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This study aims at developing the prediction model of cyclic delamination lives of plasma-

sprayed HAp coating on Ti-6Al-4V substrate by considering wear by interface contacts and

dissolution effect by Simulated Body Fluid (SBF). Delamination of HAp coating can lead to

loosening of implants stem and final failure in vivo. In the fracture mechanism of interfaces

between HAp coating with Ti substrates, only adhesive strength (interracial tensile strength) or

fatigue behavior by longitudinal cracking have been observed. Cyclic delaminationmechanism

by considering various loading modes and corrosion effect has not been revealed yet. The

interface delamination rates by cyclic loading were much higher than those by static loading

tests. The result clearly demonstrated that the interface demalination behaviors are domi-

nated not by maximum stress, but by stress range. Surface profile measurement and SEM

observation also demonstrated damages by interface contact or third body wear at delamina-

tion tips of HAp coating only in the cases of compressions. The mechanisms of acceleration on

the delaminations are third-body wear or wedge effect by worn particles which increased

mean stress level during cyclic loading. Cyclic loading tests under SBF also revealed that cyclic

delamination lives were shortened probably due to crevice corrosion at interfaces. Dissolutions

at the tips of delaminations were observed by SEM images under tensile loading condition in

SBF. Linearly adding the effects of wear and dissolutions into Paris law could successfully

predict the delamination lives of HAp coating for various loading ratios in SBF.
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1. Introduction

Titanium alloys such as Ti–6Al–4V are normally used to
implant components due to excellent mechanical properties,
corrosion resistance as well as biocompatibility (Niinomi,
1998). In order to achieve tight fixation with optimized load
transmission of Ti alloy, implants are coated by hydroxyapa-
tite (HAp) which possesses osteoconductivity and biocompat-
ibility due to its similar chemical composition with the one of
human bone. Plasma spraying technique is normally applied
to form the HAp coating. HAp coating can promote bone
ingrowth around the coating layer and achieve stronger
adhesion between human bone with artificial implants
(Geesink and Hoefnagels, 1995; Hernandez-Rodriguez et al.,
2010). Follow-up results of HAp coated component demon-
strate that HAp coated components reduce revision rate and
can survive up to 15 years (Palm et al., 2002; Reikers and
Gunderson, 2006). Service lives of implant components are
required to extend longer than 20 years due to rapid aging in
populations. In addition, first operation age of replacement
has been lower. These facts suggest that patients are more
active and live longer. Both tendencies lead to higher and
more frequent loading on fixed implant components. Even
though a tight fixation between bone with HAp coating is
maintained, delamination between HAp coating with sub-
strate can loose fixations. Reoperation cases have also been
reported due to loosening or dislocation of implants that
could be attributed to interface fracture of HAp coating
(Iwata, 1997; Chung et al., 2009).

In the cases of total jop joints (THPs), mechanisms of
fracture are briefly considered as follows:

1. Stress shielding of bone (Niinomi, 2008); much higher
Young's modulus of implants metal compared with that
of human bone attributes to a reduction in loading allot-
ment in human bone, which leads to an inactivation of
bone remodeling process and subsequent reduction in
bone density.

2. Loosening of cup or stem part; fracture at interfaces
between human bone / HAp coating layer or HAp coating
layer / Ti alloy substrate released the fixation forces at the
interface, which results in promoting displacement of cup
or stem in loading. Causes of interface fracture are sum-
marized as the follows;

(a) Dissolution of HAp coating by inflammatory reactions;
activated macrophages by wear debris dissolve HAp
coating layer (Bauer and Schils, 1999)

(b) Dissolution of HAp coating by body fluid (Grabmann and
Heimann, 2000)

(c) Fatigue fracture at the interfaces due to cyclic loading
3. Final fatigue failure at fixation parts; osteolysis or loosen-

ing could lead to stress concentration and fatigue failure of
stem components at fixation parts.

