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Abstract

We prove a new selection theorem for multivalued mappings ofC-space. Using this theorem
we prove extension dimensional version of Hurewicz theorem for a closed mappingf :X→ Y of
k-spaceX onto paracompactC-spaceY : if for finite CW-complexM we have e-dimY � [M] and for
every pointy ∈ Y and every compactumZ with e-dimZ � [M] we have e-dim(f−1(y)×Z)� [L]
for someCW-complexL, then e-dimX � [L].
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The classical Hurewicz theorem states that for a mapping of finite-dimensional com-
pactaf :X→ Y we have

dimX � dimY + dimf, where dimf = max
{
dim

(
f−1(y)

) | y ∈ Y}
.

There are several approaches to extension dimensional generalization of Hurewicz theorem
[1,3,6–10]. It is proved for 0-dimensional (i.e., light) maps of compacta in [7], and fork-
dimensional maps in [10]: iff :X→ Y is ak-dimensional map betweenC-compacta, then
e-dimX � e-dim(Y × Ik).

Using the idea from [3] (see also [13]), we improve Theorem 7.6 from [1]:
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Theorem 3.1. Let f :X → Y be a closed mapping of ak-spaceX onto paracompact
C-spaceY . Suppose thate-dimY � [M] for a finite CW-complexM. If for every point
y ∈ Y and for every compactumZ with e-dimZ � [M] we havee-dim(f−1(y)×Z)� [L]
for some CW-complexL, thene-dimX � [L].

The notion of extension dimension was introduced by Dranishnikov [4]: for a
CW-complexL a spaceX is said to haveextension dimension� [L] (notation: e-dimX �
[L]) if any mapping of its closed subspaceA⊂X intoL admits an extension to the whole
spaceX.

To prove Theorem 3.1 we need an extension dimensional version of Uspenskij’s
selection theorem [12]. In Section 2 we prove Theorem 2.8 on selections of multivalued
mappings ofC-space. Then Theorem 2.5 helps us to prove Theorem 2.9—a needed version
of Uspenskij’s theorem.

Filtrations of multivalued maps are proved to be very useful for construction of
continuous selections [1,11]. And we state our selection theorems in terms of filtrations.
Note that Valov [14] used filtrations to prove a selection theorem for mappings of finite
C-spaces.

Let us recall some definitions and introduce our notations. A spaceX is called a
k-spaceif U ⊂ X is open inX wheneverU ∩ C is relatively open inC for every
compact subsetC of X. The graph of a multivalued mappingF :X → Y is the subset
ΓF = {(x, y) ∈X× Y : y ∈ F(x)} of the productX× Y .

We denote by covX the collection of all coverings of the spaceX. For a coverω of a
spaceX and for a subsetA⊆X let St(A,ω) denote the star of the setA with respect toω.
We say that a subsetA⊂ X refinesa coverω ∈ covX if A is contained in some element
of ω. A coveringω′ ∈ covX strongly star refinesa coveringω ∈ covX if for any element
W ∈ ω′ the set St(W,ω′) refinesω.

Definition 1.1. A topological spaceX is calledC-spaceif for each sequence{ωi}i�1 of
open covers ofX, there is an open coverΣ of X of the form

⋃∞
i=1σi such that for each

i � 1,σi is a pairwise disjoint collection which refinesωi .

If the spaceX is paracompact, we can choose the coverΣ to be locally finite and every
collectionσi to be discrete.

Definition 1.2. A multivalued mappingF :X→ Y is said to bestrongly lower semicontin-
uous(briefly, strongly l.s.c.) if for any pointx ∈ X and any compact setK ⊂ F(x) there
exists a neighborhoodV of x such thatK ⊂ F(z) for everyz ∈ V .

Definition 1.3. Let L be a CW-complex. A pair of spacesV ⊂ U is said to be
[L]-connected(respectively,[L]c-connected) if for every paracompact spaceX (respec-
tively, compact metric spaceX) of extension dimension e-dimX � [L] and for every
closed subspaceA ⊂ X any mapping ofA into V can be extended to a mapping ofX
intoU .
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An increasing2 sequence of subspacesZ0 ⊂ Z1 ⊂ · · · ⊂ Z is called afiltration of
spaceZ. A sequence of multivalued mappings{Fk :X → Y } is called afiltration of
multivalued mappingF :X→ Y if {Fk(x)} is a filtration ofF(x) for anyx ∈X.

