SINGULAR SOLUTIONS OF ALGEBRAIC DIFFERENTIAL EQUATIONS AND A LEMMA OF ARNOLD SHAPIRO

E. R. Kolchin \dagger
(Received 10 April 1963)

INTRODUCTION

We consider differential equations of the form $A=0$ where A is a differential polynomial in finitely many differential indeterminates y_{1}, \ldots, y_{n} with coefficients in a differential field \mathscr{F} of characteristic zero; that is, A is an element of the differential polynomial algebra $\mathscr{A}=\mathscr{F}\left\{y_{1} \ldots, y_{n}\right\}$. We denote the derivation operators of \mathscr{F} by $\delta_{1}, \ldots, \delta_{m}$. We suppose fixed, once for all, a universal extension \mathscr{U} of \mathscr{F} (see [3], pp. 768-771).

Ritt showed (sce [6], p. 13 and pp. 165-166) that if \mathfrak{a} is any perfect differential ideal of \mathscr{A} then a is the intersection of finitely many prime differential ideals of \mathscr{A} none of which contains any other; these primes, which are unique, are the prime components of \mathfrak{a}. The prime components are especially interesting when a is the perfect differential ideal $\{A$ \} generated by an irreducible $A \in \mathscr{A}$.

In order to describe the situation in that case we consider a total ordering of the set of all derivatives $\delta_{1}^{i_{1}} \ldots \delta_{m}^{i_{m}} y_{j}\left(0 \leqslant i_{1}<\infty, \ldots, 0 \leqslant i_{m}<\infty, 1 \leqslant j \leqslant n\right)$ such that for all such derivatives u, v and all δ_{i}

$$
\begin{gathered}
u<\delta_{i} u \\
u<v \Rightarrow \delta_{i} u<\delta_{i} v .
\end{gathered}
$$

We call such an ordering a ranking of y_{1}, \ldots, y_{n}; rankings exist (e.g. we may order the derivatives $\delta_{1}^{i_{1}} \ldots \delta_{m}^{i_{m}} y_{j}$ lexicographically with respect to $\left(\Sigma i_{\mu}, j, i_{1}, \ldots, i_{m}\right)$) but are in general not unique. Given a ranking, the highest derivative u present in A is called the leader of A, and the partial derivative $\partial A / \hat{\partial} u$ is called the separant of A; of course, a different choice of ranking may give to A a different leader and separant.

Ritt called a zero of A (i.e., a solution of the differential equation $A=0$) singular if it is a zero of every separant of A. He showed (see [6], p. 31 and p. 167) that among the prime components of A there is one, which we shall denote by $\mathfrak{B}(A)$, with the following property: $\mathfrak{P}(A)$ contains no separant of A whereas each other prime component of A contains every separant of A. $\mathfrak{P}(A)$ is called the general component of A, the others are called the singular

[^0]components of A. Thus, every zero of a singular component of A is a singular zero of A, and every nonsingular zero of A is a zero of $\mathfrak{P}(A)$, but a singular zero of A may be a zero of $\mathfrak{P}(A)$.

It is a remarkable result of Ritt (see [6], pp. 57-62 and pp. 167-170, and also Hillman [1]. p. 163) that every singular component of A is the general component of another irreducible differential polynomial in \mathscr{A}. Furthermore, he gave ([6], p. 109 and pp. 175-176) an algorithm (modulo the possibility of factorization of polynomials over \mathscr{F}) for finding a finite set of irreducible polynomials the general components of which include among them the singular components of A, and then established a criterion (the famous low-power theorem (see [6], pp. 64-70 and pp. 170-172)) for determining, given an irreducible $B \in \mathscr{A}$, whether $\mathfrak{P}(B)$ is a singular component of A.

There remains the problem, posed by Ritt, of determining, for a given zero of A, the components of A which admit that zero. In the light of the above this reduces to a number of problems of the following type: given a zero of A, to determine whether or not it is a zero of $\mathfrak{P}(A)$. It is not difficult to see, moreover, that it suffices to be able to solve this problem when the zero is $(0, \ldots, 0)$. Thus, we are led to the following problem:

Given an irreducible differential polynomial $A \in \mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$ which vanishes at $(0, \ldots, 0)$, to determine whether $(0, \ldots, 0)$ is a zero of $\mathfrak{P}(A)$.

This problem is wide open. As yet, only very special cases have been solved. Two principal tools have been used in these special cases, as follows:

To prove that $(0, \ldots, 0)$ is a zero of $\mathfrak{P}(A)$. Let $P_{j}, Q_{j j^{\prime}}\left(1 \leqslant j \leqslant n, 1 \leqslant j^{\prime} \leqslant n\right)$ be power series over \mathscr{U} in an indeterminate constant c, which vanish at 0 , such that $\operatorname{det}\left(Q_{i j^{\prime}} \neq 0\right.$; for each nonzero $F \in \mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$ let $F *$ denote the leading coefficient of

$$
F\left(P_{1}+\sum_{j_{1}} Q_{i_{1}} y_{j_{1}}, \ldots, P_{n}+\sum_{j_{n}} Q_{n j_{n}} y_{j_{n}}\right)
$$

(i.e., the lowest nonzero coefficient when considered as a power series in c over $\mathscr{H}\left\{y_{1}, \ldots, y_{n}\right\}$). If the leader of $A\left(P_{1}+\sum_{j_{1}} Q_{1_{1}} y_{j_{1}}, \ldots, P_{n}+\sum_{j_{n}} Q_{n j_{n}} y_{j_{n}}\right)$ is present in $F *$, or if $S * \notin\{A *\}$ for some separant S of A, then $(0, \ldots, 0)$ is a zero of $\mathfrak{P}(A)$. This result, generalizing results of Hillman and of Ritt, is an almost immediate consequence of Hillman's leading coefficient theorem. (For an efficient proof of the leading coefficient theorem see Hillman and Mead [2]: for an indication of how this theorem leads to the above result see Hillman [1], §§ 7-8.).

