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ABSTRACT

This paper demonstrates that the celebrated Gale-Shapley algorithm for obtaining stable
matchings in stable marriage problems is essentially an application of the dual simplex
method.

1. INTRODUCTION

The stable marriage problem is a game theoretic model introduced by Gale
and Shapley [4]. It involves two sets of players referred to as men and women.
Each player has a set of acceptable potential mates, which are members of the
opposite sex, and a strict preference order over these individuals. In the version
we consider here, not all man-woman pairs are necessarily acceptable to each other.
A matching consists of a set of disjoint pairs, where each pair consists of a man and
a woman who find each other acceptable. A matching is called stable if there is no
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man and woman who are mutually acceptable and who both prefer being matched
to each other over the outcome they obtained in the matching, where singlehood
is considered worse than being matched to any acceptable mate.

Gale and Shapley [4] gave a constructive proof for the existence of a stable
matching for problems where the numbers of men and women coincide and all
man-woman pairs are acceptable. Interestingly, their algorithm has a social inter-
pretation as a courtship process. Further, the natural modification of their algorithm
applies to general stable marriage problems presented above where singlehood is
permitted. The modified algorithm will always identify a stable matching (see [5]).

We next describe the Gale-Shapley algorithm using its social interpretation.
Initially all players are single. At each iteration of the algorithm, a man who is
single proposes to the woman he prefers most among the women that are acceptable
to him and to whom he has not yet proposed. If the woman that receives the proposal
is single, she accepts it and she becomes tentatively matched to the proposing man.
Otherwise, she keeps as a mate the man she prefers between her current mate and the
new suitor. The man that was disfavored in this comparison rejoins the set of single
men, and the algorithm continues to its next iteration. This courtship process ends
at a stage where no more proposals can take place, as each single man has already
proposed to all the women which he finds acceptable. Termination is guaranteed,
since each man proposes at most once to the same woman. Further, it has been
established that the final matching is stable; see Section 2 for a detailed proof.

In the original version of the algorithm presented in [4], groups of men propose
simultaneously. The version described in the above paragraph, where only one
proposal takes place at each iteration, is essentially due to McVitie and Wilson
[7]. In fact, they showed that the set of proposals and resulting stable matching
coincide with those of the original Gale-Shapley algorithm.

Gale and Shapley [4] demonstrate that a polygamous version of the stable
marriage problem can be used to model the assignment of students to colleges,
and they describe how their algorithm can be adapted to obtain a corresponding
stable assignment. However, they were unaware of the fact that a variant of their
algorithm had been in use since 1952 by the National Intern Matching Program
(NIMP) to address the practical problem of assigning medical students to hospitals.
Moreover, this remarkable episode, where practice preceded theory by a decade,
remained unnoticed for another two decades until it was discovered by Roth [9]
in a notable case study. As about 14,000 medical students are matched to their
residency each year by NIMP, the stable marriage problem exhibits one of the
most important real life applications of game theory.

The main result of this paper asserts that the Gale-Shapley algorithm, as de-
scribed above, is essentially an application of the dual simplex method. The
framework for establishing this result relies on the recent characterization of stable
marriages as extreme points of a polytope by Vande Vate [11] and Rothblum [10].
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2. THE MODEL AND THE GALE-SHAPLEY ALGORITHM

Formally, the data for the stable marriage problem consist of a set M =
{mi,...,my} whose members are called men, a set W = {wi,...,w,} whose
members are called women, and a set of ordered pairs £ C M x W called the set of
acceptable pairs. For each man m € M the set of his acceptable mates is defined
to be N(m) = {w € W:(m,w) € £}, and for each woman w € W the set of her
acceptable mates is defined to be N(w) = {m € M : (m,w) € £}. Finally, to each
v € M U W there corresponds a linear order over N(v) U {v} such that v is ordered
last. We refer to this order as the preference order of v and denote it by >,. In
particular, a >, b signifies that a precedes b with respect to >,, and a >, b means
that either a >, b or a = b. A matching is a set of pairs u € £ such that no two
pairs have the same man or the same woman.

