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SINGULAR SOLUTIONS OF ALGEBRAIC DIFFERENTIAL 

EQUATIONS AND A LEMMA OF ARNOLD SHAPTRO 

E. R. KOLCHIN? 

(Receicd IO April 1963) 

INTRODUCTION 

WE CONSIDER differential equations of the form A = 0 where A is a differential polynomial 

in finitely many differential indeterminates yr, . , J, with coefficients in a differential field B 

of characteristic zero; that is, A is an element of the differential polynomial algebra 

d = FG(y, . . y,}. We denote the derivation operators of B by 6,, . . . , 6 ,,,. We suppose 

fixed, once for all, a universal extension % of B (see [3], pp. 768-771). 

Ritt showed (see [6], p. 13 and pp. 165-166) that if a is any perfect differential ideal 

of d then a is the intersection of finitely many prime differential ideals of ~2 none of which 

contains any other: these primes, which are unique, are the prime componenfs of a. The 

prime components are especially interesting when a is the perfect differential ideal (A) 

generated by an irreducible A E ~4. 

In order to describe the situation in that case we consider a total ordering of the set of 

all derivatives S? . . . 6~yj(O~~i,<a3,....0~;,,,<~,l~,j~~)such thatforallsuch 

derivatives U, 1’ and all 6, 

We call such an ordering a ranking of y,, . , yn; rankings exist (e.g. we may order the 

derivatives Si; . . . Sk yj lexicographically with respect to (Xi,, j, i,, . . , i,)) but are in general 

not unique. Given a ranking, the highest derivative u present in A is called the leader of A, 

and the partial derivative dA/h is called the separant of A; of course. a different choice of 

ranking may give to A a different leader and separant. 

Ritt called a zero of A (i.e., a solution of the differential equation A = 0) singular if it 

is a zero of every separant of A. He showed (see [6], p. 31 and p. 167) that among the prime 

components of A there is one, which we shall denote by $@(A), with the following property: 

‘p(A) contains rto separant of A whereas each other prime component of A contains every 

separant of A. ‘$(A) is called the genera/ component of A, the others are called the singular 

t This work was supported by the National Science Foundation. 
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components of A. Thus, every zero of a singular component of A is a singular zero of A, 

and every nonsingular zero of A is a zero of ‘$(A), but a singular zero of A may be a zero 

of ‘$(A). 

It is a remarkable result of Ritt (see [6], pp. 57-62 and pp. 167-170, and also Hillman [ 11. 

p. 163) that every singular component of A is the general component of another irreducible 

differential polynomial in .x2. Furthermore, he gave ([6], p. 109 and pp. 175-176) an 

algorithm (modulo the possibility of factorization of polynomials over 9) for finding a 

finite set of irreducible polynomials the general components of which include among them 

the singular components of A, and then established a criterion (the famous low-power 

theorem (see [6], pp. 64-70 and pp. 170-172)) for determining, given an irreducible B E d, 

whether (P(B) is a singular component of A. 

There remains the problem, posed by Ritt, of determining, for a given zero of A, the 

components of A which admit that zero. In the light of the above this reduces to a number 

of problems of the following type: given a zero of A, to determine whether or not it is a 

zero of ‘$(A). It is not difficult to see, moreover, that it suffices to be able to solve this 

problem when the zero is (0, . . . , 0). Thus, we are led to the following problem: 

Given an irreducible d~fferentialpolynomial A E p{y,, , y,> which ranishes at (0, . . ,O), 

to determine whether (0, . . . , 0) is a zero of $(A). 

This problem is wide open. As yet, only very special cases have been solved. Two 

principal tools have been used in these special cases, as follows: 

TO protle that (0, . . . , 0) is a zero of ‘$(A). Let Pj, Qjj’ (1 <.j < n, 1 Q j’ < n) be power 

series over % in an indeterminate constant c, which vanish at 0, such that det(Q,ij. #O; 

for each nonzero F f 8{y1, . . . , y,) let F* denote the leading coefficient of 

F(Pi + C Ql./Jj,, ... ) Pn + $ Qnj,,Yj,,) 
.ii 

(i.e., the lowest nonzero coefficient when considered as a power series in c over &{y,, . , y,}). 