Definition 1.4. A filtration of multivalued mappings{Gi :X → Y } is said to be
fiberwise[L]c-connectedif for any point x ∈ X and anyi the pairGi(x) ⊂ Gi+1(x) is
[L]c-connected.

2. Selection theorems

The following notion of stably[L]-connected filtration of multivalued mappings
provides a key property of the filtration for our construction of continuous selections.

Definition 2.1. A pair F ⊂ H of multivalued mappings fromX to Y is calledstably
[L]-connectedif every pointx ∈ X has a neighborhoodOx such that the pairF(Ox) ⊂⋂
z∈Ox H(z) is [L]-connected.
We say that the pairF ⊂H is calledstably[L]-connected with respect to a covering

ω ∈ covX, if for anyW ∈ ω the pairF(W)⊂ ⋂
x∈W H(x) is [L]-connected.

A filtration {Fi} of multivalued mappings is calledstably [L]-connectedif every pair
Fi ⊂ Fi+1 is stably[L]-connected.

Clearly, any stably[L]-connected pair of multivalued maps of a spaceX is stably
[L]-connected with respect to some covering ofX.

We denote byQ the Hilbert cube. We identify a spaceY with the subspaceY × {0} of
the productY ×Q and denote by prY the projection ofY ×Q ontoY .

Definition 2.2. For a subspaceZ ⊂ Y × Q we say thatY projectively containsZ. We
say that a multivalued mappingF :X→ Y projectively containsa multivalued mapping
G :X→ Y ×Q if for any pointx ∈X the set prY ◦G(x) is contained inF(x).

Lemma 2.3. LetL be a finite CW-complex. If a topological spaceY contains a compactum
K of extension dimensione-dimK � [L] such that the pairK ⊂ Y is [L]c-connected, then
Y projectively contains a compactumK ′ of extension dimensione-dimK ′ � [L] such that
K lies inK ′ and the pairK ⊂K ′ is [L]-connected.

Proof. There existsAE([L])-compactumK ′ of extension dimension e-dimK ′ � [L]
containing the given compactumK [2]. Clearly, the pairK ⊂K ′ is [L]-connected. Since
e-dimK ′ � [L], there exists a mappingp :K ′ → Y extending the inclusion ofK into Y .

It is easy to see that there exists a mappingq :K ′ →Q such thatq−1(0)=K andq is
an embedding onK ′ \K. Now define an embeddingj :K ′ → Y ×Q asj = p× q . Since
q−1(0)=K, the mappingj coincide withp onK which is inclusion onK. ✷

2 We consider only increasing filtrations indexed by a segment of the integral series.
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Definition 2.4. We say that a filtrationF0 ⊂ F1 ⊂ · · · of multivalued mappings fromX
to Y projectively containsa filtrationG0 ⊂G1 ⊂ · · · of multivalued mappings fromX to
Y ×Q if for any pointx ∈X and anyn the set prY ◦Gn(x) is contained inFn(x).

Theorem 2.5. For a finite CW-complexL any fiberwise[L]c-connected filtration of
strongly l.s.c. multivalued mappings of paracompact spaceX to a topological spaceY
projectively contains stably[L]-connected filtration of compact-valued mappings.

Proof. For a given fiberwise[L]c-connected filtrationF0 ⊂ F1 ⊂ · · · of strongly l.s.c.
multivalued mappings we construct stably[L]-connected filtrationG0 ⊂ G1 ⊂ · · · of
compact-valued mappingsGn :X→ Y ×Qn as follows: successively for everyn� 0 we
construct a coveringωn = {Wnλ }λ∈Λn ∈ covX and a family of subcompacta{Knλ }λ∈Λn of
Y ×Qn, and define the mappingGn by the formula

Gn(x)=
⋃{

Knλ | x ∈Wnλ
}
.