A matching p defines a one-to-one mapping u(-) from M U W to itself as
follows: pu(m) = w, and u(w) = mif (m,w) € p, and p(v) =vifv € MU W and
no pair in ¢ has v as one of its entries. Given a matching u, we say thatv e M U W
is single or unmatched in y if p(v) = v; otherwise, we say that p(v) is v’s mate in
u or that v is matched to p(v) in p. An acceptable pair (m, w) € £ is a blocking
pair for a matching p if

wm) <, w and p(w) <, m,

i.e., (m, w) is a blocking pair for u if both m and w prefer being matched to each
other over their outcome in y. A matching p is stable if it has no blocking pair;
otherwise it is called unstable. Equivalently, 4 is stable if for each (m, w) € £ the
following stability condition holds:

wim) >y w or  pu(w) =, m. (1

We give below a formal description of the variant of the Gale-Shapley algorithm
presented in the Introduction. We shall refer to this procedure as Algorithm GS.

ALGORITHM GS
Initialization

0. Foreachm € Mlet K(m) = N(m) = {w € W:(m,w) € £}. Also, let u be
an empty matching.

Main iteration

1. Letm € M be such that u(m) = m and K(m) # 0. If no such m exists, stop
with output p* = p.
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2. Let w be the first woman in K(m) according to >,,.

If p(w) = w then p — p U {(m, w)}.
Else,
if m >, p(w) then p — p U {(m,w)} \ {(p(w), w)}

3. K(m) — K(m)\ {w}. Gotol.

It is clear that, at each point in the execution of Algorithm GS, the current set
1 is a matching. Each execution of step 2 of the main iteration is called a proposal
from man m to woman w. When a proposal leads to a change in y, we say that the
proposal led to acceptance; otherwise we say that the proposal led to rejection. In
the former case we say that woman w accepts the proposal of man m, and we note
that a woman accepts a proposal from a man only if they form a blocking pair for
the current matching.

THEOREM 1. Algorithm GS terminates, and its output pi* is a stable matching.

PrOOF. The algorithm must terminate, since the number of acceptable pairs
is finite and for each such pair (m, w) there is at most one iteration where man m
proposes to woman w. Further, since at each point ¢ is a matching, the output p*
is a matching. We next show that p* is stable. Let (m,w) € &€ satisfy p*(m) <j
w. Then m must have proposed to w at some iteration and was either rejected
immediately, or accepted but in a later iteration became single when w accepted
a proposal from another man she prefers to m. Since u(w) is (weakly) increasing
(with respect to >,,), it follows that p*(w) >, m. Hence, (m, w) cannot be a
blocking pair for p*. =

We observe that in step 1 of Algorithm GS there is some freedom in the selection
of the man that makes the next proposal. Thus, the order in which the proposals
are made can vary in different executions of Algorithm GS. Nevertheless, it is well
known that for a given stable marriage problem, all executions of algorithm GS
produce the same stable matching u* as output. This matching p* is called man-
optimal, since it has the striking property that it assigns each man the best woman,
according to his preference, that he can be matched to in any stable matching (see
[4, 5, 8]). Moreover, McVitie and Wilson [7] prove that the man-optimal matching
is also woman-pessimal, i.e., it assigns each woman the worst man, with respect to
her preference, among those to whom she can be matched in some stable matching.

3. THE DUAL SIMPLEX METHOD

In this section we review the dual simplex method when applied to determine
whether or not a system of linear equations with nonnegative constraints on the
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variables is feasible and to identify a basic feasible solution for the system when
it is feasible. An alternative (standard) method for achieving this goal is the
introduction of artificial variables and the use of phase I of the simplex method.
For a more detailed description of the simplex method and its variants see, for
example, the book by Bazaraa, Jarvis, and Sherali [1].