If the of A(P, + 1 QIj,yj,, . . . , P, + c Q,i,yj,S is present in F*, or if S* $ {A*}.for 
jl j, 

some separant S of A, then (0, _. , 0) is a zero of ‘$3(A). This result, generalizing results of 

Hillman and of Ritt, is an almost immediate consequence of Hillman’s leading coefficient 

theorem. (For an efficient proof of the leading coefficient theorem see Hillman and Mead [2] : 

for an indication of how this theorem leads to the above result see Hillman [I], $9 7-8.). 

To prove that (0, , 0) is not a zero of ‘q(A). Suppose that nz = 1 (ordinary differential 

equations) and that A has more than one term. It is a consequence of two results of Levi ([4], 

$0 38-41 and $0 44-52) that if A has a term y;’ . . . yin of order 0 such that for every other 

term T and each yk either the degree of T in yk, y;, yl, . is > e, or T is divisible by y;‘“, or 

if n = 1 and A has a term ypyif f . . . Y:*‘f’ such that for every other term T and J)~‘(O < k < r) 

the degree of T in yik), y(lk+r), y(:+“, . is > fk +,fk+l + . . . + f,, then (0, , 0) is not a 

zero of p(A). 

We come at last to the point of the present paper. This is to present a result which 

broadens considerably the class of differential polynomials A for which it is known that 
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(0, . . , 0) is not a zero of ‘$(A). To do this we introduce the notion of ‘domination’ of one 

differential monomial over another (5 3 below), and establish a key lemma (3 3 about this 

notion which generalizes both of Levi’s results mentioned above. The proof depends on a 

lemma of Levi (6 2 below). The domination lemma yields our proposition ($ 6) a special 

case of which can be stated as follows (1~ and n now being arbitrary). 

Let A hare more than one term. !f’ A has a term bc’hich is rkminated bj, er,er’.l* other tern1 

qf’A then (0, . . . , 0) is not a zero of“$(A). 

A crucial role in the proof of the domination lemma is played (4 4) by a combinatorial 

lemma proved by Arnold Shapiro (unpublished). His lemma is presented in 4 1. 

We consistently use the following notation : 

N, Q, R denote respectively the set of natural numbers, of rational numbers, of real 

numbers. 

For any set K, v(K) denotes the set of all subsets of K, and card K denotes the cardinal 

number of K. The empty set is denoted by 4. 

0 denotes the set of all derivative operators a;6 . . . Sk (i, E N, , i, E N) of the 

differential field F (and of all the various differential rings and fields considered). 

[A,, . . , denotes differential generated the A,, . A, a 

differential {A,. , denotes perfect ideal by 

elements; in cases the ring Q. . A,) the 

of elements such B” [A,, A,] some E 

# I. SHAPIRO’S LEMMA 

SHAPIRO’S LEMMA. Let K he afinite sef, let (ak)ktK hr a,f&dy with a, E R and ak > 0 

(k E K), /et (~~~~,~,(,~-wC~~ he a ,fbmily Mith .xJ E R and x,, 3 0 (J E q(K) - p(4)), and 

suppose that 

(1) c SJ > 1 N j (I E V(K) - ‘lj(c#J)). 
JE$ylc-ilj(K-I) icr 

Then there exist nurnhers xJ,j E R with +~,.,~a 0 (J E v(K) - C$~(C$), j E J) such that 

Ei".J,j > aj (.i E K). 

Ren?arks. (1) We may think of the elements of K as representing the vertices of a 

simplex, the nonempty subsets of K as representing the faces of that simplex, the numbers aj 

as forming a system of masses located at the vertices, and the numbers xJ as forming a 

system of masses located on the faces. The lemma then asserts that if, for each face I, the 

sum of the masses of the second system located on the faces touching I exceeds the sum of 
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the masses of the first system located at the vertices of I, then the mass on each face can be 

redistributed among the vertices of that face in such a way that, for each vertex, the re- 

distributed mass of the second system at the vertex exceeds the mass of the first system there. 

(2) The proof shows that xJ.j may be taken in the field Q((a,),,,, (x~)~~~(~)_~(+J. 

Proof. Let s = card K; we may suppose that s > 0 as otherwise the result is trivial. 

Then there exists a J E p(K) - q(4) with xJ > 0, and therefore there exists a unique r E N 

such that xJ # 0 for some J with card J = r but _yJ = 0 for all J with card J > r: of course 

1 < r < s. Let t denote the number of elements / E y(K) with card J = r and sJ # 0; then 

t > 0. If r = 1 then the nonzero masses of the second system are already all at the vertices, 

so that the result is trivial. Therefore we may assume that r > I We assume, too, that the 

result has been proved for lower values of (s. r, r) in the lexicographically well-ordered 

set N3. 

