plications 12.(1981)267-282 .-, .. i axis
ng Company S ;, . 267

University of Tennessee, Knoxviile, TN 37916, USA

Received 17 March 1980

' Am suMX of omlyhedlm Pisceliularin Pif thereisa pseudoxsotmpy of P skrinking
precisely X 1o a point. A proper surjection between polyhedra f: P+ Q is cellular if each point
mmammr It is shown that if f: P Q is a cellular map and either P or C is a
seneralized n-manifold, n % 4, then 1 Is approximable by homeomorphisms. Also, if P or Q is an
n-manifold with boundary, » #4, 5, then a cellular map f: P- Q is approximable by homeo-
morphisms. A cellularity criterion for a special class of cell-like sets in polyhedra is established.

AMS (MOS) Subj. Class. (1979): Primary: S7N80, 57Q5S5;
Secondary: STN60, 57299, 57Q30

polybedion = cellularmap - intrinsic stratification
cellular set pseudoisotopy  generalized i1-manifold
engulfing approximable by homeomorphisms

Introdaction

One of the more active areas of study has been that of trying to identify those
mapt i M"-t Y vhkh m nppromable b,r homeomorphnsms, where M is a

mmuifou. n !W [1‘], Morc recently;*Edwards has shown that a cellular mep
f:M" =Y, u>S$,is approximable by homeomorphisms if ¥ is a finite dimensional
ANR such that maps £, g:B*+ Y may be approximated by £, :B>- Y such that
/(8 §(B%) =98],
“Relatively little has been done on the approxirzation of maps between polyhedra
by homeomorphisms. Handel used an intrinsic stiatification of polyhedra to approxi-
mate a certain type of cellular map f: P+ Q between polyhedra by homeomorph-
‘isms. He requimd that for a pomt y inan n-dimersional stratum of Q, the set f ()
must Hular s the mani ""_dwhxchlsthe n«dnmensmnalstratmnof?{?‘

~ Cani rOPOS 'a much bro«der class of maps for study by defining a more
ral concept of cellulamy {4). He defined a cellular sét X in a polyhedron P to
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be a sompact subset of P for which there is a pseudoisotopy of P shrinking precisely
X. Hence a cellular set in a polyhedron may intersect more than one stratum.
Cellular maps between polyhedra are those propermaps £: P-» Q such that fom each
y & O, the set f'(y) is a non-empty cellular sevin P.
Cennon asked if a cellular map f: P> Q is approxxmabh. by homeomorphmms if
P or Q is a manifold. That question is answered by the following theorem.

Theorem. Le:f: P Q be a celiular map with either P or Q a generalized n-manifold,
n #4. Thon fi: approximable by homeomorphisms.

Ir. light of McMillan’s critericn for cellularity in a P.L. manifold [13], it scems
satural to ask if there is a cellularity criterion for polyhedra. In the last section of
<his paper, a restricted concept of a cell-like szt in a polyhedron is introduced, and
a polyhiedral cellularity criterion given for that class of cell-like sets.

This paper is an expansion of some of che results of my thesxs conipleted under
the supervision of Professor J.W. Cannon.

0. Definitions and backgreund

A polyheuron is a subset of some Euclidean space R such that each point b e P
has a neighiborhood N = bL, the join of » and a compact set L. Thioughout, P and
Q will di:note polyhedra.

A pseudoisotopy is a homotopy H, : P~ P such that H, is a homeomorphism for
J=t<1and Hy:P- P is a surjection.

A comipact subset X of P is said to be cellular in P if there is a pseudoisotopy
H,:P - P such that X is the only nondegenerate point pre-image of Hj. As an
:xample, let P be a 2-simplex and X an arc in P. If X lies in the interior of P or if
X meeis the boundary of P in one point, then X is cellular in P. However, if X
neet the boundary of P in a set which is not connected, then X is not celiular in
P. Tris :xample makes it clear that the property of a set being cellular depends not
»nly on the set itself, but also on its embedding in 2. In fact, if P is a manifold, then
‘he above definition is equivalent to the usual definition of cellularity.

A sroper surjection f.P- Q is cellular if for each ye Q, f(y) is cellulér in P
Age'n, if P is a manifold, then this corresponds to the standard concept of a cellular
nag.

At this point. Siebenmann’s approximation theorem wili be stated fm later
‘eference.

Theorem 0.1 [14). Let f:M" > N" be a cellular map where M" and N" are n-
wanifolds, possibly with boundary, such that f|3M gives a cellular map floM : oM -
v, Suppose that one of the following holds.
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(@) n#4,5 s
(®) n=5andf IaM isa homeomarph:sm
Then f is approx:mable by homeamorphzsms

'WC engulﬂng theorema wnll a!so be gwen here for later use. The first is Stalling’s
cngu!ﬂns*theorem [15), and the secuuu isa shghtly modified form of an engulﬁng

t“i‘.mm -bm-m-ﬂ U" nﬁce} L‘.I

'l\eom 0;2‘. Le:M " b’é a PL n«manifo'l_d, n=S5, -U an open setin M, K a complex
in M of dimension <n —3 such that K is closed in M. and L a subcomplex of K in U
such that ci(K L) is a polyhedron of a finite r-subcomplex R of K. Let (M, U) be
r-connected. Then there is a compact set E = M and an isotopy h,: M - M such that
K<hy(U) and h|(M-E)uL=id.

