbed as

��
T = � + �, (19)

where � are random variables generated using the NAG routine G05DDF from a Gaussian normal distribution with zero
mean and standard deviation equal to p maxx∈[0,1]|�T (x)|, where p is the percentage of additive noise which models
the errors inherently present in any practical measurement. The value of p was varied from 0% to 20%. The iterations
were stopped according to the discrepancy principle (14). The computations were performed in FORTRAN77 double
precision on a SGI-workstation. The value of the parameter � > 0 in the iterative algorithm was varied between 0 and
200. For � > 200 the algorithm was found divergent for the geometry (x, t) ∈ [0, 1] × [0, 1] and the heat operator
considered.

In the figures the following errors are considered:

e(k; �; p) = ‖��
T − �k‖L2((0,1)) (convergence error), (20)

E(k; �; p) = ‖f − f �
k ‖L2((0,1)) (accuracy error), (21)

where f is the exact analytical source, if available. In the first example such an f is available analytically such that the
accuracy of the numerical solution can be assessed. The other three examples do not possess an explicit analytical
expression and in these situations the data �T was generated from the solution of the direct problem (15), (17), and
(18) when f is known, to which random noise was added as in (19). By adding a quite large amount of random noise
in the input data, we avoid committing an “inverse crime”.

BEM discretization with N=20, 40 or 80 constant boundary elements uniformly distributed on each of the boundaries
{0} × [0, 1], {1} × [0, 1] and [0, 1] × {0} were employed and the supplementary condition (7) was also imposed at N
internal nodes uniformly distributed on [0, 1] × {1}.
Example 1. First we try to reconstruct an infinitely differentiable smooth heat source defined by

f (x) = 2�2 sin(�x) for x ∈ [0, 1]. (22)

In this case the direct problem given by Eqs. (15), (17) and (18) with f given by (22) has the analytical solution

u(x, t) = (2 − e−�2t ) sin(�x) for (x, t) ∈ [0, 1] × [0, 1]. (23)

Based on (23) we obtain the data (7) as given by

u(x, 1) = (2 − e−�2
) sin(�x) = �T (x) for x ∈ [0, 1]. (24)
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Fig. 1. The errors e(k) and E(k), as functions of the number of iterations k, when � = 1, p = 0 and various numbers of boundary elements
N ∈ {20, 40, 80}, for Example 1. The values of �(N) = ‖�T − �T (N)‖L2((0,1)) are also included.

Fig. 1 shows the errors (20) and (21) for � = 1, p = 0 and various numbers of boundary elements N ∈ {20, 40, 80}.
Although the data (24) was not perturbed by random noise, as in (19), the value of � in (13) depends on N since in the
case of exact data, i.e., p = 0, �(N) = ‖�T − �T (N)‖L2((0,1)), where �T (N) is the numerical solution of the direct
problem (15), (17) and (18), when f is given by (22). From Fig. 1 the following conclusions can be drawn:

(i) ek < Ek for all k.
(ii) The accuracy error E(k) possesses a minimum at some iteration number at which the discrepancy principle (14)

is first satisfied, i.e.,

k =
{670 for N = 20,

803 for N = 40,

937 for N = 80.

(25)

Up to this level, the error E(k) is independent of N. As k increases beyond this level, it can be seen that E(k)

increases and the numerical solution becomes unstable.
(iii) Up to about 2000 iterations the error e(k) is independent of N after which it becomes stationary. This level of

stationarity decreases to zero, as the number of boundary elements increases to infinity.

In all of the remainder of the paper, the boundary element mesh was fixed at N = 40 and the parameter � and the
percentage amount of noise p were varied.

