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Abstract

A Gorenstein sequenttis a sequence of nonnegative integlrs: (1, 43, . .., hj =1) symmetric
about;/2 that occurs as the Hilbert function in degrees less or gpfa standard graded Artinian
Gorenstein algebra = R/I, whereRis a polynomial ring irr variables and is a graded ideal. The
schemePGor(H) parametrizes all such Gorenstein algebra quotient® ledving Hilbert function
H and it is known to be smooth when the embedding dimension satisfi€s8. The authors give
a structure theorem for such Gorenstein algebras of Hilbert funéfiea (1,4,7,...) whenR =
Klw, x,y,z] and > = (wx, wy, wz) (Theorems 3.7 and 3.9). They also show that any Gorenstein
sequencél =(1, 4, a, ...), a <7 satisfies the conditioh H . ;2 is anO-sequence (Theorems 4.2 and
4.4). Using these results, they showthdii&(1, 4, 7, h, b, . . ., 1) is a Gorenstein sequence satisfying
3h — b — 17>0, then the Zariski closuré(H) of the subschem&(H) c PGor(H) parametrizing
Artinian Gorenstein quotientd = R/I with I =~ (wx, wy, wz) is a generically smooth component
of PGor(H) (Theorem 4.6).

They show that if in addition & 2 < 10, then sucli*?Gor(H) have several irreducible components
(Theorem 4.9). M. Boij and others had given previous examples of cdM@or(H) having several
components in embedding dimension four or more (Pacific J. Math. 187(1) (1999) 1-11).
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The proofs use properties of minimal resolutions, the smoothneBxGoi(H’) for embedding
dimension three (J.0O. Kleppe, J. Algebra 200 (1998) 606—628), and the Gotzmann Hilbert scheme
theorems (Math. Z. 158(1) (1978) 61-70).
© 2005 Published by Elsevier B.V.

MSC:Primary: 13C05; secondary: 13H10; 13D40

1. Introduction

LetRbe the polynomial rinQR = K [x1, . . ., x,] over an algebraically closed fielk] and
denote byM = (x1, x2, ..., x,) its maximal ideal. When=4, we letR=K[w, x, y, z] and
regard it as the coordinate ring of the projective sgatd et A= R /I be a standard graded
Artinian Gorenstein (GA) algebra, quotientRf We will denote by SocA) = (0 : M) the
socle ofA, the one-dimensional subvector spacéainihilated by multiplication b. It
is the minimal nonzero ideal éf Its degree istheocle degreg (A) : j(A)=maxXi | A; #

0}. Asequencél = (ho, ..., hj)=(1,r,...,r 1) of positive integers symmetric abojt2

is called aGorenstein sequenad socle degreg if it occurs as the Hilbert function of some
graded Artinian Gorenstein (GA) algebsfa= R/I. We letAH; = h; — h;_1, and denote

by H< 4 the subsequendd, h1, ..., hg). The graded Betti numbers of an algebra are the
dimensions of the various graded pieces that occur in the minimal graded R-resolution
of A.

Whenr = 2, Macaulay had show[25] that an Artinian Gorenstein quotient & is
a complete intersection quotiedt = R/(f, g); thus, for A graded, the Gorenstein se-
guence must have the forfi(A) = H(s) = (1,2,...,s — 1,s,s,...,2,1). Also, when
r = 2 the familyPGor(H (s)) parametrizing such Artinian quotients is smooth; its closure
PGor(H (s)) =, <sPGOr(H (1)) is naturally isomorphic to the secant variety of a rational
normal curve, so is well understood (see, for exaniple Section 1.3}

For Artinian Gorenstein algebréasof embedding dimension three=£ 3), the Gorenstein
sequencedi (A), and the possible sequenge®f graded Betti numbers fok given the
Hilbert functionH (A) had been known for some tinf®31,12,17,18]see als¢20, Chapter
4]. More recently, the irreducibility and smoothness of the farfiyor(H) parametrizing
such GA guotients having Hilbert functidhwas shown by Diesel and Kleppe, respectively
[12,22]) Whenr = 3, there are also several dimension formulas for the faf®or(H),
due to Conca and Valla, Kleppe, Cho and J{ttiy22,10](see alsd20, Section 4.4for a
survey); also, M. Boij has found the dimension of the subfaf@ior(H, ) parametrizing
Awith a given sequencg of graded Betti number$]. The closurd®Gor(H) is in general
less well understood when= 3, but sed20, Theorem 5.71, Sections 7.1-7.2]

For embedding dimensions five or greater, it is known that a Gorenstein sequence may
be nonunimodal: that is, it may have several maxima separated by a smaller local minimum
[2,6].

When the embedding dimension is four, it is not known whether Gorenstein sequences
must satisfy the condition that the first differens& ;> is anO-sequence—a sequence
admissible for the Hilbert function of some ideal of embedding dimension three (see Def-
inition 2.4). Nor do we know whether height four Gorenstein sequences are unimodal,
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a weaker restriction. Little was known about the parameter sclit@w(H) whenr =4,
except that for suitable Gorenstein sequertde may have several irreducible compo-
nentg4,21, Example C.38We had the following questions, that guided this portion of our
study.

e Can we find insight into the open problem of whether height four Gorenstein sequences
H must satisfy the conditio®\H ¢ ;> is anO-sequence?

e Do most schemeBGor(H) whenr = 4 have several irreducible components, or is this
a rare phenomenon?

We now outline our main results. We consider Hilbert sequeiites (1,4,7,...1).
Thus,| is always a graded height four Gorenstein ide&iw, x, y, z] whose minimal sets
of generators include exactly three quadrics. First, in Theorem 3.7, we obtain a structure
theorem for Artinian Gorenstein quotiemds= R/ with Hilbert functionH (A) = H and
with Io = (wx, wy, wz). The proof relies on the connection betweemnd the intersection
J=INK]|x,y, z], which is a height three Gorenstein ideal. We also construct the minimal
resolution ofAin Theorem 3.9. This allows us to determine the tangent spaceHom®/ 1)
to Aon PGor(H), and to show that under a simple conditionkbnif such an algebra is
general enough, thehis parametrized by a smooth pointBor(H) (Theorem 3.11).

We then study the intriguing cage= R /I wherel, >~ (w?, wx, wy) and exhibit a subtle
connection betweeA and a height three Gorenstein algebra. We determine in Theorem
3.20 that the possible Hilbert functios = H (A) for such Artinian algebra& satisfy

H=H +©,1,...,1,0), (1.1)

whereH' is a height three Gorenstein sequence.
Our result pertaining to the first question is

Theorem (Theorem 4.2, Corollary 4.3, Proposition 4.4All Gorenstein sequences of the
formH = (1,4, a,...), a<7 must satisfy the condition thatH ¢ ;> is an Osequence

To show this we eliminate potential sequences not satisfying the condition by frequently
using the symmetry of the minimal resolution of a graded Artinian Gorenstein algebra
the Macaulay bounds on the Hilbert function, and the Gotzmann Persistence and Hilbert
scheme theorems (Theorem 2.3). However, these methods do not extend to all height four
Gorenstein sequences, and we conjecture that not all will satisfy the conditiavAha ,
is anO-sequence (see Remark 4.5).

We then combine these results with a well known construction of Gorenstein ideals from
sets of points to obtain our theorem concerning irreducible compone®Sof( H)

Theorem (Theorem 4.91 LetH = (1,4,7,h,b, ..., 1) be a Gorenstein sequence satis-
fying8<h<10and3h — b — 17>0. ThenPGor(H) has at least two componeniBhe

first is the Zariski closure of the subschefer) of PGor(H) parametrizing Artinian
Gorenstein quotienta = R /I for which I is Pgl(3)-isomorphic to{wx, wy, wz). The sec-

ond 3g:omponent parametrizes quotients of the coordinate rings of certain punctual schemes
in P,
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2. Notation and basic results

In this section, we give definitions and some basic results that we will need. Recall that
R = K[w, x, y, z] is the polynomial ring with the standard grading over an algebraically
closed field, and that we consider only graded idéals

LetV C R, be avector subspace. FoKvweletV : R, =(f € Ry_, | Ry - f C V).
We state as a lemma a result of MacaU2fy, Section 60ffthat we will use frequently.

Lemma 2.1 (FH.S. Macaulay25]). Letchar K = 0 or char K > j. There is a one-to-
one correspondence between graded Artinian Gorenstein algebra quotieat® /I of R
having socle degreg, on the one handand on the other hanalements” € #; modulo
K*-action where#Z = K[W, X, Y, Z], the dual polynomial ringThe correspondence is
given by

=AM F={heR|hoF=h®/0W,...,0/0Z) o F =0},
F=j)* e modK*. (2.1)

Here F is also the generator of th&-submodule/* ¢ Z, 1+ ={G € # | ho G =
0 for all & € I}. The Hilbert functionH (R/1I) satisfies

H(R/I); =dimg(Ro F); = H(R/I);_;. (2.2)
Furthermore for i < j, I; is determined by; or by F as follows
Li=1;:Rj_i={heR |h-Rj_iClj}={heR |ho(Rj_joF)=0}. (2.3)

Whenchar K = p > j the statements are analogoumit we must replac& [W, X, Y, Z]
by the ring of divided powerg, and the action ok on & by the contraction actioffsee
below).

Proof. For a modern proof s§@0, Lemmas 2.15 and 2.1#or a discussion of the use of
the divided power ring when cha = p see alsg20, Appendix A] [

Corollary 2.2. Let A = R/I be a graded Artinian Gorenstein algebra of socle degiee
LetJ = I3 be a saturated ideal defining a scheec P2, such that for some 2<i < j,
3 =Proj (R/(J;)),with J; C I;. Then forO<u <i we haveJ, C I,. If also J; = I;, then
for suchu, J, = I,.

Proof. Let O<u <i. Sincedis its own saturation, we havg, = J; : Ry, for largek, so
we have

Ju="Jr: Ry ={Jr : Ri—i} : Ri—y = Ji : Ri—y.
Now (2.3) implies that for & u <i
Iu = Ij : iju = {Ij : Rj*i} : Rifu = Ii : Rifu-

This completes the proof of the relation betwegrandl. [J
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Note that[19, Example 3.8] due to Berman, shows that one cannot conclude that
J C I in Corollary 2.2. For letl = (x3, y3, z3), and letJ be the saturated ideal =
(x2y3, y273, x372 x2y272) a local complete intersection of degree 18 defining a punctual
scheme concentrated at the poi(is0, 0), (0, 1, 0) and (0, 0, 1). Then we havels C Is
butx?y?z2 € J soJZ1.

We supposeR = K[w, x, y, z]. Let ¥ = Kpp[W, X, Y, Z] denote the divided power

algebra associated ® the basis o7 is (WUl . xl72l . ylisl. zUal 'S 5 = j}. We let
x' o XUl = xli=il whenj >i and zero otherwise; this action extends in a natural way to the
contraction action dRonZ. Multiplicationin Z is determined by . X V1= (V) xlu+vl,
By («X + Y)“ o € K we mean) ;. o X1 . Y=l this is (aX + ¥)" /u! when the
latter makes sense. When chiér=0, or charK > j we may replace” by the polynomial
rng £ = K[W, X, Y, Z] with Racting onZ as partial differential operators (2.1), and we
replace allx™ by X*, and(«X + Y)* by (aX + Y)“.

The inverse system- ¢ & of the ideall C R satisfies

I ={G e Kpp[W,X,Y,Z],hoG=O0forall h eI} (2.4)

and it is anR-submodule ofZ isomorphic to the dual module éf = R/I. WhenA =R/I

is graded Gorenstein of socle degjethen by Macaulay’s Lemma 2.1 the inverse system
is principal, generated by € Z;: we callF the dual generatorof A or for I. Thus, we
may parametrize the algebieby the class o mod nonzerdk *-multiple, an element of

the projective spac®” 1, N = (ff) Given a Gorenstein sequenideof socle degree

j(soH; # 0, Hjy1 =0) we letPGor(H) C PN~ denote the scheme parametrizing the
family of all GA quotientsA = R/I having Hilbert functiorH. Here, we use the scheme
structure given by the catalecticants, and describg@dnDefinition 1.10] A “geometric
point” p4 of PGor(H) parametrizes a Artinian Gorenstein quotidnt R/I of R having
Hilbert functionH.