Theorem 0.3. Let M" be a P.L. n-manifeld, n <35. Suppose that for an integer r,
O=sr<n-3, there exist open sets U, and V.1, —1<i<r, siich that U,.,c lJ,
Vis1< U, and each i-compiex in U; may be homotoped into V; rel V., by a homotopy
in tjg-p

Then given a closed complex K in U, of dimension <n -3, and a subcomplex L of
K in V..y such that (K — L) is the polyhedron of a finii2 r-subcomplex R of K, there
is an isotopy h,: M -» M and a compact subset E of U_-, such that 1,(Vy) = K and
h|(M-E)UL=id.

1. A straﬂﬂcaﬁon of polyhedra

Given a polyhedron P and x € P, define the intrinsic dimension of x in P, denoted
I(x, P}, by I{x, P) = max{n € Z|there is an open embedding & :R" X cL -» P with L a
compact polyhedron and hR" XcL) a neighborhood of (0% c)= x}, where cL is
the open cone on L. The intrinsic #-skeleton of P is P™ ={x € P|I(x, P)n} and
the itrinsic n-stratum of P is P[n]=P™ — P", The depth of the stratification is

d(P) =max{i ~j|P[i]1#@and P[j]#@}.
The next three propositions are standard stratification results. Proofs of similar
propositions may be found in [1].

Propocition 1.1. P[n] is a topological manifold.

Two points x and y are said to lie in the same isotopy class of P if there is ai
zsompy g:: P- P with go=id and g1(x) = y. One of the more useful properties of the
grren stratlﬁcatwn ofa polyhedron is that the strata and the isotopy classes coincide.

Proposiﬁon 1.2. Two points x and v lie in the same isotopy class of P iff x and y lie
in the same coriponent of some stratum P[n] of P.
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The next proposition provides a ]ustnﬁcauon for labelmg thxs strauﬁcatlon
intrinsic.

Proposition 1.3, Given a triangulation T of P and an inte ger n, there isa subcomplex
K, of Tsuch that K, = P'™.

Proposition i.4. Let xe P[n] and h:R"XcL-> P be an embedding pmviding a
neighborhood k (R" % cL) of h(0 X D) = x. There is a compact polyhedmn L, < L such
that h(R" xcL APV =hR"xcL,) fori=n.

Proof. 1 ¢t S te a triangulation of L, and define
L =\foeS|hR" xcr)n PP @} |
For ze L, h{R" xcz) A P"" # @ implies h(R" X cz) = P'?. Therefore
h@R" xcL;)= h(R" xcL)nP™.
If we h(R" xcL)~P"” and we P[n], then
we h(R" %(0,00)x L) P,

woere (R” xcLV-(R" X c) is regarded as R” % [(0, 20) x L. It then follows that there
s ome o € § such that

weh(R" x(0,0)x o)< h(R" XcL;).

The next proposition is not so much concerned with the stratification as with the
akility to isotopically move sets in neighborhoods of the form R" X ¢cL close to the
n-stratum. This result is used repeatedly.

Proposition 1.5. Letx € P[n]and U be a neighborhood of x homeomorphic to R" X cL.
Ther: for each compact set E in U and & > 0, there is an isotopy h; : v-u with compact
support in U — P{n] such that ho=id and hy(E) = U n N, (P[n)). ‘ :

Proof. If we consider cL as the identification space

[0,00)x L
{oyxL ’

define cL(m) to be the open subset of cL given by

{0,m)x L
<L -~

Let g be a homeomorphism from {7 onto R" X cL. Since g(E) isa compact subset,
of R™ » cL, there is a P.L. n-cell B" in R" and an integer m such that g(E)CB" ,
sLime 8" % cL. Chouse another P.L. n-cell D" such that B" < int D", and positive

numbers k, s, and ¢ such that m <k, s<t, and B" xcL(t) < g{U ~ N, (P[ND). We
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may now use the various product s;tructureséodeﬁne anisotopy h,:R" x cL +R" x ¢l
taking B" X cL(m) onto B" x cL(r) which is the identity outside of (D" X ¢L(k)) -
(D" X cL(s)) I’he desn'ed xsotopy is then g h,g U - U.

The last theorem of thxs sectm»n is an isntopy extension theorem due tc Aiken.

Theorem 1.6 [1] Let P be a poI) hedron sucn that each stratum of P inherits a P.L.
mamfold structure fmm P.Ifg.: l’[n]»P[n] is a P.L. isotopy with compact support
E, then for ’ach ne:ghborhood U of E in P, there is an isotopy g, : P - P which extends
g, and has support in U.