Fix some I, E $3)(K) with card I, = I’ and xl0 # 0, and fix some k E I,: let I, denote the 

set of elements of I, other than k. Then K - I, c K - I, c K, so that the sy’stem of in- 

equalities (1) can be written as three subsystems: 

(la) corresponding to I E $$3(K - I,) - ‘q(4); 

(lb) corresponding to I E *$3(K - I,) - t#(K - I,) ; 

(Ic) corresponding to I E p(K) - Q(K - II). 

The left members in (la) contain neither of the terms A~,,,, x,, and the left members in (Ic) 

contain both these terms; the left members in (I b) contain xl0 but not x[,. It follows that 

if 5 E R, < > 0, and if we replace xl0 by xl0 - { and x,, by x,, + (. then (1 a) and (1 c) remain 

valid. The system (lb) remains valid provided 4 is sufficiently small. If (1 b) remains valid 

for r = xl0 then the replacement transforms the original system (1) into a similar system 

with a lower value for (s, r, t). We may therefore suppose that at least one of the inequalities 

(lb) fails after the replacement using 5 = x,,,. Then there is a smallest value for <, and we 

denote it simply by 4, such that after the replacement (I b) fails to hold: using this s’ we 

see that (lb) becomes a system (lb’) of I’vt=ak inequalities in the same direction. Obviously 

0 < < < xlO, and at least one of the weak inequalities (1 b’) is an equality. 

From among all the I E y(K) - It) - v(K - IO) for which the corresponding inequality 

(1 b’) is an equality, choose a maximal one, say K’, and set K” = K -- K’. Then 

(2) 

Consider any I” E ‘$3(K”) - ‘q(4); writing 1 = K’ u I”, we see that either IE ‘p(K - f,) and f 

corresponds to an equality (lc) or else I E ‘@(K - II) - <@(K - I,) and I corresponds to an 

inequality (lb’). In either case the inequality is strict. Subtracting from it the equation (2) 

we obtain 

(1”) c xJ>C ui (I” E ?.p(K”) - *(I$)). 
JEg(K”)-T@(K”-r”) id" 

On the other hand, if we start with some I E !@(K’) - v(d) then either I E v( K - I,) - p(4) 

and we have a strict inequality (la) or else I E v(K - J,) - ?3(K - I,) and we have a weak 
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inequality (lb’). If we now reduce < slightly, still keeping it positive, then the inequalities 

(la) remain valid, and the inequalities (1 b’) all become strict; that is, we regain (I b); further- 

more, if the amount by which we reduce 5 is sufficiently small than (I “) remains valid, too. 

Then, in addition to (1”) we obtain (denoting / by I’) 

(3) c x, > cai (I’ E ‘v (K’) - +4? ($)). 
.JE’J3IK)-‘$l(K-I’) isl' 

If JE ‘$3 (K)-‘V (K - I’) then J E ‘$3 (K) - ‘$ (K - K’) and therefore this J does not occur in 

the left side of (I”). For each J E ‘$3 (K) - ‘$3 (K- K’) we now decrease sJ and increase 

.vJnK. by the same amount xJ (that is, we shift the entire mass x, from the face J to the face 

Jn K’). This does not affect the inequalities (I “). and replaces the inequalities (3) by 

(I’) 

Since card K’ < s and card K” < s, the lemma holds for each of the two systems (1’) and (I “). 

It is now a simple matter to see that the lemma holds for the original system (1). 

COROLLARY. Let K he N ,jinitr set, /et (ii, E N(k E K), let xJ E N(J E Y(K) - v(4)), and 

.suppo.se that 

Then& each st#icientl_v big h E N, there exist !‘J.j E N(J E ‘J!(K) - ‘$(c#I), j E J) suck thut 

j; YJ.~ = h-u., (; E Y(K) - Y(4)) 

Proqf!f: There exist (see second remark after Shapiro’s lemma) riifional numbers xJ,j 

satisfying the conclusion of that lemma. There obviously exists a r > 0. smaller than every 

nonzero x,,.~, such that if we set 

s’ - 
I,‘.l. j - 5 c-r,.j # 0) 