In order to extend service lives of THP components,
preventive measures for loosening are indispensable. For
the mechanism of the loosening, the cause 2(a) chemical
dissolution has been considered as primal one. However,
recent clinical report demonstrated no evidence of
Please cite this article as: Otsuka, Y., et al., Prediction of cyclic d
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inflammation around a lost part of HAp (Tonino et al., 1999)
and pointed out the necessity of considering additional
mechanism such as 2(d) mechanical fatigue fracture (Sun
et al., 2001; NIH consensus, 1995). Furthermore in ISO stan-
dard for durability of stem part (Implants for surgery, 2010),
changes in loading state by loosening were not considered. It
is necessary to elucidate an interface fatigue fracture
mechanism of HAp coating for the purpose of developing
more accurate pre-service durability evaluation of THP
components.

A stem part of THP components is normally subjected to
positive or negative bending/torsional moment during nor-
mal walking, squatting down, running or jumping, etc. (T.J.S.
(1993)). Amplitudes of loading also vary from 3 to 10 times
higher than human's weight according to the human activ-
ities. In a finite element stress analysis of THP, stress
concentration occurred at a proximal part where an edge of
stem contacts with cortical bone (NEDO, 2008). Furthermore,
failures of stems also occur at the proximal inside parts due
to loosening according to clinical reports of failures (Howell
et al., 2004). For the aspect of mechanical properties of
plasma-spraying HAp coating, various studies have consid-
ered the causes of delamination of HAp coating such as;
residual stress (Yang and Chang, 2001; Nimkerdphol et al.,
2014), decrease in mechanical strength by thermal decom-
position of HAp into TCP (Grabmann and Heimann, 2000),
defects by pore or not-melted particles (Khor et al., 2003;
Chen et al., 1997). The dissolution of TCP phase in coating by
weak-acidity body fluid also decrease the strength of coating.
However, for fatigue properties of plasma-sprayed HAp coat-
ing, there have been few studies such as AE monitoring for
longitudinal cracking process and promotion of cracking by
simulated body fluid (Laonapakul et al., 2012, 2012). The
authors reported cyclic delamination behavior of plasma-
sprayed HAp coating by tensile-compressive loading and
demonstrated that interface crack propagation rate followed
Paris law (Otsuka et al., 2016). Recent clinical reports suggest
that HAp coating may increase a risk of revisions in long-
term use (Chung et al., 2009; Lazarinis and Krärholm, 2010).
Delamination of HAp coating by cyclic loading can be a cause
because it deteriorates fixation of implant components.
Therefore, delamination behaviors of HAp coating should be
revealed. However, the interaction between loading ratios
with dissolutions on cyclic delamination behavior of HAp
coating has not been revealed yet though the interaction is an
important factor in considering durability of HAp coating.

This study consequently aims at developing a prediction
model of cyclic delamination lives of HAp coating by con-
sidering a delamination growth mechanism in SBF with
interface contact effect by the changes in loading ratios. At
first, a comparison between delamination behaviors by static
loading with the ones on cyclic loading was conducted in
order to show the effect of interface contact. Next cyclic
delamination tests of HAp coating in SBF with various stress
ratios were conducted in order to reveal the delamination
propagation behavior by combined effects of wear with
dissolutions. A prediction model for cyclic delamination lives
combined by the effects of energy release rates, experimental
surface wear and dissolution rate was subsequently devel-
oped. A comparison between the predicted results by the
elamination lives of plasma-sprayed hydroxyapatite coating
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proposed model with experimental results were finally
discussed.
Fig. 2 – Axial fatigue specimen of Ti–6Al–4V for cyclic
delamination test of HAp coating. 3� 3 mm2 HAp coating is
deposited at the center of testing section 15 mm.
2. Experimental procedure

2.1. Fabrication process of cyclic delamination testing
specimen

The test specimen was made of Ti–6Al–4V, which is used
normally as an implant substrate material. Tables 1, 2 show
the chemical composition and mechanical properties of Ti–
6Al–4V, respectively. Fig. 1 shows the microstructure of Ti–
6Al–4V that is composed of white α-phase and black β-phase.
A NC lathe and a machining center were used to form round
bar into the specimen shape as shown in Fig. 2. Specimen
surfaces are polished by only from # 800 to # 2000 emery
papers in order to keep the sharpness of the edge of square
cross section. The specimen was subsequently heat-treated
at 923 K for 3.6 ks in an atmospheric electric furnace (MRH-
32UHS, Isuzu Manufacturing Co, Ltd., Japan) and air-cooled.

