
Pergamon
Computers Math. Applic. Vol. 36, No. 2, pp. 107-116, 1998

© 1998 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

0898-1221/98 $19.00 + 0.00
PII: S0898-1221(98)00121-7

Numerica l Exper iments with Some Explicit
Pseudo Two-Step RK Methods
on a Shared Memory Computer

N. H. CONG
Faculty of Mathematics, Mechanics and Informatics

Hanoi University of Sciences, 90 Nguyen Trai
Dong Da, Hanoi, Vietnam

H. PODHAISKY AND R. WEINER
FB Mathematik und Informatik, Martin-Luther-Universitiit
Halle-Wittenberg, Postfach, D-06099 Halle/Saale, Germany

rw~ail, mathematik, uni-halle, de

(Received September 1997; accepted October 1997)

Abstract--This paper investigates the performance of two explicit pseudo two-step Runge-Kutta
methods of order 5 and 8 for first-order nonstiff ODEs on a parallel shared memory computer. For
expensive right-hand sides the parallel implementation gives a speed-up of 3-4 with respect to the
sequential one. Farthermore, we compare the codes with the two efficient nonstiff codes DOPRI5
and DOP853. For problems where the stepsize is determined by accuracy rather than by stability
our codes are shown to be more efficient. (~) 1998 Elsevier Science Ltd. All rights reserved.

Keywords--Runge-Kutta methods, Pseudo two-step Runge-Kutta methods, Parallelism.

1. I N T R O D U C T I O N

The arrival of parallel computers influences the development of methods for the numerical solution
of a nonstiff initial value problem (IVP) for systems of first-order ordinary differential equations
(ODEs)

y'(t) = / (t , y(t)), y(to) = yo, y, / e R d. (1.1)

Although there exist in the literature very efficient sequential numerical methods for solving this

problem, like multistep methods or explicit Runge-Kutta methods (cf. e.g., [1,2],), a number of

parallel explicit methods (cf. e.g., [3-15], etc.) have been proposed for exploiting new computing

facilities.

In a recent work of Cong, [15], a general class of explicit pseudo two-step RK methods (EPTRK

methods) for solving problems of the form (1.1) has been considered. This class of EPTRK

methods is suitable for use on parallel computers and can be easily equipped with embedded and

continuous formulas for an implementation with stepsize control and dense output (cf. [16]). In

terms of comparing the number of f-evaluations for a given accuracy, the EPTRK methods have

This work was partly supported by DAAD, N.R.P.F.S., and QG-96-02.

Typeset by ~4A~TEX

107

108 N.H. CONGet al.

been shown to be much more efficient than the most efficient sequential and parallel methods
currently available for solving nonstiff IVPs (cf. [15,16]).

Most numerical comparisons of parallel and sequential codes considered so far are done by
means of the number of f-evaluations for a given accuracy on a sequential computer, (see, e.g.,
[3,5,7]). The communication time between processors in these comparisons is ignored. In com-
parisons of different codes running on parallel machines, the results of the parallel codes are often
disappointing. In the present work we investigate how the performance of the EPTRK methods
is reflected in a real implementation on a parallel computer. This investigation is performed by
means of comparing some EPTRK methods with the codes DOPRI5 and DOP853 of Hairer et
al. [2], which are among the most efficient sequential nonstiff integrators for first-order ODEs.
Although the class of EPTRK methods contains methods of arbitrary high order, we shall com-
pare DOPRI5 and DOP853 with two EPTRK methods of orders 5 and 8 running on the same
shared memory parallel computer to have a "fair" comparison.

The choice of an implementation on a shared memory computer is due to the fact that such
a computer can consist of several processors sharing a common memory with fast data access
requiring less communication times, which is suited to the features of the EPTRK methods. In
addition, there are the advantages of compilers which attempt to parallelize codes automatically
by reordering loops and sophisticated scientific libraries (cf., e.g., [17]).

The test problems used in our numerical comparisons differ with respect to computing costs
of f-evaluations and stability requirements.

