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SINGULAR SOLUTIONS OF ALGEBRAIC DIFFERENTIAL

TIANT T A FOOTAARTOY T IR AR & A AT A

EQUATIONS AND A LEMMA OF ARNOLD SHAPIRO

E. R. KoLCHINT

WE cONSIDER differential equations of the form 4 = 0 where A is a differential polynomial
in finitely many differential indeterminaies y,, ... , y, with coeilicientis in a differential field &
of characteristic zero; that is, 4 is an element of the differential polynomial algebra

o =Fiy 1:1 We denote the derivation onerators of & bv J§, 5 . We s

Fl{y o Vn denote derivation ope f # by 5, ....5,. Wesu
fixed, once for all, a universal extension % of & (see [3], pp. 768-771).

NRitt

Ritt showe
of o then a is the intersection of finitely many prime lﬁerentlal 1deals of & none of which
contains any other; these primes, which are unique, are the prime components of a. The
prime components are especially interesting when a is the perfect differential ideal {4}
generated by an irreducible A € 7.

In order to describe the situation in that case we consider a total ordering of the set of
all derivatives & ... 8ir p; (0 < iy < o0, ..., 0 <, < 00,1 <j<n) such that for all such
derivatives u, v and all §,

u<ou,

u<v=0u <.
A/ m ~all oa an A_.J,\..:_-- a raiking of v I T DU
We call such an ordering a ranking of y,, ..., »,; rankings exist (e.g. we may or
derivatives 8% ... §im w v; lexicographically with respect to (Zi,, j, iy ... , ip))
not unique. (‘lven a ranking, the highest derivative u present in A is calle

1
and the partial derivative dA/Cu is called the separant of A; of course, a di f’feren h01ce of
ranking may give to 4 a different leader and separant.

Ritt called a zero of A (i.e., a solution of the differential equation 4 = 0) singular if it
is a zero of every separant of 4. He showed (see [6], p. 31 and p. 167) that among the prime
components of A4 there is one, which we shall denote by B(4), with the following property:
P(4) contains no separant of 4 whereas each other prime component of 4 contains every
separant of 4. P(A) is called the general component of A4, the others are called the singular

t This work was supported by the National Science Foundation.
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components of A. Thus, every zero of a singular component of A4 is a singular zero of 4,
and every nonsingular zero of A is a zero of B(4), but a singular zero of 4 may be a zero
of B(A).

It is a remarkable result of Ritt (see [6], pp. 57-62 and pp. 167-170, and also Hillman [1].
p. 163) that every singular component of 4 is the general component of another irreducible
differential polynomial in /. Furthermore, he gave ([6], p. 109 and pp. 175-176) an
algorithm (modulo the possibility of factorization of polynomials over #) for finding a
finite set of irreducible polynomials the general components of which include among them
the singular components of 4, and then established a criterion (the famous low-power
theorem (see [6], pp. 64-70 and pp. 170-172)) for determining, given an irreducible Be &/,
whether P(B) is a singular component of A.

There remains the problem, posed by Ritt, of determining, for a given zero of A4, the
components of 4 which admit that zero. In the light of the above this reduces to a number
of problems of the following type: given a zero of A4, to determine whether or not it is a
zero of P(A4). It is not difficult to see, moreover, that it suffices to be able to solve this
problem when the zero is (0, ... , 0). Thus, we are led to the following problem:

Given an irreducible differential polynomial A€ F{y,, ..., y,} which vanishes at (0, ... ,0),
to determine whether (0, ... , 0) is a zero of P(A).

This problem is wide open. As yet, only very special cases have been solved. Two
principal tools have been used in these special cases, as follows:

To prove that (0, ... . 0) is a zero of P(A). Let P;, Q- (1 << n, 1 <j' < n) be power
series over # in an indeterminate constant ¢, which vanish at O, such that det(Q;; #0;
for each nonzero Fe F{y,, ..., v,} let Fx denote the leading coefficient of

F(Pl +ZQ1j1yjn e Pn +Z an,,yj,.)
Ji

In

(i.e., the lowest nonzero coefficient when considered as a power series in ¢ over #{y,, ... , Ju}).
If the leader of A(P{ + Z Qi Vi Pot Z Q.;.v,.) is present in Fx, or if Sx ¢ {Ax} for
some separant S of A, rhen 0, ..., 0) is a zero of P(A). This result, generalizing results of

Hillman and of Ritt, is an almost immediate consequence of Hillman’s leading coefficient
theorem. (For an efficient proof of the leading coefficient theorem see Hillman and Mead [2]:
for an indication of how this theorem leads to the above result see Hillman [1], §§ 7-8.).