J.j - \o 
(.YJ,i = 0) 

then c xJ,~ > aj (Jo K); of course c .Y;,~ < xJ. For any /I EN with h > 5-l there exist 
Jsj jJ 

x;.~ E h-‘N such that xJ.~ < x(;,j < x,,,~ and for such .w;‘.~ obviously C .Y;,~ < .~,,(JE 1)(K) 
JEi 

- q{(d)) and c -U:;..j > ~,~(j E K). For each J E ‘Q(K) - +$I(+) fix an element i(J) E ./ and set 
Jej 

yJ,j = hx,y,,j(j E J,,j # i(J)), yJ,i(J) = h.x;,io, + hxJ - c hs;.j. It is easy to see that the 
,jeJ 

numbers ?'J,j have the required properties. 

8 2. LEVI’S LEMMA 

Our point of departure is the following result concerning differential polynomials in 

.):I, . , y, and a number of other differential indeterminates Uij(l < i < n, 0 <.j ,< ri)- 

LEVI’S LEMMA. Let G fr ,.., G,hed~~rentiu/polynomialsin Q(Y,, . . . tYnr(uij)l~i~“,odj~ri; 

yiren by Gi = Uioyi4i+ 1 <g,, ‘ij”ii (I ~i<n)where,jbrearhi,q~~NandM,,,...,M~~,are 
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d$erential monomials in y, , . , _v, of degree > qi. Then there exist a monomial 

u = I($:, “2; in Uj”. . , ll,,o 

and a di~~rentia/po/))no/niaf YE Q{y,, ,J’,, (u~,~)~ s isn, OS,jsr, > with the,fbffowing properties : 

Y is homogeneous in (Huij)e,o,0Gj4r, ofdegree di (1 < i < n): 

Ihe degree of Y in (OI/~~)~~~, , s i Cn is < d, + + d,,: 

YE [Yl, )” > v,l; 
?‘i(U + Y)E {Cl, , G,.) (1 < i < n). 

Levi proved this result for ordinary difl‘erential polynomials ([4] $ij 32-36, $47), and for 

partial differential polynomials in the case r = 1 ([5]. p. 118). The general lemma can be 

established in the same way with little extra difficulty. 

$3. DOMINATION 

We deal with differential monomials in J’ , , . . , .J+,, that is, with products of powers of 

derivatives 0~~ (0 E 0, 1 < i < n). 

By a prime factor of such a differential monomial A4 we mean a derivative Oyi which 

divides M. If V is any set of derivatives Oyi we let OV’ denote the set of all derivatives of 

the yi which can be written in the form Or (0 E 0, L’ E V). The product of all the prime 

factors IV of A4 with IV E OV, each w taken the same number of times as it occurs in M. is a 

differential monomial which we denote by M,. 

Let M and N be differential monomials. We shall say that N dominates M if, for every 

set V, the following condition is satisfied: 

either deg M, < deg N, or M, = N,. 

Since M, = M,, = M~,,,,V~M~, where V(M) denotes the set of all prime factors of M, it 

suffices to verify this condition for every nonempty set V’ with V c V(M). If, for every 

nonempty V with V c V(M), N satisfies the stronger condition 

deg M, -c deg NV 

then we shall say that N strongly dominates M. 

It is easy to see that there exists a biggest set W of prime factors of M such that 

M, = N,. If N dominates M then a necessary and sufficient condition that N strongly 

dominate M is that W be empty. We shall call W the weakness of N over M. 

If Nk dominates M and W, denotes the weakness of Nk over M (I < k < r) then the 

weakness of n Nk over M’ is n wk. 
1CkGr 14kSr 

$4. FACTORIAL DOMINATION 

If Nk dominates (resp. strongly dominates) Mk (1 G k < r) then n Nk dominates 
1 <r=sr 

(resp. strongly dominates) n M,. If N, dominates M (1 < k < r) and, for at least one k, 
lSk<r 



NI, strongly dominates M then I LJjr N strongly dominates M’. It follows from the former k 

statement that if A4 = 11 @,‘where t’,. , I‘, are the distinct prime factors of M. and if 
1 <k<r 

N = 11 N, where N, dominates (rest’. strongly dominates) I.? (I G k < r), then N domin- 
16kSr 

ates (resp. strongly dominates) hf. We shall say in such a case that N dominates (resp. 

strongly dominates) A4 .factorialll,. 