Throughout this section let A be a matrix in R"*" whose rows are linearly
independent, and let b be a vector in R™. We consider the following linear system:

Ax=b, x>0. )

For a positive integer k, let I, denote the set of indices {1,...,k}. Forj € I,
and i € I, let A’ be the jth column of A, and let A; be the ith row of A. Thus,
Al = (A)Y = (&) is the ijth element of A. A basis for A is a set of indices
B C I, with m elements, say B = {ji,...,jm}, such that the corresponding
columns A, ... A/ are linearly independent. Each basis B determines a matrix
B € RB* which gives, for each k € I, the unique expansion of the column A* in
terms of the columns corresponding to the basis, ..,

Ak =S"BA. 3)

jEB

The basic solution to (2) determined by a basis B is the unique solution of
Ax = b with x; = 0 for each & € I, \ B. The nonnegative basic solutions are
called basic feasible solutions. 1t is well known that the extreme points of the
convex polyhedron {x:Ax = b,x > 0} are the basic feasible solutions of (2).

Consider the maximization of the zero objective 0 - x subject to x satisfying (2).
Then all basic feasible solutions of (2) are optimal, and finding a basic feasible
solution of (2) is equivalent to finding an optimal basic feasible solution. The latter
can be accomplished by using the dual simplex method starting from an arbitrary
basic solution. We refer to this particular application of the dual simplex method
as Algorithm FDS, which stands for “feasibility dual simplex.” We next describe
the method formally.

ALGORITHM FDS
Initialization
0. Let B be a basis for A.

Main iteration

1. Let x be the basic solution determined by B. If x > 0, then stop with output
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x* = x. Otherwise, choose r from the set
{jeB:x; <0}.

2. Let B satisfy (3) with respect to B. If F’, > Oforall j & B, stop. Otherwise,
select k from the set
{k¢B:Bf <0}.

3. B— BU{k}\{r}. Goto 1.

An initial basis for the algorithm can be found by Gaussian elimination. Note
that Gaussian elimination will actually verify the assumption that the rows of A
are linearly independent. The possible outcomes of a main iteration of Algorithm
FDS are summarized below.

THEOREM 2. (a) IfAlgorithm FDS stops in step 1, then x* is a basic feasible
solution for (2).

(b) If Algorithm FDS stops in step 2, then there is no feasible solution for (2).

(c) After each execution of step 3, B is a basis for A.

Proor. Algorithm FDS is the standard dual simplex method applied to the
linear program where O - x is maximized subject to x satisfying (2). Thus, the
conclusions of the theorem are standard; e.g., see Bazaraa, Jarvis, and Sherali [1].

n

Since Algorithm FDS is a special application of the dual simplex method, all
known results about the latter apply to it. In particular, when a basis B is updated
through the execution of step 3, the new basic solution x’ is computable from the
old basic solution x and the old coefficients B by

Xr

X = = “4)
B,

! xr-—k .

X=X - ?B, for je B\{r}. 5)

r

In an iteration of Algorithm FDS, we refer to the index r selected in step 1
as the leaving index and to the index k selected in step 2 as the entering index.
The selection criterion for the leaving and entering indices is called the pivoting
rule of Algorithm FDS. We note that, in general, a pivoting rule does not neces-
sarily specify the entering and leaving indices in a univocal way, and it does not
necessarily guarantee the termination of the algorithm. Following Bland [2], we
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consider the following pivoting rule for algorithm FDS:

In step 1: choose r = min{j € B:x; < 0}. 6)
In step 2: choose k = min{j ¢ B:F’; < 0}. 7

We refer to this pivoting rule as Bland’s rule. As Algorithm FDS is a dual simplex
method, it follows that this pivoting rule guarantees termination; see Bazaraa,
Jarvis, and Sherali [1].

‘We next consider pivoting rules obtained by a relaxing of (7). Let r be the
leaving index chosen by (6); then choose the entering index k by

_{anyindexinSE{j¢B:j<rand§i<0} if S#0, ®

B min{j & B:F'; < 0} otherwise.
We shall call any pivoting rule that satisfies (6) and (8) a Bland type pivoting rule.

THEOREM 3. Algorithm FDS implemented with any Bland type pivoting rule
terminates in a finite number of iterations.