To prove that $(0, \ldots, 0)$ is not a zero of $\mathfrak{M}(A)$. Suppose that $m=1$ (ordinary differential equations) and that A has more than one term. It is a consequence of two results of Levi ([4], $\S \S 38-41$ and $\S \S 44-52$) that if A has a term $y_{1}^{e_{1}} \ldots y_{n}^{e_{n}}$ of order 0 such that for every other term T and each y_{k} either the degree of T in $y_{k}, y_{k}^{\prime}, y_{k}^{\prime \prime}, \ldots$ is $>e_{k}$ or T is divisible by $y_{k}^{e_{k}}$, or if $n=1$ and A has a term $y_{1}^{f_{0}} y_{1}^{\prime f_{1}} \ldots y_{1}^{(r) f_{r}}$ such that for every other term T and $y_{1}^{(k)}(0 \leqslant k \leqslant r)$ the degree of T in $y_{1}^{(k)}, y_{1}^{(k+1)}, y_{1}^{(k+2)}, \ldots$ is $>f_{k}+f_{k+1}+\ldots+f_{r}$, then $(0, \ldots, 0)$ is not a zero of $\mathfrak{P}(A)$.

We come at last to the point of the present paper. This is to present a result which broadens considerably the class of differential polynomials A for which it is known that
$(0, \ldots, 0)$ is not a zero of $\boldsymbol{⿻}(A)$ ．To do this we introduce the notion of＇domination＇of one differential monomial over another（ $\$ 3$ below），and establish a key lemma（ $\$ 5$ ）about this notion which generalizes both of Levi＇s results mentioned above．The proof depends on a lemma of Levi（ $\$ 2$ below）．The domination lemma yields our proposition（ $\$ 6$ ），a special case of which can be stated as follows（ m and n now being arbitrary）．

Let A have more than one term．If A has a term which is dominated by erery other term of A then $(0, \ldots, 0)$ is not a zero of $\mathfrak{P}(A)$ ．

A crucial role in the proof of the domination lemma is played（\＄4）by a combinatorial lemma proved by Arnold Shapiro（unpublished）．His lemma is presented in $\S 1$ ．

NOTATION

We consistently use the following notation：
$\mathbf{N}, \mathbf{Q}, \mathbf{R}$ denote respectively the set of natural numbers，of rational numbers，of real numbers．

For any set $K, \mathfrak{P}(K)$ denotes the set of all subsets of K ，and card K denotes the cardinal number of K ．The empty set is denoted by ϕ ．
Θ denotes the set of all derivative operators $\delta_{1}^{i_{1}} \ldots \delta_{m}^{i_{m}}\left(i_{1} \in \mathbf{N}, \ldots, i_{m} \in \mathbf{N}\right)$ of the differential field \mathscr{F}（and of all the various differential rings and fields considered）．
$\left[A_{1}, \ldots, A_{r}\right]$ denotes the differential ideal generated by the elements A_{1}, \ldots, A_{r} of a given differential ring．$\left\{A_{1}, \ldots, A_{r}\right\}$ denotes the perfect differential ideal generated by these elements；since in the cases considered the differential ring contains $\mathbf{Q},\left\{A_{1}, \ldots A_{r}\right\}$ is the set of all elements B such that $B^{s} \in\left[A_{1}, \ldots, A_{r}\right]$ for some $s \in \mathbf{N}$ ．

\＆1．SHAPIRO＇S LEMMA

Shapiro＇s lemma．Let K be a finite set，let $\left(a_{k}\right)_{k \in K}$ be a family with $a_{k} \in \mathbf{R}$ and $a_{k} \geqslant 0$ $(k \in K)$ ，let $\left(x_{J}\right)_{J_{\in}(K)-\mathfrak{P}(\phi)}$ be a family with $x_{J} \in \mathbf{R}$ and $x_{J} \geqslant 0(J \in \mathfrak{P}(K)-\mathfrak{P}(\phi))$ ，and suppose that

$$
\begin{equation*}
\sum_{J \in \mathfrak{F}(K)-\mathfrak{P}(K-J)} x_{J}>\sum_{i \in I} a_{i} \quad(I \in \mathscr{F}(K)-\mathscr{H}(\phi)) . \tag{1}
\end{equation*}
$$

Then there exist numbers $x_{J, j} \in \mathbf{R}$ with $x_{J, j} \geqslant 0(J \in \mathscr{H}(K)-\mathfrak{P}(\phi), j \in J)$ such that

$$
\sum_{j \in J} x_{J, j}=x_{J} \quad(J \in ⿻(\mathcal{P}(K)-⿻ 彐 丨(\phi))
$$

and

$$
\sum_{J \in j} x_{J, j}>a_{j} \quad(j \in K)
$$

Remarks．（1）We may think of the elements of K as representing the vertices of a simplex，the nonempty subsets of K as representing the faces of that simplex，the numbers a_{i} as forming a system of masses located at the vertices，and the numbers x_{J} as forming a system of masses located on the faces．The lemma then asserts that if，for each face I ，the sum of the masses of the second system located on the faces touching I exceeds the sum of
the masses of the first system located at the vertices of I, then the mass on each face can be redistributed among the vertices of that face in such a way that, for each vertex, the redistributed mass of the second system at the vertex exceeds the mass of the first system there.
(2) The proof shows that $x_{J, j}$ may be taken in the ficld $\mathbf{Q}\left(\left(a_{k}\right)_{k \in \mathrm{~K}},\left(x_{J}\right)_{\epsilon \in \mathcal{Y}(K)-P(\phi)}\right)$.

Proof. Let $s=$ card K; we may suppose that $s>0$ as otherwise the result is trivial. Then there exists a $J \in \mathfrak{P}(K)-\mathfrak{P}(\phi)$ with $x_{J}>0$, and therefore there exists a unique $r \in \mathbf{N}$ such that $x_{J} \neq 0$ for some J with card $J=r$ but $x_{J}=0$ for all J with card $J>r$: of course $1 \leqslant r \leqslant s$. Let t denote the number of elements $J \subset \nVdash(K)$ with card $J=r$ and $x_{J} \neq 0$; then $t>0$. If $r=1$ then the nonzero masses of the second system are already all at the vertices, so that the result is trivial. Therefore we may assume that $r>1$ We assume, too, that the result has been proved for lower values of (s, r, t) in the lexicographically well-ordered set \mathbf{N}^{3}.