First, we constructG0, i.e., the coveringω0 and the family{K0
λ}λ∈Λ0. SinceF0 is

strongly l.s.c., there exists a locally finite open coveringω−1 = {W−1
λ }λ∈Λ−1 ∈ covX and a

family {M−1
λ }λ∈Λ−1 of points inY such thatW−1

λ ×M−1
λ ⊂ ΓF0 for anyλ ∈Λ−1. Denote

byH0 a multivalued mapping taking a pointx ∈X to the setH0(x)= ⋃{M−1
λ | x ∈W−1

λ }.
Note thatH0(x) is contained inF0(x) and consists of finitely many points. By Lemma 2.3
for any x ∈ X there exists a compactum̂H0(x) ⊂ F1(x) × Q of extension dimension
e-dimĤ0(x)� [L] such that the pairH0(x)⊂ Ĥ0(x) is [L]-connected. SinceF1 is strongly
l.s.c., any pointx ∈ X has a neighborhoodO0(x) such that the productO0(x) × Ĥ0(x)

is contained inΓF1 ×Q. SinceX is paracompact, we can choose neighborhoodsO0(x)

in such a way that the coveringO0 = {O0(x)}x∈X strongly star refinesω−1. Let ω0 =
{W0
λ }λ∈Λ0 be a locally finite open cover ofX refining O0. For everyλ ∈ Λ0 we fix

a point xλ such thatW0
λ ⊂ O0(xλ) and putM0

λ = Ĥ0(xλ). For everyλ ∈ Λ0 we fix
α(λ) ∈Λ−1 such that St(W0

λ ,O0)⊂W−1
α(λ) and putK0

λ =M−1
α(λ).

Inductive step of our construction is similar to the first step. Suppose that a covering
ωn−1 = {Wn−1

λ }λ∈Λn−1 ∈ covX and a family{Mn−1
λ }λ∈Λn−1 of compacta inY × Qn−1

are already constructed such that e-dimMn−1
λ � [L] and the productWn−1

λ ×Mn−1
λ is

contained inΓFn ×Qn for any λ ∈ Λn−1. Denote byHn a multivalued mapping taking
a point x ∈ X to the compactumHn(x) = ⋃{Mn−1

λ | x ∈ Wn−1
λ }. Note thatHn(x) is

contained inFn(x)×Qn and has extension dimension e-dimHn(x)� [L]. By Lemma 2.3
for anyx ∈X there exists a compactum̂Hn(x)⊂ Fn+1(x)×Qn+1 of extension dimension
e-dimĤn(x) � [L] such that the pairHn(x) ⊂ Ĥn(x) is [L]-connected. SinceFn+1
is strongly l.s.c., any pointx ∈ X has a neighborhoodOn(x) such that the product
On(x)× Ĥn(x) is contained inΓFn+1 ×Qn+1. SinceX is paracompact, we can choose
neighborhoodsOn(x) in such a way that the coveringOn = {On(x)}x∈X strongly star
refinesωn−1. Let ωn = {Wnλ }λ∈Λn be a locally finite open cover ofX refiningOn. For
everyλ ∈Λn we fix a pointxλ such thatWnλ ⊂ On(xλ) and putMnλ = Ĥn(xλ). For every
λ ∈Λn we fix α(λ) ∈Λn−1 such that St(Wnλ ,On)⊂Wn−1

α(λ) and putKnλ =Mn−1
α(λ).

