
Pergamon 
Computers Math. Applic. Vol. 36, No. 2, pp. 107-116, 1998 

© 1998 Elsevier Science Ltd. All rights reserved 
Printed in Great Britain 

0898-1221/98 $19.00 + 0.00 
PII: S0898-1221(98)00121-7 

Numerica l  Exper iments  with Some Explicit  
Pseudo  Two-Step  RK Methods  
on a Shared Memory  Computer  

N. H.  CONG 
Faculty of Mathematics, Mechanics and Informatics 

Hanoi University of Sciences, 90 Nguyen Trai 
Dong Da, Hanoi, Vietnam 

H. PODHAISKY AND R.  WEINER 
FB Mathematik und Informatik, Martin-Luther-Universitiit 
Halle-Wittenberg, Postfach, D-06099 Halle/Saale, Germany 

rw~ail, mathematik, uni-halle, de 

(Received September 1997; accepted October 1997) 

Abstract--This paper investigates the performance of two explicit pseudo two-step Runge-Kutta 
methods of order 5 and 8 for first-order nonstiff ODEs on a parallel shared memory computer. For 
expensive right-hand sides the parallel implementation gives a speed-up of 3-4 with respect to the 
sequential one. Farthermore, we compare the codes with the two efficient nonstiff codes DOPRI5 
and DOP853. For problems where the stepsize is determined by accuracy rather than by stability 
our codes are shown to be more efficient. (~) 1998 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

The arrival of parallel computers influences the development of methods for the numerical solution 
of a nonstiff initial value problem (IVP) for systems of first-order ordinary differential equations 
(ODEs) 

y'(t) = / ( t ,  y(t)), y(to) = yo, y, / e R d. (1.1) 

Although there exist in the literature very efficient sequential numerical methods for solving this 

problem, like multistep methods or explicit Runge-Kutta methods (cf. e.g., [1,2],), a number of 

parallel explicit methods (cf. e.g., [3-15], etc.) have been proposed for exploiting new computing 

facilities. 

In a recent work of Cong, [15], a general class of explicit pseudo two-step RK methods (EPTRK 

methods) for solving problems of the form (1.1) has been considered. This class of EPTRK 

methods is suitable for use on parallel computers and can be easily equipped with embedded and 

continuous formulas for an implementation with stepsize control and dense output (cf. [16]). In 

terms of comparing the number of f-evaluations for a given accuracy, the EPTRK methods have 
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been shown to be much more efficient than the most efficient sequential and parallel methods 
currently available for solving nonstiff IVPs (cf. [15,16]). 

Most numerical comparisons of parallel and sequential codes considered so far are done by 
means of the number of f-evaluations for a given accuracy on a sequential computer, (see, e.g., 
[3,5,7]). The communication time between processors in these comparisons is ignored. In com- 
parisons of different codes running on parallel machines, the results of the parallel codes are often 
disappointing. In the present work we investigate how the performance of the EPTRK methods 
is reflected in a real implementation on a parallel computer. This investigation is performed by 
means of comparing some EPTRK methods with the codes DOPRI5 and DOP853 of Hairer et 
al. [2], which are among the most efficient sequential nonstiff integrators for first-order ODEs. 
Although the class of EPTRK methods contains methods of arbitrary high order, we shall com- 
pare DOPRI5 and DOP853 with two EPTRK methods of orders 5 and 8 running on the same 
shared memory parallel computer to have a "fair" comparison. 

The choice of an implementation on a shared memory computer is due to the fact that  such 
a computer can consist of several processors sharing a common memory with fast data  access 
requiring less communication times, which is suited to the features of the EPTRK methods. In 
addition, there are the advantages of compilers which attempt to parallelize codes automatically 
by reordering loops and sophisticated scientific libraries (cf., e.g., [17]). 

The test problems used in our numerical comparisons differ with respect to computing costs 
of f-evaluations and stability requirements. 

2. E X P L I C I T  P S E U D O  T W O - S T E P  RK M E T H O D S  

We consider explicit pseudo two-step RK methods (EPTRK methods) which have been recently 
introduced and investigated by Cong [15,16]. For an implementation with stepsize control, we 
shall consider variable stepsize embedded EPTRK methods. 

Variable Stepsize EPTRK M e t h o d s  

A general s-stage variable stepsize explicit pseudo two-step RK method based on an 
s-dimensional collocation vector c = (cz , . . . ,  c,) T with distinct abscissas c~ has the form (cf. [16]) 

Yn = e ® Yn + ha(An ® I) F ( tn - le  + hn- lc ,  Yn-1), 

Yn+l = Yn + hn (b T ® I)  F (the + hnc, Yn), 

(2.1a) 
(2.1b) 

where hn=tn+a - tn- The variable s x s matrix An and s-dimensional vector b of the method 
parameters are derived by the order conditions in [15,16] and given by 

{ h,, t' h,, An = P diag_l,  h , ~ - l ' " "  kh-~-l] J-" ' 

() (1) ( )  
, g =  9i = , R =  rij --- , 

i =  l , . . . , s ,  j =  l , . . . , s .  

