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Abstract

We prove a new selection theorem for multivalued mapping€ -@pace. Using this theorem
we prove extension dimensional version of Hurewicz theorem for a closed mappikig— Y of
k-spaceX onto paracompact-spaceY': if for finite CW-complexM we have e-dinY < [M] and for
every pointy € Y and every compactur# with e-dimZ < [M] we have e-dinaf ~1(y) x Z) <[L]
for someCW-complexL, then e-dimX < [L].
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1. Introduction

The classical Hurewicz theorem states that for a mapping of finite-dimensional com-
pactaf : X — Y we have

dimX <dimY +dimf, where dimf = max{dim(f~*(»)) |y e ¥'}.

There are several approaches to extension dimensional generalization of Hurewicz theorem
[1,3,6-10]. It is proved for O-dimensional (i.e., light) maps of compacta in [7], and-for
dimensional maps in [10]: if : X — Y is ak-dimensional map betweer-compacta, then
e-dimX < e-dim(Y x I%).

Using the idea from [3] (see also [13]), we improve Theorem 7.6 from [1]:
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Theorem 3.1. Let f: X — Y be a closed mapping of &-spaceX onto paracompact
C-spaceY. Suppose thag-dimY < [M] for a finite CW-complexX/. If for every point
y € Y and for every compactumm with e-dim Z < [M] we havee-dim(f ~1(y) x Z) < [L]
for some CW-complek, thene-dimX < [L].

The notion of extension dimension was introduced by Dranishnikov [4]: for a
CW-complexL a spaceX is said to havextension dimensiod [L] (notation: e-dinX <
[L]) if any mapping of its closed subspade— X into L admits an extension to the whole
spaceX.

To prove Theorem 3.1 we need an extension dimensional version of Uspenskij's
selection theorem [12]. In Section 2 we prove Theorem 2.8 on selections of multivalued
mappings of”-space. Then Theorem 2.5 helps us to prove Theorem 2.9—a needed version
of Uspenskij's theorem.

Filtrations of multivalued maps are proved to be very useful for construction of
continuous selections [1,11]. And we state our selection theorems in terms of filtrations.
Note that Valov [14] used filtrations to prove a selection theorem for mappings of finite
C-spaces.

Let us recall some definitions and introduce our notations. A spade called a
k-spaceif U C X is open inX wheneverU N C is relatively open inC for every
compact subsef of X. The graph of a multivalued mapping”: X — Y is the subset
I'r={(x,y)e X xY: ye F(x)} of the productX x Y.

We denote by coX the collection of all coverings of the spa&e For a covek of a
spaceX and for a subsed C X let St(A, w) denote the star of the sdtwith respect ta.

We say that a subset C X refinesa coverw € covX if A is contained in some element
of w. A coveringw’ € covX strongly star refines coveringw € covX if for any element
W € o' the set StW, ') refinesw.

Definition 1.1. A topological spaceX is calledC-spaceif for each sequencgw;};>1 of
open covers of(, there is an open coveX of X of the form(J;2; o; such that for each
i > 1,0; is a pairwise disjoint collection which refines.

If the spaceX is paracompact, we can choose the cavep be locally finite and every
collectiono; to be discrete.

Definition 1.2. A multivalued mapping”: X — Y is said to bestrongly lower semicontin-
uous(briefly, strongly l.s.c.) if for any point € X and any compact s& C F(x) there
exists a neighborhood of x such thatk c F(z) foreveryz e V.

Definition 1.3. Let L be a CW-complex. A pair of spacey c U is said to be
[L]-connectedrespectively[L].-connectellif for every paracompact space (respec-
tively, compact metric spac&) of extension dimension e-diti < [L] and for every
closed subspaca Cc X any mapping ofA into V can be extended to a mapping Xf
into U.
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An increasing sequence of subspac&y c Z; C --- C Z is called afiltration of
spaceZ. A sequence of multivalued mappings;: X — Y} is called afiltration of
multivalued mappindg”: X — Y if {Fy(x)} is afiltration of F(x) for anyx € X.

Definition 1.4. A filtration of multivalued mappings{G;:X — Y} is said to be
fiberwise[L].-connectedf for any pointx € X and any: the pairG;(x) C G;y+1(x) is
[L].-connected.

2. Selection theorems

The following notion of stably[L]-connected filtration of multivalued mappings
provides a key property of the filtration for our construction of continuous selections.