Fix some $I_{0} \in \mathfrak{Y}(K)$ with card $I_{0}=r$ and $x_{I_{0}} \neq 0$, and fix some $k \in I_{0}$; let I_{1} denote the set of elements of I_{0} other than k. Then $K-I_{0} \subset K-I_{1} \subset K$, so that the system of inequalities (1) can be written as three subsystems:
(la) corresponding to $I \in \mathfrak{P}\left(K-I_{0}\right)-\mathfrak{P}(\phi)$;
(1b) corresponding to $I \in \mathfrak{P}\left(K-I_{1}\right)-\mathfrak{P}\left(K-I_{0}\right)$;
(1c) corresponding to $I \in \mathfrak{P}(K)-\mathfrak{P}\left(K-I_{1}\right)$.
The left members in (1a) contain neither of the terms $x_{I_{0}}, x_{I_{1}}$ and the left members in (lc) contain both these terms; the left members in (1b) contain $x_{I_{0}}$ but not $x_{I_{1}}$. It follows that if $\xi \in \mathbf{R}, \xi>0$, and if we replace $x_{I_{0}}$ by $x_{I_{0}}-\xi$ and $x_{I_{1}}$ by $x_{I_{1}}+\xi$, then (1a) and (1c) remain valid. The system (1b) remains valid provided ξ is sufficiently small. If (1 b) remains valid for $\xi=x_{I_{0}}$ then the replacement transforms the original system (1) into a similar system with a lower value for (s, r, t). We may therefore suppose that at least one of the inequalities (1b) fails after the replacement using $\xi=x_{I_{0}}$. Then there is a smallest value for ξ, and we denote it simply by ξ, such that after the replacement (1 b) fails to hold: using this ξ we see that (1 b) becomes a system ($1 \mathrm{~b}^{\prime}$) of weak inequalities in the same direction. Obviously $0<\xi \leqslant x_{I_{0}}$, and at least one of the weak inequalities ($1 b^{\prime}$) is an equality.

From among all the $I \in ⿻\left(\mathcal{P}(K)-I_{1}\right)-⿻\left(\mathcal{H}\left(K-I_{0}\right)\right.$ for which the corresponding inequality (lb^{\prime}) is an equality, choose a maximal one, say K^{\prime}, and set $K^{\prime \prime}=K-K^{\prime}$. Then

$$
\begin{equation*}
\sum_{l \in \mathbb{P}(K)} \sum_{\mathfrak{q}\left(K^{\prime \prime}\right)} x_{J}=\sum_{i \in \mathcal{K}^{\prime}} a_{i} . \tag{2}
\end{equation*}
$$

Consider any $I^{\prime \prime} \in \mathscr{F}\left(K^{\prime \prime}\right)-\mathcal{Y}(\phi)$; writing $I=K^{\prime} \cup I^{\prime \prime}$, we see that either $I \in \mathscr{Y}\left(K-I_{1}\right)$ and I corresponds to an equality (1c) or else $I \in \mathscr{P}\left(K-I_{1}\right)-\mathscr{P}\left(K-I_{0}\right)$ and I corresponds to an inequality ($1 b^{\prime}$). In either case the inequality is strict. Subtracting from it the equation (2) we obtain

On the other hand, if we start with some $I \in \mathfrak{P}\left(K^{\prime}\right)-\mathfrak{H}(\phi)$ then either $I \in \mathscr{H}\left(K-I_{0}\right)-\mathbb{H}(\phi)$ and we have a strict inequality (1a) or else $I \in \mathfrak{P}\left(K-I_{1}\right)-\mathfrak{P}\left(K-I_{0}\right)$ and we have a weak
inequality (lb^{\prime}). If we now reduce ξ slightly, still keeping it positive, then the inequalities (1a) remain valid, and the inequalities ($1 b^{\prime}$) ail become strict; that is, we regain (1b); furthermore, if the amount by which we reduce ξ is sufficiently small than (1 ") remains valid, too. Then, in addition to ($1^{\prime \prime}$) we obtain (denoting I by I^{\prime})

$$
\begin{equation*}
\sum_{J \in \mathfrak{B}(K)-\mathcal{B}\left(K-I^{\prime}\right)} x_{J}>\sum_{i \in I^{\prime}} a_{i} \quad\left(I^{\prime} \in \mathscr{P}\left(K^{\prime}\right)-\mathscr{P}(\phi)\right) . \tag{3}
\end{equation*}
$$

If $J \in \mathfrak{P}(K)-\mathfrak{P}\left(K-I^{\prime}\right)$ then $J \in \mathfrak{P}(K)-\mathfrak{P}\left(K-K^{\prime}\right)$ and therefore this J does not occur in the left side of $\left(1^{\prime \prime}\right)$. For each $J \in \mathfrak{P}(K)-\mathfrak{P}\left(K-K^{\prime}\right)$ we now decrease x_{J} and increase $x_{J \cap K^{\prime}}$ by the same amount x_{J} (that is, we shift the entire mass x_{J} from the face J to the face $J \cap K^{\prime}$). This does not affect the inequalities ($1^{\prime \prime}$). and replaces the inequalities (3) by

$$
\sum_{J \in \mathscr{M}\left(K^{\prime}\right), \mathfrak{Y}\left(K^{\prime}-I^{\prime}\right)} x_{J}>\sum_{i \in I^{\prime}} a_{i} \quad\left(I^{\prime} \in \mathfrak{P}\left(K^{\prime}\right)-\mathfrak{F}(\phi)\right)
$$

Since card $K^{\prime}<s$ and card $K^{\prime \prime}<s$, the lemma holds for each of the two systems (1^{\prime}) and ($1^{\prime \prime}$). It is now a simple matter to see that the lemma holds for the original system (1).