(2.2a) 

(2.2b) 

This EPTRK method is conveniently specified by the following tableau. 

An c [ O 
yn+l ] b T 

If the stepsize ratio hn/hn-1  is bounded from above (i.e., hn/hn-1  <_ ft), and the function s t is 
Lipschitz continuous, then the method (2.1) is of order p and stage order q at least equal to s for 
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any collocation vector c. It has the highest order p = s + 1 if the vector c satisfies an orthogonality 
relation (cf. [16, Theorem 2.1]). 

At each step 2s f-evaluations of the components f(tn-1 + c~hn-1, Yn-l,~) and f ( tn + c~hn, Yn,~), 
i = 1 , . . . ,  s of the big vectors F(tn- le  + hn-lC, yn-1) and F(tne + hnc, yn), respectively, are 
used in the method. However, s f-evaluations of f ( tn-1  + c~hn-l,yn-l,~), i = 1 , . . . , s  are 
already available from the preceding step. Hence, we need to compute only s f-evaluations 
of f ( tn + c~hn, yn,i), i = 1,.. .  ,s, what can be done in parallel. Consequently, on a parallel 
implementation using s processors, just  one effective sequential f-evaluation is required per step. 
In this way parallelisation in an EPTRK method is achieved by sharing the f-evaluations of the 
s components of the big vector F(tne + hnc, Yn) over the available processors. 

An additional computational effort consists of a recalculation of the parameter matrix An 
defined by (2.2a) when the stepsize is changed. In a parallel implementation, this recalculation 
can also be spread over a number of processors. 

Embedded Formulas 

For estimating the local error used in the stepsize selection for an implementation of E P T R K  
methods with stepsize control, we shall apply embedding techniques. In order to equip the pth_ 
order E P T R K  method (2.1) with an embedded formula of order/~, we consider a second/~th-order 
E P T R K  method based on collocation vector ~ = (~1,. . . ,  ~ )T  of the form (cf. [16]) 

~ln = e ® ~ln + hn(An @ I) F (tn-l~ + hn-lC, ~/n-1), 

#n+l -~ Yn "~- hn( ~T ® I) F (tn~ + hn~, f/n), 

(2.3a) 

(2.3b) 

where, i5 < p, the vector ~ is a subvector of the vector c, i.e., {~t , . . .  ,c~} C {Cl, . . .  ,c,}. Here 
and -4n are defined by (2.2). By introducing a new vector, b = (b t , . . . ,  $,)T, which is defined 

according to 

ifci  = G, then b~ ---- b j,  j = 1 , . . . ,~ ,  

else D~ = 0, i = 1 , . . . ,  s, (2.4) 

we obtain an embedded formula without additional ]-evaluations given by 

= Yn + hn ® z) FItne + h.c, (2.s) 

If the function f is Lipschitz continuous, then the numerical approximations at tn+1 defined by 
(2.1b), and by (2.5) give a local error estimate 

llyn+z - ~n+zll = o (h~+Z), (2.6) 

(see [16, Theorem 3.1]). Thus, we have the embedded EPTRK method suited to an implemen- 
tation with stepsize strategy given by (2.1a), (2.1b), and (2.5) which can be specified by the 
following tableau. 

A n  [ c 0 

I ~tn-}-I b T 

~,~+1 i' v 

The "cheap" local error estimate is then defined by (2.6). By this approach of constructing 
embedded E P T R K  methods, there exist several embedded formulas for an E P T R K  method. 
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Figure 1. Stability regions of two EPTRK methods. 

Stability Properties 

Stability of (constant stepsize) EPTRK methods was investigated on the basis of the model 
test equation y~i t) = Ayit ), where A runs through the eigenvalues of the Jacobian matrix ~ .  It 
is characterized by the spectral radius p ( M ( z ) )  of the i s + 1) x i s + 1) amplification matr ix  M ( z )  

given by icf. [15, Section 2.2]) 

M(z)=/  zA e ) (2.7a) 
z2bTA 1 + z " 

The stability region Sstab of an EPTRK method is defined as 

Sstab : =  {z : p(M(z)) <_ 1}. i2.7b) 

From (2.7), it can be easily seen that zero-stability of EPTRK methods is independent of the 
method parameters so that the variable stepsize EPTRK method i2.1) is always stable. 