To prove that (0, ... , Q) is not a zero of B(A4). Suppose that m = 1 (ordinary differential
equations) and that 4 has more than one term. It is a consequence of two results of Levi ([4],
§§ 38-41 and §§ 44-52) that if 4 has a term y§' ... ye of order O such that for every other
term T and each y, either the degree of T in y,, ¥, Vi, ... 18 > e, or T is divisible by yi*, or
ifn = 1and 4 hasa term y{°y//* ... y{"/ such that for every other term T and y{(0 < k < r)
the degree of T in y{®, pk*+ 1 y,+2  is > fi + fiyr + ... + fp, then (0, ..., 0) is not a
zero of P(A4).

We come at last to the point of the present paper. This is to present a result which
broadens considerably the class of differential polynomials 4 for which it is known that
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o, . 0) is not a zero of B(4). To do this we introduce the notion of ‘domination’ of one
differential monomial over another (§ 3 below), and establish a key lemma (§ 5) about this
notion which generalizes both of Levi’s results mentioned above. The proof depends on a

lemma of Levi (§ 2 below). The domination lemma \/IP](‘]S our proposition (§ 6), a Spc(_‘ial

case of which can be stated as follows (s and »n now being arbitrary).

Let A have more than one term. If A has a term which is dominated by every other term
of A then (0, ..., 0) is not a zero of P(A).

A crucial role in the proof of the domination lemma is played (§ 4) by a combinatorial
lemma proved by Arnold Shapiro (unpublished). His lemma is pr esented in §1

We congistently nse the followine notation:
YV O LUNSISICIIUY Wob UlC 10nUWiliy nvwauvn .

For any set K, R(K) denotes the set of all subsets of K, and card K denotes the cardinal
numher of The amntu cot 1ic dannted hy A
number of K. The empty set is denoted by ¢.

©® denotes the set of all derivative operators oY ... 9,7 (i;e N, ..., i,€N) of the
differential field % (and nf all the varinic diffarential rinoc and fAalde rancidarad)
differential field & (and of all the various differential rings and fields considered).

[4,, ..., A,] denotes the differential ideal generated by the elements 4,, ... ., 4
1 fa

nnnnn v AifFnvnmtiaol wias § A4 AV Animntnc thn Afant Aifnwqmtinl T Tanl camacntad lao: tlaaca
ELIVOH UHICIULILL T, (A1, o005 Apg UCTIULLY ine }JCJICL«l aiprenuat iacai BC crawcu U_y LHCHT
elements: since in the cases considered the differential ring contains Q. {A4,. ... 4,} is the
set of all elements B such that B*e[A4;, ..., 4,] for some s ¢ N.

= [SES B : i

SHAPIRO’S LEMMA. Let K be a finite set, let (a, ).k be a family with a, € R and a, >0
A

(e KN ot (v ho g fomailv wer x n x, =0 /l,- W EY MU AN o]
Vv T o g, il \AJ’JE‘F(K) R(p)y CC & gy Hon Ay < R dnd ./\.17 © P PPy, i

suppose that

TR A VR ir Y E W AN
(H )3 xp> ) (e B(K) — $())
JeP(K)—P(K-1) iel

Then there exist numbers x; ; € R with x; ;2 0 (J € WK) —B(p). je J) such that
Z Xy =Xy (J e W(K) — B(¢))
jeJ
and
Y x;;>a;  (jeK).
Jej
Remarks. (1) We may think of the elements of K as representing the vertices of a
simplex, the nonempty subsets of K as representing the faces of that simplex, the numbers 4,
as forming a system of masses located at the vertices, and the numbers x, as forming a
system of masses located on the faces. The lemma then asserts that if, for each face /, the
sum of the masses of the second system located on the faces touching / exceeds the sum of
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the masses of the first system located at the vertices of /, then the mass on each face can be
redistributed among the vertices of that face in such a way that, for each vertex, the re-
t the vertex exceeds the mass of the first system there.

distributed mass of the second system a
T

N Tha snen~ (Y
(<) 10e proo O Gy ek \AJ“E,D(K) ’U(tb)}

Proof. Let s = card K; we may suppose that s > 0 as otherwise the result is trivial.