We now state Macaulay’s theorem characterizing Hilbert function®-gequences,
and the version of the Persistence and Hilbert Scheme theorems of Gotzmann that we will
use[15].

Letd be a positive integer. Thdth Macaulay coefficients of a positive integeare the
unique decreasing sequence of nonnegative intégéjs. . . , k(1) satisfying

(K@Y | (kd-1) k(1)
() () (7))

We denote by:(@ the integer

k(d)+1 kd—-1+1 k() +1
@ _
S ) E (i RS (e (25)

Then, the Hilbert polynomiap, 4(¢) for quotientsB of the polynomial ringR, such that
B is regular in degred and H (B),; = c satisfies

k(d)+t—d> . (k(d—1)+t—d> . <k(1)+z—d) |

2.6
t t—1 t—d (2.6)

pc,d([) = (
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The length of thelth Macaulay expansion af or of the Macaulay expansion of the polyno-
mial p. 4, is the number ofk (i) | k(i) >i}, equivalently, the number of nonzero binomial
coefficients in the Macaulay expansion, and this is well known to be the Gotzmann regularity
degree ofp. 4 [7, Theorem 4.3.2]

Theorem 2.3. Suppose that<c<dim; Ry, and! isagradedidealoR=K[x1, ..., x,].

() [26]1f H(R/I); = c,thenH (R/I) 441 <c¥ (Macaulay’s inequality.
(i) [15]1f H(R/D)g=candH(R/I); 41 =cP, thenProj (R/(I)) is a projective scheme
in P"~1 of Hilbert polynomialp,. 4(z).

In particular H(R/(Iz))x = pc.a(k) fork >d,andH' = H(R/(1;)) has extremal growth
(h, 1 = h, ™) in each degreé tok + 1,k >d.

Proof. For a proof of Theorem 2.3(i) s§& Theorem 4.2.10For a proof of the persistence
(second) part of Theorem 2.3(ii) spke Theorem 4.3.3]for the Gotzmann—Hilbert scheme
theorem segl5], or the discussion d21, Theorem C.29] O

Definition 2.4. A sequence of nonnegative integéfs= (1, h1, ..., hq, ...), is said to be
an O-sequenceor to beadmissibléf it satisfies Macaulay’s inequality of Theorem 2.3(i)
for each integed > 1.

Recall that the regularity degre€p) of a Hilbert polynomialp = p(¢) is the smallest de-
gree for which all projective schemgsof Hilbert polynomialp are Castelnuovo—Mumford
regular in degree less or equalp). Gotzmann and Bayer showed that this bound is the
lengtha(p) of the Macaulay expression far[15,1]: for an exposition and proof s¢&,
Theorem 4.3.2]also seq21, Definition C.12 and Proposition C.24¥hich includes some
historical remarks. As an easy consequence we have

Corollary 2.5. The regularity degree of the polynomijadt) =ar + 1 — (“51) + b where

a >0, b>0 satisfiesr(p) = a + b. These Hilbert polynomials cannot occur with< 0. In
particular we havethe regularity degree of the polynomial?) =3¢t + b, b >0is 3+ b,
of p@)=2t+1+b,b>0isb+2,and of p(t) =t + 1+ b,b>0is b + 1. The regularity
of the constant polynomial(z) = b is b.

Proof. One hasfop(t)=ar+1— <“§1> + b, the following sum, equivalent to a Macaulay
expansion as in (2.6) of length+ b,

() = r+1 n tr+1-1 n r+1-2 T t+1—-(@—-1
PO=1 1 1 1 1
n t—a n t—(@+121 T t—(@a+b-1)
0 0 0 '
Corollary 2.6. Let H be a Gorenstein sequence of socle degreand suppose for that

somed < j,hgy1= (ha)? is extremal in the sense of Theor@B(i). ThenAH ¢ 441 is an
O-sequence
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Proof. Theorem 2.3(ii) and Corollary 2.2 show the existence of a schgme P’ ~*
satisfyingh, = H(R/I3), for u<d + 1. Sincel 3 is saturated and thug//3 has depth

at least one, there is a homogeneous degree one nonzero divisor, implying that the first
differenceA(H (R/13)) is anO-sequence. [J

Remark 2.7. The assertion of Corollary 2.6 as well as those of Corollary 2.2 are valid
more generally for graded Artinian algebras having socle only in dgdteeel algebras),
or those having socle only in degrees greater or equal

As an example of the application of Theorem 2.3, we determine below the Gorenstein
sequences#l = (1, 4,7, h,7,4, 1) that occur, having socle degree 6.

Corollary 2.8. The sequencs = (1,4,7, h, 7,4, 1) is a Gorenstein sequence if and only
if 7<h<11.

Proof. From Macaulay’s extremality Theorem 2.3(i) we hav€3) =h < H(2)@ =7@ =
11, andH (4) = 7<h® which impliesh >6. NowH = (1, 4, 7, 6, 7, 4, 1) implies that the

growth of Hz = 6 to Hy = 7 is maximum, since & (g) + (g) + (i) while 7= 6@ =
(i) + (3) + (g) Corollary 2.6 shows this is impossible[]

For a subschemg& c P2 we will denote byH3 = H(R/I3) its Hilbert function,
sometimes called its postulation; héreC R is the saturated ideal definiry Inequalities
among Hilbert functions are termwise. The following result is well known and easy to show,
since a degreé-punctual scheme can cut out at ma@stonditions in a given degree.

Lemma 2.9. Let3=WU3; c P2, be asubscheme BF, whereW is a degreel punctual
schemeThen for alli, (H3); <(H3,); +d.

Proof. We have (the firstinequality is from Maroscia’s reg@ft], sed20, Theorem 5.1A]

d>(Hy); = dim R; —dim(Iy); > dim(131),» —dim(Iy N 13));
=H(R/(IwN13)); — H(R/I3,); = (H3); — (H3,);. O (2.7)

3. Nets of quadrics inP?, and Gorenstein ideals

In Section 3.1 we give preparatory material on nets of quadrics, and on the Hilbert
schemes of low degree curves Y. In Section 3.2, we prove a structure theorem for
Artinian Gorenstein algebras = R/ of Hilbert functionH (A) = (1, 4, 7, . ..) for which
the net of quadricg, has a common factor and is isomorphic after a change of variables
to (wx, wy, wz) (Theorem 3.7). We then determine the dimension of the tangent space
to PGor(H) at a point parametrizing such an ideal; we also show that whbas socle
degree 6, the subfamily parametrizing such Gorenstein algebras is an irreducible component
of PGor(H) (Theorem 3.11), aresult which we will later generalize to arbitrary socle degree
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(Theorem 4.6). In Section 3.3 we determine the possible Hilbert funcliams, A= R/1
when/l, = (w2, wx, wy) (Theorem 3.20).

3.1. Nets of quadrics

Three homogeneous quadratic polynomiglg, 4 in R = K[w, x, y, z] form a family
ar f + opg + ozh, o € K, comprising a net of quadrics °. Here we will use the term
net also for the vector space spén= (f, g, k). We divide these families according to
the number of linear relations among the three quadrics. We now show that they can have
at most 3 linear relations. L&l2) = (f, g, h) be the ideal generated by a net of quadrics
I={f, g, h).ThenH(R/(I2))=(1,4,7,h, ...),whereh <11=7® by Macaulay's growth
condition. When there are no relatioAS R /(12))3 = 20— 12= 8, so the number of linear
relations on the net of quadri¢g, g, #) is no greater than 11 8 = 3, as claimed.

Nets of quadrics ifP® have been extensively studied geometrically, earlier by W. L. Edge
and others, more recently by C.T.C. Wall and others for their connections with mapping
germs, and instantons. |. Vainsecher and also G. Ellingsrud, R. Peine, and SiAnstr
have showed that the Hilbert scheme of twisted cubiésiis a blow-up of the family¥rne
of nets of quadrics arising as minors of a 3 matrix (Definition 3.1) along the sublocus of
those nets having a common factor. Nets of quadrics are parametrized by the Grassmanian
G = Grass$3, R2) ~Grass3, 10), of dimension 21. It is easy to see that up to isomorphism
under the natural P¢3) action, an open dense subset of the vector spéces f, g, h) C
R> have a six-dimensional family of orbits, as dim Gr&d40) — dim Pglk3) = 21 —
15=6, and the stabilizer of a general enough net is finite. In this section, we determine the
irreducible components of the subfamiyof nets having atleast one linear relation (Lemma
3.3), and also the possible graded Betti numbers for the alg&hrds), for netsV € §
(Lemma 3.4).

Definition 3.1. We denote by§ C G = Grass3, R2) the subfamily of nets of quadrics,
vector space¥ = (f, g, h) C Ry, for which f, g, h have at least one linear relation

o1 f +opg+o3h =0, 3Fo; € Ri=(w,x,y,2z). (3.1)

We denote by; ¢ G=Gras$3, R2) the subfamily of¥ consisting of those nets that have
exactlyi linear relationsj = 1, 2, 3. We denote by§rne C &2 the subset of nets defining
twisted cubic curves, and Kysp the subset of nets R@) isomorphic to(w?, wx, wy).

Lemma 3.2. The familyg1 comprises those nets that can be writiée= (¢ - U, h), where
¢ € Ryis alinear form U C Rj is a two-dimensional subspace of linear forrand 7 is
not divisible by eithe¥ or by any element df .

Up to isomorphisn¥ € §1 may be written eithe¥V = (xw, yw, h) for some quadrid
divisible neither byw nor by any element dfc, y), or V = (w2, wx, h) with 4 divisible by
no element ofw, x).

Proof. First consider net¥ = (f, g, h) having no two-dimensional subspace with a com-
mon factor: we show that cannot be irfy1. When the coefficients of a relation as in (3.1)
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form anR-sequence, a simple argument given in the proof of Lemma 3.3 showis th§§o,
and is determinantal (see Eqg. (3.2)).

Now assume thathas arelation as in (3.1) such that dirta1, o2, a3) =2; after a change
of basis inRwe may suppose thaif + yg + (x + y)h =0 whereh may be zero. Replacing
fby f + h, andg by g + i, we obtainx f = —yg. ThusV may be writtenV = (U ¢, h) with
¢ = f/yandU = (x, y), and, evidently if € &1 thenh is not divisible by¢ nor by any
element ofU. We have shown the first claim of the lemma. The second follows.

As we shall see belowy, hasFrnc as open dense subset. Evidently, the fangly
of netsV having a common factor, contains as open dense subset tt8 Bdiit of V =
(wx, wy, wz); the family also containgsp, the orbit of(w?, wx, wy).

The dimension calculations of the following lemmas are elementary; recall thabdim
21. Theresults about closures also involve standard methods but are more subtle: for example
to identify FspWwith F2N &3 we rely on previous work on the closure of the family of rational
normal curves, such §24,29,30,32]

Lemma 3.3 (Components off). The subfamilyy c G = Grasg3, R2) parametrizing
guadrics having at least one linear relatigmas two irreducible componen1 and &2 =
8RN, of codimensiong and 9, respectivelyin G. They satisfy

(i) The intersectiorf§1 N &2, has an open dense subset parametrizing nets isomorphic to
(wx, wy, xz); this intersection has codimensidd in G.
(i) We havey1 — &1 = (F1 N F2) U &s. Each element ofy, has a basis consisting of
minors of a2 x 3 matrix of linear forms
(i) The locus¥s C F1has codimensiofi5in G; §3 — §sp consists of nets isomorphic to

(wx, wy, wz). The locusFsp = F2 N F3, and is a subfamily of codimensidBin G.