HAp powder (HAP-100, Taihei Chemical Co. Ltd., Japan)
was used for plasma-spray. The HAp powder was sintered at
1473 K and 3.6 ks with controlled heating/cooling rate 100 K/h
in the atmospheric electric furnace. The sintered HAp powder
was subsequently milled by ball milling machine and was put
through with a sieve of mesh size 90 μm. Before plasma-
Table 1 – Chemical composition of Ti–6Al–4V.

Al V H O N C Fe Ti

6.42 4.18 0.0063 0.20 0.004 0.016 0.20 Bal.

Table 2 – Mechanical properties of Ti–6Al–4V.

0.2 % proof
stress (MPa)

Tensile stress
(MPa)

Elongation (%) Hardness (Hv)

756 799 15 335

25μm

Fig. 1 – Microstructure of Ti–6Al–4V.
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spraying, surfaces of Ti substrates were grid-blasted by
alumina powders with 5 MPa pressure (Nema blaster,
Fujuetsu Manufacturing Co. Ltd., Japan). The grid-blasted
substrates were ultrasonically cleaned in acetone solution.
The cleaned specimens were subsequently wet-blasted by a
slurry of Ti and HAp powders with 0.5 MPa pressure (Macoho
Co. Ltd., Japan). The wet-blast process was the same as the
one proposed by Rakngarm and Mutoh (2009). Finally, atmo-
spheric plasma spraying was performed by 9MB(Sulzer-
metco, Switzerland) with the conditions of 68 V, 500A, spray-
ing distance 140 mm, number of spraying pass 10, respec-
tively. The surface except for spraying area was masked by
stainless steel cover to form rectangular coating shape
3� 3 mm2. Target thickness of the HAp coating was 100–
150 μm. Bending strength of HAp coating is approximately
250 MPa and tensile strength is 32:274:5 MPa (ϕ¼25 mm),
respectively (Laonapakul et al., 2012; Hakozaki et al., 2016).

2.2. Cyclic delamination testing condition

Fatigue testing machine (load capacity 30 kN, Shimadzu Co.
Ltd., Japan) with water bath and flow circulating system was
used. At first static loading tests with maximum stress
400 MPa or �400 MPa were conducted. Though there were
no delamination occurred by the static loading and then
cyclic loading with the same maximum stress and stress ratio
R¼0.1 or 10 were applied in order to initiate pre-delamination
approximately 100 μm. The delamination propagation beha-
vior by static loading of 400 MPa or �400 MPa were subse-
quently observed. Cyclic loading tests were conducted by
R¼0.1, �1 and 10 with loading frequency of 10 Hz. Yoshimoto
et. al. conducted FEM analyses of stem parts and they found
that maximum stress on the surface of stem part could reach
several hundreds MPa (Yoshimoto et al., 2015). Delamination
behavior was observed by digital microscope (VHX-1000,
Keyence Co. Ltd., Japan). Movies in a single loading cycle
were taken at a test stress with f¼0.05 Hz. Pictures at
maximum loading when delamination paths are the most
visible are retrieved from the movies by using an image
software in VHX-1000. The cycles of observation was included
into total delamination lives. In the cases of comparing cyclic
delamination lives of static load tests with those of cyclic
load tests, equivalent loading time teq was used. Cyclic
loading time is defined by the cycles when more than 90%
of maximum or minimum stresses are applied. Cyclic dela-
mination lives Nf were defined by the periods when delami-
nation length reached 1.2 mm. The definition does not
directly mean service lives of implants because the stress
elamination lives of plasma-sprayed hydroxyapatite coating
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distributions on the complex surface of implants are not
constant. However, if a delamination reached a specific
length, the coating partly falls off by cracking at the tip of
the delamination. Lost part of coating will result in loosening
between human bone with substrates of implants, which will
deteriorate service lives of implants. Therefore, our definition
of failure lives is important to discuss an integrity of implant
components.

Solution used in this study is Kokubo's SBF solution
(Kokubo and Takadama, 2006). The temperature of this SBF
solution was maintained at 31071 K by using an incubator
and the specimen was immersed in the solution for 7 days in
advance. Graßmann and Heimann reported that HAp elution
and precipitation reached equilibrium after approximately
7 days (Grabmann and Heimann, 2000) and therefore we
decided to use the same period in this study. Nimkerdphol
et al. also observed dilution of ACP or another calcium
phosphate phases by SBF immersion using XRD and Raman
spectroscopy (Nimkerdphol et al., 2014). During cyclic dela-
mination testing, SBF solutions were circulated at controlled
temperature 31071 K. SBF solutions were exchanged every
two days in order to keep their initial ion concentrations.