Corollary. Let K be a finite set, let $a_{k} \in \mathbf{N}(k \in K)$, let $x_{J} \in \mathbf{N}(J \in \mathfrak{P}(K)-\mathfrak{P}(\phi))$, and suppose that

$$
\sum_{J \in \mathcal{Y}(K)=\mathscr{F}(K-I)} x_{J}>\sum_{i \in I} a_{i} \quad(I \in \Downarrow(K)-H(\phi)) .
$$

Then, for each sufficiently big $h \in \mathbf{N}$, there exist $y_{J, j} \in \mathbf{N}(J \in \mathcal{Y}(K)-\mathfrak{Y}(\phi), j \in J)$ such that

$$
\sum_{j \in J} y_{J . j}=h x_{J} \quad(j \in \mathfrak{M}(K)-\mathfrak{P}(\phi))
$$

and

$$
\sum_{j \neq j} y_{J, j}>h a_{j} \quad(j \in K)
$$

Proof. There exist (see second remark after Shapiro's lemma) rational numbers $x_{J, j}$ satisfying the conclusion of that lemma. There obviously exists a $\xi>0$, smaller than every nonzero $x_{1, j}$, such that if we set

$$
x_{J, j}^{\prime}= \begin{cases}\mid x_{J, j}-\xi & \left(x_{s, j} \neq 0\right) \\ 10 & \left(x_{J, j}=0\right)\end{cases}
$$

then $\sum_{J \nexists j} x_{j, j}^{\prime}>a_{j}(j \in K)$; of course $\sum_{j,} x_{j, j}^{\prime} \leqslant x_{j}$. For any $h \in \mathbf{N}$ with $h>\underline{\xi}^{-1}$ there exist $x_{J, j}^{\prime \prime} \in h^{-1} \mathbf{N}$ such that $x_{J, j}^{\prime} \leqslant x_{J, j}^{\prime \prime} \leqslant x_{J, j}$ and for such $x_{J, j}^{\prime \prime}$ obviously $\sum_{J \in j} x_{J . j}^{\prime \prime} \leqslant x_{J}(J \in \mathfrak{P}(K)$ $-\mathfrak{P}(\phi))$ and $\sum_{J \exists j} x_{,, i}^{\prime \prime}>a_{j}(j \in K)$. For each $J \in \Downarrow(K)-\mathbb{H}(\phi)$ fix an element $i(J) \in J$ and set $y_{J, j}=h x_{J, j}^{\prime \prime}(j \in J, j \neq i(J)), y_{J, i(J)}=h x_{J, i(J)}^{\prime \prime}+h x_{J}-\sum_{j \in J} h x_{J, j}^{\prime \prime}$. It is easy to see that the numbers $y_{J . j}$ have the required properties.

§ 2. LEVI'S LEMMA

Our point of departure is the following result concerning differential polynomials in y_{1}, \ldots, y_{n} and a number of other differential indeterminates $u_{i j}\left(1 \leqslant i \leqslant n, 0 \leqslant j \leqslant r_{i}\right)$.

Levi's Lemma. Let G_{1}, \ldots, G_{n} be differentialpolynomials in $\mathbf{Q}\left\{y_{1}, \ldots, y_{n},\left(u_{i j}\right)_{1 \leqslant i \leqslant n, 0 \leqslant j \leqslant r_{i}}\right\}$ given by $G_{i}=u_{i 0} y_{i}^{q_{i}}+\sum_{1 \leqslant j \leqslant r_{i}} u_{i j} M_{i j}(1 \leqslant i \leqslant n)$ where, for each $i, q_{i} \in \mathbf{N}$ and $M_{i 1}, \ldots, M_{i r_{i}}$ are
differential monomials in y_{1}, \ldots, y_{n} of degree $>q_{i}$. Then there exist a monomial

$$
U=u_{10}^{d_{1}} \ldots u_{n 0}^{d_{n}} i n u_{10}, \ldots, u_{n 0}
$$

and a differential polynomial $Y \in \mathbf{Q}\left\{y_{1}, \ldots,,_{n},\left(u_{i j}\right)_{1 \leqslant i \leqslant n}, 0 \leqslant i \leqslant r_{i}\right\}$ with the following properties:
Y is homogeneous in $\left(\theta u_{i j}\right)_{\theta \in \Theta, 0 \leqslant j \leqslant r_{i}}$ of degree $d_{i}(1 \leqslant i \leqslant n)$;
the degree of Y in $\left(\theta_{u_{i 0}}\right)_{\theta \in \Theta, 1 \leqslant i \leqslant n}$ is $<d_{1}+\ldots+d_{n}$;
$Y \in\left[y_{1}, \ldots, y_{n}\right]$;
$y_{i}(U+Y) \in\left\{G_{1}, \ldots, G_{r}\right\}(1 \leqslant i \leqslant n)$.
Levi proved this result for ordinary differential polynomials ([4] §§ 32-36, § 47), and for partial differential polynomials in the case $r=1$ ([5], p. 118). The general lemma can be established in the same way with little extra difficulty.

\$3. DOMINATION

We deal with differential monomials in y_{1}, \ldots, y_{n}, that is, with products of powers of derivatives $\theta y_{i}(\theta \in \Theta, 1 \leqslant i \leqslant n)$.

By a prime factor of such a differential monomial M we mean a derivative θy_{i} which divides M. If V is $a n y$ set of derivatives θy_{i} we let ΘV denote the set of all derivatives of the y_{i} which can be written in the form $\theta v(\theta \in \Theta, v \in V)$. The product of all the prime factors w of M with $w \in \Theta V$, each w taken the same number of times as it occurs in M, is a differential monomial which we denote by M_{V}.

Let M and N be differential monomials. We shall say that N dominates M if, for every set V, the following condition is satisfied:

$$
\text { either } \operatorname{deg} M_{V}<\operatorname{deg} N_{V} \text { or } M_{V}=N_{V}
$$

Since $M_{V}=M_{\Theta V}=M_{(\Theta V) \cap V(M)}$, where $V(M)$ denotes the set of all prime factors of M, it suffices to verify this condition for every nonempty set V with $V \subset V(M)$. If, for every nonempty V with $V \subset V(M), N$ satisfies the stronger condition

$$
\operatorname{deg} M_{V}<\operatorname{deg} N_{V}
$$

then we shall say that N strongly dominates M.
It is easy to see that there exists a biggest set W of prime factors of M such that $M_{W}=N_{W}$. If N dominates M then a necessary and sufficient condition that N strongly dominate M is that W be empty. We shall call W the weakness of N over M.

If N_{k} dominates M and W_{k} denotes the weakness of N_{k} over $M(1 \leqslant k \leqslant r)$ then the weakness of $\prod_{1 \leqslant k \leqslant r} N_{k}$ over M^{r} is $\bigcap_{1 \leqslant k \leqslant r} W_{k}$.