Proof. We first calculate din{y1. By Lemma 3.2V € &1 may be written agé - U, h),
wherel € R1 andU C R is atwo-dimensional subspace, dnid not divisible by nor by
any element ob). Since there is a single linear relatidMygletermines both andU uniquely.
Thus, there is a surjective morphism

n1: &1 — P3 x Grass2, Ry) : m1(V) = (¢, U),

The fibre ofr1 over the pair(¢, U) corresponds to the choice bf givenV, h is unique
up to constant multiple, mod an elementfofU. Thus, the fibre oft; is parametrized by
an open dense subset of the projective sfa@e/ (¢ - U)), of dimension 7. Thusy; has
dimension 14, and codimension 7@

We next show th&a& 2 containg¥rnc as dense open subset. When there is a linear relation
forVasin (3.1) whose coefficients are a length 3 regular sequence we may suppose after
a coordinate change thaf + yg 4+ z2 =0; letting f = uz + f1, g = vz + g1, with f1, &1
relatively prime taz, we obtain: = —(ux + vy), andxf 1 = —yg,, whence there is a linear
form ff € Ry with f =uz + yf5, g = vz — xf3, and(f, g, h) is the ideal of 2x 2 minors of

(_"y ;’ ’j) (3.2)
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When alsqd f, g, h) has height two, theX is an element of, determining a twisted cubic
in P3; for a dense open subset of such elemenf§adne may up to isomorphism choose in
(3.2) the triple(u, v, f) = (x, z, w). Otherwise, iff, g, i is not Cohen—Macaulay of height
two, V has a common linear factor, and it is well known that there Fsp= F2 N &3
[24,30,32]

We now consider those nets c &, for which there is no linear relation as in (3.1)
whose coefficients form a length thrBesequence. By the proof of Lemma 3.2 such a net
has the formV = (Uw, k), with U C Ry, and it thus lies in the closure @. It is easy
to see that the most general elemenfiafn &2 is a net isomorphic tdwx, wy, xz): for
whenV = (wx, wy, h) has a second linear relation, eithedividesh andV € g3, or
someax + by dividesh, and after a change in basis fBf, V = (wx, wy, xz). A similar
discussion fotw?, wx, i) completes the proof that any elemenf@afn & is in the closure

oftheorbitofv=(wx,wy,xz),whichisalsothedeterminantalideal@cery z 3))

This shows also tha¥1 N F2 C Frnc, and completes the proof thgb containsFrnc as
dense open subset.

We recall that dim&rne = 12. A twisted cubic—a rational normal curve of degree
three—is determined by the choice of four degree three forms in the polynomial ring
K[x, y], up to commonkK *-multiple, mod the action of Pdl), yielding dimension 4
4-4=12[30]. o

We have thay; and &> define two distinct irreducible components @f since the
subfamily &2 parametrizing nets for which there are two linear relations, cannot specialize
toany netV =(f, g, h) forwhich f, g, h have a single linear relation; afl, parametrizing
netsV each containing a subspace of the fafmU, cannot specialize to a vector spate
for which the ideak V) is the prime ideal of a twisted cubic. This completes the proof of
the initial claims of the lemma. .

We now complete the proof of (i), by determining the dimensiofgof &2, which is
by the above argument equal to the dimension of th€3pgirbit # of (wx, wy, xz). For
W = (w'x’,w'y, x'7) € %, the unordered pair of linear form®’, x"), each modk *-
multiple is uniquely determined B¥ (as each divides a two-dimensional subspad&/of
thus there is a morphism : 2 — Syn?(P®), from % to the symmetric product, whose
image is the nondiagonal pairs. Spa®ésn the fibre ofn over (w’, x") are determined
by the choice of the two two-dimensional subspaces, the {fifst’) containingx’, the
second(w’, ') containingw’. Thus, a spac®/ in the fibre is determined by the choice of
Yy € R1/{x') andz’ € R1/{w’), each up t&*-multiple, and these choices are each made
in an open dense subset®f (asz’ must not equat’ modw’ for W € 4). Thus, the fibre
El(w/, x') C % is isomorphic to an open dense subsePéfx P2, It follows thatZ and
&1 N &2 have dimension 10, and codimension 11Gn
__We now show the claim in (i) thafy — §1 = (F1 N F2) U §3. Suppose that <
&1 — &1; then evidently there is a two-dimensional subsplgce- V having a common
factor Vi1 = ¢ - U. Letting V = (V1, h) thenV € &, implies h must have a common
divisor with an element o¥1. Thus, up to PdgB) isomorphism we hav¥ = (wx, wy, xz)
or V = (w?, wx, xz), both in &, (we may ignorew is a common factor o¥ since then
V € §3). Each of these spaces has basis the minors of & Pnatrix of linear forms. This
with (3.2) above completes the proof of (ii).
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The family &3 has as open dense subset the a@ibf V = (wx, wy, wz). An element
W' =w'V', V' C Ry of %4’ is determined by a choice of ¢ R; and a codimension one
vector spac&’ C Ry, thusZ' is an open irP® x P2, so has dimension six, codimension
15inG.

The claimin (iii) that the Iocu@spzif;_zm &3 follows from the well-known classification
of the specializations of rational normal cury24,30} the dimension count for this locus
is five, 3 for the choice olv, and 2 for the choice aof, y) C Ro/(w?). This completes the
proof of Lemma 3.3. [J

Lemma 3.4 (Minimal resolutions for nets of quadrics ). There are exactly three pos-
sible sets of graded Betti numbers for the ideal generated by a net of quadficéhiose
having at least one linear relatign

() ThoseV in the family &1 have graded Betti numbers that @bx, wy, z%), with a
single linear and two quadratic relationsnd Hilbert functionH = H(R/(V)) =
(1,4,7,9,11, 13 ...) whereH; = 2i + 3for i > 2. SuchV define a curve of degrex
genus—2 (See Lemma.5).

(i) For V e o, the ideal(V) is Cohen—Macaulay of height twthe Hilbert function
H=H(R/(V)) =(1,4,7,10,13,...) whereH; = 3i + 1 for i >0, and V has the
standard determinantal minimal resolution with two linear relations

(i) ThoseV in the familygs have graded Betti numbers that@fx, wy, wz).

Proof. For (i), Lemma 3.2 implies that the quotieRf (V) determined by an elemeit of

&1 is cut out fromR /(wx, wy) or R/(w?, wx) by the nonzero-divisdn, hence the minimal
resolution ofR /(V) is that of R/ (wx, wy, z2). For (i) letV e &. Then by Lemma 3.3(ii),
Vis has a basis consisting of the minors of a 3 matrix of linear forms; an examination

of cases shows thatis Cohen—Macaulay of height two, so is determinantal. Whss

the standard determinantal minimal resolution. The last part (iii) follows immediately from
Lemma 3.3(iii), and a computation in Macaulay.]

Lemma 3.5. [24, Section8.4—3.6]The Hilbert schemililb? ~2(P3) parametrizing curves

C c P of degree2, genus—2 (Hilbert polynomial2: 4 3) has two irreducible components

A general point of the first parametrizes a scheme consisting of two skew lines union a point
off the line this component has dimensidAd. A general point of the second component
parametrizes a planar conic union two pointisis component has dimensia4.

Likewise[24, Theoren8.5.1] Hilb®> ~1(P®) (Hilbert polynomial: +2) has the analogous
components parametrizing two skew linesa planar conic union a pointThe scheme
Hilb%9(P3) (Hilbert polynomial2s + 1) has a single componenthose generic points
parametrize plane conics

The following result mostly concerns certain ide&lfr which I3 to I4 or I4 to Is
is of extremal growth in the sense of F.H.S. Macaulay. We thank a referee for the sim-
ple argument for (ii). Note that ne¥ with no linear relation need not define complete
intersections, and the ide@V) need not be saturated: thus (iii) below does not follow
from (ii).
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Lemma 3.6. Assume fofi),(ii) below that/ is a saturated ideal oR = K[w, x, y, z].

(i) fHR/I)=(1,4,7,10,13 16, ...), thenl/ <3 defines a twisted cub{or specializa-
tion not in the closure of the plane cubjasr a plane cubic union a poinfpossibly
embeddex In the former casgls lies in >, and generates; in the latter casds € §s.

(i) H(R/I) cannot be any oi1,4,7,8,10,...),(1,4,7,b,9,11,...), or (1,4,7,9,
12,..).

(iii) If R/I is Artinian Gorenstein of socle degree at leasthen R/(12) cannot have a
Hilbert function ofthe fornH (R /(12))=(1, 4, 7,8, 10, ...), H(R/(12))=(1,4,7, b, 9,
11 ..),0r HR/(I2))=(1,4,7,9,12,...).

Proof. Suppose that a saturated ideaks the Hilbert function given in case (i). Then 13
to 16 is an extremal growth. So, by the Gotzmann thedrelefines a schemg c P2, of
Hilbert polynomial 341 soj is a degree three curve of genus zero. The Piene—Schlessinger
theorem characterizing the components of Biflg?®) [30] implies that if3 is nondegen-
erate (not contained in a plane), thgnis either a twisted cubic or a specialization, so
I> is in &, or 3 is the union of a planar cubic and a (possibly embedded) spatial point,
and thenl is in 3. If J is degenerate, then aldg € §3. This completes the proof
of (i).

The three sequences of (ii) cannot occur for a saturatedliceeahturated ideal has depth
at least one, sd = R/I has a (linear) nonzero divisor, and the first differend&5(R /)
must be admissible. By, 3,3,1,2,..),(1,3,3,b—7,9—b,2,.)and(1,3,3,2,3,.)
are notO-sequences.

In the first case of (iii) we have that 298®, so by Theorem 2.3(ii = Proj (R/(13))
is a scheme of Hilbert polynomiak 2~ 2 (degree two and genusl) and regularity de-
gree no more than 3, the Gotzmann regularity degreer 6f 2. By a classical degree
inequality, such a scheme is either reducible, or degenerate—contained in a hyperplane
[16, p. 173] Furthermore, by Lemma 3.5 the Hilbert scheme Hith(P®) of degree two
genus—1 curves has two irreducible components, one whose generic point parametrizes
two skew lines, the second, whose generic point parametrizes a planar conic union a point.
For either component, the Hilbert functidh(R/13), <6 which by Corollary 2.2 implies
H(R/I),<6, contradicting the assumption. A similar argument handles the second case
of (iii): since 9% = 11, Hy 5 = (9, 11) is maximal growth; by Theorem 2.3(ii) the scheme
3 = Proj (R/(14)) has Hilbert polynomial 24 1, of Gotzmann regularity two implying
H(R/I3), =5, and by Corollary 2.2H(R/I),<5, a contradiction. For the last case it
suffices by Corollary 2.2 and the Gotzmann Theorem to know that any scheme of Hilbert
polynomial 3 (degree three and genus one) is a planar cubic or degenerate, a result of the
classification of curvef30,24] O

3.2. Ideals withl; = (wx, wy, wz)

Let B denote the vector spadex, wy,wz). In this section we assunté=(1,4,7, ..., 1)
and we consider the subfami®(H) c PGor(H) parametrizing those algebras= R/ of
Hilbert functionH for which I, is Pgk3) isomorphic to3. We first determine whe@(H)
is nonempty and give a structure theorem for si¢fiheorem 3.7). We then determine the
minimal resolution ofA (Theorem 3.9). We also determine the tangent space to the family
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C(H) (Theorem 3.11). To prove our results we connect these Artinian algebras with height
three Artinian Gorenstein quotienis/J; of R’ = K|[x, y, z], whereJ; = I N R’, which
are well understoofB,12,20,22]
We recall from Lemma 2.1ff. that, given an idéaf R, we denote by its inverse system,
the perpendiculaR-submodule td in the divided power ringy = Kpp[W, X, Y, Z], where
R acts by contraction.

Theorem 3.7.LetH = (1,4, 7, ...) of socle degreg >4 be a Gorenstein sequenand
assume thal € C(H) satisfiesl, = B = (wx, wy, wz). LetF € &; satisfyl = Ann (F).
LetR' = K|[x, y, z]. Then

() The inverse systet®)* of the ideal(B), B = (wx, wy, wz) C R, satisfies

(B)7 = (KoplX. Y, Z];, WUI). (3.3)
(i) F e KpplW, X, Y, Z]; and satisfies

F=G+oa-WYl, GeKkpplX,Y, Z];, aek, (3.4)

whereG # 0, o # 0.

Furthermore I = (J;, B, f) whereJ; = I N R’ is the height three Gorenstein ideal
Anng/(G)and f =w/ — g, g € K[x,y,2];,g # 0.