The measured data �T in (24) was perturbed by p ∈ {1, 3, 5, 10, 20}% random Gaussian noise with mean zero and
standard deviation equal to (2 − e−�2

)p which gives

‖�T − ��
T ‖L2((0,1)) ≈ �(p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.0003 for p = 0%,

0.0079 for p = 1%,

0.0240 for p = 3%,

0.0402 for p = 5%,

0.0805 for p = 10%,

0.1610 for p = 20%,

(26)

in Eq. (13). According to the discrepancy principle stopping criterion (14) we cease the iterations of the algorithm at
the iteration number k(p, �) given in Table 1. The corresponding errors E(k) in predicting the heat source are shown in
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Table 1
The stopping iteration number k(p, �) given by (14), with �(p) given by (26), for Example 1

�\p 0% 1% 3% 5% 10% 20%

1 803 648 539 482 414 347
2 400 323 268 240 206 173

10 77 62 52 46 40 34
100 3 2 2 2 2 2

Table 2
The error E(k) in predicting the heat source at the iteration number k(p, �) given in Table 1

�\p 0% 1% 3% 5% 10% 20%

1 3.1E−5 0.0375 0.1149 0.1962 0.3880 0.7601
2 7.3E−5 0.0372 0.1149 0.1956 0.3875 0.7570

10 2.1E−4 0.0366 0.1109 0.1941 0.3760 0.7238
100 3.8E−3 0.0242 0.0615 0.0989 0.1924 0.3795
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Fig. 2. The errors e(k) and E(k) given by (20) and (21), as functions of the number of iterations k, for various amounts of noise p ={1, 3, 5}% when
� = 1, for Example 1. The values given by (26) are also included.

Table 2. As expected, as � or p increases, the attainability of the stopping criterion (14) becomes faster. Surprisingly, the
error E(k) decreases as � increases. The stopping values of k can also be inferred from Fig. 2 which shows the errors
e(k) and E(k), as functions of the number of iterations k, for various amounts of noise p ∈ {1, 3, 5}% obtained with
� = 1. From this figure it can be seen that the error e(k) decreases as k increases, but the error E(k) starts increasing
once

k >

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

795 for p = 1%,

706 for p = 3%,

662 for p = 5%,

601 for p = 10%,

540 for p = 20%.

(27)

Then based on (14) with �(p) given by (26), one obtains the values for k and E(k) given in Tables 1 and 2 for � = 1,
respectively.
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Fig. 3. The analytical solution (22) (—–) and the numerical solutions for the heat source, for various amounts of noise p = 5% (− − −), p = 10%
(− · −) and p = 20% (− · · · · −), when � = 1, for Example 1.
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Fig. 4. The analytical solution (22) (—–) and the numerical solutions f �
k

for the heat source for � = 1, p = 20% at various iteration numbers
k = k(�) = 347 (− − −), k = 5k(�) (− · ·−) and k = 10k(�) (− · · · · −), for Example 1.

Fig. 3 shows the numerical solution of the heat source f �
k (x) at the discrepancy principle iteration k given in

Table 1 for � = 1, for various percentages of noise p ∈ {5, 10, 20}% in comparison with the exact solution (22). From
Fig. 3 it can be seen that as the amount of noise p decreases, the numerical solution approximates better the exact
solution.

In order to indicate the importance of the stopping criterion (14), Fig. 4 shows the numerical solution for the heat
source f �

k (x) when � = 1, p = 20% and k ∈ {k(�), 5k(�), 10k(�)}, where k(�) = 347, see Table 1. From this figure, it
follows that as k > k(�) increases, the numerical solution starts to oscillate and become unstable.
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Fig. 5. The analytical solution (28) (—–) and the numerical solutions for the heat flux at x = 0, for various amounts of noise p = 5% (− − −),
p = 10% (− · −) and p = 20% (− · · · · −), when � = 1, for Example 1.

Finally, we note that in the post-processing, from Eq. (16), we also obtain the numerical solution for the heat flux
qk = �nuk at the boundaries {0} × [0, 1] and {1} × [0, 1] and the interior solution uk(x, t). The heat flux at x = 0 is
shown in Fig. 5 for various p ∈ {5, 10, 20}% when � = 1 in comparison with the exact solution

�nu(0, t) = −�xu(0, t) = �(−2 + e−�2t ) for t ∈ [0, 1]. (28)

From Fig. 5 one can conclude that the numerical solution approximates better the exact solution as the amount of noise
p decreases.