2. Cellular sets in polyhedra

In this section the baslc properties of cellular sets are developed. One should note
the strong similarities between the properties of cellular sets in polyhedra and the
properties of the trad:txonal cellular sets in a manifold.

Propcsition 21, Let g, P - P be a pseudoizotopy shrinking precisely the cellular set
X. Then if P[1] is the lowest dimensional stratum that X intersects, X intersects only
one component A of P[l] and g,(X) € A.

Proof. Let x € X n P[!]. Since g, is isotopic to the identity for 1 < 1, g,(x) lies in P[/]
for ¢t <1. Therefore g1(X) = g,(x) must lie in P'", Suppose that g,(X)e P{k}, k < /.
If U is a neighborhood of X such that U ~ #“"') =g, then g;(U) is a neighborhood
of g1(X) such that g;(U ~X)n P =@, it then follows that k =0, But if g,(X) =
y€P[0], then ye X, for g(y)=y for t>1. This contradicts the assumption that
P[l] was the lowest dimensional stratum that X intersects.

Suppose now that there is a component B of P[l] such that X nB #@ and
g1(X) £ B. Thenfor w € X n B, the path g,(w), 0<¢=<1, wiil be a path in P[!] having
end points in different components of P[/]. Hence X intersects only one component
of P[] and g;(X ) lies.in that component.

The deﬂnmon of cellularxty for polyhedra was given in terms of pseudoisotopics,
not cells or decomposition spaces. At this point, we would like to show that with the
proper interpretation the concepts of a defining sequence and the shrinking of
decomposition spaces, which may be used to define cellularity in manifolds, carry
over to: polyhed&al eellulanty ‘We will prove that a cellular setin a polyhedron has
a deﬁnmg sequence of nenghbarhoods all homeomorphic to an open cone neighbor-
hood of a specific point in the polyhedron. Such neighborhoods will be homeomor -
phlctoR"XcL for some integer n and compact polyhedron L, and are called cellular
reighborhoods.
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Theorem 2.2. The following are equivalent:

(1) X is cellular in P.

(2) The projection w : P - P/ X is approximable by homeomorphisn:s

(3) X =2, N;, where the N;'s are komeomorphic cellular neighborhoods
Niac N

Proof. (1) (3). Let g be the pseudoisotopy shrinling X to the point y ¢ Pl Itis
sufficient to prove that for each neighborhood U of X, there is a neig “
of X homeomorphic to the open cone neighborhood V = h(ﬂ’ xeﬁ of y such M
X cNcNcU. (Here h is the embeddmggiwnbythehuiwyaﬂfl)%am
assume that V < g,(U). Choose s <1 such that for ¢ >s, g, (V)c U. There is an »
betweeu s and 1 so that g,(X)< V. We now have X< g, (V)e g, (V)< U, and
g. ' (V) is the desired cellular neighborhood N. o

(3)=(1). Using the product structure of N, in a manner similar to that in
Proposition 1.5, we can define an isotopy H: P’ x I -» P with the initial stase of H,
being the identity, H, having compact suppoit in N), and diam H,(X x1}<1,
Inductively then, define H;:PxI-+P to be an isotopy such that H.(Px0)=
H,_1(Px1), the support of H, lics in a compact subset of H,.,(N;x1), and
diam H;(X x 1) <1/i. The desired pseudoisotopy g: #*x 7 = P is defined by

i -1 g
P H(x % i — e |
(e 1) me[ =
glx xt)=
lim Hi(xx1) t=1.
{00

(3)>(2). Let 7:P- P/X be the projection map, and ¢ >0 be given. For ecach
neighborhood U of X, therz is a neighborhood N; of X such that N;c U/ and
m(N;) = N.(m(X)). As before, we can use the product structure of N; to construct a
homeomorphism A : P- P with compact support in N; such that diam kix)*t e. il
now follows from the Bing Shrinking Criterion that w: P - P/ X is approximable
homeomory hiisms.

(1.)->(3) Since P is homeomorphic to P/ X, #1.X) has a neighborhood hom
phic to R* XcL Given a neighborhood U of X, choose a neighborhood

by homeomorphnsms, we may (hoose a homﬂomorphism h: P—*Pf m ﬂm
X ch ™ (N)ch™'(N)< U. As betore, this shows the: X is cellular in P.

The third characterization of cellular sets in Theorem 2.2 m us to m
cellular neighborhoods of a cellular set X whicy have a predetermined product
structure in a neighborhood of P{!{], the lowest dimensional m X

Corollary 2.3. Ler X be a cellular subset of P, W 1 neighborhoed af X, and Fm as
above. If h:R' X cL - P is an open embeddmg such rimt)i’ mf’{ =h@® xel)c W,
then there is an open embeddtngg R'X ¢l = Psuchhar X © g/ x cl)c Wandh =g
in an g-neighborhnod of R' x ¢ in R' X cL por some & > 0.
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ud. Lot D' be an I-cell in R' such that X nPllJch((int D')xcL). Choose
.= P w be an open embedding such that kR’ x'cL) P[] h(D'xc) and
ml} ' W. We may Wy Proposition 1.5 to obtain an isotopy h, with
po:t in k@' x cL) such that h,(X) <h(R'x cL). The homeomorphism
kiR % cL » W is the desired embedding. Note that g and h will agree in a
%R%&c ﬁm& k«; has m«t suppo:t mxssmg h(@®' xc).