2. E X P L I C I T P S E U D O T W O - S T E P RK M E T H O D S

We consider explicit pseudo two-step RK methods (EPTRK methods) which have been recently
introduced and investigated by Cong [15,16]. For an implementation with stepsize control, we
shall consider variable stepsize embedded EPTRK methods.

Variable Stepsize EPTRK M e t h o d s

A general s-stage variable stepsize explicit pseudo two-step RK method based on an
s-dimensional collocation vector c = (cz , . . . , c,) T with distinct abscissas c~ has the form (cf. [16])

Yn = e ® Yn + ha(An ® I) F (tn - le + hn- lc , Yn-1),

Yn+l = Yn + hn (b T ® I) F (the + hnc, Yn),

(2.1a)
(2.1b)

where hn=tn+a - tn- The variable s x s matrix An and s-dimensional vector b of the method
parameters are derived by the order conditions in [15,16] and given by

{ h,, t' h,, An = P diag_l, h , ~ - l ' " " kh-~-l] J-" '

() (1) ()
, g = 9i = , R = rij --- ,

i = l , . . . , s , j = l , . . . , s .

(2.2a)

(2.2b)

This EPTRK method is conveniently specified by the following tableau.

An c [O
yn+l] b T

If the stepsize ratio hn/hn-1 is bounded from above (i.e., hn/hn-1 <_ ft), and the function s t is
Lipschitz continuous, then the method (2.1) is of order p and stage order q at least equal to s for

Numerical Experiments 109

any collocation vector c. It has the highest order p = s + 1 if the vector c satisfies an orthogonality
relation (cf. [16, Theorem 2.1]).

At each step 2s f-evaluations of the components f(tn-1 + c~hn-1, Yn-l,~) and f (tn + c~hn, Yn,~),
i = 1 , . . . , s of the big vectors F(tn- le + hn-lC, yn-1) and F(tne + hnc, yn), respectively, are
used in the method. However, s f-evaluations of f (tn-1 + c~hn-l,yn-l,~), i = 1 , . . . , s are
already available from the preceding step. Hence, we need to compute only s f-evaluations
of f (tn + c~hn, yn,i), i = 1,.. . ,s, what can be done in parallel. Consequently, on a parallel
implementation using s processors, just one effective sequential f-evaluation is required per step.
In this way parallelisation in an EPTRK method is achieved by sharing the f-evaluations of the
s components of the big vector F(tne + hnc, Yn) over the available processors.

An additional computational effort consists of a recalculation of the parameter matrix An
defined by (2.2a) when the stepsize is changed. In a parallel implementation, this recalculation
can also be spread over a number of processors.

Embedded Formulas

For estimating the local error used in the stepsize selection for an implementation of E P T R K
methods with stepsize control, we shall apply embedding techniques. In order to equip the pth_
order E P T R K method (2.1) with an embedded formula of order/~, we consider a second/~th-order
E P T R K method based on collocation vector ~ = (~1,. . . , ~)T of the form (cf. [16])

~ln = e ® ~ln + hn(An @ I) F (tn-l~ + hn-lC, ~/n-1),

#n+l -~ Yn "~- hn(~T ® I) F (tn~ + hn~, f/n),

(2.3a)

(2.3b)

where, i5 < p, the vector ~ is a subvector of the vector c, i.e., {~t , . . . ,c~} C {Cl, . . . ,c,}. Here
and -4n are defined by (2.2). By introducing a new vector, b = (b t , . . . , $,)T, which is defined

according to

ifci = G, then b~ ---- b j, j = 1 , . . . ,~ ,

else D~ = 0, i = 1 , . . . , s, (2.4)

we obtain an embedded formula without additional]-evaluations given by

= Yn + hn ® z) FItne + h.c, (2.s)

If the function f is Lipschitz continuous, then the numerical approximations at tn+1 defined by
(2.1b), and by (2.5) give a local error estimate

llyn+z - ~n+zll = o (h~+Z), (2.6)

(see [16, Theorem 3.1]). Thus, we have the embedded EPTRK method suited to an implemen-
tation with stepsize strategy given by (2.1a), (2.1b), and (2.5) which can be specified by the
following tableau.