The Hilbert functionH (R/I); = H(R'/J1); + 1for 1<i<j — 1,s0 we have

HR/D=H®R'/J)+©0,1,1,...,1,00=(L4,...,41). (3.5)

The inverse systein" satisfies/;- = (F), I;-=0fori > j + 1,and
IF=(RoF);=((R oG);, Wiy for1<i<j —1. (3.6)

(i) The Gorenstein sequende = (1,4, 7, ...) satisfies€(H) is nonempty if and only
if HH = H — (0,1,1,...,1,0) is a Gorenstein sequence of height thréSee
Corollary 4.3).

Proof. We first prove (i). Sincel = (wx, wy, wz) = w N (x, y, z) we have from the
properties of the Macaulay duality,

(wx, wy, wz)t = w)t + (x, y,2)" = Kppl[X, ¥, Z] + Kpp[W],

which is (3.3).

We now show (ii). Sincé generates/;)*, F e (13)]4 can be writtenF = G + aWl/!
asin (3.4). Sincg4(R/I) = (1,4, ...), we haveG # 0 anda # 0. The inverse system
relation (3.6) is immediate, and gives

Ro F=R/>loh+ (W, wtl o owlm F),

as well as the Hilbert function equality (3.5). L&t = Ann (G) N K|x, y, z]: evidently,
Ann (G)=(w, J;).Leth € INK]|x, y, z]. Thenwe havé o F=0andho W’/ =0, implying
hoG=0soh € J;;conversely,ifr € J;=Ann (G)NK|[x, y, z]thenhoG=0, ho W/ =0,
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implyingh o F=0,s0h € I N K[x, y,z]. ThusJ; = I N K[x, y, z], as claimed in (i) is
immediate. Now, any forrh of degree less thgrsatisfyingh - F =0, andh # (wx, wy, wz)
must satisfy: € K[x, y, z] and hence is if;. If f =w/ — g with g o G = « then we have
foF=0andhenc¢ € I.If g=0we would haver;-w’/~1 e I, implying thatw’/~ mod/
is asocle element of = R/1, contradicting the assumption thhais Artinian Gorenstein of
socle degreg Thus, we havef = w’/ — g with g # 0. Since the lowest-degree third syzygy
of | are those in degree four arising fra) the symmetry of the minimal resolution implies
thatl has no generators (first syzygies) in degrees greaterjtfidws the ideal € § is
minimally generated at= (J;, B, f) as claimed, and this completes the proof of (ii).
To show (iii), note that iff € C€(H) then H’ from (iii) satisfiesH' = H(R/J;) =
H(R'/(I N R") with I N R’ a Gorenstein ideal ilR’, so H' is a Gorenstein sequence.
Conversely ifH’ = H —(0,1,1, ..., 1, 0) is a Gorenstein sequence then tdkéo be any
Gorenstein ideal iR’ of Hilbert function H' and letJ’ = Ann g/(G). Let F = G + W/.
Then Ann(F) = I = (J', w/ — g, wx, wy, wz) whereg € R/ butg ¢ J': the ideall is a
Gorenstein ideal of height four. Then we have €(H).
Thus,E(H) isnonempty ifandonly i’ = H —(0,1,1,...,1,00=(1,3,...,3,1)is
a Gorenstein sequence of height three. This completes the prabf.

The minimal resolution ok /I can be constructed from the minimal resolution/ef
We construct a putative complex in Definition 3.8; we prove that it is an exact complex in
Theorem 3.9. The construction relies on Theorem 3.7(ii).

Supposethat C R defines aArtinian Gorenstein quotiett=R /I, that/;=0andl>,=2,
andthatl = (B, J;, g—w/)with g € R’ satisfyingg # 0,and/'=J;=INR'=K][x, y, ]
defining a Artinian Gorenstein quotiedt = R/J’ of R’. Let the minimal resolution of
R/J, J = J;R be (heren = 2n + 1 is odd)

t
J: 0—>R1>Rmiﬁ>R'”—a>R—>R/J—>O, (3.7)

where¢ is anm x m alternating matrix with homogeneous entries, and [J] denotes

the 1x m row vector with entries the homogeneous generatodstbét are the Pfaffians

of ¢, according to the Buchsbaum—Eisenbud structure theorem for height three Gorenstein
ideals (sincel is homogeneous] may be chosen homogeneous: &&2]). Denote byl

the Koszul complex resolving/(x, v, z) (S0Kg = K3 = R):

K: 0> RERIZRI2UR S R/(x,y.2) > O, (3.8)
where
y z 0
512[)(, ya Z]v 52: —X O Z ]
0 —x -y

anddz = 0. We will let T : K — J be a map of complexes induced by multiplication by
gonR. By degree considerations, we see thatTieg 0, so73 is multiplication byy € K.
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So we havel; o 62 = ¢ o T, alsoTz o0 63 = [J]', and

Z
T5 o |:yj| :yo[]]t.

X
Definition 3.8. Givenl, J, J, K as above, we define the following complex:
F: 0 R pgmal3 goms6 2 pm+a i p o/ 0, (3.9)

whereF; = (wx, wy, wz, o, w/ — g), andF» satisfies

‘ 3 m m 3
F, = 318 0 771E0T2t w/ T 3 , (3.10)
m|0 ¢ Wl m T
110 O 0 X —y =z
0 0 1
whereE = |:0 1 0:|.The mapF3s satisfies
1 0 O
3 m 3
| 3 witlnag ET| -z -y —x
B=1wl n —ywlhom 0 (3.11)
m 0 Yo 0
3 —87 0 0

andFy = (wz, wy, wx, o, w/ — g)t.

Theorem 3.9. Let | be a homogenous height four Gorenstein ideaRia= K[w, x, v, z]
with socle degree j and with = (wx, wy, wz). Then the complek of (3.9)in Definition
3.8is exact and is the minimal resolution Bf 1.

Proof. We first show that is a complex. By (ii) of the structure theorem, we see that
minimally generated by =7 N K|[x, y, z], wx, wy, wz, g —w/ whereg € K[x, y, z]. So,
g ¢ J. Suppose that = 0. ThenT: o d3 = 0, hence we would havE = T’ o 0, for some
T'. Then

T1odp=doTo=¢oT ody;
S0 (Ti—¢poT)ody=0,
Ti—¢oT =plx,y.z], PeK,
awoTy=0oflx,y,zl,

—glx,y, zl=0aflx, y, z].

This impliesg € J contradictingg ¢ J. So, we gep # 0.
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We getFi o F» = 0 andF3 o F4 = 0 from the following three identities. First, from the
exact sequencé of (3.7) we have

do = atgb =0. (3.12)

Second, from

A
[x,y,z] o ET, =7[zyx]T2

t
-1 < 1 4y
=—1|1T2|y =—()
Y . Y

= —
_1 t
we have [x,y,z]| —ET;|=—u. (3.13)
Y
Third, we have
TiJ = —g[x,y,z]. (3.14)

To see thaf, o F3 = 0 we just need to check that

¢To — T102=0

1
and 0ETY — S ETS(y¢) = 0.

The first of these follows from the map of complexés K — [. For the second we have

OETY — ETS = 62ETY + ETS¢"
=02ETY + E(¢To)!
=02ETY + E(T162)"
=0ETS + E(SY)T}
= (02E + Edy) Tf =0,

since 92E + Ed5 =0.

So we getF> F3 = 0. Thus,F is a complex.

To see that the compldixis exact, we use the exactness critef®i3, Theorem 20.9]t
suffices to show thay' 1,,+-3(F2) and,/1,,+-3(F3) have depth at least three, wheg 3(F>)
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denotes the Fitting ideal generated by ¢he+ 3) x (m + 3) minors of F». We write F» as

3 m m 3
y z 11 - Tlm wjfl - 0
F2 - 3 —OX ,Ox fy 0 31 TIm g w:) w1071 B (315)
0 6 0 w0 T
m
0 16) w !
1 0 0 0 X —y —z
wherexty; + yto; + 273 = —0o;, andJ = (a1, . . ., o, ). Consider the minob1; of F» having

all rows except th€3 + i)th row, and having the columns2, 4, ...,3+i —1,3+i +
1,m+3,m+3+1i,2m + 4. This is the minor

y z ni  wit
—x 0 0 1y 0
0 —X 13; 0
M; = * 0, (3.16)
O (f)l‘ 0 *
*
0 0 0 —x
and it equals
y =
:l:xaiz —x 0 1y
0 —X 13
= txafx (xTy + YT + 273)
= :I:xsal-z.
Thusxa; € /1(F2). Similarly, ya;, za; € /1(F2). ThusmJ C /I(F2). Finally, look-
ing at the lasin + 3 rows and the columns, 2, m + 4, ..., 2m + 4, we get£x3w™ in

I(F). Sowx € /I(F»), as well aswy, wz, by similar computations. Thug'l (F2) D
(J, wx, wy, wz). Similarly /I (F3) D (J, wx, wy, wz). So these Fitting ideals have depth
at least three, and the complExs exact. This completes the proofl]

Remark 3.10. The above resolution in Theorem 3.9 is similar to but different from the
minimal resolution obtained by Kustin and Miller [B3]. They consider ideals of the form

(f, g, h, wJ) where(f, g, h) is aregular sequence ads height three Gorenstein. It turns

out that it is not a specialization of their resolution. One reason for the resemblance is that
(wx, wy, wz) has three Koszul type relations even though they are not a regular sequence.

If HR/I)=(1,4,7,h,7,4,1), recall that€(H) c PGor(H) denotes the subfamily
parametrizing idealssuch thatl, ~ 8 = (wx, wy, wz), up to a coordinate change. We de-
note byv; (J) the number of degreiegenerators al. We will later show that any Gorenstein
sequencé! = (1,4, 7, ...) satisfied€ (H) nonempty (Theorem 4.2). Fére PGor(H) we
denote by7 ; the tangent space to the affine cone d¥&or(H) at the point corresponding
toA=R/I.RecallthatH’ =H — (0,1, 1, ..., 1, 0). We denote by7;, the tangent space
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to the affine cone ovd?Gor(H'), H' = H(R/J;) from (3.5), at the point corresponding to
A"=R'/J;, whereJ; =1 NK|x,y,z].

Theorem 3.11.LetH=(1,4, 7, ...) of socle degre¢ >5.In (i), (ii), (iii) weletA=R/I €
C(H),andwelet/; =INK|x, y, z].

(i) The dimension dE(H) c PGor(H) satisfies
dim(€(H)) =7 + dim PGor(H"). (3.17)

(i) The dimension of the tangent spaZe to the affine cone ovdPGor(H) at the point
determined byA = R/I € PGor(H) satisfies

dimg 7 =7+ dimg 9.‘]1 + Vj_]_(.][). (318)

(iif) The GA algebrad € €(H) is a smooth point dPGor(H) if and only ifv;_1(J;) =0.
(iv) The subschem&(H) of PGor(H) is irreducible

(v) Whenj =6andH =H, =(1,4,7,h,7,4,1), 7<h<1lwe have

Y +1

dim(C(H)) =34 — ( 9

), hY =11-h. (3.19)
When alsp8<h <11,E(H) is generically smooth

Proof. The proof of (i) is immediate from the structure Theorem 3.7(ii): the choic® of
involves that ofvand the vector spade, y, z), so 6 dimensions, and that of the=w/ + G
involves one parameter, giveéo'), which determined;.

We now show (ii). LetA = R/I € €(H). We recall from[20, Theorem 3.9that for a
GA quotientA = R/I, we have ding 7 ; = dimg R;/(1%); = H(R/I?);. We have

D=1 1j—2® (J?),
= (wRy - (I PR @ W R, @ © WR| ) @ Jj ) ® (/)
_ (wjsz/z ®w SR, @ @ sz;,Z) SR _2® (J2);.
Hence we have
Rj/(I?%);=w’ @ w/ 'Ry @ w(R,_1/RyJ;—2) ® R;/(J;)?, and
dimg R;/(1%); =1+ 3+ H/_y +v;j_1(J) + dimg R}/(J})?
=7+dimg T 5, +v;_1(Jp).