We first consider cellular maps between polyhedra where either the domain or
range s a genmeralized n-menifold, n #4. A polyhedron P is & generalized n-
manifoid if fcr each x € P, Hy (P, P—x)=H,(R", R" —0). Two resuits form the basis
MMM wuch maps. The first is a form of the Vietoris~Begle mapping theorem.
The second i« & theorem of J.W. Cannon and follows from his solution to the double

Theorem ).1.[12). If G is an upper _ciri-continuous decomposition of a polyhedron
P into cellula- sets, then the natural projec.ion m: P~ P/G induces an isomorphism
v, : H(PY» H{P/G) for every q.

Theovem 3.2 (3]. A polyhedral generalized n-manifold P is locally an n-maifold
except possibly at the vertices of P. If n <3, or n =25 and m(lk(v, P))=0, then P is
lecally an n-manifold ai the vertex of P.

The first approximation theorem for cellular mappings between polyhedra is a
relatively straightforward application of the above results.

Theorem 3.3. Letf: P-» Q bea cellular map with P a generalized n-manifold, n # 4.
‘Then { is approximable by homeomorphisms.

Proof. We first show that Q is also a gencralized 2 -manifold. Letye Qandg: P> P
be the final stage of s pseudoisotopy shrinking f~'(y) te the point z € P. We consider

Hy(P~-z)——— H,(P) H@PP-z)——

v
fe 8 o

———t Ho(P— [ {y))———H(P)—>H\(P, P~ '(y)) ———

A fe B

H (Q)——H\(Q,Q~y)

H{Q—vy)
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The restriction £ of f to P—f"'(y) is also a celiule: map m~0«~y, 3 mm f.
and f, are isomorphisms. The restriction g of g to P~ £ }(y)is & homeor hism
while g is hootopic to the identity map. Therefore g, md &8s are
now follows from the five iemmas that o md B ar: isom
generalized n-manifold.

and Q[0]. Let D = Q[0]u f(P[O]) Since f ‘(D) isa discrew 00l
sets in P, we may assume that f is 1-1 over D. We now approximate the

map f|P—f""(D):P~f"'(D)- @ - D be a homeomory . srah whichmay be

ded to agree with f on /(D). The existence of the nppmximaling homemmmhiun
h follows frosa Theorem 0.1.

The next step is to consider celluiar maps where Q is a generalized n-menifold.
The cellular maps whose image is a generalized #-manifold. » # 4, are approximable
by homeomo:rphisms, but the proof of this fact involves an investigation of how the
point preimage of f interscct the strata of P. The following proposition is the key to
the proof.

Proposition 3.4. Let f: P> Q be a cellular map with G ¢ generalized n-manifold,
n # 4. Then fer each component A of P[k), there exists ya € Q with f '(ya)n A # @
and f '(ya)nP* V=9,

Proof. Tiiz proof will be by induction on the depth of the stratification of P, d{P).

If d(P)=0, then P is an n-manifold for some n. For »:ach component A of P,
choose x € A and let ya = f(x).

Ascume now that the proposition is true for polyhedra with dzpth of stratification
less than d, ard that d(P) = d. The proof will be completed by showing that if P{l]
is the lowest dimensional stratum of P, then f~'(f(P\!])) contains no component B
of P[], j > . Once this is done, we apgly the inductive hypathesis to the cellular map

f:P-f(f(PLD) > Q—f(PLID,

where f is the obvious restriction.

Suppose that (=0 and there is some component B of P{j), j>0, such that
B < f'(f(F[OD). Since B is connected, B < f~'(f(x)) for :ome x € P[0}. If g,: P> P
is a pseudoisotopy shrinking f~'(f(x)), then g(B)=B for t<1. Therefore
diam g,(B):> ¢ for some € >0 and ¢ <1, Thus the assumption that g,(B) = x is not
possible.

Assume now that />() and B is a component of P[] such that B < f~ ' (f(P{{])).
We take Ef to be minimal in the sense that no componeat of a lower dimensicnal
stratum P{m] has the s: me property for m > [, Since P{l] is closed, we have that
f(By< f(PI)). The set & —F will consist of the union of components of lower
dimensional strata, so i — B < P[I]. Consider the polyhaedron K = P[] B, and
G={f(")nK|yeQ}. Then G will be a cellular. upper semi-coatinuous
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H*m —————-*H*(K K-—x)

Hﬁ(K’) *"’H*(Ks K ‘8)

et Ho(K — )

— H(K/G - wig) —— H(K/G)—— H,(K/G, K/ G~ m(g) —

— H(P{l]—g) ——— H (P[] H (P[], P[l]~g) ——

———H (P[]~ x) ——= Hy(P[}) —— HL(P[l}, P[]-x) ——

Using arg':ments similar to those in the proof of Theorem 3.3, we conclude that
all verticle arrows are isomorphisms. But H,(P[l], P[/]-x)=2Z and

H(K,K ~x)=H/R'%<cL,R' x:L-(0xc))
=H,.,(S'Dy=H_.(L)=0.