§ 4. FACTORIAL DOMINATION

If N_{k} dominates (resp. strongly dominates) $M_{k}(1 \leqslant k \leqslant r)$ then $\prod_{1 \leqslant k \leqslant r} N_{k}$ dominates (resp. strongly dominates) $\prod_{1 \leqslant k \leqslant r} M_{k}$. If N_{k} dominates $M(1 \leqslant k \leqslant r)$ and, for at least one k,
N_{k} strongly dominates M then $\prod_{1 \leqslant k \leqslant r} N_{k}$ strongly dominates M^{r}. It follows from the former statement that if $M=\prod_{1 \leqslant k \leqslant r} v_{k}^{a_{k}}$, where r_{1}, \ldots, v_{r} are the distinct prime factors of M, and if $N=\prod_{1 \leqslant k \leqslant r} N_{k}$ where N_{k} dominates (resp. strongly dominates) $l_{k}^{a_{k}}(1 \leqslant k \leqslant r)$, then N dominates (resp. strongly dominates) M. We shall say in such a case that N dominates (resp. strongly dominates) M factorially.

If N_{l} dominates (resp. strongly dominates) M_{l} factorially $(1 \leqslant l \leqslant s)$ then $\prod_{1 \leqslant l \leqslant s} N_{1}$ dominates (resp. strongly dominates) $\int_{1 \leqslant l \leqslant s} M_{t}$ factorially. If N_{l} dominates M factorially $(1 \leqslant l \leqslant s)$ and, for at least one l, N_{l} strongly dominates M factorially then $\prod_{1 \leqslant l \leqslant r} N_{l}$ strongly dominates M^{s} factorially.

Shapiro's lemma enters at this point.
First Preliminary Lemma. If N_{1} strongly dominates $M(1 \leqslant l \leqslant s)$ then, for all $\left(i_{1}, \ldots, i_{s}\right) \in \mathbf{N}^{s}$ for which the sum $h=i_{1}+\ldots+i_{s}$ is sufficiently hig. $\prod_{1 \leqslant 1 \leqslant s} N_{i}^{i_{1}}$ strongly dominates M^{h} factorially.

Proof. Write $M=\prod_{k \in K} v_{k}^{q_{k}}$ with K a finite set and the elements $v_{k}(k \in K)$ the distinct prime factors of M. For each nonempty set $J \subset K$ let $x_{l J}$ denote the number of prime factors v of N_{I} such that v is a derivative of v_{k} for every $h \in J$ and is not a derivative of v_{k} for any $k \in K-J$ (each v being counted as many times as it occurs in N_{i}). Because N_{l} strongly dominates M we have for each l

$$
\sum_{J \in \mathbb{Y}(K)=\mathfrak{w}(K-I)} x_{l J}>\sum_{i \in I} a_{i} \quad(I \in \mathscr{H}(K)-\boldsymbol{H}(\phi)) .
$$

By the corollary to Shapiro's lemma there exist an $h_{0} \in \mathbf{N}$ and, for each (J, j) with $J \in \mathbb{P}(K)-\mathbb{P}(\phi)$ and $j \in J$, a $y_{l j j} \in \mathbf{N}$ such that

$$
\sum_{j \in J} y_{i J j}=h_{0} x, \quad \text { and } \quad \sum_{j \in j} y_{i J j}>h_{0} a_{j} .
$$

It follows that we may write $N_{t}^{i_{0}}=\prod_{j \in K} N_{l j}$ where, for each $j \in K, N_{l j}$ is a differential monomial of which the degree in $\left(\theta \tau_{j}\right)_{\theta \in \Theta}$ is $\geqslant h_{0} a_{j}+1$. Let $\left(i_{1}, \ldots, i_{s}\right) \in \mathbf{N}^{s}$ and write $i_{l}=q_{1} h_{0}+r_{1}$ with $q_{l}, r_{l} \in \mathbf{N}$ and $r_{l}<h_{0}$. Then $\prod_{1 \leqslant 1 \leqslant s} N_{l}^{i_{1}}=\prod_{j \leqslant K} \prod_{1 \leqslant l \leqslant s} N_{l j}^{q_{l}}$. $\prod_{1 \leqslant l \leqslant s} N_{l}^{p_{l}}$. For each $j \in K$ the degree of $\prod_{1 \leqslant l \leqslant s} N_{i j}^{q_{l}}$ in $\left(0 v_{j}\right)_{\theta \in \Theta}$ is

$$
\geqslant \sum_{i \leqslant 1 \leqslant s} q_{l}\left(h_{0} a_{j}+1\right)=\sum_{1 \leqslant l \leqslant s}\left(i_{l}-r_{l}\right) h_{0}^{-1}\left(h_{0} a_{j}+1\right) \geqslant\left(h-s\left(h_{0}-1\right)\right) h_{0}^{-1}\left(h_{0} a_{j}+1\right),
$$

where $h=\sum_{1 \leqslant 1 \leqslant s} i_{l}$, so that this degree is $>a_{j} h$ provided $h>s\left(h_{0}-1\right)\left(h_{0} a_{j}+1\right)$. Whenever this is the case then $\prod_{1 \leqslant l \leqslant s} N_{l}^{i_{t}}$ strongly dominates M^{h} factorially.

Second Preliminary Lemma. Let $F=\sum_{0 \leqslant 1 \leqslant s} u_{t} M_{l} \in \mathbf{Q}\left\{y_{1}, \ldots, y_{n}, u_{0}, \ldots, u_{s}\right\}$, where $M_{0}, M_{1}, \ldots M_{s}$ are differential monomials in y_{1}, \ldots, y_{n} such that $M_{0} \neq 1$ and $M_{1} \neq M_{0}$ $(1 \leqslant l \leqslant s)$. If each M_{I} with $l \neq 0$ dominates (resp. strongly dominates) M_{0} then the ideal (F)
contains a differential polynomial $G=u_{0}^{a} M_{0}^{a}+\sum_{1 \leqslant 1 \leqslant t} U_{1} N_{l}$, where $a \in \mathbf{N}, a \neq 0$, each U_{t} is a monomial in $u_{0}, u_{1}, \ldots, u_{s}$ different from u_{0}^{a} of degree a, and each N_{1} is a differential monomial in y_{1}, \ldots, y_{n} different from M_{0}^{a} which dominates (resp. strongly dominates) M_{0}^{a} factorially.