From both Figs. 3 and 5 it can be seen that accurate and stable approximations for the heat source and the heat flux
are obtained even for a large amount of noise, such as 20%.

Example 2. We examine the reconstruction of a Gaussian normal distribution

f (x) = 1

�
√

2�
e−(x−)2/(2�2), (29)

where  = 0.5 is the mean and � = 0.1 is the standard deviation. Note that when � is small expression (29) mimics a
Dirac delta distribution �(x − ). Since the direct problem given by Eqs. (15), (17) and (18) with f given by (29) does
not have an analytical solution the data (7) is obtained by solving the direct problem using the BEM. For exact data,
i.e., p = 0, � is equal to the machine double-precision of O(10−16) and the iterative process is continued indefinitely.

Fig. 6 shows the numerical solution for the heat source fk(x) for various values of the iteration number k ∈
{10, 102, 103, 104}, when p = 0, � = 100, in comparison with the exact solution (29). From this figure it can be seen
that as k increases the numerical solution fk converges to the exact solution. However, quite large number of iterations
are necessary to achieve convergence even with � large; for � smaller even more iterations are required. Parameter free
and faster iterative methods such as the conjugate gradient method will be developed in a future work.

Next, the BEM direct problem solution data (7) (which has a maximum absolute value 0.21) is perturbed by Gaussian
noise with mean zero and standard deviation equal to 0.21p as in (19). This gives

‖�T − ��
T ‖L2((0,1)) ��(p) =

{0.0016 for p = 1%,

0.0050 for p = 3%,

0.0084 for p = 5%,

(30)



76 T. Johansson, D. Lesnic / Journal of Computational and Applied Mathematics 209 (2007) 66–80

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

H
e
a
t 
s
o
u
rc

e
 f
 (

x
)

x

exact

k = 1000

k = 100

k = 10

k = 10000

Fig. 6. The numerical solution for the heat source fk(x) for various values of the iteration number k ∈ {10, 102, 103, 104}, when p = 0, � = 100, in
comparison with the exact solution (29), for Example 2.

Table 3
The stopping iteration number k(p) given by (14) with � (p) given by (30) and the corresponding error E(k) in predicting the heat source, when
� = 100, for Example 2

p = 1% 3% 5%

k 245 113 79
E(k) 0.3472 0.4784 0.5602

in Eq. (13). According to the discrepancy principle (14) we cease the iterations of the algorithm at the iteration number
k(p) given in Table 3 when � = 100. The corresponding errors E(k) are also included in this table. As expected, as p
increases, the attainability of the stopping criterion (14) becomes faster. The stopping values of k can also be inferred
from Fig. 7 which shows the errors e(k) and E(k), as functions of the number of iterations k, for various amounts of
noise p ∈ {0, 3, 5, 10, 20}% obtained with � = 100. From this figure, it can be seen that for exact data, i.e., p = 0,
both errors keep continuously decreasing to zero as k → ∞. For noisy data, i.e., p > 0, the error e(k) decreases as k
increases but the error E(k) starts increasing once

k >

{1461 for p = 1%,

172 for p = 3%,

119 for p = 5%.

(31)

Then based on (14) with �(p) given by (30), one obtains the values of k and E(k) given in Table 3.
Fig. 8 shows the numerical solution for the heat source f �

k (x) at the discrepancy principle iteration k given in Table
3 for various percentages of noise p ∈ {0, 1, 3, 5}% in comparison with the exact solution (29). From this figure one
can conclude that as the amount of noise p decreases, the numerical solution approximates better the exact solution and
it is stable for all p, although the accuracy achieved is not as good as that obtained in Example 1. A closer inspection of
Fig. 7 shows that if one chooses the optimal iteration stop given by (31) then the errors E(k) decrease in comparison
with the values given in Table 3, and they are 0.2330, 0.4570 and 0.5315 for p=1%, 3% and 5%, respectively. However,
this improvement is only significant for relatively low amounts of noise of about 1%.
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when � = 100, in Example 2. The values of �(p) given by (30) are also included.
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Fig. 8. The exact solution (29) (—–) and the numerical solutions for the heat source, for various amounts of noise p =0 (−◦−) and k =104, p =1%
(− − −), p = 3% (− · −) and p = 5% (− · · · · −), when � = 100, for Example 2.