Therefore it is false that K/G = P[l}/G*, where G*={gn P[l)lge G}, and
Be f(f(PID).

Theorem 3.8. Letf:P - Qbeacellular map with Qa ;generaltzed n-manifold, n # 4.
Then [ is approximable by hameomorphzsms '

Proof. The idea of the proof is somewhat similar to that of the previous theorem.
We first want to show that P is alsc a generalized n-manifold. Since each stratum
of P is an isotopy class of F, we nced only prove that each component of every
stratum of P contains a point with the desired local homology.

Let A be a component of P{k]. Then Proposition *.4 provides y4 € Q such that
Fya)nA#0and f (ya)nP* V=@, Let g : P- P be a pscudoisotopy shrinking
£ '(ya) to the poirt x, which Propnsition 2.1 tells us is in A. As before,

Hy(P, P-x)~Hy(P, P~ (ya) = Hy(Q, Q@ ~ya) =H,R", K" ~0).

Again, let D = f(P[0]) U[0]. We assume that f is 1-1 over O and approximate
f:P—f(D)» Q~-D by a homeomorphism which extends the map f on f"(D).
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4. Celinizr maps 2nd manifelds with bountlary

The first theorem of this section is probably the key (o studying cel.ular maps
betweer pelyhedra. Aithough a cellular map f': P-»  need not be stratum preserv-
ing in the sense that for y € Q[n], f'(y)e P[n], we prove that P{n)#0 if and
only if {n] 0, with one restriction on P and Q.

Theorem 4.1. Letf: P Q be cellular with P{4) = Q[4] =0. Then P(i]# 9 if and only
if Q[i1#0, and f|P"=f:P">Q" is a cellular map with Qli}=
f(PLY -7 (P

Proof. The proof will be by induction on d(Q).

If d(Q) =0, then the map is approximable by homeomorphisms, so if Q = Q[n]),
f=/f. and P=P[n].

Assume now that d(Q) = k and the theorem is true if the depth of the stratification
of the range of a cellular map is less than k. Let Q[m] be the highest dimensional
stratum of Q. Then f~'(Q[m]) is an open subset of P which is homeomorphic to
Q[m] by Theorem 3.5. Therefore Pim]#@. Let P,.,=P~A,, where A, =
\LMA|A is a component of P[m] intersecting f~*(Q[m]}. Then P,...; is a subpoly-
hedron of P, and f|Pr_1=fn-1:Pm1»> Q"™ " is a cellular map. We apply the
induction »ssumption to this map and conclude that P,,_, = P{*", and dim P, <

m — 1. Therefore P[m]=A,,, and P=P™. We now have i,..-, = fra-1. We would
like to conclude that Q[i]#@ if P[i]#® directly from the inductive assumption
applied t0 f,._1: P V> Q" ™V, However, the stratification of P™" might not
agree with that of P. Similarly there might be differences between the stratification
of Q and Q""" ". We can conclude that if Q[j] is the highest dimensional stratum
of Q contained in Q""" ", then Q[ is open in Q™ = Q'", and Q[;] is a subset
of Q"'[j]. As before, fr.—1(Q[j] is open in P'""", asd homeomorphic to Q[;].
Also, Q'"[j1- Q[j1= Q" is a polyhedron of dimension less than j. If we construct
A, and P,.., aswe constructed A,, and P,,;, we have that £, | Py = fj1 1 P,y » QU7
is cellular. Again by induction P;_, is a polyhedron of dimension less than j.
Therefore A, will be a subpolyhedron of dimension j. We now have that P;_, = PY/~",

We continue in this manner, working down the intrinsic skeleton of Q to conclude
the proof.

Theorem 4.2. Let f: P> Q be a cellular map. If P or Q is an n-manifold, possibly
with boundary, and with n #4, 5, then f is approximable by homeomorphisms.

Proof. Let P be a manifold with boundary. Since P =P[n]u P[n — 1], we know that
Q=0{r]uQ[n~-1]. Each ye Q[n-1] has a neighborhood homeomorphic to
R" ' cL. L must be a compact, 0-dimensional polyhedra, and hence be finite: We
need only show that L consists of a single point.
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Suppose L=0. Then yeB, where B is a component of Q[n—1] such that
Bn.fu]ﬂﬂ Let x eP[n 1] be such that f(x) =y. We may czo0se a path from
x to a point zef"(Q[n))<P[n]. But f(x)eB, f(z)e Q[n}, and BAQ[n]=0.