A n [c 0

I ~tn-}-I b T

~,~+1 i' v

The "cheap" local error estimate is then defined by (2.6). By this approach of constructing
embedded E P T R K methods, there exist several embedded formulas for an E P T R K method.

II0 N.H. CoNo et al.

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

! ! ! !

, " ' ' " ' ' " ' " ' "

I I I I I

~.8 ~ .6 ~ .4 ~ .2 0

Figure 1. Stability regions of two EPTRK methods.

Stability Properties

Stability of (constant stepsize) EPTRK methods was investigated on the basis of the model
test equation y~i t) = Ayit), where A runs through the eigenvalues of the Jacobian matrix ~ . It
is characterized by the spectral radius p (M (z)) of the i s + 1) x i s + 1) amplification matr ix M (z)

given by icf. [15, Section 2.2])

M(z)=/ zA e) (2.7a)
z2bTA 1 + z "

The stability region Sstab of an EPTRK method is defined as

Sstab : = {z : p(M(z)) <_ 1}. i2.7b)

From (2.7), it can be easily seen that zero-stability of EPTRK methods is independent of the
method parameters so that the variable stepsize EPTRK method i2.1) is always stable.

Figure 1 shows the stability regions of two specified methods of order 5 and 8 which are used
in our numerical tests (cf. Section 3).

We observe that the stability regions of these two EPTRK methods are much smaller than those
of the corresponding Dopri-methods. However, the scaled stability regions are comparable. Due
to the additional communication times in a parallel implementation, we cannot expect a speed-
up of our codes compared with DOPRI5 and DOP853 if the right-hand sides are inexpensive to
compute and if the stepsize is limited by stability requirements.

On the other hand, we obtain a good speed-up if

• the stepsize is limited by accuracy requirements rather than by stability ie.g., for stringent
tolerances), and

• the right-hand sides are expensive to compute.

This is shown in the following section.

Numerical Experiments 111

3. N U M E R I C A L E X P E R I M E N T S

Specification of the me thods

For numerical comparisons we choose the codes DOPRI5 and DOP853 in the version of 24.3.93
and 20.9.93, respectively, which are based on the embedded explicit RK methods of Dormand
and Prince (cf. [2]). DOPRI5 and DOP853 use the 5(4) pair and the "triple" 8(5,3), respectively.
DOP853 is the new version of DOPRI8 with a "stretched" error estimator (see [2, p. 254]). These
two codes belong to the most efficient currently existing sequential codes for nonstiff first-order
ODE problems.

For EPTRK methods, we confine our considerations to two methods of corresponding or-
ders 5 and 8. Although the class of EPTRK methods contains methods of arbitrarily high
order (cf. [15,16]), the choice of two methods of orders 5 and 8 is simply motivated by com-
paring the methods of the same orders. In addition, it is also due to the fact that the max-
imal number of processors of the used parallel machine in shared memory mode is only 8 for
our local configuration. The EPTRK codes with an example problem can be obtained from
http ://www .mathemat ik. uni-halle, de/institute/numerik/sof tware.

The fifth-order EPTRK method is based on the collocation vector

c 5 = (0.089, 0.409, 0.788, 1.000, 1.409) T, (3.1a)

with the third-order embedded formula based on

~3 = (0.788, 1.000, 1.409) T. (3.1b)

This embedded pair of order 5(3) gives an O(h4)-estimate of the local truncation error lte.
The eighth-order EPTRK method is based on the collocation vector

c s = (0.057, 0.277, 0.584, 0.860, 1.000, 1.277, 1.584, 1.860) T, (3.2a)

with the sixth-order embedded formula using

c -6 -- (0.584, 0.860, 1.000, 1.277, 1.584, 1.860) T. (3.2b)

This embedded 8(6)-pair gives an O(hT)-estimate of the local truncation error. Note that the
choice of the collocation vectors in (3.1a) and (3.2a) minimizes the principal error terms for some
stage approximated values [15, Theorem 2.4]. No special effort has been made to optimize the
parameters of the methods. An optimal choice of the method parameters will be subject of later
work. These two specified EPTRK methods were also used by Cong [16] with different embedded
pairs in numerical tests on a sequential computer.