We now show (iii). We use J.-O. Kleppe’s result that in codimensid®@or(H’) is smooth
[22]. It follows that for the Gorenstein ided ¢ R’ = K[x, y, z], of socle degreg, of
Hilbert functionH(R’/J) = H' the dimension of the tangent spaZe;, to the affine cone
overPGor(H') at J; satisfies

dimg 7, = dim(PGor(H")) + 1.
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This, together with (i), (ii) shows that;_1(J;) = 0 implies dink 7 ; = dim €(H) + 1,
hence tha€(H) andPGor(H) are smooth at such points, which is (iii).

We now show (iv). We first show th&(H) is irreducible. The schemBGor(H’) is
irreducible by Diese]12] (or by its smoothned22], discovered later). The scher@¢H),
is fibred over the family of nets isomorphic # by PGor(H’), then by an open if®* (to
choose- givenG), so it is irreducible.

We now show (v). The dimension formula (3.19) results immediately from (i) and the
known dimension oPGor(H’) (se€[20, Theorem 4.1B][22]). From the latter source, we

have that the codimension &Gor(H’) ¢ P?", H' = (1,3,6,h — 1,6,3,1) is (hv2“>

whereh¥ = 10— (h — 1). When also &2 <11, we haveA3(H’)5 = 0; it follows simply
from [12] (or se€[20, Theorem 5.25]that the generic GA quotie®’/J having Hilbert
function H’ satisfiesys(J) = 0. This completes the proof of (v) and of the Theorern]

3.3. Mysterious Gorenstein algebras with= (w?, wx, wy)

Let 2B denote the vector spad@?, wx, wy). In this section we assum# = (1, 4,
7,...,1) and study graded Artinian Gorenstein algebtas R/I, R=K[w, x, y, z], such
that

We will show that their Hilbert functions are closely related to those of a Gorenstein ideal in
three variables (Lemmas 3.17 and 3.19). From these results we can characterize the Hilbert
functionsH for which €sp(H) is nonempty (Theorem 3.20): these are the same as found
in the previous section for Gorenstein algebtas C(H): those withl, =~ (wx, wy, wz).
However, it is an open question whether the Zariski clofii#) containsCsp(H), and it
is this uncertainty that requires us to consitgg in detail.

The ideal(2B) generated byl satisfies(IB) = (w?, x, y) N (w). The inverse system
Wt ¢ 7 satisfies

W = (w?, x, y) N ()t = w?, x, )t + W)t
= Kpp[Z]+ W - Kpp[Z] + Kpp[X. Y, Z], (3.21)

Thus we have for the degr¢&omponent

(W} = KpplX. ¥, Z]; + (WzU~H, ZUl),
Lemma 3.12. Let | satisfy(3.20),and letF € # = Kpp[W, X, Y, Z]; be a generator of
its inverse systenThen F may be written uniquely

F=G+wzU-U G eKpp[X,Y,Z], (3.22)

inthe sense that the decomposition depends onlyaortithe choice of generatous x, y, z
of R Further, after a linear change of basis in,ve may suppose that G (8.22)has no
monomial term inzl1.,

Proof. Sincew?, wx, wy are all inl, by (3.21) the generatdf of I+ can be written in
the formF = G + A\WzU-U G e Kpp[X, Y, Z]. Evidently, . # 0, since otherwise
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H(A) = (1,3,...); so we may choosé = 1. The decomposition of (3.22) is certainly
unique, givenl, and the choice of, y, z, w. A linear change of basiss — w,x —
x,y — v,z = z+ pwinR, and the contragradient change of bdBis> W — fZ, X —
X,Y — Y, Z — Zin Z eliminates any monomial term ial/! fromG. O

We denote byR’ the polynomial ringR’ = K [x, y, z].

Lemma 3.13. Let | be an ideal satisfyin3.20),let F = G + W zU~1 be a generator of
its inverse system as (8.22),and let/ = Ann (G), J'=Ann (G) N R’; thenJ = (w, J').
Leta(J) be the integer

a(Jy=minfa>1| J,Z(x, y)} =min{fa=1]| J,Z(x, y, w)}. (3.23)
Thena(J) = min{i | Z1 ¢ R ;o G}, and we hav@<a(J) < j.

Proof. The first statement follows frorx, y)l N A = Kppl[Z]. The lower bound onx
follows from the assumption of (3.20), which implies thatrR/J") = (1,3, ...), so 2< .
The upper bound on follows from the fact that’/ € J' = Ann (G). O

Definition 3.14. Let | satisfy (3.20), letF = G + W ZU~1I be a generator of its inverse
system, as in (3.22), and let= o(J) as in (3.23). We define a sequence

O.L1....12=hy2....2=hj_5.1,....1,0=h,) if 2<j/2,
|11 1=h; 0. .01=hy 1. .1.0=h)) if 2> j/2 and
* j#2u—1,

0.11....1,0=h)if j=22—1
(3.24)

WeletHo=(0,1,1,...,1,0=hj).

Note thatH, takes values only 0,1, and 2. Whexr. j/2, there arg + 1 — 20 2's in the
middle of the sequencH,; whenao > j/2 there are 2+ 1 — j 0’s in the middle ofH,,.
Whenea < j/2 the middle run of 2's is bordered on the left by O in degree zero, followed by
o —11's. Wheno > j/2 the middle run of O's is bordered on the left by 0 in degree zero
followed by j — o 1’s.

Definition 3.15. We denote byM the R-submodule o7 generated by Zl/ =1, whose
degree-component satisfied; = (Z[!l, w . zl'=1) for 1<i < j. GivenF, G asin (3.22)
we define twaR-modules

B=Ro(F,WZU=l/RoG,
C=Ro(F,WzZU=Yy/Ro F. (3.25)

We denote byH " (B) the dual sequenced”(B); = H(B);_;, and likewiseH" (C); =
H(C); ;.
Evidently we have fof, G as in (3.22)
INJ=Ann (F,G)=Ann (F, WZU=1y = Ann (G, wzlU =1y, (3.26)
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Our convention will be to specify Hilbert functions&fsubmodules o7 (or of #Z) as subob-
jects:thusH (Ro{Z2, WZ)=H((1; Z, W; Z12, WZ))=(1, 2, 2). However, the Hilbert
functionsH (B), andH (C) are aiR-modules: thus, whef = X2 z[21  w 713l the mod-
ule B from (3.25) satisfies, after taking representatives for the quotient(w z!3!; zI3,
w -z wz; W)ysoH(B) = (1, 2,1, 1), and the dual sequend&'(B) = (0, 1, 1, 2, 1).

Lemma 3.16. We have

HQR/(INJ))=H(R /J)+ HY(B)
=H(R/I)+ H(C). (3.27)

The Rmodules B and C each have a single generatwe class o zL/—1l.

Proof. Eq. (3.27) is immediate from (3.26), and the definitionfd(B), H(C). The last
statement is immediate from the definition®fC. [

Lemma 3.17. Let | be an ideal satisfyin3.20),and letF = G + Wz~ be a decom-
position as in(3.22) of the generator F of the inverse systérh. Let J = Ann (G) and
o =a(J) asin(3.23).Then we have

() INJ=Ann (G, WZU"y andU N NHt=(R oG, M)=)V +M=1++ M.
(i) HB) =(1,2,...,2j-5,1,...,1,0, HC)=(1,1,...1,),withc=aorc=j — o
The case = j — o can occur only it > j/2.
(i) Whenc=uo,we haveH(R/I)— H(R'/J') = H,; whenc = j — o we haveH (R/I) —
H(R'/J')=Hy=(0,1,1,...,1,0).

Proof. Sincel =Ann (F)=Ann (G + WZzU=1) andJ = Ann (G), we have
INJ=Ann (F,G)=Ann (G, WzlU=t = ann (F, wzU—1y,

This proves (i). To show (ii) we consider the tl/emodulesB, C defined above. Evidently
we haveH (B); <2, whence by the Macaulay inequalitieg B) = (1,2,...,2,,1,...,
15, 0), with invariants the length — 1 of the sequence of 2's, and the length a of the
sequence of 1's. Sincgl!l € R o F for 1<i <j — 1, we have that the Hilbert function
H(C) satisfiesH (C); <1, henceH(C) = (1,1, ...1., 0), with sole invariant the length
¢ + 1 of the sequence of 1's. Now

H(R/(INJ); —HR/I); =24 M; ® (R 0G); =Rj_; o (G, WzU~Y)
< 7l ¢ (R o G);
sizall).
Otherwise, for Ki <a(J), H(R/(INJ)); — H(R/J); = 1, since for suchwe have

Wzl e R o (G, WZVY) butwzVU-Y¢R, oG,

and fori =0 the difference is 0. Hence, taking into account tHt(B) = H(R/(I N J)) —
H(R')J"), we havea = j — a(J) andb = j — 1. Since bothH (R/I) andH(R'/J') are
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symmetric abouy /2, so is their difference
H(R/I)— H(R')J)=H"(B) — H'(C). (3.28)

This difference can be symmetric onlycit= o orc = j — a.

Suppose now that= j — «, ando < j /2. We will show thatH (R/I),= H(R/J), + 2.
By definition of «, J, has a generator of the forgt — g, g € (x, y)R’; it follows that
T — g et g =7/"%g e (x, y)R'. Consider the subset

((x,y)-R)oG=((x,y)-R')oF.

Note thatz/~*o G € (x, y)R' o G. Howeverz/ %o F has a ternW Z[*~1 andwz/~* 1o

F=7""l.ByLemma3.1¥!" ¢ R'o G, itfollows thatdim Ry 0 F =dim R} _, 0 G +2,

as claimed. Thisimpliesth&f (R/1)=H(R/J)+ H, is the only possibility when < j/2.
The statement (iii) is immediate from (ii) and (3.28)

Remark 3.18. Note thatgiven the Hilbert functiod?’ = H(R/J) the conditionx(J) > ag

is a closed condition on the familyGor(H’). That is, it is rarer to have higher values of
a(J). However, the situation is quite different if the Hilbert function is allowed to change,
for example if a termy.Zl/! is added to the dual generat@rof J: see Lemma 3.24, where
the effect of such a change is described.

Lemma 3.19. Let | be an ideal satisfyin8.20),and suppose that = G + W Zli=1 pe
a decomposition as i(8.22)of a generator F of the inverse systdm. Leto = a(J), J =
Ann (G) be the integer 0f3.23).Then we have

() H(R/I) satisfies eitheH (R/I)=H(R'/J')+ H,or H(R/I)= H(R'/J) + Hop; the
second possibility may occur onlyst> j/2.

(i) f H(R/I)= H(R/J") + Hy, then
H(R/(INJ)=HR/I)+(0,0,...,0,1;41 45 1,...,1;) and
annt=rtewzli—4 . wzU-Y,
also HR/(INJ)=H(R'/J)+(0,1,...,1,2,,2,...2;_1,1j), and
annt=uhtrew,wz, ... wzU=l, z4 Zr oz,

(iiy f H(R/I)=H(R/J")+ Ho,thenH(R/(INJ))andH (R'/J') are related as above
but

H(R/(INJ)=HR/)+©0,0,...,0,1,,1,...,1)).

Proof. The lemma is an immediate consequence of Lemma 3.17 and (3.28).

Recall that a Gorenstein sequertd®f height 3 is a nonnegative sequence of integers
H=(,3,...,1=h;,0,...), symmetric aboutj/2, that occurs as the Hilbert function
of a graded Artinian Gorenstein algeba~ K[x1, ..., x,]/1. Recall that thenAH); =
H, — H;_1.
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Theorem 3.20. Let | be an ideal satisfyin(8.20).ThenH = H(R/I) satisfies

(i) AH¢ 2 is an Osequence
(i) H=H + Ho=H’ +(0,1,1,...,1,0) for some Gorenstein sequen&é of height
three

Warning the H’ of (ii) above isnotin general equal té7 (R’/J'), except whemr = j — o.