Then there exists a J € ‘45(]&) — 2{5(¢)) with Xy > U and therefore there exists a umque reN

such that x; # 0 for some J with card J = r but x; = 0 for d” J with card J > r; of course

1 € r<s. Let 7 denote the num nd x; # 0; then

t > 0. If r = 1 then the nonzero masses of the second system are already all at the vertices,
so that the result is trivial. Therefore we may assume that r > 1 We assume, too, that the
result has been proved for lower values of (s.r, r) in the lexicographically well-ordered
set N3,

Fix some /4 € P(K) with card /g = r and x;, # 0, and fix some k € /,: let /; denote the
set of elements of /, other than k. Then K — I, = K — I, < K, so that the system of in-
equalities (1) can be written as three subsystems:

(la) corresponding to /e PB(K — 1) — B(¢);

(1b) corresponding to /€ P(K — [;) — (K — 1y);

(Ic) corresponding to /€ P(K) — B(K — I)).

The left members in (1a) contain neither of the terms x, , x;, and the left members in (Ic)
contain both these terms; the left members in (1b) contain x; but not x, . It follows that
if£eR, & > 0,andif we replace x;, by x;, — £ and x; by x; + £, then (1a) and (Ic) remain
valid. The system (1b) remains valid provided ¢ is sufficiently small. If (1b) remains valid

o =amlao~nimas
1

Lomu £ P
J10) ,A] LllCll tne lC}JlaL/CJ

mofAriag tha ,\...,_ et cirmilae retoe

ient transtorms tne ori 5“‘"! System \l) into a similar system
with a lower value for (s, r, 7). We may therefore suppose that at least one of the inequalities
(1b) fails after the replacement using £ = x; . Then there is a smallest value for &, and we
denote it simply by &, such that after the replacement (1b) fails to hold: using this & we
see that (1b) becomes a system (1b’) of weak inequalities in the same direction. Obviously
0 < ¢ < x;,, and at least one of the weak inequalities (1b) is an equality.

From among all the 7 € PW(K) — 1,) — V(K — ],) for which the corresponding inequality
(1b’) is an equality, choose a maximal one, say K', and set K" = K — K’. Then

(2) 2 Xy = ), a;
JeR(K)~P(K") iek’

Consider any /" & B(K") — B(p); writing I = K’ I", we see that either /e V(K — /,) and /
corresponds to an equality (1c) or else /e P(K — /,) — R(K — I,) and I corresponds to an
inequality (1b"). In either case the inequality is strict. Subtracting from it the equation (2)
we obtain

(1" > X;> a (1" e B(K") — B(¢)).

JeB(K)Y—B(K"~1") iel”

On the other hand, if we start with some 7 € P(K") — B(¢) then either / € V(K — [,) — B(P)
and we have a strict inequality (1a) or else 7e B(K — I,) — B(K — I,) and we have a weak
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inequality (1b’). If we now reduce ¢ slightly, still keeping it positive, then the inequalities

(la) remain leILl and ihe mequcumes {1D)al pecome SU'lLl thai lb we regdm \i0); fariher-

more, if the amount by which we reduce ¢ is sufficiently small than (1”) remains valid, too.
Thpn in addition to ””\ we obtain (Hpnnhng I h\/ I\

3 Z X; > Zai (I'e P(K') —B(¢)).

JeP(K)—-P(K-1") iel’
HJeP(KY—R(K—TI')thenJe P(K) — P (K — K’) and therefore this J does not occur in
the left side of (17). For each Je P (K) — P (K — K') we now decrease x,; and increase
XAk DYy the same amount x, (that is, we shift the entire mass x, from the face J to the face
Jn K'). This does not affect the inequalities (1”), and replaces the inequalities (3) by

(1) > x> 3 a (I"'e HK') — P(o)).
JeB(K )= MK — 1) il
........ ~nad N | PAPE DU iy [ DAY o NP A () Ay ~ crrotmiane (1Y S A 117
OIIILC bdlu l\ < Ay auu calrd n < l) lllU lClllllld HOWKUS 1o cacli Ul UIC Lwo \_yblcl D kl ) daiiu \I ).
It is now a simple matter to see that the lemma holds for the original system (1).