For the first step a starting procedure based on corrections until convergence of an appropriate
s-stage collocation ILK corrector is used. The stepsize strategy in our codes is similar to the one
implemented by van der Houwen and Sommeijer [10] in PIRK methods which is also implemented
in PIMRK methods by Burrage and Suhartanto [5] and in DOPRIS, DOP853 by Hairer and
Wanner [2].

The new stepsize h,+l is chosen as

hn+l=hn.min{3,max{O.3,0.8.11errll-1/P'}}, (3.3)

where p* is the local order of the embedded formula and

HerrH
~=1 atol+ rtol]y,#]]

In our tests we used rtol = atol = tol. For HerrH > 1 the step will be rejected. The constants 3
and 0.3 serve to keep the stepsize ratios hn+l/hn in the interval [0.3, 3]. These two new EPTRK
codes of order 5 and 8 will be denoted by EPTRK5 and EPTRK8, respectively.

112

3.5

3

speedup 2.5

2

1.5

N. H. CONGet al.

I I I I ! I

8 - o - -

I I I I I I

2 3 4 5 6 7
Number of processors

Figure 2. Speed-up for the Brusselator.

4

3.5

3

speedup 2.5

2

1.5

1

I I ! I I I

2 3 4 5 6 7 8
Number of processors

Figure 3. Speed-up for DIFFU2 with/3 = 1.

S p e c i f i c a t i o n s o f t h e P r o b l e m s

We apply DOPRI5 , DOP853, E P T R K 5 , and E P T R K 8 to the following test problems of large

dimension.

BRUSSELATOR. As a first test example, we consider a two-dimensional reaction-diffusion equat ion

based on the interaction between two chemical species. This equat ion is known as the diffusion
Brusselator equat ion (see [2,3,19]). I t is defined on the unit square and takes the form

Ou (02u 02u'~
--~ = S + u2v - (A + 1)u + a \ Ox2 + -~y2] ,

O V : A u _ u 2 v + a (0 2 v 02v~ (3.4)

with initial conditions

u(0, x, y) = 0.5 + y, v(0, x, y) = 1 + 5x,

A = 3, B = 1, a = 2- 10 -4 ,

and Neumann boundary conditions

Ou Ov
= o , = o on 0 fl, ~ = [0, 1] x [0, 1], t E [0, 1]. (3.5)

Numerical Experiments 113

Here u and v denote chemical concentrations of reaction products, A and B are concentrations
of input reagents which are taken to be constant, and a = d/L 2 where d is a diffusion coefficient
and L is a reactor length. Second-order central differencing of (3.4) leads to a system of coupled
nonlinear ODEs of dimension 2N 2, where N is the number of grid points. In our tests we used
N = 100, so that for the given value of a the resulting system of ODEs is nearly nonstiff.

-2

-4

-6

-8

-10

-12

-14

B R U S S E L A T O R

. i i

E P T R K 5 (1) - + - -

~ ~ EPTRK811)
EPTRK5 (5) -M--

b\ m EPTRK8 (8)
~ ~ DOPRI5 -m--

i , i , , i i , I
10 100
TIME

Figure 4. Results for the Brusselator.

DIFFU2. The second test example is the two-dimensional diffusion equation depending on two
parameters o~ and fi (cf. [20]).

au
- - = (~/ku + f (t , x , y , a , / 3) ,
Ot (3.6)

f~ ---- [0, 112, t E [0, 11.

Here Dirichlet boundary conditions and the right-hand side function f (t , x, y, a,/3) are determined
by the exact solution given by

u(t, x, y) = sin(lrx) sin(~ry)(X + 4xy sin(f/t)). (3.7)

Fourth-order central differencing of (3.6) yields a system of linear ODEs of dimension N 2. In
this example, we choose N = 69, a = 0.001 and use different values of/3. The components
of the right-hand side of this problem are more expensive than those in the Brusselator. With
increasing fi, the stepsize is more and more restricted by accuracy requirements.