Proof. By Lemma 3.17(ii) we have=u orc=j —a. The result of the theorem is obvious in
the case = j —«, since then by Lemma 3.17(iify (R/1)=H (R'/J’) + Hp. So we assume
c=oa.ByLemma3.19we havH (R/I)=H(R'/J")+ H,. HereJ'=(Ann G)NK|[x, y, z]
from Lemma 3.13 has a generator in degresince by its definition (3.23) is the lowest
degree for whichV/Z (x, y) - R_;.

First, assume < j/2, whenH, =(0,1,...,1,2,,...,2;_4,1,...,1,0), from Defini-
tion 3.14. We letH’ = H(R/I) — Hp, and we have

H =H(R'/J)+O,...,0,1,,1,...,1;_,,0,...). (3.29)

Thus, to show (ii) here it would suffice to show tiat of (3.29) is a height three Gorenstein
sequence. Assuming that the order/o6is v, we have

AH'=AH(R'/J")+(0,0,...,1,,0,...,0,—1;41 ,.0,...), and
AH(R'JJ)=(1,2,3,..., v, ty, ..., —2,—1), (3.30)

withv>1,> ... >1;/2). Furthermore, aresult of A. Concaand G. Vallais that the maximum
number of degree-generators possible for any Gorenstein idéabf Hilbert function
H(R/J)is

N —(AZH(R’/J’)),- =ti_1—1 wheni<j/2 andi #v
max(vi} = { 1— (A’H(R'/J")),=1+v—1t, wheni=v.

(see[11] or [20, Theorem B.13] SinceJ’ has a generator in degreeit follows when
a>vthatz,_1>t, + 1. Thus, fora>v adding one in degree to the first difference
(AH(R'/J")) < j,2 yields a sequencéH’ as in (3.30) that is still a@-sequence: for height
two this condition is simply that the sequent&’ must rise to a maximum valuég, then
be nonincreasing. This implies that' is indeed a height three Gorenstein sequence, and
completes the proof when< j/2.

Now assume that= o ando > j/2. Let

H'=H®R'/J)+(0,...,0,—1j11 4 -1 ...,—1,.1,0,...).

Then we have in this casé(R/I) = H” + Hp. Thus, to show (ii) here it would suffice to
show thatH” also is a height three Gorenstein sequence. We have

AH" =AH(R'/J')+ (0,0, ..., ~1j11 40,...,0,1,,0,..). (3.31)

that J' has a generator in degree- j/2, implies thatA?(H(R'/J)),< — 1, which is
equivalent by the symmetry &(H (R'/J")) to A>(H(R'/J")) j42_4 < — 1. Thisin turn
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implies (AH (R'/J")) 12—y < (AH(R'/J")) 11 Thus, loweringAH (R'/J")) ;11 by
lindegreg +1—oto obtainAHZ Zjpas in (3.31) preserves the condition thaH”) < ; »

is the Hilbert function of some helght two Artinian algebra. This completes the proof of the
theorem. [

The following examples illustrate Lemma 3.19. In particular we explore how the Hilbert
functionsH (R/I), H(R/J) change (recall that = Ann (F), J = Ann (G)) as we alter
the coefficient ofzl/l in F, G. Here there is a marked difference for the cased < j/2,
ando(J) > j/2. The subsequent Lemma 3.24 explains some of the observations.

Example 3.21. LettingG =x41z12 — x¥Wyz F =G+ wZz®!, we have/ =Ann (G) =
(w, yz+z y2, x%),sou())=2,andl=Ann (F)=(w?, wx, wy, y2, yz2, xyz+xz2, x4y+
wz?, x° ZG) Also H(R/J) = (1,3,4,4,4,3,1), and

H(R/I)=(1,4,6,6,6,4,1) = H(R/J) + H>.

ChangingG by adding az!® term, we haveG; = X172 — x4yz 4 7161 F =
G1+WZP, J(1) = Ann (G1) = (w, y2, yz2, xyz + xz2, x4y + 25, x), soa(J (1) =5
andI (1) = Ann (F1) = (w?, wx, wy, y2, yz2, xyz +xz2, x*y + wz*, x®, wz® — z8). Also
H(R/J(1))=(1,3,5,5,5,3, 1), and

H(R/I1(1))=(1,4,6,6,6,4,1) = H(R/J(1)) + Ho.

Example 3.22. In this example, we chosg = (Z + X)1® + (Z + 2x)181 + (Z + v)[®l
(Z+2)8 + (Z + X + V)I® + (Z + 2X + 2Y)!%, the sum of 6 divided powers, and
let J =Ann (G). ThenH(R/J) has the expected valué(R/J) = (1, 3,6, 6, 6, 3, 1) (see
[20]), anda(J) = 3. From Lemma 3.19, letting= Ann (F), F = G + W Z!5 we have

H(R/I)=H(R/J)+ H3=(1,4,7,8,7,4,1).
Here

I = w2, wx, wy, y> — 3y%z 4 2yz2, x2y — xy?, x> — 3x%7 + 2x22,
51xy?z — 18r%z% — 99ryz? — 18y%7% — 12wz° + 34xz° + 34y7°,
5y223 + dwz* — 9yz*, yz° — 25).

Omitting the pureZ!® term fromG andF, to obtainG1, F1 we haveH (R/Ann (G1)) =
(1,3,6,7,6,3,1), 2(Ann (G1)) =4 and

H(R/Ann Fy) = H(R/I) = H(R/Ann (G1)) + Ho.

This example shows that it is not the inclusion & term inG that keys the simpler case
H(R/I)=H(R/J)+ Hop. The Hilbert functionH (R /1) is always invariant under a change
in the Zl/] term ofF: this follows fromz’ o F = W zU=1=11 4 77 5 G, linearly disjoint from
(R; modzi) o F



86 A. larrobino, H. Srinivasan / Journal of Pure and Applied Algebra 201 (2005) 62—-96

Example 3.23.Whenj =8, G = XIBlyl5 4 x[2lyl4 7121 1 y[51 713 then
J=Ann G = w,x3— 23 7% x23 %% — y22, 8, xy® + x%y%7 — y4:2,
x2y4 — 57— xy32).

We havex(G)=3,H(R/Ann (G))=(1,3,6,9,9,9,6,3,1),andl =Ann (F), F=G +
Wz, satisfies

H(R/I)=(1,4,7,11,11,11, 7, 4, 1) = H(R/Ann (G)) + Hs.

Here

2.2

I = W? wx, wy, xz3, x22%2 — y22, 32, x3y — y23, x%, 52 — w2, 15,

0y% 4 x2y% — 422 x2y4 — 1322 _ 5 28,

Adding a Z!® term toG to form G leads toJ (1) = Ann (G1) with o(J(1)) = 6 and
F1, I1(1) = Ann (Fy) satisfying

H(R/I(1))=H(R/I)= H(R/J(1)) + Hp.

It might be thought from the previous examples, that addiagy! with . generically
chosen, will “improve”G to a G, such that/(1) = Ann G, andI; = Ann F,;, F) =
G, + wzU~Y will satisfy H(R/I;) = H(R/J;) + Ho. This change would indeed be an
improvement, since wheH (R/I) = H(R/J) + Hp the minimal resolutions of the ideals
I, J appear to be closer than they are whé(R /1) = H(R/J) + H,. In the next lemma
we show that this “improvement” must occur whe) < j/2, but can occur either never,
or for a single value of. whena(J) > j/2. We suppose thdte K.

Lemma 3.24. LetJ = Ann (G), I =Ann (F), F = G + Wz~ be such that | satisfies
(3.20),and defineG; = G + AZU, F; = F + 2ZU1, J(J) = Ann (G;), I (1) = Ann (F)).
Then we have
(i) UNT)+mi =T (AHNJ(A)+m! and(INJ); differs from(I (1) N J (1)) ;by replacing
o —uueJN((x,y)NK[x,y,z) byz/ —u',u’ € J() N ((x,y) N K[x,y, z]).
(i) HR/I)=H(R/I(4),andH(R/(I N J))=H(R/ (/) NJ());
(iii) If 2(J)<j/2andZ # Othena(J (1) = j +1— oa(J), and

H(R/J(A)=HR/J)+ O, ...,0,-1,14,1,...,1;_4,0/41-4,...,0)).
In this caseH (R/1(A)) = H(R/J(A)) + Hop.

(iv) Leta(J) > j/2thena(J (L)) = a(J) or a(J(A)) = j + 1 — a(J). In the former case
H(R/J(A) = H(R/J). The latter case may occur for at most a single valggif it
occurs then ford = Ao, o = a(J),

H(R/J(J0) = H(R/J) = (0,...,0; 5, L1101, ..., 15-1,0,,...,0)).

@) If H(R/I) = H(R/J) + Hy thena(J (1)) = a(J) and H(R/J (%)) = H(R/J).
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(b) If H(R/I)=H(R/J)+ Ho, then for all values of. except possibly a single value
Ao # 0we havex(J (1) =a(J) andH(R/J (L)) = H(R/J).

Proof. Since fori<j — 1,z = wz/=1 o wZzU-YU (1 n 1), = A1) N T,
fori < j—1. The second statementin (i) is evident. The first claim in (ii) follows since the two
idealsl, I (4) are isomorphic, under a change of variables. The second claim in (ii) follows
from (i).

Suppose that< j/2 andi # 0, and thatr = z* — g, g € (x,y) - K[x, y,z] € J. Then
forO<u<j — 20 we have

(Z"h) o (G + },Z[j]) =7ho (;LZ[j]) — zli—o—ul

It follows that fori <j — o, ZI'l € R o G(J). This implies that forx <i<j — o, we
have H(R/J(1)); = H(R/J); + 1, since by Lemma 3.1l £ R o G for i >a(J).
The claims in (iii) now follow from the symmetry aff (R/J (1)), H(R/J) and hence of
H(R/J (1) — H(R/J).

Suppose that(J) > j/2. The symmetry oH (R/J (1)) — H(R/J) and Lemma 3.17(ii)
show the first claim concerning J (1)) in (iv). This and (ii) show (iva). The same symmetry,
and (iii) also prove (ivb), and completes the proof of (iv) that the exceptional case may occur
for at most a single valugy. O

Example 3.25. Letting G = x[31z181 — ylIxl[2 4 yl2zl4 4 xyl2lzI8I 4 718 p —
G + WZzP we haveJ = Ann (G) = (x3 + x%z — y%z, y3z, y* — x%2% + y?2% + x2° —
24, xy%7 + x22% — y222 xy® — xyz% + yz8, x%yz, x2y2 4+ x%22 — 22 4+ 2, a(J) = 4,
andH(R/J)=(1,3,6,9,6,3,1). Then

I = (wy, wx, wz, x%z — yzz + wz

+y*+x8% w®— 2%, and

2 %3 —wz?, y3z, xy® — xy2® + y23, x%y?

H(R/I)=(1,4,7,9,7,41)=H(R/J)+(0,1,1,0,1,1,0) = H(R/J) + Ha.

This is an example of Lemma 3.24(iva) whe&€R /J (1)) = H(R/J) for every,.

4. Hilbert functions H =(1,4,7,h,...,4,1)

We now consider Gorenstein sequences—Hilbert functions of Artinian Gorenstein alge-
bras, so symmetric abouy2—having the form

H=(174977h7b7"‘74’1)1 (41)

of any socle degreg >6 for any possibleb. We show in Theorem 4.2 that each such
Gorenstein sequence must satisfy Sleconditionthat AH ¢ ;> is an O-sequence. This
condition was shown by Stanley and Buchsbaum and Eisenbud to characterize Gorenstein
sequences of height three (98¢31,17). When a Gorenstein sequenkesatisfies this
condition we can construct Artinian Gorenstein algebras, elemeRSof( H), as quotients

of the coordinate ring of suitable punctual schemes, and we have good control over their
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Betti numbers (Lemma 4.7 and Corollary 4.8). In particular, witee= (1,4,7, h, ...)
satisfies the Sl condition and<7: <10 we may choosd € PGor(H) such that/; has
only two linear relations: thugl ¢ €(H), the locus wherd, =~ (wx, wy, wz), implying
for most such Hilbert functionsl that PGor(H) has at least two irreducible components
(Theorems 4.6 and 4.9).