2.3. Observation method at delamination

The side surfaces of HAp coating/Ti substrate were polished
by emery papers (from #400 to #2000) and buff polishing with
diamond pastes (6–1 μm) in order to detect interface passes
clearer. Profiles of polished side surfaces were observed by
laser microscope (OLS 4000, Olympus Co. Ltd., Japan) at
before/after testing for the purpose of detecting wears at
interfaces by cyclic loading. During cyclic delamination test-
ing, delamination behaviors were intermittently observed by
long-range digital microscope (VHX-1000, Keyence Co. Ltd.,
Japan). Delamination passes and tips were subsequently
observed by SEM (JSM-6306A, JEOL Ltd., Japan).

2.4. Finite element analyses at delamination regions

Energy release rates G at the tip of delamination were
calculated by Virtual Crack Closure Technique (VCCT) by 2D
FEA. Young's modulus E and Poisson's ratio ν for both
materials are 110 GPa and 0.33 for Ti–6Al–4V and 70 GPa and
0.24 for HAp, respectively. The mechanical properties of
coating and substrates were referred to Sun et al. (2001) and
Ren et al. (2009). Delaminated coating interface is assumed to
be normal contacting which can separate with each other and
remained interface in front of crack tip is bonded. Friction
coefficient is set to be 0.7 referred by Yugeswaran et al. (2012).
Around the crack tip, 1/4 node singular elements are used
(Otsuka et al., 2016).
3. Results

3.1. Comparison of delamination behavior between static
loading with cyclic loading

Fig. 3 shows the cyclic delamination lives by static loading
and by cyclic loading. In the cases of static loading,
Please cite this article as: Otsuka, Y., et al., Prediction of cyclic d
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delamination was not initiated. On the contrary, cyclic load-
ing generated delaminations of HAp coating at early periods.
The cyclic delamination lives became shorter by compres-
sion; R¼0.1 (tension–tension) 4R¼ 10 (compression–com-
pression) 4R¼ �1 (tension–compression). Fig. 4 shows a
relationship between delamination length with number of
cyclic loading. Initiation lives of delamination were deter-
mined by the cycles when delamination of more than 100 μm
was observed. The figure demonstrates that initiation lives of
delamination are ignorable because the live occupy a period
only less than 0.1% in total lives. The immediate initiation
behaviors of delamination are due to stress singularity field at
the edges of interface. Figs. 5 and 6 show examples of
observing delamination paths. Paths from optical images
and the one by SEM pictures are nearly matched. Fig. 7 shows
the relationship between delamination length with delami-
nation propagation rate. The delamination propagation rate
decreases with increasing delamination length for both cases.
Though there was no delamination in static loading case,
100 μm pre-delamination was initiated by cyclic loading with
the same maximum stress. However, the delamination pro-
pagation rates by static loading were much lower than those
elamination lives of plasma-sprayed hydroxyapatite coating
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by cyclic loading and the delaminations soon stopped at the
length of 400–500 μm. There was no difference in the delami-
nation rates in the cases of tensile static loading or compres-
sive static loading. On the contrary, in the cases of cyclic
loading, the delamination propagation rate became higher by
the existence of compressive cyclic loading; the delamination
rates were higher in the cases of R¼ �1;10 than that in the
case of R¼ 0:1.

Fig. 8 shows the changes in side surface profiles at
delamination tip. The profiles were measured at 1200 μm in
Please cite this article as: Otsuka, Y., et al., Prediction of cyclic d
on Ti–6Al–4V substrates with considering wear and dissolutions
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cyclic loading case and at 500 μm in static loading,
respectively.