7, T ¥ ar

COROLLARY. Let K be a finite set, let a, € N(k € K), let x; € N(J € [(K) — P(¢)), and
suppose that
(
AN

Py
m
+Z

}K) — B()).

=7 Ll

V _\:.>V .
J A
iel

ld i
JeP(KY-RBK- 1)

Then, for each sufficientlv big h € N, there exist v, ;€ N(J € Y(K) — R(¢), j € J) such that
Yan=hy (e WK W)
je

and

Y Vs> ha;  (jeK).

J3aj
Proof. There exist (see second remark after Shapiro’s lemma) rational numbers x, ;i
satisfying the conclusion of that lemma. There obviously exists a & > 0, smaller than every

nAanTara v ctinh that if on o At
ULV AJA[’ U uiial 11 wie DU
~ [x;;—¢ (x;;, 720
AT {x;;=0)
0 1. =0

then Zx“ >a; (je K); of course Z xj ;< x;. For any he N with #> &7 there exist
Jaj

xj;€h™'N such that x}; < xj ;< x,; and for such xj obviouslyJZ x5 < x,(Je B(K)
€}

— B($)) and Y x; ;> afje K). For each J e W(K) — V() fix an element i(J) e J and set

Jaj

Vo= hxijed, j# i), Vg =hx) .+ hx; — Y hxi ;. It is easy to see that the

JeJ
numbers y, ; have the required properties.

§2. LEVI'S LEMMA

Our point of departure is the following result concerning differential polynomials in
Yty -+ » Yo and a number of other differential indeterminates u;;(1 <i<n, 0<;j<r).

Levi’'s LemMa. Let G, ..., G, bediﬁ’eremiaipolynomfa/? QY oy Vo (Ui )1 <im, 0 i)
given by G; = uoy*+ Y u;M;; (1 <i<n)where, foreachi,qg;e Nand My, ..., M, are

1<j<r;
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differential monomials in y,, ... , y, of degree > q;. Then there exist a monomial

U=uly...ufsinug ...,
and a differential polynomial Y € Q{y,. ... .v,,(4;})1<i<nm Os_ig,i} with the following properties
Y is homogeneous in (0u;;)pe0, 0<j<r, 0f degree d; (1 <1< n):

the degree of Y in (Ouig)gen, 1 <icn i <dy + ...+ d,;

Ye [yl’ ’yn]:

y(U+ YVe{Gy,...,Gl{<i<gn).

Levi proved this result for ordinary diftferential polynomials ({4] §§ 32-36, § 47), and for
partial differential polynomials in the case » = 1 ([5], p. 118). The general lemma can be
established in the same way with little extra difficulty.

§3. DOMINATION

divides M. If V is any set of derwatlves 0 ; we let ®V denote the set of all derivatives of
the y; which can be written in the form OU (0 € ©, e V). The product of all the prime
factors w of M with w € ©®V, each w taken the same number of times as it occurs in M, is a

differential monomial which we denote by M.

Let M and N be differential monomials. We shall say that N dominates M if, for every
set V, the following condition is satisfied:

either deg M, < deg N, or My, = N,.

Cinra AL knva VA dann
IV IVIV - IVIGV - 17‘ (@V)ﬁV(M)’ VVll\/ ~ \lVll \ULI Ly
suffices to verify this condition for every nonempty set V' with V
nonempty V with ¥ < V(M), N satisfies the stronger condition

deg M, < deg Ny,
then we shall say that N strongly dominates M.

It is easy to see that there exists a biggest set W of prime factors of M such that

PR ~

My = Ny. If N dominates M then a necessary and sufficient conditios
dominate M is that W be empty. We shall call W the weakness of N over M.
<k <

AT ok

hat N strongly

=

Vs

If N, dominates M and W, denotes the weakness of N, over M (I <
weakness of [] N,over M"is \ W,

1<k<r 1<ksr

r) then the

§4. FACTORIAL DOMINATION

If N, dominates (resp. strongly dominates) M, (1 < k < r) then 1—[ N, dominates

1sks

(resp. strongly dominates) [] M,. If ¥y dominates M (1 < k < r) and, for ai least one £,
L SkEr
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N, strongly dominates M then [] N, strongly dominates M". It follows from the former

1 <k<r
statement that if M =[] v, wherer,, ..., ¢, are the distinct prime factors of M. and if
1 Sk<r
N = Tl N, where N, dominates (resp. strongly dominates) rg* (1 < k < r), then N domin-
1<ksr

ates (tesp. strongly dominates) M. We shall say in such a case that N dominates (resp.

strongly dominates) M factorially.