Our first result is relevant also to the open question of whether all height four Gorenstein
sequences satisfy the Sl condition. Despite our positive result we doubt that this is true in
general (see Remark 4.5). We now set some notation. \Whisnclear we usually write
h; for H; below. We se\H; = h; — h;_1. By H; ;11 we mean(h;, h;11). Given a Hilbert
function H 3, we define Syrii 3, j) as the symmetrization @t 3) < ;,» about;/2:

o (H); if i<j/2,
Sym(HS’ Di= { (Hg)/‘_,' if i>j/2 (4.2)

Lemma 4.1. Let;j > 6and suppose that the Gorenstein sequence H of socle degree j satisfies
(4.1). Then7<h <11.If j >7,then the minimum value éf= H, that can occur i$ = #,
and the maximum values of b that can occu¢4rl) are

h

bmax

78 9 10 11
79 11 13 16 (4.3)

Equivalentlya Gorenstein sequence H satisfy{dgl)must satishtA H < 4 is an O-sequence.
Also, each initial sequencél, 4, 7, h, b) satisfying7 <h <1landh <b < bmax Occurs for
j=28.

Finally, if H satisfies(4.1) and j >6, h <10 thenAH ;> is an O-sequence if and
only if its subsequenc&Hy<;<j2 = (3,3,h —7,b — h,...) is both nonnegative and
nonincreasing

Proof. We showed X2 <11 in Corollary 2.8. We now show the upper boudds bmax
of (4.3). When = 11, the upper bound of (4.3) is just the Macaulay upper bound. When
h = 10, the impossibility of(h, b) = (10, 15) follows from Corollary 2.6. The impos-
sibility of (k, b) = (10, 14) follows from two considerations. First, by Theorem 3.7(iii)
and Theorem 3.20(iiJ, cannot be PgB)-isomorphic to{wx, wy, wz) or (w?, wx, wz), as
H'=H-(0,1,1,...,1,00=(1,3,6,9,13,...) is not a height three Gorenstein sequence,
sinceAH’gj/2 =(1,2,3,3,4,...) is not anO-sequence in two variablg9,12]. ThusI,
cannot have a common factor, so has two linear relations. By Lemma 3i#s a basis
given by the 2x 2 minors of a 2x 3 matrix; sincd,> has no common factor, the quotient
R/(I2) has height two/; is determinantal and has the usual determinantal minimal reso-
lution. In particular we haveéd (R/(12)); = 3i + 1, for alli >0, so as beforél (R/1)4<
H(R/(I2))4=13.

Whenh = 8 or 9 the upper bound of (4.3) is one less than the Macaulay upper bound.
The impossibility of the Macaulay upper bound #8XR/I)3 4 in the caseg = 8, 9 follow
from Lemma 3.6(iii). Wher = 7, the upper bound <7 is shown in the: = 7 case of
the proof of Theorem 4.2 below. This completes the proof of the upper bawddgax
of (4.3).
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We next show the lower bound dn when j >7, thenb > h. Evidently, whenj = 7,
the symmetry ofH implies b = i, so we may assumg>8. The symmetry oH im-
plies(H;_4,j—3) = (b, h). The Macaulay Theorem 2.3(i) applied(d;_4, ;—3) eliminates
all triples (j, h, b) whereb<h — 2 except the triplgj, i, b) = (8, 5, 4). For this triple
Hss = (b, h) = (9, 11) is extremal growth as® = 11; then we have a contradiction by
Corollary 2.6.

We now assumg >8 andb = h — 1. We haver # 11 by Theorem 3.7(iii) and The-
orem 3.20. Since in Macaulay’s inequality of Theorem 2.8(f) = » whenb <d, and
hj—4=>b,hj_3=>b+1we must haveh> j — 4, soh> j — 2. Except for the triples
(j,h,b)=(8,10,9) or (8,11, 10), thenH; _4 ; _3 has extremal Macaulay growth, a con-
tradiction by Corollary 2.6. The second triple ias- 11, already ruled out. The first triple
occurs only forH = (1,4,7,10,9,10,7, 4, 1) whereA*Hg = —12; by symmetry of the
minimal resolution ofR/I, the number of degree six generatorsl &atisfiesvg (/) > 6,
implying thatH (R/(Is))5 ¢ = (10, 13), contradicting the Macaulay bound which requires
H(R/(I5))g<10® = 11. This completes the proof of the lower boundlgrthatz <b
in (4.1).

Itis easy to see that these bounds are just the conditiorttdats be anO-sequence, as
claimed.

That each extremal paif:, b) satisfyingh <b < bmax from (4.3) occurs in socle degree
8 can be shown by choosing the ridgto be a general enough socle-degree 8 Artinian
Gorenstein quotient of the coordinate ring of any smooth punctual scheme of degree
having Hilbert functionti3 = (1,4, 7, h, b, b, . ..). Sinceb > h, AHB is anO-sequence and
there are Artinian algebras of Hilbert functidif? 3; then there is a smooth punctual schemes
of Hilbert functionH 3, by the result of Maroscig27,14,28] That the general socle-degiiee
GA quotient ofl’(3, ¢ 3) has the expected symmetrized Hilbert functidr= Sym(H 3, j)
satisfying(Sym(H3, j)); = (H3); fori < j/2, is well known: se¢3,28,20, Lemma 6.1]

The last statement of Lemma 4.1 that 6, » <10 andAH ¢ j,» anO-sequence is equiv-
alent toAH> <; < j;2 being nonnegative and non-increasing, follows frai = (1, 3, 3,
h—17,...), with h — 7<3: by Macaulay’s inequality Theorem 2.3(i), we have for any
O-sequencd thaty; <i impliest;;1<i. O

Theorem 4.2. Every Gorenstein sequence H beginnitig= (1, 4, 7, . . .) satisfies the con-
dition, AH ¢ ;> is an O-sequence

Proof. We assuméf = H (R/I) for an Artinian Gorenstein quotie®/ I satisfies (4.1) that
H=(1,4,7,h,b,...)and consider each value bfin turn. We show that each occurring
sequencé satisfies the criterion from Lemma 4.1 fA#{ to be anO-sequence.

Caseh =7:We haveH (R/1);_3 j_o=H(R/I)y3=(7,7);if j >10thenH is extremal
in degrees — 3to j — 2, and we have thg} = Proj (/;_3) is a degree-7 punctual scheme
satisfying by Lemma 2.9/ (3); = 7 for alli > 3: by Corollary 2.2, we havél (R/1); =7
for 3<i < j —2. So we may assume that8 or 9. We have < 7® =9. Shouldh =9 then
Proj (R/(13)) would define a degree-2 curve of genus zero and regularity two, so its Hilbert
function would satisfyH (R/(13))2 <5, by Corollary 2.2 contradicting/ (R/1), = 7. We
now suppose that = 7, b = 8, and suppose the socle degree 8 or 9. When; = 8,
H=(1,4,7,7,8,7,7,4,1), sinceA*Hs = —7, the ideal hasvs generators (first syzygies)
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andys third syzygies in degree 5, with<Zvs + us; by symmetry of the minimal resolution
v7= s andu; =vs; thus we have eithes >3 orv; > 4; butvs <2 andv; < 4 by Macaulay’s
Theorem 2.3. If7 = 4 then the ideal/ <) would satisfyH (R/(1s))s 7 = 7, 8 of extremal
growth, a contradiction witi\H3 = 0, by Corollary 2.6 and Lemma 4.1. Fgr= 9 we
would have similarIyA4H5 = —6, sovs + vg =6, butvs <2, and wheng = 4 we'd have
H(R/(Is))78=7, 8, and a similar contradiction. We have shown that a Gorenstein sequence
beginning(1, 4, 7, 7) continues with a subsequence of 7’s followed(#8y1l).

Caseh = 8: Macaulay extremality shows <i + 5 andAH; ;1 <1 fori >3. Suppose
by way of contradiction that\H; < 0, for somei < j/2 (this is equivalent tdd being
nonunimodal). Letting’ = j — i, we have by the symmetry &f thath; 1 =hy + 1=
hi_1<i — 1+ 5<i’ + 4; it follows from Theorem 2.3 that either this is impossible (when
hi»<i') orHis extremal in degreestoi’ + 1, a contradiction by Corollary 2.6 and Lemma
4.1. Now supposed i < k, AH; =0 butAH; = 1. ThenH; = (H;—1)* Y, and we have a
contradiction by Corollary 2.6 and Lemma 4.1. It follows thesatisfiesAH;, 2<i < j/2
is nonnegative and nonincreasing, thul ¢ ;> is anO-sequence.

Caseh = 9: Lemma 3.6(iii) implies that4 < 11; applying Macaulay extremality induc-
tively we have fori >4 thath; <2i + 3 andAH; <2. Suppose by way of contradiction
thatAH; <0, for somei < j/2; thenh; =i + a with a <i. We now use the symmetry of
H about;/2. Lettingi’ = j — i, we haveh;y =i +a=i"+d',a’ =a — (i’ —i); since
a’' <a <i’ we must havér;s <2’ whenceh; 1 <hy + 1 by the Macaulay Theorem 2.3(i),
S0AH; 1 =—AH; =1, andh; .11 = hy + 1is extremal, a contradiction by Corollary 2.6
and Lemma 4.1.

Now suppose that for sonieg j/2 we haveAH; 1 = 1, butAH; = 2: then by Theorem
2.3 we would have ProjR/(1;)) defines a degree 2 curve union some points, of Hilbert
polynomial 2 + a, a <2, of regularity degree at most 3 by Corollary 2.5, hence by Lemma
2.9 and Corollary 2.2 we would havi < 8, a contradiction.

Finally, suppose that for sonieC j /2 we haveAH; _1 =0 butAH; > 0. By Corollary 2.6
we haveAH; # 2,s0AH; =1. Ifalso thereis a previous 4<u <i —2withAH, <2then
h; <2i,implying thatH; = (H;_1)"~?, a contradiction by Corollary 2.6. Thus to complete
the casér = 9, we need only consider sequences

H=ML4709 . .. hy=2u+3 ... hio=hi_1=2i —Lh=2,...,741)
(4.4)

with possible consecutive repetition of the maximum valiieVze haveA4H,-+1 =-5if
hit1=h;,and—6if j = 2i soh; 1 =h; — 1. In either case, we obtain, 1 + v;13-; >5.

This is impossible since on the one handz_; >3 would imply thatH (R/(Ij42—;)); =
hi—2=2i =1, H(R/(l})) j13—; = hi—3 + 3= 2i — 3+ 3= 2i, which is extremal growth

of H, a contradiction by Corollary 2.6. On the other hand;if; >1 whenh; 1 = h;, or

if viy1>2 whenh;1 1 =h; — 1 we would haveH(R/I); =2i, H(R/(I;));;1=2i + 1
implying extremal growth, a contradiction with (4.4) by Corollary 2.6. This completes the
proof thatAH is anO-sequence wheh = 9.

Caseh = 10: By Lemma 4.1h4<13; also when/> has a common factor Theorems
3.7(iii) and Theorem 3.20 show thAiH ¢ ;» is anO-sequence. We suppose henceforth in
our analysis of: = 10 that/, does not have a common factor. Then by Lemma 3.4ii)
defines a rational normal curve, satisfyildR/(I2)), = 3t + 1 for all t > 0. Notice also
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that if H(R/I), <3t — 1, andr >4, then the Macaulay inequality Theorem 2.3(i) implies
AH(R/I);1<2. We next rule out various perturbations in the Hilbert function sequence.
First, AH; 11 < — 2 for somei < j/2 is impossible from the Macaulay bound and the
symmetry oH. We would havé\H;/ 1 >2fori’=j—i—1>i+1;thenletting;; =3i + 1—
e,e>0wehavel; =h;11<h;—2=3i—(e+1)=2i+(i—e—1)=2i"+b, b<i—e—3;thus,
the Macaulay bound here implids7;/ 1 <2, sothereis equalitd& H;, 1 =2, a contradiction
by Corollary 2.6. AlsoAH;,1 = —1 for somei < j/2, andj > 5i + ¢, is impossible by
a similar calculation thal\H;», 1 = 1 the maximum possible, again a contradiction by
Corollary 2.6.
SupposeAH;11 = —1 with i < j/2 — 1 and no restriction of;, suppose that is the
maximum such integer. Letting= 4,1 we write the consecutive subsequelke 1, ...,
hiy3) as

(a+c,14+c,c,1—a+c,b+c). (4.5)
Thenvi+3(1) + Vjt5—i (H= — A4Hi+3 = —A4Hj+5,i =8—a — b — 4u. We have

H(R/(Ii42)i42i+3=Q—a+c,b+c+viy3) and
H(R/(Ij+a-i))j14-i j45-i=A+c,a+c+vjis).