In Figs. 8(a) R¼ �1 , (b) R¼ 10, worn areas were observed.
However, there were no worm area in Fig. 8(c) R¼ 0:1, when
only tensile loading was applied. Furthermore, Fig. 8 (d) static
compressive loading case also showed no worn area. The
results demonstrated that cyclic compressive loading promoted
wear around delamination tips. Fig. 9 shows slip displacements
between HAp coating with substrates. The extents of slip
displacement gradually increased with increasing length of
delamination. If slip motion and contact force exist, wear
behaviors occur at tips of delamination where a boundary of
slip and stick behaviors places. In addition, HAp particles are
detached by slip displacements because bonding strength
among HAp splats are not strong. Therefore, the particles of
HAp could be generated by fall-out from HAp coating by slips
and then the particles can be regarded as wear debris.

Fig. 10 shows SEM pictures at delamination tip for three
loading conditions. There were worn particles in interface
and corresponding damaged delamination faces in the cases
of compressive loading, as shown in Fig. 10(a) R¼ �1, (b)
R¼ 10. Fig. 10 (c) R¼ 0:1 showed no such worn particles at the
delamination tip. The size of worn particles distributed from
1 to 30 μm. Fig. 11 shows SEM pictures at delamination tips by
static loading. The picture clearly showed no worn particles.
Furthermore, there were no perpendicular microcracks in
coating layer. Consequently, the evidences of wear were
observed only in the cases of cyclic and compressive loading.

3.2. Cyclic delamination behaviors of HAp coating in SBF

Fig. 12 shows the relationship between maximum stresses
with delamination lives. Delamination lives became shorter in
SBF than those in Air. At smax ¼ 350 MPa in Air showed no
initiation of delamination, whereas delamination reached to
1.2 mm at the same stress level in SBF. The differences among
delamination lives at three stress ratios became smaller in
SBF. However, the order of delamination lives to the stress
ratios still kept the one in Air; R¼0.1 (tension–tension)4R¼ 10
(compression–compression) 4R¼ �1 (tension–compression).
Fig. 13 shows the relationship between delamination length
with delamination propagation rate in the cases of
smax ¼ 400 MPa in Air and smax ¼ 250 MPa in SBF. The delami-
nation propagation rates became lower with longer
elamination lives of plasma-sprayed hydroxyapatite coating
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Fig. 8 – Height profile changes after static or cyclic load tests at the delamination tips a¼1.2 mm. Cyclic and compressive
loading can promote wear at the tips.
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delaminations in both environments. The effect of stress
ratios on delamination propagation rates decreased in SBF.

Fig. 14 shows SEM pictures of delamination passes in three
stress ratio cases. In the case of R¼10 in SBF, worn particles
were observed in the interface between HAp coating with Ti
alloy substrates at the tip of delamination, the same as in the
cases of R¼ �1 and R¼ 10 in Air. In contrast, there was no
such worn particle in the case of R¼0.1 in SBF. Furthermore,
edge of delamination pass and delamination tips became
round probably due to the effect of dissolution by SBF. In the
Please cite this article as: Otsuka, Y., et al., Prediction of cyclic d
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case of R¼ �1 in SBF, both worn particles inside delamina-
tion and round shape at the delamination tip were observed.
4. Discussions

4.1. Effect of interface contact on delamination
propagation

Once a strong bond between bones with surface of HAp
coating are formed, relative displacements at the interface
between bones with HAp coating are prevented, which leads
to prevention of wears. However, if delamination occurs at an
interface between HAp coating with substrate of implants,
relative displacements can occur by cyclic loading. In addi-
tion, HAp coating on substrates of stem parts or acetabular
cups has edge parts which initiate delamination by loading
due to stress singularity. Therefore, even though a strong
bond between bones with surface of HAp coating would be
achieved, HAp coating can initiate delamination by cyclic
loading at edge parts of its interface with substrate. Fig. 3
clearly showed the effect of cyclic loading on initiations of
delamination at the interface between HAp coating with Ti
substrates. The primal difference between static loading and
cyclic loading is relative displacement at the interfaces. It is
rational to predict that such relative displacements can lead
to wears at softer HAp coating layer and promote delamina-
tion initiation. According to conventional Archard's equation
to determine wear rate (Yamamoto and Kaneta, 2000), wear
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Fig. 10 – SEM pictures for wear debris at delamination tips by cyclic loading. Only in the cases of compressive loading, wear
debris were observed.

Fig. 11 – SEM pictures for wear debris at delamination tips by static loading. No wear debris were observed.