; ore the image of the path is not connected, so L 4.
e L={pi,p2...,p} j>2. We have ~

ﬁn (Q Q- y)"f? -1 2""L) aI;o(L) #0),

But
 BJQ,Q-y)=~H,(P,P-f"(y))~H, «(B")=0.

Therefore L. must be a single point, and Q is a manifold with boundary. We may
now apply Theorem 0.1 to get the approximating homeomorphisms.

Assume now that Q is an n-manifold with boundary. Then Q = Q[n]w Q[n—-1]
implies that P=P[{n]UP[n —1]. Let x € P[n — 1], and U be a cellular neighborhood
of f~}(f(x)), with U homeomorphic to R" ™' x cL. Then f(U) is a connected neigh-
borhood of f(x)e Q[n—1]). There is neighborhood V of f(x) such that V is
homeomorphic to R" ™' x [0, ) and f(x)= V < U. Now f~*(V) will be a neighbor-
hood of x in U, with £ (V)~P[n] connected. Therefore U ~P[n] must be
connected, and L is a singleton. Therefore P is a manifold with boundary. We may
again apply Theorem 0.1.

S. Polyhedral celiularity criterion

Ir [13], McMillan proved the following important result:

Theorem S.1. Let X be a cell-like set in the interior of a P.L. n-man:Old M", n = 5.
Then a necessary and sufficient condition that X be the intersection of a sequence of
P.L. n-cells {F;} where F;., < Int F; = M is that the following property holds:

For each open set U containing X, there exists an open set V such that X c V< U
and each loop in V —~ X is null homotopic in U — X.

We develop a generalization of McMillan’s result. However, we will not be able
to consider arbitrary cell-like sets in plyhedron. We need a restricted concept of a
cell-like set.

Ahomotopy h,: Y = Pisstratumr:specting if I(h,(y), P) = I(h,(v), P)fort<sand
ye Y. If for each ye Y I/ i( 7), P)=I(h(y), P) for t<s, then the homotopy h, is
stratum preserving. A compact subset X of P is a rooted cell-like set in P if for each
neighborhood U of X there is a neighborhood V of X with XcVc U and a
stratum respecting contraction of V in U.

If one is familiar with the proof of McMillan’s theorem, then the reason for the
restricted definition of a cell-like set should be clear. We will want to use the
contraction of the neighborhood V of X in U to construct homotopies in each
stratum.
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Lemma 8.2. Let X be a rooted cell-like set in P. Suppose'tka P ];is the h;ghest
dimensional stratum that X intersects, and that X* = X ~. PV is.a cellular set in P.
Then for each neighborhood U of X and cellular neighborhoad D of X* in U, thore is
a neighborhood W of X, a cellular neighborhood N of X*, and a stratum preserving
homotopy h,: W - U such that hy = id, hi( W)cD, and 1s. is supported oﬁ" of N.

Proof. Choose ¥ v be a neighborhood of X such that W is a‘éompact subpoly-
hedren of U, W » PV~ < D, and there is a stratum respecting homotopy g,: W » U
contracting W in U with g(W n P“"") = D. There issome & >0 such that g (N, (W A
P'"")< D. Letting Ao be a simplicial neighborhood of W ~ P in W such that
Ao N,2{W U P "), triangulate W in such.a manner that Ay is a ful! subcomplex
and that st(Ao, T) < N, (W AP, Choose k: W10, 1 jtobeasxmplmalmapsu«:h
that A, = k' (0). We redeiinz the homotopy g, on W as lollows
For xe W,

glx) ifk(x)=s=1,

H(x, )=
1% 1) {g,(x) ifk(x)=s<t.

The homotopy H, is a stratum respecting homotopy which is the identity on Ao.
Let 1(1) be the first time such that H(x, #(1)) € p“~" for some x € W= Ay. Define

By ={xe W—Ag|Hi(x, t{1))e P V).

Choose s(1)<1(1) such that for s(1)<s=1t(1), Hy(By, 5) = Ney2(P"' ") A D. There
is a simplicial neighberhood A, of B; in W such that for s=s(l), Hi(A;, s)<
N,(# "y~ D. We now define the homctopy H,: WxI-+U on AquA,. For
X e /“\n vA 1y ‘

Hy(x, t) 1<gs(1),
Hy(x,s(1)) r=s(1).

This can be ~xtended to the rest of W by using a simplicial map from W to [0, 1]
and the homotopy H in the same manner that we extended H, from the identity
on Aq. If Hy(W, s(1))Z D, we define s(2) in the same way that s(1) was defined for
H,. We inductively define s(n) if H,_,(W, s(n - 1)) D. The compactness of W and
the fact that H,_,(W, 1)< D guarantee that after a finite numbe: of steps, there is
aninteger m such that H,, (W, s(m)) < D. Note that the hotnotopy H,. : W %[0, sim)]
is stratum preserving. We now choose N to be a cellular neigaborhood of X n P*“™")
in D such that N H,, (W~ Ay, 1) = ¢ for 0<t<s{m). The homotopy h:W->U
15 now given by A,(x) = H,.(x, t) for 0 <t < s(m).