Thus the sumd + &', 6 = AH(R/(1i12))i13. 0 = H(R/(Ij+4-i)) j15_; Satisfies
S+ = b+vigz+o—D+(@+vj5-; —1)=>6— 3.

Soifa<1 at least one of, &' is two, and the corresponding Hilbert function has extremal
growth of two, a contradiction by Corollary 2.6. df= 2, theni + 1< j/2 — 1 (by the
symmetry oH), andA H; 2 = —1, contradicting the assumption grandx > 3 has already
been ruled out. We have shouH; 1 = —1 fori < j/2 — 1 is impossible.

We cannot have botAH, <2 andAH; 1 = 3 for a pairu, i satisfyingu <i < j/2,
since thenk; <3i. This is possible only if;; = 3i andh;;1 = hﬁ’), a contradiction by
Corollary 2.6. We cannot have botvH, <1 andAH;;1 =2 foru <i < j/2, since then
hi =3i —1—e¢,e>0, andH,; ;41 is extremal, again a contradiction by Corollary 2.6.

Suppose that for somie2<i < j/2— 1, we haveAH; =0, butAH; 1 =1. Then, letting

¢ = h; the consecutive subsequenée o, ..., h;jt2) IS
(a+c,c,c,14+¢,b+0). (4.6)

Thenviyo(I) + vjr6—i (1) > — A*hiyo = —A*h 6 i = 4 — (b + a). It follows that the
SUMAH (R/(Ii+2))i43+AH(R/(Ij15-i))j16-i =a+b— 144~ (a+b) =3, hence one
of the two differences is at least two, which is here extremal growth, gilice<3(i + 2)
and similarlyH;,5_; <3(j +5—1). Then Corollary 2.6 implies a contradiction with (4.6).

This completes the proof in the case= 10.

Caseh = 11: In this case> must have a common linear factor. Theorem 3.7(iii) for
L~ (wx,wy, wz) and Theorem 3.20 for, =~ (w?, wy, wz) show thatH = H' +
(0,1,1,...,1,0), which implies that\ H < ;> is anO-sequence.

This completes the proof of the theorent]
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For H satisfying (4.1), recall that we denote 8 H) C PGor(H) the subfamily
parametrizing ideal$ such thatl/; ~ 8B = (wx, wy, wz), up to a coordinate change. By
Theorem 3.7(ii) we have th&(H) is nonempty if and only ifPGor(H’) is nonempty,
whereH’ =(1,3,6,h —1,i —1,...,3,1).

Corollary 4.3. LetH = (1,4, 7, ...). The following are equivalent

(i) The sequence H is a Gorenstein sequence
(i) The sequencAH¢ ;. is an O-sequence
(i) The sequencel’=H — (0,1,1,...,1,0) is a height three Gorenstein sequence
(iv) AH%]./2 is an O-sequence
M) AHL =123, .., i+ L hy byt JWithi +1>hy > hypa> -
Under this assumptigrthe subfamilyf¢(H) c PGor(H) is always nonempty

Proof. That (i) is equivalentto (ii)is Theorem 4.2. That (ii) is equivalentto (iv) isimmediate
from the last statement of Lemma 4.1, and an easy verification When(1, 4, 7, 11, .. .).

That (iii) is equivalent to (iv) follows from the Buchsbaum—Eisenbud structure theorem
[9,31]. That specific criterion (iv) is equivalent to (v) is well known—see for exanfizle
Theorem 5.25hnd[21, Corollary C6] That€(H) is always nonempty wheH satisfies
these conditions follows from Theorem 3.7 and (i}

The following result handles height four Gorenstein sequences below those considered
in Theorem 4.2.

Proposition 4.4. A symmetric sequendé=(1,4,a,...,4,1), a<60fsocle degreejis a
Gorenstein sequence if and onlyAiH ¢ ;> is an O-sequencer, equivalentlyif AH ;>
is nonincreasing once it does not increase. The values2, 3 cannot occur

Proof. Whena =6, theniz = 10, the maximum under Macaulay’s theorem, would imply
h1=3, by Corollary 2.6. Assum#& = H (A) for an Artinian Gorensteidd = R/I and lety;
denote the number of relations (first syzygies) in degrééhena =6 andhz =9, hg = b,
then the fourth differences of satisfyA*(H), = A4(H), =b — 15, so by the symmetry of
the minimal resolution oA we havexs 4 o; > 15— b. S'inceAH(R/(Ij_l))j =o—3and
J —1>5, the Macaulay bound implies that growth fram. 1 =4to H(R/(I;j-1)) j =1+«
would be maximal whem; = 3. Buta; = 3, is impossible by Corollary 2.6. However,
o; <2, impliesay > 13— b; thusH (R /(I3))4 > b+ 13— b=13,contradicting the Macaulay
bound of 9 = 12. We have show# = (1,4, 6,9, .. .) to be impossible. Establishing the
result forH = (1, 4, 6, b, ...) with b <8 is relatively simple, requiring only Theorem 2.3
and Corollary 2.2 without using the symmetry of the minimal resolution: we leave this to
the reader.

Whena = 5, then the Macaulay bound gives<7; andH = (1,4,5,7,b, ...) is not
possible by Corollary 2.6.

The remaining cases are simpler, and we leave them as an exercise. Nate th&tare
impossible, since by the symmetryldf we would havé:;_, =a andh;_1 = 4. however,
the Macaulay bound gives/ =2 <a whena<j — 2, and herg —2>4. O
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Remark 4.5 (Do height four Gorenstein sequences satlsf< ;> is an O-sequencgX he
height four Gorenstein sequences ofthe féfm (1, 4, 7, . . .) are probably close to an upper
bound of those which may be shown to satisfy the condifiéf ;> is anO-sequence, by
the kind of arguments we have used for Theorem 4.2. Notice that we were not able to rule
out the nonoccurring, sequenge= (1, 4, 7, 10, 14, 10, 7, 4, 1) by a simple application of
Macaulay bounds and the Gotzmann method of Lemma 2.3, together with calculation of
A*H . Rather, we needed to use Lemma 3.4, which involves the twisted cubic. Likewise, in
proving other parts of Theorem 4.2, we use at times detailed information about low degree
curves inP3,

Thus we are inclined to conjecture that there are height four Gorenstein sequences that
do not satisfy the condition th#H < ;/» is anO-sequence.

Recall that we denote by (J) the number of degreiegenerators of the idedl The next
result follows from Theorems 3.11 and 4.2. Recall that the socle degt¢ésdhe highest
jsuchthat:; # 0.

Theorem 4.6. Assume thatthe Gorenstein sequence Hsatigfiegl, 4, 7, h, b, ..., 4, 1),
of socle degreg > 6, whereh, b are arbitrary integers satisfying the necessary restrictions
of Lemmad.1.

(i) the dimension of the tangent spaZg on PGor(H) to a general element | 6§(H) C
PGor(H) satisfies

dimg 7 =dimC(H) + 1+ v;_1(J) 4.7)

where Jis ageneric element®Gor(H'), H'=(1,3,6,h—1,b—1,...,h—1,6, 3, 1).
(i) Whenj >6, the Zariski closurdS(H) is a generically smooth irreducible component
of PGor(H) when equivalently

(@) vj—1(J) = 0for J generic inPGor(H');
(b) a genericJ € PGor(H’) has no degred relations
(c) 3h—b—17>0.

Proof. Here (i) follows immediately from Theorem 3.11(i), (ii). This shows (iia); by the
symmetry of the minimal resolution df (iia) is equivalent to (iib). The third difference
satisfies(A3H’)4 =17+ b — 3k, and under the assumptign= 6, it gives, when positive,

the number of degree-4 relations—the linear relations among those generattiavofg
degree 3; when O or negative there are no such relations. This completes the proof of the
equivalence of (iib) and (iic). O

We now show that there are monomial idealstin= K [x, y, z], having certain Hilbert
functionsT’ and having a small number of generators. This prepares a key step for Theorem
4.9. We consider Hilbert functions of the forfii = (1,3,3,...,2,, ..., 1. ...,0,..)
where degrea is the first degree in whicli, < 3, andc is the first degree >3 in which
T/ <1, anddis the first positive degree in whidhy = 0: we allow equalities among c, d,
soifa=c=4,d=5,T'"=(1,3,3,3,1,0,...). The following result is easy to verify.
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Lemma 4.7. (i) The Artinian algebraA = R'/J,.c.d, Ja.c.a = (xy, xz, yz, x%, y¢, z%),
3<a<c<d hasHilbert functiol(a, c,d)=(1,3,3,...,24,..., 1., ...,04,...) inthe
sense above

(i) The Artinian algebrad = R'/K,.., Ky = (x%, xy, 22, x "1z, y¢), 3<a<c has
Hilbert functionT’(a,c) =(1,3,3,2,...,14,...,0.,...).

Corollary 4.8 (Artinian Gorenstein algebras with related minimal resoludiori) Maros-
cia[27,14,20,28]Lets = 3 ;- oT'(a, ¢, d);, or 3 ;- oT, ., respectively. Then there are
smooth degree-s punctual schenges: 3(a, ¢, d) C P2 or 3 = 3(a,c) C P, respec-
tively, whose coordinate rings have the same minimal resolutions as the Artinian algebras
defined by, . 4 or K, .., respectively

(i) (Boij [3]). Furthermorelet j > 2¢, or j > 2b, respectivelyandletA=A(a, c, d, j, F)
or A = A(a,c, j, F), respectively denote a general enough GA quotient©f, 3 =
3(a, c,d) or 3 = 3(a, ¢) having socle degree flefined byA = R/Ann (F), F € (13)j.
The minimal resolution of A agrees with that of the corresponding coordinate(ripg
degrees up tg /2.

Proof. P. Maroscia’s well-known result deforms a given monomial ideal defining an
Artinian algebra to a graded ideal defining a smooth punctual sctizmaed having the
same minimal resolution. M. Boij showed that a general enough GA quotiepthafs a
related minimal resolution. (]

Theorem 4.9 (FamiliesPGor(H) with several components (i) Assume that H is a Goren-
stein sequence of socle degyee 6 satisfying(4.1),namelyH = (1,4, 7, h, b, .. .) and that
h<10.Then there is a GA quotient of the coordinate ring of a smooth punctual scBeme
having Hilbert function Hand H = Sym(H3, j).

(i) Assume further tha®h — b — 17>0 and 8</ <10. ThenPGor(H) has at least
two irreducible componentshe component, and a component containing suitable GA
algebrasA = A(a, c,d, j, F) or A= A(a, c, j, F), respectivelythat are quotients of the
coordinate ring of smooth punctual schemes

Proof. Assumethat =(1,4,7,h,b, ..., 1) hassocle degreg>6 andletl’' =AH < j/».

By Theorem 4.27’ is anO-sequence; since< 10 Lemma 4.1 implieq” satisfiesT’ =
1,3,3,h —7,b— h,...), with h — 7<3, with T’gj/2 nonnegative, and nonincreasing
afterdegree Oto 1. Thu& =T'(a, c,d) orT'=T'(a’, ¢’) for suitable(a, c, d) or (@', ¢).
Lemma4.7 and Corollary 4.8(ii) imply that there is a Artinian Gorenstein algébr& /I of
Hilbert functionH, such that the beginning of its minimal resolution is thaR6fJ (a, b, ¢)

or R’'/K (a, b). In particularl, has at most two linear relations. Since one cannotspecialize
from a GA algebrad = R/I € €(H) wherel, has three linear relations, to a GA algebra
A= A(a,c,d, j, F)orA(a,c, j, F) wherel has at most two linear relations, the claim
of the theorem follows. [
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