If N, dominates (resp. strongly dominates) M, factorially (I < I < .s) then 11 h’, 
1 <lGr 

dominates (resp. strongly dominates) 11 M, factorially. If N, dominates M factorially 
l<ICS 

(I < I ,< .F) and, for at least one I, N, strongly dominates A4 factorially then rI N, 
1 SlG:r 

strongly M” 

Shapiro’s enters this 

FIRST LEMMA. If N, strong!)? dominatrs A4 (I < I < s) then, ,/tir all 

(i,. _. ., i,J E N” ,fiv I+‘hich the sum h = i, + . i, is .s~ficirnt!v big. , J,Ic, Rij’ .strong<v 
. . 

dominates Mh ftictorialll~. 

Proof: Write M = fl t~f with K a finite set and the elements l’k (k E K) the distinct 

prime factors of M. For each nonempty set J c K let xlJ denote the number of prime 

factors 1‘ of NI such that 13 is a derivative of rk for every h E J and is not a derivative of rp 

fcr any k E K -.I (each 1% being counted as many times as it occurs in N,). Because N, 

strongly dominates M we have for each I 

By the corollary to Shapiro’s lemma there exist an /rO E N and, for each (J, j) with 

JE v(K) - ‘$I(+) and,jEJ, a ylJj E N such that 

,;,Yu; = h,x, and 1 ylJj > h,aj. 
JEj 

It follows that we may write NFO = Q N lj h w ere. for each ,j E K, N,i is a differential mono- 

mial of which the degree in (Ol.j)Bto is b hoaj + I. Let (i,, , i,) E N” and write i, = y[h, + r, 

with y,, r, E N and r, < ho. Then 1 lJcs Nfj = [I 11 For each j E K the 
., ich l</Qs 

NY;. , <g<,, N;’ . 
, , 

degree of fl NY: in (0~~)~~~ is 
l<l$r 

3 ,<Q,(h,Uj + I) = r<q<,(i/ - '.,)i7,'(h,Ui + I) B (11 - .\(ho - I))ll,'(h,Uj + I), 
. . ,. 

where h = ,<F<, ‘P h h d I so t at t is egree is > ajh provided h > s(hO - I) (houi + I). Whenever 
. . 

this is the case then r&L, 1VI’ strongly dominates Mh factorially. . . 

PRELIMINARY LEMMA. Let F= u,M, E Q{_P,. .I’,,. uo. . . . 
. , 

M,, M,, . . . M,, are d#Srential monomials in .I’, , ._. . y, such that M0 # and #M, 

( 1 < I d M.ith I # 0 dominates (resp. strong[ll 
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contains a d@erential polynomial G = u:Mt + 1 U,N,, where a E N, a # 0, each U, is u 
lslSt 

monomial in uO, ul, , , u, dlYerent.f?om ut qf’degree a, and each N, is a dljjerential monomial 

in yl, . . . y,, different frcm M,” which dominates (resp. .strongly dominates) M,” factoriaQ$. 

Proof. Suppose that each M, with I# 0 strongly dominates M,. Raising both sides of 

the congruence u,M, E - c u,M, (mod F) to an odd power u. we obtain a congruence 
lCl<s 

u;M”o = - ELI,, . . . ul, M,, . MLa (mod F); by the first preliminary lemma we may choose N 

so big that each M,, . . . Ml0 strongly dcminates M,” factorially, and therefore the differential 

polynomial G = u;M: + cull . . u,,M,, . . . R/I,<, satisfies the ‘resp.’ part of the conclusion. 

Now suppose merely that M, dominates M, (1 < 1~ s). Let A, denote the set of 

indices I with 1 # 0 such that M, dominates M, factorially. For each I with I # 0 and I $ A0 

the weakness of M, over M, is a subret of the set of prime factors of M,. Denote the 

distinct weaknesses of the various M, with I # 0 and I$ A, by W,. . , W, and for each Wj 

let Aj denote the set of ir,dices I with I # 0 ard I$ A0 such that tl-e neakness of M, over M0 

is Wj: we choose the notation so that W,@ Wj (I <,j < k - I). Then F = u,M, + 

,&<, ,z.‘J”l. Set 7C = cardICySr. vucWj). 
J -- 

If 71 = 0 we may take G = F. Let n> 0 and suppose the result proved for lower values 

of 71. Then k > 0. Raising both sides of the congruence u,M, + ,&u~M~ = - 1 x 
ISj<k leAi 

u,M, (mod F) to an odd power 11. we obtain on the left ~“0 Mh, plus a number of terms 