Proof. Suppose that each M_{1} with $l \neq 0$ strongly dominates M_{0}. Raising both sides of the congruence $u_{0} M_{0} \equiv-\sum_{1 \leqslant 1 \leqslant s} u_{l} M_{l}(\bmod F)$ to an odd power a, we obtain a congruence $u_{0}^{a} M_{0}^{a} \equiv-\sum u_{l_{1}} \ldots u_{l_{a}} M_{l_{1}} \ldots M_{l_{a}}(\bmod F)$; by the first preliminary lemma we may choose a so big that each $M_{I_{1}} \ldots M_{l_{u}}$ strongly dominates M_{0}^{a} factorially, and therefore the differential polynomial $G=u_{0}^{a} M_{0}^{n}+\sum u_{l_{1}} \ldots u_{I_{a}} M_{l_{1}} \ldots M_{I_{t}}$ satisfies the 'resp.' part of the conclusion.

Now suppose merely that M_{l} dominates $M_{0}(1 \leqslant l \leqslant s)$. Let Λ_{0} denote the set of indices l with $l \neq 0$ such that M_{l} dominates M_{0} factorially. For each l with $l \neq 0$ and $l \notin \Lambda_{0}$ the weakness of M_{1} over M_{0} is a subset of the set of prime factors of M_{0}. Denote the distinct weaknesses of the various M_{l} with $l \neq 0$ and $l \notin \Lambda_{0}$ by W_{1}, \ldots, W_{k} and for each W_{j} let Λ_{j} denote the set of irdices $/$ with $l \neq 0$ ard $l \notin \Lambda_{0}$ such that the weakness of M_{l} over M_{0} is W_{j}; we choose the notation so that $W_{k} \notin W_{j}(1 \leqslant j \leqslant \mathrm{k}-1)$. Then $F=u_{0} M_{0}+$ $\sum_{0 \leqslant j \leqslant k} \sum_{l \in \Lambda_{j}} u_{l} M_{i}$. Set $\pi=\mathrm{card} \bigcup_{1 \leqslant j \leqslant k} \notin\left(W_{j}\right)$.

If $\pi=0$ we may take $G=F$. Let $\pi>0$ and suppose the result proved for lower values of π. Then $k>0$. Raising both sides of the congruence $u_{0} M_{0}+\sum_{i \in \wedge_{0}} u_{i} M_{l} \equiv-\sum_{1 \leqslant j \leqslant k} \sum_{l \in \Lambda_{j}}$ $u_{1} M_{l}(\bmod F)$ to an odd power h, we obtain on the left $u_{0}^{h} M_{0}^{h}$ plus a number of terms $U N$ with U a monomial in $u_{0}, u_{1}\left(l \in \Lambda_{0}\right)$ different from u_{0}^{h} of degree h and N a differential monomial in y_{1}, \ldots, y_{n} different from M_{0}^{h} which dominates M_{0}^{h} factorially. On the right we obtain a sum of terms $-U N=-u_{l_{1}} \ldots u_{l_{h}} M_{l_{1}} \ldots M_{l_{h}}$; for any such term either some index l_{i} is in a Λ_{j} with $1 \leqslant j \leqslant k-1$ or $l_{i} \in \Lambda_{k}(1 \leqslant i \leqslant h)$. In the former case the weakness of N over M_{0}^{h} is a subset of W_{j} for some j with $1 \leqslant j \leqslant k-1$. In the latter case we may write $M_{l_{i}}=M_{l_{i}}^{\prime} M_{l_{i} W_{k}}=M_{l_{i}}^{\prime} M_{0 W_{k}}(1 \leqslant i \leqslant h)$ and $M_{0}=M_{0}^{\prime} M_{0 W_{k}}$, and each $M_{i_{i}}^{\prime}$ strongly dominates M_{0}^{\prime}; by the first preliminary lemma we may choose h so that $M_{i_{1}}^{\prime} \ldots M_{i_{h}}^{\prime}$ strongly dominates $M_{0}^{\prime h}$ factorially, and then $N=M_{l_{1}} \ldots M_{l_{1}}=M_{i_{1}}^{\prime} \ldots M_{l_{h}}^{i_{n}} M_{0 W_{k}}^{h}$ dominates $M_{0}^{h}=M_{0}^{\text {th }} M_{0 W_{k}}^{h}$ factorially. Transposing to the left side all the terms on the right we obtain on the left a differential polynomial.

$$
F^{*}=U_{0} M_{0}^{*}+\sum_{0 \leqslant i \leqslant h * i \in \Lambda_{j}} U_{j} M_{j}^{*} \in(F)
$$

where $\Lambda_{0}^{*}, \ldots, \Lambda_{k}{ }^{*}$ are disjoint finite sets not containing $0, U_{0}=u_{0}^{h}$, each U_{1} with $l \neq 0$ is a monomial in $u_{0}, u_{1}, \ldots, u_{s}$ different from u_{0}^{h} of degree $h, M_{0}^{*}=M_{0}^{h}$, every M_{t}^{*} with $l \in \Lambda_{0}^{*}$ is a differential monomial in y_{1}, \ldots, y_{n} different from M_{0}^{h} which dominates M_{0}^{h} factorially, for each index j with $1 \leqslant j \leqslant k^{*}$ all the M_{i}^{*} with $l \in \Lambda_{j}^{*}$ are differential monomials in y_{1}, \ldots, y_{n} different from M_{0}^{h} which dominate M_{0}^{h} and have over M_{0}^{h} one and the same weakness W_{j}^{*}, and each of these weaknesses $W_{1}^{*}, \ldots, W_{k^{*}}^{*}$ is a subset of some W_{j} with $1 \leqslant j \leqslant k-1$. It follows from the last remark that the number $\pi^{*}=$ card $\underset{1 \leqslant j \leqslant k^{*}}{\bigcup}$ has the property that $\pi^{*}<\pi$. Therefore we may apply the present lemma to F^{*}, and the existence of a differential polynomial $G \in(F)$ with the required property quickly follows.