PrOOF. The (classical) arguments that establish termination of the general
dual simplex method under Bland’s rule corresponding to (6)—(7) (e.g., [2] or [1])
show the termination of the method under any relaxation of Bland’s rule which
corresponds to (6)—(8). As Algorithm FDS is an application of the dual simplex
method, the conclusion of our theorem follows. [ |

We note that the above result is valid, mutatis mutandis, for general simplex
or dual simplex method under any modification of Bland’s original rule which
corresponds to relaxing (7) through (8).

Consider an application of the dual simplex method which has the following
(uncommon) property: a variable which leaves a basis neverreenters, and a variable
which enters a basis never leaves. Assume that ¢ iterations are needed to reach
termination. In this case we can order the variables in the following way: variables
that leave a basis during the execution of the method will be put in positions
2,4,...,2q consecutively, variables that enter a basis will be put in positions
1,3,...,2q — 1 consecutively, and the remaining variables will be put in arbitary
positions 2g + 1 and higher. It is easy to verify that the given execution of
the dual simplex method follows the modified version of Bland’s rule given by
(6) and (8). Thus, any execution of the dual simplex method which has the
above-listed (uncommon) property is an implementation of a Bland type pivoting
rule.
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4. THE MAIN RESULT

In this section we show that Algorithm GS is essentially an application of
Algorithm FDS.

A matching u C £ can be represented by an incidence vector x = (Xpw) €
{0, 1}£, whose coordinates are indexed by the acceptable pairs, such that x,,,,, = 1
if (m,w) € p and x,, = O otherwise. Vande Vate [11] and Rothblum [10]
characterized the incidence vectors of stable matchings of a given stable marriage
problem as the extreme points of the corresponding stable marriage polytope
defined by the following system of linear inequalities:

meJ < 1, meM, 9
JEN(m)
doxw <1, weW, (10)
IEN(w)
Y xmit D KiwtImw 2 1, (mw)EE, an
J>mw i>ym
Xmw 2 0, (mw)€EE, (12)

where, in the summation, “j >,, w” denotes {j € N(m):j >, w} and “i >, m”
denotes {i € N(w):i >,, m}.

Thus, finding a stable matching reduces to the identification of an extreme
point of the above stable marriage polytope. Of course, Theorem 1 assures that
such an extreme point always exists. We next convert (9)—(12) to alinear system in
the form (2), to which Algorithm FDS can be applied. This is done by introducing
slack variables r,, and s, for m € M and for w € W, respectively, and surplus
variables #,,,, for (m,w) € &, to transform the system (9)—(12) into the following
system:

Y Imjtrm =1, meM, (13)
JEN(m)
Y tiwtsw =1 weW, (14)
IEN(w)

S dmi+ Y K+ Em —bmw = 1, (mW) €E, (15)

J>mw i>wm

v

xm,warm7swvtm,w 07 (m,W)Eg, mEM, weWw. (16)

The systems (9)—(12) and (13)—~(16) are equivalent in the following sense: if
(x,r,5,t) satisfies (13)—(16), then x satisfies (9)—(12); further, if x satisfies (9)—
(12) and r, s, ¢ are defined through (13)—(15), then (x, r, s, ) satisfies (13)(16).
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We observe that the above correspondence of solutions of (9)-(12) to solutions
of (13)—~(16) is one-to-one and maps the extreme points of the stable marriage
polytope onto the extreme points of the polytope defined by (13)—(16).

Let A be the coefficient matrix corresponding to Equations (13)—(15). Then
A € RMUWUEIX(MUWUEUE") yhere £ is an isomorphic copy of £. So A has
M| + |W| + |€| rows and |M| + |W| + 2|&€]| columns. We index the rows of A
bym e M, w € W, and (m,w) € A, according to their provenance from either
(13), (14), or (15), respectively; e.g., we write Ay, Ay, and A, ,,. Also, we index
the columns of A corresponding to Xy, tm,w, 'm,» and sy by {m,w), [m, w], m, and
w, respectively, e.g., A™") Alm¥l A™ and A¥. (The reader will notice that for
brevity we do not use the notation Ay v), and use A,, ,, instead.)