Definition 2.1. A pair F ¢ H of multivalued mappings fronk to Y is called stably
[L]-connectedf every pointx € X has a neighborhood, such that the paif'(0O,) C
mzeOX H (z) is [L]-connected.

We say that the paif C H is calledstably[L]-connected with respect to a covering
w € covX, if forany W € o the pairF (W) C (), H(x) is [L]-connected.

A filtration {F;} of multivalued mappings is callestably [ L]-connectedf every pair
F; C F;11 is stably[L]-connected.

Clearly, any stably{L]-connected pair of multivalued maps of a spacds stably
[L]-connected with respect to some coveringfof

We denote byQ the Hilbert cube. We identify a spagewith the subspac® x {0} of
the producty x Q and denote by prthe projection oft x Q ontoY.

Definition 2.2. For a subspac& C Y x Q we say thatY projectively containsZ. We
say that a multivalued mapping: X — Y projectively containg multivalued mapping
G:X — Y x Qifforany pointx € X the set py o G(x) is contained inF (x).

Lemma2.3. Let L be a finite CW-complex. If a topological spaceontains a compactum
K of extension dimensiadim K < [L] such that the paik C Y is[L].-connected, then
Y projectively contains a compactuk of extension dimensiagdim K’ < [L] such that
K liesin K’ and the pairk c K’ is [L]-connected.

Proof. There existsAE([L])-compactumK’ of extension dimension e-diff’ < [L]
containing the given compacturi [2]. Clearly, the pairk c K’ is [L]-connected. Since
e-dimK’ < [L], there exists a mapping: K’ — Y extending the inclusion of into Y.

It is easy to see that there exists a mapping&’ — Q such thay—1(0) = K andgq is
an embedding ok’ \ K. Now define an embedding. K’ — Y x Q asj = p x q. Since
¢~1(0) = K, the mapping coincide withp on K which is inclusion onk. O

2 We consider only increasing filtrations indexed by a segment of the integral series.
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Definition 2.4. We say that a filtrationFp C F1 C - - - of multivalued mappings fronX
to Y projectively containg filtration Go C G1 C - - - of multivalued mappings fronX to
Y x Q if for any pointx € X and any: the set py o G, (x) is contained inF, (x).

Theorem 2.5. For a finite CW-complex. any fiberwise[L].-connected filtration of
strongly |.s.c. multivalued mappings of paracompact spfc® a topological spac&
projectively contains stablyl.]-connected filtration of compact-valued mappings.

Proof. For a given fiberwisg L].-connected filtrationFo C Fy C --- of strongly I.s.c.
multivalued mappings we construct staljliz]-connected filtrationGo ¢ G1 C --- of
compact-valued mappings, : X — Y x Q" as follows: successively for every> 0 we
construct a covering), = {W;'},c4, € covX and a family of subcompact&}'},ca, of
Y x Q", and define the mapping,, by the formula

Ga(x)=|J{K} Ix e W]},

First, we construcGy, i.e., the coveringvg and the family{KS}Aer. Since Fy is
strongly |.s.c., there exists a locally finite open covering = {W;l}ke,\_l ecovX and a
family {M; Y}1c4_, of points inY such thatw;* x M;*  I'r, for anyx € A_;. Denote
by Ho a multivalued mapping taking a pointe X to the seto(x) = (M} | x e W ).
Note thatHp(x) is contained inFp(x) and consists of finitely many points. By Lemma 2.3
for anyx € X there exists a compactuﬂﬁo(x) C Fi(x) x Q of extension dimension
e- d|mH0(x) < [L] such that the paiFy(x) C Ho(x) is[L]-connected. Since; is strongly
I.s.c., any pointt € X has a neighborhoo@p(x) such that the produaPo(x) x Ho(x)
is contained inf"7, x Q. SinceX is paracompact, we can choose neighborhddgls:)
in such a way that the coverino = {Oo(x)}xcx Strongly star refines_;. Let wg =
{W)?}kGAo be a locally finite open cover oX refining Og. For everyi € Ag we fix
a pointx; such thatW? c Og(x;) and putM? = Ho(x;). For everyi € Aq we fix
a(1) € A_1 such that SItWO, Oo) C W3, and putk 0 = M‘(l)