Example 3. In this example, we reconstruct a continuous piecewise smooth heat source, namely

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for 0�x < 1
3 ,

6x − 2 for 1
3 �x� 1

2 ,

4 − 6x for 1
2 < x� 2

3 ,

0 for 2
3 < x�1.

(32)
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Table 4
The stopping iteration number k(p) given by (14) with � (p) given by (33) and the corresponding error E(k) in predicting the heat source, when
� = 100, for Example 3

p = 1% 3% 5%

k 689 136 91
E(k) 0.0811 0.1387 0.1548
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Fig. 9. The exact solution (32) (—–) and the numerical solutions for the heat source, for various amounts of noise p =0 (−◦−) and k =104, p =1%
(− − −), p = 3% (− · −) and p = 5% (− · · · · −), when � = 100, for Example 3.

The BEM direct problem solution data (7) (which has a maximum absolute value 0.037) is perturbed by Gaussian
random noise with mean zero and standard deviation equal to 0.037p as in (19). This gives

‖�T − ��
T ‖L2((0,1)) ��(p) =

{0.0002 for p = 1%,

0.0008 for p = 3%,

0.0014 for p = 5%,

(33)

in Eq. (13). According to the discrepancy principle (14), we cease the iterations of the algorithm at the iteration number
k(p) given in Table 4 when � = 100. The corresponding errors E(k) are included in this table.

Fig. 9 shows the numerical solution for the heat source f �
k (x) at the discrepancy principle iteration k given in

Table 4 for the various percentages of noise p ∈ {0, 1, 3, 5, }% in comparison with the exact solution (32). From Figs.
8 and 9 it can be seen that whilst stable, the numerical solution for Example 3 is less accurate than that of Example 2,
as expected since example (32) is less regular than (29). Further, by comparing Figs. 6 and 9 for p = 0 it can be seen
that for Example 3 even 10 000 iterations are not enough to achieve the full convergence.

Example 4. The last example involves reconstructing a discontinuous heat source given by

f (x) =
⎧⎨
⎩

0 for 0�x < 1
3 ,

1 for 1
3 �x� 2

3 ,

0 for 2
3 < x�1.

(34)
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Table 5
The stopping iteration number k(p) given by (14) with � given by (35) and the corresponding error E(k) in predicting the heat source, when �=100,
for Example 4

p = 1% 3% 5%

k 209 113 91
E(k) 0.1916 0.2115 0.2286
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Fig. 10. The exact solution (34) (—–) and the numerical solutions for the heat source, for various amounts of noise p = 0 (− ◦ −) and k = 104,
p = 1% (− − −), p = 3% (− · −) and p = 5% (− · · · · −), when � = 100, for Example 4.

The BEM direct problem solution data (7) (which has a maximum absolute value 0.073) is perturbed by Gaussian
random noise with mean zero and standard deviation equal to 0.073p as in (19). This gives

‖�T − ��
T ‖L2((0,1)) ≈ �(p) =

{0.0005 for p = 1%,

0.0017 for p = 3%,

0.0029 for p = 5%,

(35)

in Eq. (13). Corresponding to Table 4 and Fig. 9, we have Table 5 and Fig. 10. The same conclusions as those of
Example 3 can be drawn with the note that the oscillatory behaviour near the discontinuities x = 1

3 and 2
3 in Fig. 10 for

p = 0 resembles the well-known Gibbs phenomenon.

9. Conclusions

In this paper a convergent and stable solution of a spacewise dependent heat source has been obtained using an
iterative regularizing algorithm. Both theoretical and numerical studies have been provided.

Future work will involve: (i) numerical BEM implementation in higher dimensions; (ii) determination of both
spacewise dependent heat source and the initial temperature from the temperature measurements at two different
instants; (iii) development of parameter free and faster iterative methods such as the conjugate gradient method;
(iv) extensions to the inverse source problems for the wave and plate equations.
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