§5. THE DOMINATION LEMMA

We now come to the main lemma from which our results on singular solution will quickly follow.

Domination lemma. Let $F=\sum_{0 \leqslant l \leqslant s} u_{i} M_{I} \in \mathbf{Q}\left\{y_{1}, \ldots, y_{n}, u_{0}, \ldots, u_{s}\right\}$ where M_{0}, \ldots, M_{s} are differential monomials in y_{1}, \ldots, y_{n} such that $M_{0} \neq 1$ and $M_{1} \neq M_{0}(1 \leqslant l \leqslant s)$. If each M_{1} with $l \neq 0$ dominates (resp. strongly dominates) M_{0} then there exist a nonzero $e \in \mathbf{N}$ and a $Y \in \mathbf{Q}\left\{y_{1}, \ldots, y_{n}, u_{0}, \ldots, u_{s}\right\}$ with the following properies:
Y is homogeneous in $\left(\theta u_{1}\right)_{\theta \epsilon \Theta, 0} 0 \leqslant 1 \leqslant s$ of degree e;
the degree of Y in $\left(\theta u_{0}\right)_{\theta_{\in \Theta}}$ is $<e$;
$Y \in\left[y_{1}, \ldots, y_{n}\right]$ (resp. $Y \in\left\{M_{0}\right\}$);
$M_{0}\left(u_{0}^{e}+Y\right) \in\{F\}$.
Proof. Write $M_{0}=r_{1}^{4} \ldots r_{t}^{4 r}$, where $t_{1}, \ldots r_{t}$ are the distinct prime factors of M_{0}. Suppose first that $t=1$. For each l either M_{1} is divisible by $r_{1}^{q_{1}}$ or the degree of M_{1} in Θv_{i} is $>q_{1}$. Therefore we may write

$$
F=\left(u_{0}+\sum_{l \in \Lambda^{\prime}} u_{l} L_{l}\right) v_{1}^{4_{1}}+\sum_{l \in \Lambda^{\prime \prime}} u_{l} L_{l} N_{l}\left(v_{1}\right)
$$

where $\Lambda^{\prime}, \Lambda^{\prime \prime}$ are disjoint sets the union of which is the set of indices $1,2, \ldots, s$ (with $\Lambda^{\prime}=\phi$ if each M_{l} with $l \neq 0$ strongly dominates M_{0}), each L_{l} is a differential monomial in y_{1}, \ldots, y_{n}, $\operatorname{deg} L_{l}>0\left(l \in \Lambda^{\prime}\right)$, and each N_{l} with $l \in \Lambda^{\prime \prime}$ is a differential monomial (in some new differential indeterminate z) of degree $>q_{1}$. We may apply Levi's lemma (case $n=1$) to the differential polynomial $G=\bar{u}_{0} z^{z_{1}}+\sum_{l \in \Lambda^{\prime}} \bar{u}_{l} N_{l} \in \mathbf{Q}\left\{z, \bar{u}_{0},\left(\bar{u}_{l}\right)_{l \in \Lambda^{\prime \prime}}\right\}$ to show the existence of a differential polynomial $z\left(\bar{u}_{0}^{e}+\mathrm{Z}\right) \in\{G\}$ with Z homogeneous in $\left(\left(\theta \bar{u}_{0}\right)_{\theta \in \Theta},\left(\theta \bar{u}_{i}\right)_{\theta \in \Theta}, t \in \Lambda^{\prime \prime}\right)$ of degree e, the degree of Z in $\left(\theta \bar{u}_{0}\right)_{\theta \in \Theta}$ strictly smaller than e, and $Z \in[z]$. Since the substitution of $\left(v_{1}, u_{0}+\sum_{l \in \mathcal{N}^{\prime}} u_{i} L_{l},\left(u_{i} L_{l}\right)_{t \in \Lambda^{\prime}}\right)$ for $\left(z, \bar{u}_{0},\left(u_{l}\right)_{t \in \Lambda^{\prime \prime}}\right)$ maps G onto F, the desired result follows.