104 105 1060

100

200

300

400

R=-1(Air)
R=0.1(Air)
R=10(Air)

R=-1(SBF)
R=0.1(SBF)
R=10(SBF)

| sserts etulosb
A

σ
]aP

M[ |

Nf,[cycles]Cyclic delamination lives

Run out

Fig. 12 – Effects of SBF solutions and loading ratio on cyclic
delamination lives of HAp coating.
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rate can be determined by the combination of the extent of

relative displacement rate and contact normal pressure. The

cyclic loading test by R¼ �1 should exhibit the shortest lives

where relative displacement is the largest and compressive

pressure applied during a half cycle in total loading periods.

Cyclic delamination lives by R¼10 where only compressive

pressure applied were placed next. In the case of R¼0.1, cyclic

delamination lives showed the longest due to the absence of

both the factors. Such an order in three delamination lives

strongly indicated the significant effect of wear by interface

contact on total cyclic delamination lives.
Figs. 8 and 10 showed that worn particles were HAp

because HAp coating is softer than Ti substrates due to the

existence of particle boundary of molten splats, cracking or

porosities. HAp coating was mainly worn by its contact to Ti

substrate during loading, which generated worn particles in

the space between their surfaces. The mechanism is

explained by normal abrasive wear. Furthermore, Fig. 10

showed that worn particles reached to the vicinity of dela-

mination tips. Promotion mechanism in delamination by

wear at tips can be considered as follows;

1. Third body effect of wearing Worn particles were trans-
ported into newly formed delamination part by relative
displacement, which could promote delaminations at
new tips.
Please cite this article as: Otsuka, Y., et al., Prediction of cyclic d
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2. Worn-particle-assisted crack opening Inserted worn par-
ticle forced to open delamination even in the cases of
compressive loading, which could increase mean value
of mode I stress intensity factor (KI) during loading.
Because cracks in ceramics are normally propagated by
integrated time with maximum stress intensity factor
and then the increase in mean KI should promote
delaminations.
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Kida and Ogura (1999) observed the latter mechanism in
Mode III cracking of bearing ceramics with contact fatigue
conditions. Kaneta et al. (1985) also discussed the effect of
crack opening by filtrated oils in fatigue behaviors of steels in
oil environment. Their result could support the above dis-
cussion that worn particles or SBF also promoted delamina-
tion propagations in the same manner.

4.2. Effect of SBF in promoting delamination propagation

SBF also assisted delamination propagations for both positive
and negative stress ratios by chemical dissolutions at coating
layers. SBF dissolved HAp coating layers which contains
thermally decomposed phases such as ACP or TCP
(Grabmann and Heimann, 2000). Chemical dissolution at
delamination tips would generate pores, weakened bonding
between coating layer and substrate or crevice corrosion. All
causes could accelerate delaminations. In case of R¼ �1,
dissolution effect primarily promoted delamination propaga-
tion. In addition in the cases of R¼ �1 and R¼ 10, combined
effect of wear and dissolution attacked coating layer. How-
ever, friction coefficient between HAp coating and Ti sub-
strate would become lower in SBF because of lubrication
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Fig. 13 – Relationship between delamination growth rates
with delamination length in both environments.

Fig. 14 – SEM pictures for wear debris at delamination tips by cy
by dissolution in SBF.
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effect of the fluid, which lead to smaller variations in total
cyclic delamination lives among three stress ratios.

4.3. Applicability of Paris law to predict delamination lives

Energy release rates G at delamination tips were calculated by
FEA (Otsuka et al., 2016). Fig. 15 shows the effects of friction
on the ratio of GI=GII. GII became higher when friction was
considered. Yuuki et al. conducted Boundary Element method
(BEM) for a lap shear joint (Yuuki, 1993; Yuuki et al., 1992).
They observed that G was independent from a ratio of
delamination length to total bonding length. In present FEM
results, G slightly decreased with increasing the delamination
length, especially in the cases of compressive loading prob-
ably due to friction effects between delamination faces at
delamination tips. Tanaka et. al. experimentally observed
such a stress shielding effect in effective stress intensity
factor range in mode III loading conditions (Tanaka et al.,
1997). Consequently, we used Gmax value by FEM, which has
negative correlations with delamination length, in arranging
Paris law curves.