To show that the pairGn−1 ⊂ Gn is stably [L]-connected, we prove that the pair
Gn−1(W

n
λ )⊂

⋂{Gn(x) | x ∈Wnλ } is [L]-connected for anyWnλ ∈ ωn. By the construction
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of Gn, the setKnλ is contained in
⋂{Gn(x) | x ∈ Wnλ }. We know that the pair

Hn−1(xα(λ)) ⊂ Ĥn−1(xα(λ)) = Mn−1
α(λ) = Knλ is [L]-connected. Therefore it is enough to

show the following inclusion:

Gn−1
(
Wnλ

)

=
⋃{

Kn−1
β |Wnλ ∩Wn−1

β �= ∅} ⊂
⋃{

Mn−2
ν | xα(λ) ∈Wn−2

ν

} =Hn−1(xα(λ))

which follows from the fact thatWnλ ∩Wn−1
β �= ∅ impliesxα(λ) ∈Wn−2

α(β) (note thatMn−2
α(β) =

Kn−1
β ). By the choice ofα(λ) we haveWnλ ⊂On−1(xα(λ)). ThenWnλ ∩Wn−1

β �= ∅ implies

On−1(xα(λ))∩Wn−1
β �= ∅ andxα(λ) ∈On−1(xα(λ))⊂ St(Wn−1

β ,On−1)⊂Wn−2
α(β). ✷

Definition 2.6. For a spaceZ a pair of spacesV ⊂ U is said to beZ-connectedif for
every closed subspaceA⊂Z any mapping ofA intoV can be extended to a mapping ofZ
intoU .

Definition 2.7. A pair F ⊂ H of multivalued mappings fromX to Y is calledstably
Z-connectedif every pointx ∈ X has a neighborhoodOx such that the pairF(Ox) ⊂⋂
z∈Ox H(z) isZ-connected.
We say that the pairF ⊂ H is calledstablyZ-connected with respect to a covering

ω ∈ covX, if for anyW ∈ ω the pairF(W)⊂ ⋂
x∈W H(x) isZ-connected.

A filtration {Fi} of multivalued mappings is calledstablyZ-connectedif every pair
Fi ⊂ Fi+1 is stablyZ-connected.

Theorem 2.8. Let F :X→ Y be a multivalued mapping of paracompact C-spaceX to
a topological spaceY . If F admits infinite stablyX-connected filtration of multivalued
mappings, thenF has a singlevalued continuous selection.

Proof. Let {Fi}∞i=−1 be the given filtration ofF . Let {ωi}∞i=−1 be a sequence of coverings
of X such thatωi+1 refinesωi and the pairFi ⊂ Fi+1 is stablyX-connected with respect
to the coveringωi . SinceX is paracompactC-space, there exists a locally finite closed
coverΣ of X of the formΣ = ⋃∞

i=0σi such thatσi is discrete collection refiningωi .
DefineΣn = ⋃n

i=0σi . We will construct a continuous selectionf of F extending it
successively over the setsΣn.

First, we constructf0 :Σ0 → Y . We definef0 separately on every elements of the
discrete collectionσ0: take a pointp ∈ F−1(s) and putf0(s)= p. Since the sets refinesω0,
thenp ∈ F0(x) for anyx ∈ s and thereforef0 is a selection ofF0|Σ0.

Suppose that we already constructedfn—a continuous selection ofFn|Σn . Let us define
fn+1 on arbitrary elementZ of discrete collectionσn+1. SinceΣ is locally finite, the set
A=Z∩Σn is closed inX. Sincefn is a selection ofFn, thenfn(A) is contained inFn(Z).
Since the pairFn(Z)⊂ ⋂

x∈Z Fn+1(x) isX-connected, we can extendfn|A to a mapping
f ′
n :Z→ ⋂

x∈Z Fn+1(x). Clearly,f ′
n is a selection ofFn+1|Z . We definefn+1 on the setZ

asf ′
n.

Finally, we definef to be equal tofn on the setΣn. ✷
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Theorem 2.9. LetL be a finite CW-complex andF :X→ Y be a multivalued mapping of
paracompact C-spaceX of extension dimensione-dimX � [L] to a topological spaceY .
If F admits infinite fiberwise[L]c-connected filtration of strongly l.s.c. multivalued
mappings, thenF has a singlevalued continuous selection.

Proof. By Theorem 2.5, the mappingF ′ :X → Y × Q defined asF ′(x) = F(x) × Q
contains a stably[L]-connected filtration of multivalued mappings. By Theorem 2.8F ′ has
a singlevalued continuous selectionf ′. Then the mappingf = prY ◦ f ′ is a singlevalued
continuous selection ofF . ✷

3. Hurewicz theorem

The proof of the following theorem is similar to the proof of Theorem 2.4 from [3].