Inductive step of our construction is similar to the first step. Suppose that a covering
wn—1 = (W' e, 4 € covX and a family(M!},c4, , of compacta iny x Q"1
are already constructed such that e-difi* < [L] and the producW”~* x M1 is
contained inl'r, x Q" for any A € A,_1. Denote byH, a multivalued mapping taking
a pointx € X to the compactumH, (x) = J{M"~* | x € W'~1}. Note thatH, (x) is
contained inF,,(x) x Q™ and has extension dimension e-difp(x) < [L]. By Lemma 2.3
for anyx € X there exists a compactuH}l (x) C Fuy1(x) x 0"*1 of extension dimension
e- d|mH (x) < [L] such that the paiH,(x) C H (x) is [L]-connected. Since,+1
is strongly |.s.c., any poink € X has a neighborhood,(x) such that the product
O,(x) x H (x) is contained inl'f, , x 0"t1. SinceX is paracompact, we can choose
neighborhood®), (x) in such a way that the covering,, = {O,(x)}xcx Strongly star
refinesw,—1. Let w, = {W}'}1ea, be a locally finite open cover ot refining O,. For
everyx € A, we fix a pointx; such thatW;' C O, (x;) and putM; = H,(x,). For every
A€ A, we fixa(r) € A,_1 such that SW”, 0,) C W”(A and putk” = MZ(S.

To show that the paiG,_1 C G, is stably[L]-connected, we prove that the pair
Gn1(W)") C({Gn(x) | x € W]} is [L]-connected for any;’ € w,. By the construction
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of G,, the setK] is contained in({G,(x) | x € W]'}. We know that the pair
Hy1(X() C Hn1(Xan) = M(’;(‘S = K!' is [L]-connected. Therefore it is enough to
show the following inclusion:

Gres(W2)
= U{Kg_l | W;’f n Wg_l #* @} C U{M"}_z | Xa(1) € W"}_z} = Hy_1(xq )
which follows from the fact thal}! N W ~* 5 ¢ impliesx() € W5} (note thatm) S =

alf) —
Kg‘l). By the choice ofv(A) we haveW! C O,_1(xq())- ThenW!' N Wg‘l # ¢ implies

Op—1(xqp)) N W,‘}_l #*0 andxa(k) € Op—1(xqn)) C St(Wg_l, On-1) C WZ&% O
Definition 2.6. For a spaceZ a pair of spacedy C U is said to beZ-connectedf for
every closed subspaeecC Z any mapping ofA into V can be extended to a mappingf
into U.

Definition 2.7. A pair F ¢ H of multivalued mappings fronkX to Y is called stably
Z-connectedf every pointx € X has a neighborhood, such that the paiF(0,) C
ﬂzer H(z) is Z-connected.

We say that the paiFF C H is calledstably Z-connected with respect to a covering
w € covX, if forany W € w the pairF (W) C (), .y H (x) is Z-connected.

A filtration {F;} of multivalued mappings is callestably Z-connectedf every pair
F; C F;11 is stablyZ-connected.

Theorem 2.8. Let F: X — Y be a multivalued mapping of paracompact C-spacéo
a topological spacer. If F admits infinite stablyX-connected filtration of multivalued
mappings, therF has a singlevalued continuous selection.

Proof. Let{F;}°_; be the given filtration of. Let {w;}7°_, be a sequence of coverings
of X such thatw; 1 refinesw; and the pairF; C F;1 is stablyX-connected with respect
to the coveringw;. SinceX is paracompact-space, there exists a locally finite closed
cover X of X of the formX = U,-oio o; such thato; is discrete collection refining;.
Define X, = | J/_goi. We will construct a continuous selectiof of F extending it
successively over the seks,.

First, we constructfy: Yo — Y. We define fo separately on every elementof the
discrete collectiomg: take a poinp € F_1(s) and putfo(s) = p. Since the set refineswy,
thenp e Fo(x) for anyx € s and thereforefp is a selection ofy| 5.

Suppose that we already construcfge-a continuous selection @, | 5, . Let us define
fa+1 on arbitrary elemeng of discrete collectiow, 1. SinceX is locally finite, the set
A =Z7ZNX,isclosedinX. Sincef, is a selection of},, thenf, (A) is contained inF, (Z).
Since the paifF;, (Z) C (., Fat1(x) is X-connected, we can extenfl|4 to a mapping
fo:Z = (Nyez Fas1(x). Clearly, f, is a selection oF},1|7z. We definef, ;1 on the seZ
asf,.