If N, dominates (resp. strongly dominates) M, factorially (I </<s)then || N,

1 <I<s
dominates (resp. strongly dominates) [| M, factorially. If N, dominates M factorially
1<I<s
(1 </<s) and, for at least one /, N, strongly dominates M factorially then [] N,
1<I<r

strongly dominates M* factorially.
Shapiro’s lemma enters at this point.
FIRST PRELIMINARY LEMMA. If N, strongly dominates M (1 <1< s) then, for all
(iys ... ) € N® for which the sum h =i, + ...+ i is sufficiently big. [] N strongly
Sixs

1 <1<y

dominates M" factorially.

Proof. Write M = H of* with K a finite set and the elements ¢, (k € K) the distinct
keK

prime factors of M. For each nonempty set J < K let x,, denote the number of prime

factors v of N, such that r is a derivative of ¢, for every & € J and is not a derivative of t;,
for any k€ K — J (each ¢ bei i in N). Bec

TUl ail AT T v o (valii s in iV} use N

T
&
2
3
o
[@]
£

Yoo xypa (1eBK) - W)
JeP(K)Y—PB(K-1) iel

By the corollary to Shapiro’s lemma there exist an A, € N and, for each (J, j) with
Je P(K) ~ V(p) and jeJ, a y;;; € N such that

Y vy =hox, and Y y;> heu,.
jeJ Jej

It follows that we may write N/° = [] N,; where. for each j e K, N,; is a differential mono-

JjekK
mial of which the degree in (0r;)g.q 15> hoa; + 1. Let (iy, ... . i) € N°and write i, = q/hg + 1,
with g, r,e Nand r, <hg. Then [T Ny= [[ [[ ~Nfi. [1 Ni". Foreach je K the

1gi<€s jeK 1<iss 1<siss
degree of [ N{!in (00 is
1<I<y
5 __ : . -1 ., . -1
> > qlhou;+ 1) = ) (ij—rig (hoa; + 1) = (h — s(hy — 1)hg '(hea; + 1),

I<Iss IEYEX

where b = \L i, so that this degree is > a;i provided i > s(hy — 1) (hoa; + 1). Whenever
1<I<s ’

this is the case then L

Nj* strongly dominates M " factorially.

1€1<s
SECOND PRELIMINARY LEMMA. Ler F= ) WM, e Q{y. ...\ Yy Ug. ... o Uy}, where
0<Iss - - )
Mo, My, ... M, are differential monomials in v,, . .. v, such that Mg # 1 and M, #M,

(1 <7< s). Ifeach M, with | # 0 dominates (resp. strongly dominatesy M, then the ideal (I)
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contains a differential polynomial G = uyMy + > U,N,, where ae N, a# 0, each U, isa

175
monomial in ug, uy, ..., u, different from u} of degree a, and each N, is a differential monomial
Ny, ...y, dzjj”erentfrom Mg which dominates (resp. strongly dominates) M§ factorially.

Proof. Suppose that each M, with / # 0 strongly dominates M,. Raising both sides of

the congruence ugMy = — 3 u,M; (mod F) to an odd power u, we obtain a congruence
1siss
ugMy = ~ Y uy, ... u;, My, ... M, (mod F); by the first preliminary lemma we may choose «

so big that each M, ... M, strongly deminates M factorially, and therefore the differential
polynomial G = u{ Mg + Zu,l cou, M, ... M, catisfies the ‘resp.” part of the conclusion.

Now suppose merely that M, dominates M, (1 <I<s). Let A, denote the set of
indices / with / # 0 such that M, dominates M, factorially. For each /with /s 0and /¢ A,
the weakness of M, over M, is a subset of the set of prime factors of M,. Denote the

distinct weaknesses of the various M, with / # 0 and /¢ A, by W,. ..., W, and for each W,
tet A; denote the set of indices / with / # 0 ard / ¢ A, such that tke V\eakness of M, over M,
i u/ we ochnnce tha natatinn that WU A4 W (1 = ;- 1, I B Than K |