Theorem 3.1. Let f :X → Y be a closed mapping ofk-spaceX onto paracompact
C-spaceY . Suppose thate-dimY � [M] for a finite CW-complexM. If for every point
y ∈ Y and for every compactumZ with e-dimZ � [M] we havee-dim(f−1(y)×Z)� [L]
for some CW-complexL, thene-dimX � [L].

Proof. SupposeA⊂X is closed andg :A→ L is a map. We are going to find a continuous
extensioñg :X→L of g. LetK be the cone overLwith a vertexv. We denote byC(X,K)
the space of all continuous maps fromX toK equipped with the compact-open topology.
We define a multivalued mapF :Y →C(X,K) as follows:

F(y)= {
h ∈C(X,K) | h(f−1(y)

) ⊂K \ {v} andh|A = g}.
Claim. F admits continuous singlevalued selection.

If ϕ :Y → C(X,K) is a continuous selection forF , then the mappingh :X → K

defined byh(x)= ϕ(f (x))(x) is continuous on every compact subset ofX and becauseX
is ak-space,h is continuous. Sinceϕ(f (x)) ∈ F(f (x)) for everyx ∈X, we haveh(X)⊂
K \ {v}. Now if π :K \ {v} → L denotes the natural retraction, theng̃ = π ◦ h :X→ L is
the desired continuous extension ofh. ✷
Proof of the claim. We are going to apply Theorem 2.9 to infinite filtrationF ⊂ F ⊂
F ⊂ · · · . To do this, we have to show thatF is strongly l.s.c. and that the pairF(y)⊂ F(y)
is [M]c-connected for every pointy ∈ Y .

First, we show thatF is strongly l.s.c. Lety0 ∈ Y andP ⊂ F(y0) be compact. We
have to find a neighborhoodV of y0 in Y such thatP ⊂ F(y) for every y ∈ V . For
everyx ∈X define a subsetP(x)= {h(x) | h ∈ P } of K. SinceP ⊂ C(X,K) is compact
and X is a k-space, by the Ascoli theorem, eachP(x) is compact andP is evenly
continuous. This easily implies that the setW = {x ∈ X | P(x) ⊂ K \ {v}} is open in
X and, obviously,f−1(y0) ⊂W . Sincef is closed, there exists a neighborhoodV of y0
in Y with f−1(V )⊂W . Then, according to the choice ofW and the definition ofF , we
haveP ⊂ F(y) for everyy ∈ V .
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Fix an arbitrary pointy ∈ Y . Let us prove that the pairF(y)⊂ F(y) is [M]c-connected.
Consider a pair of compactaB ⊂ Z where e-dimZ � [M] and a mappingϕ :B → F(y).
SinceB × X is a k-space (as a product of a compact space and ak-space), the map
ψ :B × X → K defined asψ(b, x) = ϕ(b)(x) is continuous. Extendψ to a setZ × A
letting ψ(z, a) = g(a). Clearly,ψ takes the setZ × f−1(y) ∩ (Z × A ∪ B × X) into
K \ {v} ∼= L × [0,1). Since e-dim(Z × f−1(y)) � [L], we can extendψ over the set
Z × f−1(y) to take it intoK \ {v}. Finally extendψ over Z × X as a mapping into
AE-spaceK. Now define an extensioñϕ :Z→ F(y) of the mappingϕ by the formula
ϕ̃(z)(x)=ψ(z, x). ✷
Corollary 3.2 (cf. Theorem 2.25 from [6]).Let f :X → Y be a mapping of finite-
dimensional compacta wheree-dimY = [M] for finite CW-complexM. If for some
CW-complexL we havee-dim(f−1(y)× Y )� [L] for every pointy ∈ Y , thene-dimX �
[L].

Proof. By Theorem 6.3 from [5] for any compactumZ with e-dimZ � e-dimY we have
e-dim(f−1(y)×Z)� [L]. Thus, we can apply Theorem 3.1.✷
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