Holx 1) ={

We now state the polyhedra cellularity criterion.

Polvhe dral Cellu'arity Criterion : A conzpact subset X of a polyhedron P satisfies the
polyhedral cellularitiy criterion (PCC) if for each open set U = X, there is:an.open
w2t Vo X such that V < U and for every stratum P[i}, i =23, each singular k-cell
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D* < U/~ Pilwith bd D* < (V = Xy~ P[i]is homotopxc relbd D* in U~ P[ijto a
singular k-cell B* < (U—-X)nP[:] fork=1,2.

‘Theorem 5.3, Let P be a polyhedron such that each. PB[n) inkerits a P.L. n-manifold
~sfmctw'e f:om P and let X be a rooied cell-like set in P which intersects no stratum of
dimension less than 5. Then X is cellular in. P zf and only zf X satisfies the polyhedral
cetlulamy cntenon. ‘ e

Prool Assume that X is cellular in P and that U is a uelghborhood of X. Since X
is cellular, there is a cellular neighborhood V of X such that X< Ve Ve U. Let
D" be a singular k-disk in U'n P[i} with bd D* < (V - X) ~ P[i]. There is a cel'nlar
neighborhood of X suchthat Xe NeNc Vand Nc V—bd D*. Leth,: P P be
a product structure isotopy as in Proposition 1.5 such that 4, has compact support
in N and hy(X)~D* =0. The desired k-cell is h7" (D¥).

We now prove the converse. Assume that X is a rooted cell-like set intersecting
no stratum of dimension less than 5§ and that X satisfies the PCC. The proof will be
completed by induction on

e(X)=max{i —j|Pliln X #lbandl’[j]nx # 0},

If e(X) =0, then X lies in a P.L. n-manifold P[n]. We first show that X is a cellular
subset of P[n]. Let W be a neighborhood of X. There is a neighborhood U of X
such that U< W and U nP"~V=@. There is a neighborhood V of X for which
there is a stratum respecting contraction of V in U. It follows then that V ~ P{n}
contracts in U n P{n], and X is a cell-like subset of P[n]. Since X satisfies the PCC,
we may also ascume that V is in the neighborhood of X provided by the PCC with
respect to U. Each loop in (V — X))~ P[n] bounds a singular disk D in U ~nP{n).
Since bd D < (U = X))~ P[n], bd D also bounds a singular disk in (U - X)~ P{n].
"t now follows from Theorem 5.1 that X is cellular in P[n]. There are P.L. n-cells
Yo, Frand F; in P{n] and a cellular neighborhcod N of a point in P[n] such that
XcintFiceFcintFacFocU and FocNnPlnleNnPlnlcintF,. Let
¢&::P[n]- P[n] be a P.L. isotopy. with compact support in int F; such that g, =id
and g1(Fo) = F;. Applying Theorem 1.6, we obtain an isotopy g, : P+ P with compact
support in U such that X < g,(N)< gi(N)< U. Thus X is cellular in P.

We now assume that X is a rooted cell-like set in P with e(X) = m, and that the
theorem is true for rooted cell-like sets Y with e(Y)<m.

Let P[i] be the highest dimensional stratum that X intersects, and let X* =
X APV, Now X* is a rooted cell-like set with e¢(X™*)<m, and hence is cellular,

-Given an open neighbourhood U of X, we need only show that there is a ce'lular
neighb!’orhdod N of X with N'c U. Let N* be a cellular neighborhood of X* with

N* < U. The remainder of the proof consists of engulfing arguments designed to pull
N * out to cover all of X with an isotopy having compact support in U. We may
assume that U nP[z] has one component,
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The necded engulfing iemmas. will be stated now, with their nroofs delayed until
the completion of the proof of this theorem.

Lemina 5.4. There exist neighborhoods My and M, of X* and a cellular neiy/:borhood
D of X* for which U > My >M,> D with X < My and flg < N* such that for each
closed subpolyhedra K < (M, - D) PlilandL = (M, D) ~Pli)with dim K +si =3,
L< K. and K—L compact, there is a hommamarphism hy: UnPlil»> U nPli]
isotopic to the identity with compact support E, < (U -D) nP[z] for which hl(N .
Pli]) > K and hy|L =id.

Lemnsa 8.5. Given M, in the above lemma, for each closed subpolyhe‘dm K CM; N
P{1) und L < (M,=X)n Pli] such that dim K <2, L<K, and K ~L is compact,
there is a homeomorphism h;, : U r Pli]- U n P{i] isotopic to the identity with com-
pact support E; < My  P[i] such that hol(My — X) A Pi]]=> K and hy|L =id.

We no~ complete the proof of the theorem. We assume that D ~ P[i Jand M; ~ P[]
are the underlying spaces for subcomplexes of a triangulation T of U nP[i],
that s X A~ P[i], T)< My ~ P[i], and st(D A P[i], T)= M2 P[i]. Let K be the 2-
skeletcn of {r e T |0 < My N P[i], o D n P[i]} and define

L={c|occk, aC(M1~X)r‘\P[i]}.