UN with U a monomial in uO, U, (I E AO) different from U: of degree h and N a differential 

monomial in _r 1, . . . , j‘n different from M,h which dominates M,h factorially. On the right 

we obtain a sum of terms - Uh’ = -ii,, . . . I/,~,M,~ . . M,,3; for any such term either some 

index li is in a A.i with 1 <j d k - 1 or Ii E A, (I < i 4 /I). In the former case the weakness 

of N over M,h is a subset of Wj for somej with 1 <,j < k - 1. In the latter case we may 

write Mli = M;;M,,+., = M;!Mow, (1 < i d h) and M0 = M;,M,,,, and each IV;, strongly 

dominates Mb ; by the first preliminary lemma we may choose h so that &I;, . . M;, strongly 

dominates M;* factorially, and then IV = M,, . . . M,,, = M;, bJ,‘,,M”,,, dominates 

Mh, = M$‘M;,, factorially. Transposing to the left side all the terms on the right we 

obtain on the left a differential polynomial. 

where A;, . . . , A,: are disjoint finite sets not containing 0, Li, = II:, each U, with I # 0 is a 

monomial in lcO, u,, . . . , u, different from 14: of degree h, Mz = Mi, every M; with I E A; 

is a differential monomial in ~3~) . , J,, different from h4; which dominates Mh, factorially, 

for each index j with I <,j < k* all the M; with I E A,; are differential monomials in 

Yl, ... 1 yn different from Mh, which dominate Mh, and have over Mh, one and the’same 

weakness wi”, and each of these weaknesses WI*, . . . , Wk: is a subset of some wi with 

1 <j < k - I. It follows from the last remark that the number rc* = card L) %(W.f) 
l<jGA* 

has the property that X* < n. Therefore we may apply the present lemma to F*, and the 

existence of a differential polynomial G E (F) with the required property quickly follows, 
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45. THE DOMINATION LEMMA 

We now come to the main lemma from which our results on singular solution will 

quickly follow. 

DOMINATION LEMMA. f_e11~ = 1 uJ4, E Q{yl, . . . , y,,, uO, . . , 24,;. whew M,,, . . . . M, 

O<fCs 

cue dijkren~iul rmmomiu1.s in .I’, . . . yn ~14ch thul M, # 1 Ural M, # M, (1 1 I < s). !f’each 

M, with I # 0 dominutes (resp. snongly dominates) M0 rhen there exist CI nonzero e E N nnc? 

N YE Q(yl, . . . , y,, uo, . . , us) uirh the,fbllowing propwries: 

Y is homogeneous in (Uu,),,,, , o <I -c s of degree e; 

the degree ef Yin (Bu,),,, is <e; 

Y E [yl , . . , y,] (resp. Y E { MC,} 1: 

M, (~‘0 + Y) E {F: 

Proof. Write M, = 1.7’ . . . I$‘, where I’~, 23, are the distinct prime factors of M,. 

Suppose first that t = 1. For each I either M, is divisible by 1.f’ or the degree of M, in 

021, is > i!,. Therefore we may write 

F = (llo -I- c “&JOY, + c u,L,N,(u,) 
IEh IEA” 

where A’, A” are disjoint sets the union of which is the set of indices 1, 2, . . . , s (with A’ = 4 

if each M, with I # 0 strongly dominates M,), eachL, is a differential monomial in yl, . . . , J;I, 

deg I_,> 0 (I E A’), and each N, with /E A” is a differential monomial (in some new dif- 

ferential indeterminate z) of degree > q,. We may apply Levi’s lemma (case n = 1) to the 

differential polynomial G = ii@’ + 1 C,N, E Q(=, ii,, (I?~),,,,,.) to show the existence of a 
&A” 

differential polynomial z(tig +Z) E {Cl with Z homogeneous in ((tIu,>,,,, (BtiJ,,,, IsA,,) of 

degree e, the degree of Z in (Bfi,),,, strictly smaller than e, and Z E [z]. Since the substitution 

of (2’,, u. + C uJ,, (u,L,),,,,,) for (z, fi,. (u,),,,,,) maps G onto F, the desired result follows. 
leh’ 

Now suppose that t> I and that the lemma has been proved for lower values of t. 