1 J’ YYL  LIIUUOL LIV uvrial ta |44 "\F VVI \I QI = l". rIIvHl 1 — l{olV‘O e

O
r
@
>
<
-
A
.
N
)

If 7 = 0 we may take G = F. Let n> 0 and suppose the result proved for lower values
of m. Then k > 0. Raising both sides of the congruence uoM, + Y uM, = —

{eAo 1<7<k leh;
u,M, (mod F) to an odd power h. we obtain on the left u’ M" plus a number of terms
UN with U a monomial in 4, u; (I € Ag) different from u}, of degree h and N a differential
monomial in yy, ..., ), different from M(’,’ which dominates M factorially. On the right
we obtain a sum of terms —UN = —u,, ... u, M, ... M, ; for any such term either some
index/;isina A;with 1 <j<k—-1lorle /\k (1 <i<h). In the former case the weakness
of N over Ml is a subset of W, for some j with 1 <j< k — 1. In the latter case we may
write M, = MM,y =M Mgy, (1<i<h) and My = MyMyy,, and each My, strongly
dominates My ; by the first preliminary lemma we may choose / so that M| ... M; strongly
ominates My factorially, and then N =M, ... M, =M, ... M/ M}, dominates
Ml = M()"M(';Wk factorially. Transposing to the left side all the terms on the right we

obtain on the left a differential polynomial.

C).

=UMo+ Y Y UM;e(F)
0LT<h* 1A,
where Ag, ..., Al are disjoint finite sets not containing 0, U0 =ull each U, with /#£0is a
monomial in ug, u, u_ different from " of deoree h. M Mn, every M with /e /\,\

is a differential monomial in yy, ..., v, different from M¥% Wh]Ch dominates M'(', factorially,
for each index j with 1 <j<k* all the M; with /e A} are differential monomials in
Vis .-+ » ¥y different from M} which dominate M% and have over M" one and the’same
weakness W, , and each of these weaknesses W', ..., W, is a subset of some W; with

1 <j<k—1. 1t follows from the last remark that the number 7* = card {J B(W))

1<)k
has the property that n* < n. Therefore we may apply the present lemma to F*, and the
existence of a differential polynomial G e (F) with the required property quickly follows,



SINGULAR SOLUTIONS OF ALGEBRAIC DIFFERENTIAL EQUATIONS 317

$5. THE DOMINATION LEMMA

We now come to the main lemma from which our results on singular solution will
quickly follow.

DOMINATION LEMMA. Lei F = Z WM e Q{y(, ..o\ VY Ug, on. »tigywhere My, ... M,

0

are differential monomials in yy. ... . v, such that My # 1 and M, # M, (1 <I1<s). If each
M, with | # 0 dominates (resp. sirongly dominates) M then there exist a nonzero e € N and
a YeQ{y, ..., Yo Ugn -.. , U,y with the following properties:
Y is homogeneous in (Ui )peo o<i<s 0f degree e;
the degree of Y in (Oug)yee s <e;

Yelv, (ro\n Vc:‘Ml\
St ""JJ S i 07

Mo (u + Y)e{F}.

Ad I/ T R 2v ara tha Aiofr PR
10 - ll (t s WIICIO ll, <. Uy Al i€ aistnc pLriie
or

Suppose first that 1 = 1. For each / either M, is divisible by 1‘{ the degree of M, in
Ov, is > g,. Therefore we may write

F=(ug+ Y uL)i + Y wlN(v,)
leA’ leA”

/I\
/ ‘\

S

are oF AA
Ors OI ivig.

where A’, A" are disjoint sets the union of which is the set of indices 1, 2, ... , s (With A" = ¢
if each M, with / 0 strongly dominates M), each L,is a differential monomialin y,, ..., y,,
deg L,> 0 (/e A'), and each N, with /e A" is a differential monomial (in some new dif-
ferential indeterminate z) of degree > ¢,. We may apply Levi’s lemma (case n = 1) to the

differential polynomial G =iz + Y #,N, € Q{z, ifo, (i1)),cn-} to show the existence of a
leA”

differential polynomial z(#§ +Z) € {G} with Z homogeneous in ((0iy)pee. (08)sco, 1ca-) Of
degree e, the degree of Z in (01 )g.e strictly smaller than e, and Z € {z]. Since the substitution
of (b, ug + Y uly, (uLy)enr) for (z, fig. (u))ica-) maps G onto F, the desired result follows.