Figure 1 shows the stability regions of two specified methods of order 5 and 8 which are used 
in our numerical tests (cf. Section 3). 

We observe that the stability regions of these two EPTRK methods are much smaller than those 
of the corresponding Dopri-methods. However, the scaled stability regions are comparable. Due 
to the additional communication times in a parallel implementation, we cannot expect a speed- 
up of our codes compared with DOPRI5 and DOP853 if the right-hand sides are inexpensive to 
compute and if the stepsize is limited by stability requirements. 

On the other hand, we obtain a good speed-up if 

• the stepsize is limited by accuracy requirements rather than by stability ie.g., for stringent 
tolerances), and 

• the right-hand sides are expensive to compute. 

This is shown in the following section. 
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3. N U M E R I C A L  E X P E R I M E N T S  

Specification of  the  me thods  

For numerical comparisons we choose the codes DOPRI5 and DOP853 in the version of 24.3.93 
and 20.9.93, respectively, which are based on the embedded explicit RK methods of Dormand 
and Prince (cf. [2]). DOPRI5 and DOP853 use the 5(4) pair and the "triple" 8(5,3), respectively. 
DOP853 is the new version of DOPRI8 with a "stretched" error estimator (see [2, p. 254]). These 
two codes belong to the most efficient currently existing sequential codes for nonstiff first-order 
ODE problems. 

For EPTRK methods, we confine our considerations to two methods of corresponding or- 
ders 5 and 8. Although the class of EPTRK methods contains methods of arbitrarily high 
order (cf. [15,16]), the choice of two methods of orders 5 and 8 is simply motivated by com- 
paring the methods of the same orders. In addition, it is also due to the fact that the max- 
imal number of processors of the used parallel machine in shared memory mode is only 8 for 
our local configuration. The EPTRK codes with an example problem can be obtained from 
http ://www .mathemat ik. uni-halle, de/institute/numerik/sof tware. 

The fifth-order EPTRK method is based on the collocation vector 

c 5 = (0.089, 0.409, 0.788, 1.000, 1.409) T, (3.1a) 

with the third-order embedded formula based on 

~3 = (0.788, 1.000, 1.409) T. (3.1b) 

This embedded pair of order 5(3) gives an O(h4)-estimate of the local truncation error lte. 
The eighth-order EPTRK method is based on the collocation vector 

c s = (0.057, 0.277, 0.584, 0.860, 1.000, 1.277, 1.584, 1.860) T, (3.2a) 

with the sixth-order embedded formula using 

c -6 -- (0.584, 0.860, 1.000, 1.277, 1.584, 1.860) T. (3.2b) 

This embedded 8(6)-pair gives an O(hT)-estimate of the local truncation error. Note that the 
choice of the collocation vectors in (3.1a) and (3.2a) minimizes the principal error terms for some 
stage approximated values [15, Theorem 2.4]. No special effort has been made to optimize the 
parameters of the methods. An optimal choice of the method parameters will be subject of later 
work. These two specified EPTRK methods were also used by Cong [16] with different embedded 
pairs in numerical tests on a sequential computer. 

For the first step a starting procedure based on corrections until convergence of an appropriate 
s-stage collocation ILK corrector is used. The stepsize strategy in our codes is similar to the one 
implemented by van der Houwen and Sommeijer [10] in PIRK methods which is also implemented 
in PIMRK methods by Burrage and Suhartanto [5] and in DOPRIS, DOP853 by Hairer and 
Wanner [2]. 

The new stepsize h,+l  is chosen as 

hn+l=hn.min{3,max{O.3,0.8.11errll-1/P'}},  (3.3) 

where p* is the local order of the embedded formula and 

HerrH 
~=1 atol+ rtol]y,#]] 

In our tests we used rtol = atol = tol. For HerrH > 1 the step will be rejected. The constants 3 
and 0.3 serve to keep the stepsize ratios hn+l/hn in the interval [0.3, 3]. These two new EPTRK 
codes of order 5 and 8 will be denoted by EPTRK5 and EPTRK8, respectively. 
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Figure 2. Speed-up for the Brusselator. 
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Figure 3. Speed-up for DIFFU2 with/3 = 1. 

S p e c i f i c a t i o n s  o f  t h e  P r o b l e m s  

We apply  DOPRI5 ,  DOP853,  E P T R K 5 ,  and E P T R K 8  to  the following test  problems of  large 

dimension. 