Applying Lemma 5.5 we obtein hy: U n P[i]= U A P[i] such that k(U -X)n
P{i]= K with h; the identity off of E, < M; n P[i]}.

Deine K; =K u{oe T|o =[(U - (X u E3))u D]}, and let.T be the dual skeleton
to K. Then J is a compact, codimension 3 polykedron. It {ollows from Lemma 5.4
that there is a homeomorphism h,: U n Pli]» U n Pli]such that J < k(N* A P[i))
with h, 1zing the identity over D.

We now use the technique of Stallings [15] to get a homeomorphism hs: U~
PLi]= U’ ~ P[i) whcih is isotopic to the identity with compact support such that

hahof (U = X) A PLiTJUM(N*AP[i) = UNP[i}.

Therefure X ~ Pli]< h3'h3" hy(N* A P[i)). Since h3'h3'h, isisotopic tothe ideatity
with compact support, we may apply Theorem 1.6 to extend this homeomorphism
te % : U + U with compact support in U such that U > A(N*)> h(N*)> X,

Proot of Lemma 5.4. We want to apply Theorem 0.3, with n=i, M" s U_ =
Pli]lr U, and r =i —3. We first define the U;"s. Let D, be a celluiar neighborhood
of X* in U, and apply Lemma 5.2 to the sets X, X*, Do, and U togeta neighborhood
W of X and a stratum preserving homotopy h; : Wo- U such: that: h:(W'))c Dy
and h'! is supported off of a cellular neighborheicd Dy of X™* with D, < Dy The set
Uy is then Wo ~ P[i]. Similarly, we inductively choose the sets W, for which there is
a stratum preserving homotopy h!: W;-> W,.. such that _}_z_{L W)cD; and &! is
supported off ¢f a cellular neighborsood D;yy of X* with D, < D;. The set U, is
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then W;~P[i). Let Vobea eellulax nenghbor‘:ood of X * which lics in Do. Using the
cone structure on I, let g‘ h1 (Wo\-> Do be a stratum preserving aomotopy such
that g} (h;(Wo))c Vo and | g? is fixed on a nexghbz)rhood of X*. Now let V, be: a
- celiulas yorhoo such that the. support of g: lies outside of V, and
Vic efine g/ ‘and: V; similatly for 1<j<n-2. Finally, D may be
chosen to be a eelluhr nelghborhood of X* whose closure lies in V,_,. Letting
V= V, nPli}, wc see that the hypothesns of Theorem 0.3 are satisfied, and that the
desired M, is U,_s and Mz-: Vi 2 where U5 is an open set in P such that
U:-sﬁpfl] =U-s. '

Proof of Lemma 3.5 We wish to apply Theorem 0.2. It suffices to show that
(M)~ Pli}, (M, — X) 1 Pli]) is 2-connected.

Since each eomponem A of M, A P[i]is path connected and A — X is non-empty,
the pair is O-connected.

Assume now that g: I, bd Iy > (M, A P[i}, My = X) A P[i) is given. We may
choose an open set V such that X < Vc M,, and each 1-disk D' © M, A P[i] with
bd D'c(V-X)nPli]is homotopic rel bd D’ tc a 1-disk B' in (M, - X)nP{ ].
Let Dy, D,, .., D, be 1-ceilsin I' such that gbd D)= (V-X)Plilandg (X))
Uj-1 D We may now homotopically move each g(D;) off of X keeping g(bd D))
fixed. Piecing these homotopies together, we achicve the desired result.

Letg:(I 2 bd I?)> (M~ Pli], (M, ~ X)~ P[i]) be given. There is a neighbortooc
V> of X such that singular 2-disks in V> P[] whose boundary misses X may be¢
homo-oped off of X in M, n P[i] keeping the boundary of ihe singular 2-disk fixed
T at V', be a neighborhood of X such that singular 1-disks in V), P[i] whose
~oundary misses X can be homotoped off of X in V,n P[i] keeping the boundary
fixed.

Cover g~ '(X) in I with the interiors of 2 finite number of punctured 2-cells
T1, . . - » Tm Such that g(r;) © V;. We will show how to homotop g(+;) off of X in U.
Let T, be a triangulation of ;. Using arguments like those in the O-connected and
1-connected cases, we know that there is 2 homotopy which moves g(T; } off of X’
in V2 and keeps g(bd 7;) fixed, where T} is the 1-skeleton of T We may exterd this
hemotopy to all of g(r;). Let @!: g(r;)> V> be that homotopy. For each 2. s:mplex
o’e T,, we now use the choice of V; in M, A P[i] to hemotopically move 8(z.0 )
off of X in M, n P[i] keeping 8 (g(bd o*)) fixed. We have thus moved g(r;) off of X
in M, ~ P[i] keeping g(bd ;) fixed. It now follows that (M; n P[i], (M, - X))~ P[i})
is 2-connected.
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