By the second preliminary lemma. (F) contains a differential polynomial G = u$~“’ . . VT’ -t 

C UjN, ,MS, where each Uj is a monomial in uo, . . . , u,, other than ug of degree a, each 
ldj4r 

Nl j is a differential monomial in J'~, . . . , J',, which dominates (resp. strongly dominates) 

11f”, each M,j is a differential monomial in ?:1, . . . , ~3~ which dominates (resp. strongly 

dominates) vT20 . . . upa, and N,,Mj # Mt. Replacing G by (u$M”,)’ + ( c UjNljMj)h if 
I<j6r 

necessary, I7 denoting an odd natural number > I, we may even suppose that 

MI # L$~” L.T (1 < j < Y). Then we may apply the present lemma (case t - 1) to the 
differential polynomial F’ = 24; v$“ . . t'fn + c uJM; E Q{y,, . . . , y,, ub, . . . , u:} to prove 

lGj<r 

the existence of a nonzero e’ EN and a Y’ E Q{y,, . . . , y,, u&, . . . , ui} with Y’ 

homogeneous in (&(,)060, Isjsr of degree e’, the degree of Y’ in (OU&~~ strictly smaller 

than e’, Y’E [vI, . , y,] (resp. Y’ E (uJ’;... ~~4”) = {v~ . . . z+}), and v2 . . . v,(ur + Y’) E {F’). 

Substituting (u: rya, U,N,,, . . . ,U,NI, for (u&, u;, , ui) we see that {F;> contains a dif- 

ferential polynomial z:~ . . . 17, (z&l vf’ + 1 U,,M, ,). where u1 and ci are nonzero natural 
Ich , 

numbers, each U,, is the product if a rational number with a differential monomial in 



318 E. R. KoLCHlN 

l&j. , u, of degree a, and of degree in (&+,),,, strictly smaller than uI, and each M, 1 is a 

differential monomial in yI, . , y,, different from 13;’ which dominates (resp. strongly 

dominates) v’;. Let A; denote the set of indices I E AI such that M,, strongly dominates vii, 

and set A; = AI - Al (so that under the ‘resp.’ hypothesis A; = 4). For each IEA’, we may 

write M,, = I!,,&’ with L,, a differential monomial in yl, . . . , y, of degree > 0. Thus, the 

perfect differential ideal {F]: M, contains (uz + c U,,L.,,)r~’ + 2 U,,M,,. Similarly, 
Ish,’ IaA,” 

for each k E N with 1 < k G t, {F}: M, contains a differential polynomial (117 + 

c ~klJ%fl)~~ + c GM,, with entirely analogous properties. An easy application of 
Is&’ IsAr” 
Levi’s lemma (case n = t) now completes the proof. 

$6. SINGULAR SOLUTIONS 

Let A be an irreducible differential polynomial in y{y,, . . . , y,), and suppose that 

(0, . . . , 0) is a singular solution of the differential equation A = 0. A sufficient condition 

that (0, . . . , 0) not be a zero of the general component p(A) is provided by the domination 

lemma. We formulate the result in the following more general setting. 

PROPOSITION. Let ‘$3 be a prime dlfirential ideal ef F-(y,, , y,}, and suppose that ‘$3 

contains a differential polynomial 1 C,M,(B,, . . . , B,), where: C, E 9{y,, . . . , y,) 
OQISS 

(O<Z<s) and C,(O ,... O)#O: Bk~F{_y ,,..., y,> and Bk(O, . . ..O)=O (1 <k<r): 

MCI, Ml, ..’ 2 M, are differential monomials in differential indeterminates zl, . . . , z, with 

Mk # MO (1 <k <r) such that M, dominates Mo(l <k < r); and MO (B,, , B,) $ p. 

Then(O,...,O)isnotaseroof‘$!. 

Proqfi By the domination lemma ‘+$_I contains a differential polynomial M,(B,, . . , B,) 

(C; + Y(B,, . . . , B,.)) where e E N and YE [z,, . . , zr] in Q{z,, . . . , z,, Co, . . . , CS}, so that ‘$ 

contains the differential polynomial CE + Y( B,, . . , B,) which does not vanish at (0, . , 0). 

I. 

2. 
3. 
4. 

5. 

6. 
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