Now suppose that r> 1 and that the lemma has been proved for lower values of .
By the second preliminary lemma, (F) contains a differential polynomial G = udv{® ... v +

U;N,,M}, where each U;is a monomial in u,, ... , u; other than ug of degree a, each

1<j<r

N, . ig n diffarential manamial 1in v owhie daminatac {reen qtranaoly danminntac)
1'1] IO & Jdliiviviliiuual PRRLVIRAVI NI+ NP ] _)1, e ,.'In YYilIvIL uuviiiniairvo \IUD}J Dll\lllé‘ U\Jlll‘llul\idl
r{'?, each M; is a differential monomial in v, ..., », which dominates (resp. strongly
dominates) v ... v, and N, ;M % M§.Replacing G by (ugM&)" + ( Y. UN, M) if

1<j<r
necessary, /# denoting an odd natural number > I, we may even suppose that
‘M,/ , ‘7’" F"’ (I<j<r). Then we may annlv the present lemma (case f — l\ to the
dlﬁ‘erentlal olynomlal Fr=ujode .. v+ Z uM;e Q{yy, ..., Yy U, ... , i} tO prove
1<j<r

+tho  avictence of nonzero e eN and a Y e OQfy ) 2! 2V with VYV
i XiSiCiiCe  Of 10112870 € 1 G a 1 € YiVy, s Vpp Uy e, Upyp Wil I

homogeneous in (fu})ee, 1 <j<, Of degree €', the degree of Y’ in (Oug)y.e strictly smaller
thane’, Y'ely,, ... . vl (resp. Y e {vff... 0% ={v, ...o,),and v, ... v,(uy + Y') e {F'}.
Substituting (u§ ©1'°, UyN,4, ... ,U,N,, for (ug, uiy, ..., u)) we see that {F} contains a dif-

ferential polynomial , ... v, (u§'v5' + Y. U;;M;,). where a; and ¢, are nonzero natural

leA

numbers, each U,, is the product if a rational number with a differential monomial in

<
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Uy, ..., u, of degree a; and of degree in (Qug)pe strictly smaller than a,, and each M,, is a
Adiffarantial monomial in v dAiffarant fr~ yvhich dAamina tag {vrocn  qterangly
aGiiierentia: monomiia: in Fis oe s _yn GQinerent irom L1 winicn UUllllllal.\.«b \Lvop. suvligly

dominates) v}. Let A denote the set of indices / € A, such that M,, strongly dominates v5',
and set A} = A; — A] (so that under the ‘resp.” hypothesis A} = ¢). For each / e A} we may
write M, = L, w{" with L,; a differential monomial in y, ..., y, of degree > 0. Thus, the
perfect differential ideal {F}: M, contains (ud' + > U, L)y + Z U, M,,. Similarly,

leAy’

for each ke N with 1 <k <1, {F}: M, contains a dlfferentxal polynomial (ug +

Y UuLgvs + Y UyM,, with entirely analogous properties. An easy application of
leAy’ leAr”

Levi’s lemma (case n = 1) now completes the proof.

§6. SINGULAR SOLUTIONS
Let 4 be an irreducible differential polynomial in #{y,, ..., »,}, and suppose that
{0, ..., 0) is a singular solution of the differential equation 4 = 0. A sufficient condition
that (0, ..., 0) not be a zero of the general component B(A) is provided by the domination
lemma. We formulate the result in the following more general setting.

PROPOSITION. Let B be a prime differential ideal of F{y;, ..., v,}, and suppose that P
contains a differential polynomial Y CM(By, ..., B,)), where: C e F{y. ..., y,
0<i<s
0<I<s) and Cy(0,...0)#0; B,e F{y,, ..., ¥,y and B(0,...,00=0 (1<k<r):
My, M, ..., M, are differential monomials in differential indeterminates z,, ...,z, with
M, # M, (1 <k <r) such that M, dominates My(1 <k <r); and My(B,, ..., B) ¢ Q.
Then (0, ..., Q) is not a zero of ‘B.

Proof. By the domination lemma B contains a differential polynomial My(8,, ..., B,)
(Cé+ Y(By, ..., B))whereeeNand Ye [z, ...,z]in Q{z, ..., z, Cp, ..., C;}, so that P
contains the differential polynomial C§ + Y(B,, ..., B,) which does not vanish at (0, ... , 0).
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