BRUSSELATOR. As a first test  example, we consider a two-dimensional reaction-diffusion equat ion 

based on the interaction between two chemical species. This equat ion is known as the  diffusion 
Brusselator  equat ion (see [2,3,19]). I t  is defined on the  unit  square and takes the form 

Ou ( 02u 02u'~ 
--~ = S + u2v - (A + 1)u + a \ Ox2 + -~y2 ] , 

O V : A u _ u 2 v + a ( 0 2  v 02v~ (3.4) 

with initial conditions 

u(0, x, y) = 0.5 + y, v(0, x, y) = 1 + 5x, 

A = 3, B = 1, a = 2-  10 -4  , 

and Neumann  boundary  conditions 

Ou Ov 
= o ,  = o on 0 fl, ~ = [0, 1] x [0, 1], t E [0, 1]. (3.5) 
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Here u and v denote chemical concentrations of reaction products, A and B are concentrations 
of input reagents which are taken to be constant, and a = d/L 2 where d is a diffusion coefficient 
and L is a reactor length. Second-order central differencing of (3.4) leads to a system of coupled 
nonlinear ODEs of dimension 2N 2, where N is the number of grid points. In our tests we used 
N = 100, so that  for the given value of a the resulting system of ODEs is nearly nonstiff. 
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Figure 4. Results for the Brusselator. 

DIFFU2.  The second test example is the two-dimensional diffusion equation depending on two 
parameters o~ and fi (cf. [20]). 

au  
- -  = (~/ku + f ( t ,  x ,  y ,  a , / 3 ) ,  
Ot (3.6) 

f~ ---- [0, 112, t E [0, 11. 

Here Dirichlet boundary conditions and the right-hand side function f ( t ,  x, y, a,/3) are determined 
by the exact solution given by 

u(t, x, y) = sin(lrx) sin(~ry)(X + 4xy sin(f/t)). (3.7) 

Fourth-order central differencing of (3.6) yields a system of linear ODEs of dimension N 2. In 
this example, we choose N = 69, a = 0.001 and use different values of/3. The components 
of the right-hand side of this problem are more expensive than those in the Brusselator. With 
increasing fi, the stepsize is more and more restricted by accuracy requirements. 

The computations were performed on a HP-Convex S-Class-Server with 16 PA-8000 proces- 
sors of 180 MHz and 3GB global shared memory. The EPTRK methods were implemented in 
sequential and parallel modes; the number in brackets indicates the number of processors used. 

At first, we compare the results for the EPTRK methods in parallel implementation with 
different numbers of processors. Figure 2 and Figure 3 show the achieved speed-up (for tol -- 
10-5). For Diffu2 with its expensive right-hand side, we observe a good speed-up of about 4 for 
EPTRK8(8) and of about 3 for EPTRK5(5). 

Next, we compare our methods with DOPRI5 and DOP853 for the Brnsselator and Diffu2 with 
different values of fi. Figures 4-8 show the computing time versus the achieved accuracy ERR 
at the endpoint, re, of the integration interval, 

i1  ~ (ui(te)- fii(t~)~2 
E R R - -  d , = x \  Y T I ~  ] 
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Figure 6. Results for DIFFU2 with ~ = 10. 

The reference solution ~(te) was obtained by DOP853 with tol = 10 -13. 

For crude tolerances at the Brusselator, the stepsize in the EPTRK methods is restricted 
by stability, and the codes DOPRI5 and DOP853 are much more efficient. For more stringent 
accuracy requirements, the parallel version of the EPTRK codes becomes comparable, especially, 
EPTRK5(5)  is more efficient than DOPR/5 (see Figure 4). 

For small values of/~ in Diffu2, the stepsize in the EPTRK codes is restricted by stability, which 
can be observed by the nearly vertical lines in Figure 5. With increasing/~, EPTRK5(5)  and 
EPTRKS(8) become more and more efficient in stringent accuracy ranges. And for/~ = 1000, 
where only accuracy limits the stepsize, they are superior to DOPRI5 and DOP853 in both 
parallel and sequential modes (cf. Figures 6-8).  
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F i g u r e  8. R e s u l t s  fo r  D I F F U 2  w i t h  ~ = 1000.  

4. C O N C L U S I O N  

In this paper, wehave tested the efficency of a class of parallel explicit pseudo two-step ILK 
methods by comparing two of the most efficient sequential codes, DOPI~I5 and DOP853, with 
two new codes, EPTRK5 and EPTRK8, of the same orders based on this new class of methods. 

The results of our tests show that for inexpensive right-hand sides and mildly stiff problems 
DOPRI5 and DOP853 are superior. This is due to the communication costs and the small stability 
region of the EPTRK methods. On the other hand, for problems with expensive/-evaluations 
and when accuracy is more important than stability, the proposed parallel EPTRK methods are 
more efficient. 
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