Fig. 16 shows the effects of SBF immersion on delamina-
tion growth curve of HAp coating. Considering Gmax by FEM
results can arrange normal Paris law curves. However, the
curves in different environment is not overlapped. The
results suggest that wearing rate and dissolution rate are
clic loading tested in SBF. Delamination width became larger
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stress-dependent. We then considered a different prediction
model for cyclic delamination lives by including both the
effects of wear and dissolutions. At first wear rates κ is
calculated by the following process.

1. Wear rate for the cases of cyclic delamination testing at
R¼0.1 is considered to be zero because interface contact
during loading can be negligible.

2. Differences between cyclic delamination lives of R¼ 0:1
(without contact) with the one of R¼10 (with contact) can
be attributed to wear effect κ �Nf ;R ¼ 10.

3. Stress-dependent wear rate κ can then be calculated by
using Eq. (1).

4. The calculations are conducted to both tested data in Air
and the ones in SBF because friction coefficient in SBF
should be different from the one in Air.

κ¼ af ;R ¼ 10�aR ¼ 0:1

Nf ;R ¼ 10

af ;R ¼ 0:1 ¼ C
Z Nf ;R ¼ 10

0
Gm
maxdN ð1Þ
κ

1

1
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)
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Calculated wear rates κ and dissolution rates ϕ by usi

R κð�10�10Þ ϕð�10�10Þ
(–) (m/cycle) (m/s)

�1 9.8 0

10 5.3 0
0.1 0 0

�1 9.8 0

10 5.3 0
0.1
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C,m
ng Eqs.

smax

(MPa)

300

(SBF)

250

(SBF)

200
(SBF)

aminati
ournal of
(1)

on
th
Paris law coefficient and multiplier at R¼0.1 in
Fig. 16
af ;R ¼ 10
 final delamination length tested at R¼10
(¼1.2 mm)
Nf ;R ¼ 10
 experimental cyclic delamination lives tested at
R ¼ 10 shown in Fig. 12
aR ¼ 0:1
 predicted delamination length contributed only
by Paris law
Next, dissolution rate ϕ can be calculated by the following
similar process.

1. Dissolution rate ϕ for the cases of cyclic delamination data
tested in Air is considered to be zero.

2. Differences between cyclic delamination lives tested in Air
with the one tested in SBF can be attributed to dissolution

effect ϕ
f �Nf ;SBF.

3. Stress-dependent dissolution rate ϕ can then be calculated
by using Eq. (2).

4. The calculations were conducted for three stress
ratio cases.

ϕ¼ af ;SBF�aAir
Nf ;SBF

� f ð2Þ

a;Air ¼ C
Z Nf ;SBF

0
Gm
maxdN
ϕ
 dissolution rate (m/s)

f
 loading frequency (Hz (cycles/s))

af ;SBF
 final delamination length tested in SBF (1.2 mm)
Nf ;SBF
 experimental cyclic delamination lives tested in
SBF shown in Fig. 16
aAir
 predicted delamination length contributed only
by Paris law
Table 3 shows the calculated wear rates κ and dissolution
rates ϕ. Both rates increase with increasing stress.
Yugeswaran et al. (2012) conducted pin-on-disc wear test of
gas tunnel type plasma -sprayed HAp coating in SBF and
electrochemical test of HAp coating and they obtained sliding
and (2).

R κð�10�10Þ ϕð�10�10Þ
(–) (m/cycle) (m/s)

�1 7.4 47

10 4 5
0.1 0 47

�1 6.1 39

10 3.3 4.2
0.1 0 39
�1 4.9 31
10 2.7 3.3
0.1 0 31

lives of plasma-sprayed hydroxyapatite coating
e Mechanical Behavior of Biomedical Materials (2016),

http://dx.doi.org/10.1016/j.jmbbm.2016.07.026
http://dx.doi.org/10.1016/j.jmbbm.2016.07.026
http://dx.doi.org/10.1016/j.jmbbm.2016.07.026


7

108

109

1010

iv
es

 N
 f,e

xp

   Only Fracture Mechanics model
   With Wear , Disolution model

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 6 4 ( 2 0 1 6 ) 1 1 3 – 1 2 4122
wear rate 1:8� 2:7� 10�8ðmm3=NmmÞ and ϕ¼ 1:2�
10�10ðmsÞ. Archard specific wear rate can be calculated by
the following equation:

κarc ¼ κ �Warea

Pcontact � Dslide
ð3Þ
10 l
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Fig. 17 – Comparison of predicted delamination lives by
Eqns. 4 and 5 with experimental delamination lives.
In case of smax ¼ 400 (MPa) in Air, where κ¼ 9:8� 10�7(mm),
Pcontact ¼ 2:9� 10�4ðNÞ and Dslide ¼ 3:4� 10�3ðmmÞ, κarc can be
estimated 1� 10�6ðmm3=NmmÞ. The obtained κarc was higher
than those by Yugeswaran et al. due to weaker microstructure
of HAp coating by different spraying method or assumed
Pcontact;Dslide by FEA. In order to obtain more accurate wear rate
at delamination tips, further observation is necessary. The
dissolution rates ϕwere also higher than those by Yugeswaran
et al. due to more higher amount of soluble phases such as
ACP or TCP in HAp coating. HAp coating made by plasma
spraying process contains ACP or TCP phases (Grabmann and
Heimann, 2000). In addition, the dissolution in interface can be
promoted by crevice corrosion, which leads to higher ϕ in the
present study. Consequently, the estimation method by Eqs.
(1) and (2) is applicable in later discussions to predict cyclic
delamination lives because the differences in the calculated
values can be explained by the differences in microstructure.

Cyclic delamination lives prediction model by fracture
mechanics parameter with dissolution and wear is shown
by the following equations:

Only fracture mechanics model
da
dN

¼ CðGmaxÞm ð4Þ

With wear; dissolution model
da
dN

¼CðGmaxÞm þ κ þ ϕ=f ð5Þ

Eqs. (4) and (5) are numerically integrated and the compar-
isons of predicted delamination lives Nf ;pre with the experi-
mental ones Nf ;exp are shown in Fig. 17. Fig. 17 demonstrated
that fracture mechanics model with linear combination of
wear and dissolution can provide reliable delamination lives
estimation. In order to obtain more accurate estimation,
interactions between wear and dissolution in solutions may
be necessary to be considered. Furthermore, fretting wear at
the interfaces between HAp coating layer / Ti alloy substrate
(Howell et al., 2004; Yu et al., 2005) should be observed
whether it can provide wear debris to contact parts of joints
or deteriorate fixation conditions of human bone with HAp
coating.

Delamination behavior is occurred in specific cases of
coating type and thickness. In the cases of thinner thickness
or functionally graded coating, delamination propagates not
at interfaces but within coating layers. In the cases, delami-
nation behavior may be affected by microstructural features
te this article as: Otsuka, Y., et al., Prediction of cyclic d
l–4V substrates with considering wear and dissolutions
oi.org/10.1016/j.jmbbm.2016.07.026
such as porosity, residual stress, interface morphologies or
mechanical properties of the coating layers. In order to widen
application of the proposal by this study, damage or fracture
process of more practical coating components of load-bearing
implants are needed to be observed.
5. Conclusions

This study conducted cyclic delamination tests of plasma-
sprayed HAp coating at three different stress ratios in SBF in
order to reveal the effects of interface contact and dissolu-
tions on delamination lives of the HAp coating. Summary of
the results is as follows;

1. Cyclic loading accelerates initiations and propagations of
delamination of plasma-sprayed HAp coating. Delamina-
tion lives by cyclic loading is shorter than one tenth of the
ones by static loading.

2. Delamination growth rate in compressive–compressive
loading in Air was higher than the one in tensile–tensile
loading due to wear effect at delamination tips by interface
contact. Such acceleration effect was softened in SBF due
to decreases in friction coefficient by liquids.

3. SEM observation revealed the existence of wear debris at
delamination tips only in the cases of compressive loading.
The acceleration effects of wear on delamination can be
explained by interface contact (abrasive wear) and intru-
sion of wear debris into the delamination tips (third body
abrasive wear).

4. Fracture mechanics model with linear combination of wear
and dissolution can provide reliable delamination lives
estimation.

This study revealed that cyclic delamination lives of HAp
coating in vivo can be predicted by fracture mechanics model
with wear and dissolution effects. In order to provide more
accurate prediction, interactions among delamination, wear
and dissolutions will be considered in details.
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