Now suppose that $t>1$ and that the lemma has been proved for lower values of t. By the second preliminary lemma, (F) contains a differential polynomial $G=u_{0}^{a} 0_{1}^{q_{1} a} \ldots v_{t}^{q_{t} a}+$ $\sum_{1 \leqslant j \leqslant r} U_{j} N_{1 j} M_{j}^{\prime}$, where each U_{j} is a monomial in u_{0}, \ldots, u_{s} other than u_{0}^{a} of degree a, each $N_{1 j}$ is a differential monomial in y_{1}, \ldots, y_{n} which dominates (resp. strongly dominates) $r_{1}^{q_{1} a}$, each M_{j}^{\prime} is a differential monomial in y_{1}, \ldots, y_{n} which dominates (resp. strongly dominates) $v_{2}^{q_{2} a} \ldots v_{i}^{q_{i} a}$, and $N_{1 j} M_{j}^{\prime} \neq M_{0}^{a}$. Replacing G by $\left(u_{0}^{a} M_{0}^{a}\right)^{h}+\left(\sum_{1 \leqslant j \leqslant r} U_{j} N_{1 j} M_{j}^{\prime}\right)^{h}$ if necessary, h denoting an odd natural number >1, we may even suppose that $M_{j}^{\prime} \neq v_{2}^{q_{2}^{2 a}} \ldots v_{\mathrm{t}}^{r+a}(1 \leqslant j \leqslant r)$. Then we may apply the present lemma (case $t-1$) to the differential polynomial $F^{\prime}=u_{0}^{\prime} v_{2}^{q^{2} a} \ldots v_{t}^{q^{t} a}+\sum_{1 \leqslant j \leqslant r} u_{j}^{\prime} M_{j}^{\prime} \in \mathbf{Q}\left\{y_{1}, \ldots, y_{n}, u_{0}^{\prime}, \ldots, u_{r}^{\prime}\right\}$ to prove the existence of a nonzcro $e^{\prime} \in \mathbf{N}$ and a $Y^{\prime} \in \mathbf{Q}\left\{y_{1}, \ldots, y_{n}, u_{0}^{\prime}, \ldots, u_{r}^{\prime}\right\}$ with Y^{\prime} homogeneous in $\left(\theta u_{j}^{\prime}\right)_{\theta \in \Theta, 1} 1 \leqslant j \leqslant r$ of degree e^{\prime}, the degree of Y^{\prime} in $\left(\theta u_{0}^{\prime}\right)_{\theta \in \Theta}$ strictly smaller than $e^{\prime}, Y^{\prime} \in\left[y_{1}, \ldots, y_{n}\right]$ (resp. $Y^{\prime} \in\left\{v_{2}^{q}{ }_{2}^{a} \ldots v_{t t}^{q a}\right\}=\left\{v_{2} \ldots v_{t}\right\}$), and $v_{2} \ldots v_{t}\left(u_{0}^{\prime e}+Y^{\prime}\right) \in\left\{F^{\prime}\right\}$. Substituting ($u_{0}^{a} v_{1}^{q, a}, U_{1} N_{11}, \ldots, U_{r} N_{1 r}$ for $\left(u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{r}^{\prime}\right)$ we see that $\{F\}$ contains a differential polynomial $v_{2} \ldots v_{t}\left(u_{0}^{a_{1}} v_{1}^{c_{1}}+\sum_{l \in \Lambda_{1}} U_{1 i} M_{1 t}\right)$. where a_{1} and c_{1} are nonzero natural numbers, each $U_{1 l}$ is the product if a rational number with a differential monomial in
u_{0}, \ldots, u_{s} of degree a_{1} and of degree in $\left(\theta u_{0}\right)_{\theta \in \Theta}$ strictly smaller than a_{1}, and each M_{11} is a differential monomial in y_{1}, \ldots, y_{n} different from $v_{1}^{c_{1}}$ which dominates (resp. strongly dominates) $v_{1}^{c_{1}}$. Let $\Lambda_{1}^{\prime \prime}$ denote the set of indices $l \in \Lambda_{1}$ such that $M_{1 l}$ strongly dominates $v_{1}^{c_{1}}$, and set $\Lambda_{1}^{\prime}=\Lambda_{1}-\Lambda_{1}^{\prime \prime}$ (so that under the 'resp.' hypothesis $\Lambda_{1}^{\prime}=\phi$). For each $I \in \Lambda_{1}^{\prime}$ we may write $M_{1 l}=L_{1 l} v_{1}^{c}$ with $L_{1 l}$ a differential monomial in y_{1}, \ldots, y_{n} of degree >0. Thus, the perfect differential ideal $\{F\}: M_{0}$ contains $\left(u_{0}^{a_{1}}+\sum_{l \in \Lambda_{1_{1}^{\prime}}} U_{1 i} L_{1 i}\right) u_{1^{\prime}}^{c_{1}}+\sum_{l \in \Lambda_{1}^{\prime \prime}} U_{11} M_{11}$. Similarly, for each $k \in \mathbf{N}$ with $1 \leqslant k \leqslant t, \quad\{F\}: M_{0}$ contains a differential polynomial $\left(u_{0}^{a_{k}}+\right.$ $\left.\sum_{l \in \Lambda_{k^{\prime}}} U_{k l} L_{k l}\right) v_{k}^{\mathcal{C}_{k}}+\sum_{l \in \Lambda_{k^{\prime \prime}}} U_{k l} M_{k l}$ with entirely analogous properties. An easy application of Levi's lemma (case $n=t$) now completes the proof.

§ 6. SINGULAR SOLUTIONS

Let A be an irreducible differential polynomial in $\mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$, and suppose that $(0, \ldots, 0)$ is a singular solution of the differential equation $A=0$. A sufficient condition that $(0, \ldots, 0)$ not be a zero of the general component $\mathfrak{B}(A)$ is provided by the domination lemma. We formulate the result in the following more general setting.

Proposition. Let \mathfrak{P} be a prime differential ideal of $\mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$, and suppose that \mathfrak{P} contains a differential polynomial $\sum_{0 \leqslant 1 \leqslant s} C_{l} M_{i}\left(B_{1}, \ldots, B_{r}\right)$, where: $C_{l} \in \mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$ $(0 \leqslant l \leqslant s)$ and $C_{0}(0, \ldots 0) \neq 0 ; \quad B_{k} \in \mathscr{F}\left\{y_{1}, \ldots, y_{n}\right\}$ and $B_{k}(0, \ldots, 0)=0(1 \leqslant k \leqslant r)$; $M_{0}, M_{1}, \ldots, M_{s}$ are differential monomials in differential indeterminates z_{1}, \ldots, z_{r} with $M_{k} \neq M_{0}(1 \leqslant k \leqslant r)$ such that M_{k} dominates $M_{0}(1 \leqslant k \leqslant r)$; and $M_{0}\left(B_{1}, \ldots, B_{r}\right) \notin \mathfrak{p}$. Then $(0, \ldots, 0)$ is not a zero of \mathfrak{P}.

Proof. By the domination lemma \mathfrak{p} contains a differential polynomial $M_{0}\left(B_{r}, \ldots, B_{r}\right)$ $\left(C_{0}^{e}+Y\left(B_{1}, \ldots, B_{r}\right)\right)$ where $e \in \mathbf{N}$ and $Y \in\left[z_{1}, \ldots, z_{r}\right]$ in $\mathbf{Q}\left\{z_{1}, \ldots, z_{r}, C_{0}, \ldots, C_{s}\right\}$, so that \mathfrak{P} contains the differential polynomial $C_{0}^{e}+Y\left(B_{1}, \ldots, B_{r}\right)$ which does not vanish at $(0, \ldots, 0)$.

REFERENCES

1. Abraham Hillman: On the differential algebra of a single differential polynomial, Ann. Math, Princeton 56 (1952), 157-168.
2. Abraham Hillman and David Mead: Amer. J. Math., to be published.
3. E. R. Kolchin: Galois theory of differential fields, Amer. J. Math. 75 (1953), 753-824.
4. Howard Levi: On the structure of differential polynomials and on their theory of ideals, Trams. Amer. Math. Soc. 51 (1942), 532-568.
5. Howard Levi: The low power theorem for partial differential polynomials, Amm. Math., Princeton 46 (1945), 113-119.
6. J. F. Ritt: Differential algebra, Colloq. Lect. Amer. Math. Soc. 33 (1950).

[^0]: \dagger This work was supported by the National Science Foundation.