Finally, we definef to be equal tof, onthe set¥,,. O
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Theorem 2.9. Let L be a finite CW-complex anfl: X — Y be a multivalued mapping of
paracompact C-spac¥ of extension dimensiosdim X < [L] to a topological spacé.

If F admits infinite fiberwisgL].-connected filtration of strongly l.s.c. multivalued
mappings, therF has a singlevalued continuous selection.

Proof. By Theorem 2.5, the mapping’: X — Y x Q defined asF’'(x) = F(x) x Q
contains a stabl/L]-connected filtration of multivalued mappings. By TheoremP’.8as
a singlevalued continuous selectigh Then the mapping = pry o f’ is a singlevalued
continuous selection df. O

3. Hurewicz theorem
The proof of the following theorem is similar to the proof of Theorem 2.4 from [3].

Theorem 3.1. Let f: X — Y be a closed mapping of-spaceX onto paracompact
C-spaceY. Suppose thag-dimY < [M] for a finite CW-complex/. If for every point
y € Y and for every compactumm with e-dim Z < [M] we havee-dim(f ~1(y) x Z) < [L]
for some CW-complek, thene-dimX < [L].

Proof. Supposed C X isclosed ang: A — L is amap. We are going to find a continuous
extensiorg: X — L of g. Let K be the cone ovek with a vertexv. We denote by (X, K)
the space of all continuous maps fratnto K equipped with the compact-open topology.
We define a multivalued map: Y — C(X, K) as follows:

F(y)={heC(X.K) | h(f_l(y)) C K\ {v} andh|s =g}.
Claim. F admits continuous singlevalued selection.

If 9:Y - C(X,K) is a continuous selection foF, then the mappind: X — K
defined by (x) = ¢(f(x))(x) is continuous on every compact subseXoénd becaus&
is ak-spacef is continuous. Since(f(x)) € F(f(x)) for everyx € X, we haveh(X) C
K\ {v}. Now if 7 : K \ {v} — L denotes the natural retraction, thgae=-7r o h: X — L is
the desired continuous extensionof O

Proof of the claim. We are going to apply Theorem 2.9 to infinite filtratidhC F C
F c ---.Todo this, we have to show thatis strongly |.s.c. and that the pdi(y) C F(y)
is [M].-connected for every pointe Y.

First, we show thatF is strongly I.s.c. Letyg € Y and P C F(yp) be compact. We
have to find a neighborhood of yg in Y such thatP c F(y) for everyy € V. For
everyx € X define a subseP(x) = {h(x) | h € P} of K. SinceP c C(X, K) is compact
and X is a k-space, by the Ascoli theorem, eaé¢hx) is compact andP is evenly
continuous. This easily implies that the $&€t={x € X | P(x) C K \ {v}} is open in
X and, obviously,f ~1(yg) Cc W. Sincef is closed, there exists a neighborhodaf yo
in Y with f~1(V) c W. Then, according to the choice &f and the definition of", we
haveP C F(y) foreveryy e V.
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Fix an arbitrary poiny € Y. Let us prove that the pair(y) C F(y) is [M].-connected.
Consider a pair of compacta C Z where e-dinZ < [M] and a mapping: B — F(y).
Since B x X is ak-space (as a product of a compact space arkdspace), the map
¥ B x X — K defined asy (b, x) = ¢(b)(x) is continuous. Extend to a setZ x A
letting ¥ (z, a) = g(a). Clearly, ¥ takes the seZ x f~1(y) N (Z x AU B x X) into
K\ {v} =L x [0,1). Since e-diniZ x f~1(y)) < [L], we can extends over the set
Z x f~1(y) to take it into K \ {v}. Finally extendy over Z x X as a mapping into
AE-spaceK. Now define an extensioi: Z — F(y) of the mappingy by the formula

P =y¥(z,x). O

Corollary 3.2 (cf. Theorem 2.25 from [6])Let f:X — Y be a mapping of finite-
dimensional compacta wheredimY = [M] for finite CW-complexM. If for some
CW-complex. we havea-dim(f‘l(y) x Y) < [L] for every pointy € Y, thene-dim X <
[L].

Proof. By Theorem 6.3 from [5] for any compactughwith e-dimZ < e-dimY we have
e-dim(f~1(y) x Z) <[L]. Thus, we can apply Theorem 3.10
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