The computations were performed on a HP-Convex S-Class-Server with 16 PA-8000 proces-
sors of 180 MHz and 3GB global shared memory. The EPTRK methods were implemented in
sequential and parallel modes; the number in brackets indicates the number of processors used.

At first, we compare the results for the EPTRK methods in parallel implementation with
different numbers of processors. Figure 2 and Figure 3 show the achieved speed-up (for tol --
10-5). For Diffu2 with its expensive right-hand side, we observe a good speed-up of about 4 for
EPTRK8(8) and of about 3 for EPTRK5(5).

Next, we compare our methods with DOPRI5 and DOP853 for the Brnsselator and Diffu2 with
different values of fi. Figures 4-8 show the computing time versus the achieved accuracy ERR
at the endpoint, re, of the integration interval,

i1 ~ (ui(te)- fii(t~)~2
E R R - - d , = x \ Y T I ~]

114 N.H. CONG et al.

-2

-4

I

-6

-8

-i0

EPTRK5(1) -4---
EPTRKS(1) -8--
EPTRK5(5)
EPTRK8(8)

D O P R I 5

DOP853

\ \
-12 ' ' ' ° '''''

0.1 1 10 100
TIME

Figure 5. Results for DIFFU2 with ~ = 1.

v

-2

-4

-6

-8

-i0

-12

EPTRK5(1) -+--
EPTRKS(1)
EPTRK5(5) -N--
EPTRK8(8) -a---

DOPRI5 -R--
DOP853 -e---

. ¢ |

| i i . .

TIME

- 1 4

i |

0.1 1 10 100

Figure 6. Results for DIFFU2 with ~ = 10.

The reference solution ~(te) was obtained by DOP853 with tol = 10 -13.

For crude tolerances at the Brusselator, the stepsize in the EPTRK methods is restricted
by stability, and the codes DOPRI5 and DOP853 are much more efficient. For more stringent
accuracy requirements, the parallel version of the EPTRK codes becomes comparable, especially,
EPTRK5(5) is more efficient than DOPR/5 (see Figure 4).

For small values of/~ in Diffu2, the stepsize in the EPTRK codes is restricted by stability, which
can be observed by the nearly vertical lines in Figure 5. With increasing/~, EPTRK5(5) and
EPTRKS(8) become more and more efficient in stringent accuracy ranges. And for/~ = 1000,
where only accuracy limits the stepsize, they are superior to DOPRI5 and DOP853 in both
parallel and sequential modes (cf. Figures 6-8).

Numerical Experiments 115

-10

-2

-4

-6

-8

-12

-14

-2

\ - - . . I \ ' EPTRK5 (1)
\ ~ ~ | E~RKB (i) -S---

K,~ I \ | EPTRKS(5) " - . - -
i \ | EPn~.KS(S) - ~ - -

| DOPRI5

. i i

10 I00
TIME

F i g u r e 7. R e s u l t s fo r D I F F U 2 w i t h ~ = 100.

~d

- 4

. i I

EPTRK5 (1) -+--
~ . EPTRK8 (I) -B--
~ , EPTRK5 (5) . - . - -

EPTRK8 (8) - a - -
/ ~...~ DOPRI5 -11--

DOP853 "W--

-6

- 8

- 1 0

-12

-14

10

. . . . i i

100 I000
TIME

F i g u r e 8. R e s u l t s fo r D I F F U 2 w i t h ~ = 1000.

4. C O N C L U S I O N

In this paper, wehave tested the efficency of a class of parallel explicit pseudo two-step ILK
methods by comparing two of the most efficient sequential codes, DOPI~I5 and DOP853, with
two new codes, EPTRK5 and EPTRK8, of the same orders based on this new class of methods.

The results of our tests show that for inexpensive right-hand sides and mildly stiff problems
DOPRI5 and DOP853 are superior. This is due to the communication costs and the small stability
region of the EPTRK methods. On the other hand, for problems with expensive/-evaluations
and when accuracy is more important than stability, the proposed parallel EPTRK methods are
more efficient.

116 N.H. CONG et al.

R E F E R E N C E S
1. J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Line~r

Methods, Wiley, New York, (1987).
2. E. Halrer, S.P. Ncrsett and G. Wanner, Solving Ordinary Differential Equations, 1. Nonstiff Problems, 2 nd

edition, Springer-Verlag, Berlin, (1993).
3. K. Burrage, Efficient block predictor-corrector methods with a small number of corrections, J. Comput. Appl.

Math. 45, 139-150, (1993).
4. K. Burrage, Parallel methods for initial value problems, Appl. Numer. Math. 11, 5--25, (1993).
5. K. Burrage and H. Suhartanto, Parallel iterated methods based on multistep Runge-Kutta methods of Radau

type, Advances in Computational Mathematics T, 37-57, (1997).
6. M.T. Chu and H. Hamilton, Parallel solution of ODE's by multi-block methods, SIAM J. Sci. Statist. Comput.

8, 137-157, (1987)).
7. N.H. Cong, Parallel iteration of symmetric ttunge-Kutta methods for nonstiff initial-value problems, J. Corn-

put. Appl. Math. 51, 117-125, (1994).
8. N.H. Cong and T. Mitsui, A class of explicit parallel two-step Itunge-Kutta methods, Japan J. Indust. Appl.

Math. 14, 303-313, (1997).
9. P.J. van der Houwen and N.H. Cong, Parallel block predictor-corrector methods of Runge-Kutta type, Appl.

Numer. Math. 13, 109-123, (1993).
10. P.J. van der Houwen and B.P. Sommeijer, Parallel iteration of high-order Itunge-Kutta methods with stepsize

control, J. Comput. Appl. Math. 29, 111-127, (1990).
11. P.J. van der Houwen and B.P. Sommeijer, Block Itunge-Kutta methods on parallel computers, Z. Angew.

Math. Mech. 68, 3-127, (1992).
12. K.it. Jackson and S.P. Ncrsett, Parallel Itunge-Kutta methods, Manuscript, (1988).
13. I. Lie, Some aspects of parallel Itunge-Kutta methods, In Report No. 3/87, Division Numerical Mathematics,

University of Trondheim, Norway, (1987).
14. S.P. Ncrsett and H.H. Simonsen, Aspects of parallel Itunge-Kutta methods, In Numerical Methods for Or-

dinary Differential Equations, Proceedings L 'AquiUa 1987, Lecture Notes in Mathematics, 1386, (Edited by
A. Bellen, C.W. Gear and E. Rnsso), Springer-Verlag, Berlin, (1989).

15. N.H. Cong, Explicit pseudo two-step Runge-Kutta methods for parallel computers, (submitted).
16. N.H. Cong, Continuous variable stepsize explicit pseudo two-step RK methods, (submitted).
17. K. Burrage and B. Pohl, Implementing an ODE code on distributed memory computers, Computers Math.

Applic. 28 (10-12), 235-252, (1994).
18. K. Burrage, Parallel and Sequential Methods for Ordinary Differential Equations, Clarendon Press, Oxford,

(1995).
19. M. Hochbruck, C. Lubich and H. Selhofer, Exponential integrators for large systems of differential equations,

In Tech. Rept., M&thematisches Institut, Universitiit Tiibingen, Germany, (1995).
20. It. Weiner, B.A. Schmitt and H. Podhaisky, ROWMAP--A ROW-code with Krylov techniques for large stiff

ODEs, Appl. Numer. Math. 25, 1-16, (1997).
21. T.E. Hull, W.H. Enright, B.M. Fellen and A.E. Sedgwick, Comparing numerical methods for ordinary differ-

ential equations, SIAM J. Numer. Anal. 9, 603-637, (1972).
22. H. De Meyer, M. Van Daele and G. Vanden Berghe, On the implementation of parallel iterated Itunge-Kutta

methods on a transputer network, Appl. Numer. Math. 13, 155-163, (1993).