Form € M,w € W, and (i,j) € £ we let €™, ¢”, and €/ denote the corre-
sponding unit vectors in the |M| + |W| + |£|-dimensional Euclidean space con-
taining the columns of 4, i.e., all coordinates of these vectors are zero except that
(€™)m = (€")y = (€);; = 1. We observe that

A" = " foreach me M, 17
AY = ¥ foreach we W, (18)
Almwl — _gmw foreach (m,w) € €. (19)

It follows that these vectors are linearly independent. Thus, rank A = |M|+|W|+
|€], implying that the rows of A are linearly independent. We next describe the
column A" that corresponds to the variable x,, .. Let (m,w), (i,j)) € £,m’ € M,
and w’ € W, then

1 if m=m
Almw) ’ 0
m 0 otherwise, 20
1 if w=w
Al = ’ 1
w 0 otherwise, 1)
1 if i=m, j=w,
mwy _ )10 i=m j<aw,
Aij 1 if i<,m, j=w, 22)
0 otherwise.
So, for each (m,w) € &,
AW = N e 4 N e e e (23)
JEmw J<wm

The following lemma and its corollary establish some linear relations among
the columns of A. They will be key to our development.
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LEMMA 4. Let(m,w) € €. Then

A(m,w) - _ Z A[i,w] _ Z A[mj] +A™ 4+ AY. (24)

i<pm j<um

PROOF. The representation of A™*) given by (24) follows directly by sub-
stituting (17)—(19) into (23). |

COROLLARY 5. Let (m,w) € £ and (m’,w) € £, where m >,, m'. Then

Almw) = Alm'w) _ Z Almil Z Alm' )
J<mw J< W

. ! (25)
- ) A am_am

m <, i<,m

PROOF. By applying Lemma 4 to the pairs (m, w) and (m’, w) we see that

Almw) _ pln ) _ (_ At S aimil g gy Aw>

i<ym J<mw
—<— DA N Ay g +A“’>
i<ym' J< W
- _ ZA[""J] + Z Al il
J<mw J< W
— Z AW 4 gm _Am',
m' <yi<,m
establishing (25). n

As the rows of A are linearly independent, Algorithm FDS can be used to find
a basic feasible solution for (13)—~(16). We next identify iterations of Algorithm
GS with iterations of Algorithm FDS.

Given an execution of Algorithm GS, we enumerate the (distinct) generated
matchings. In particular 4 = @ is the initial empty matching, and if g proposals
are accepted during the particular execution of Algorithm GS, then, for p =
1,...,q, 4P denotes the pth generated matching. Also, let (m?, w”) € £ denote the
pair that becomes matched when p? is formed, i.e., (m?, wP) € uP, = (mP) = mP,
and "~ (w,) # m,. Note that if j # k then (m/, w/) # (m*, wk), but it need not
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hold that i/ # m* or that w/ # w*. Forp =0, 1,...,q, letII(p) = {(m*, w*) 1k =
1,...,p}, so II(p) is the set of all pairs (m,w) € € such that a proposal from m
to w was accepted on or before the iteration where p” was formed. We associate
with the matching p” the following set B(p) of column indices of A:

Bp) = {(m,w) : (m,w) € II(p)}

(26)
U{lm,w]:(m,w) € E\II(p)}UMUW.
We observe that as II(p + 1) = II(p) U {(m?*, w1},
Bp +1) = Bp) U {(mP w?TH}\ {[m"+!, wPH1]). (27)

The next lemma is key to our main result.

LEMMA 6. Let p? be the pth matching generated by Algorithm GS. Assume
that B(p) is a basis for (13)~(16), and let B(p) denote the matrix of expansion
coefficients corresponding to the basis B(p), i.e., B = B(p) satisfies (3) with
B = B(p). Then:

(a) The basic solution (X", r’ | sP t¥) that corresponds to B(p) is given by
_ {1 mwe,
* “{0 i (mw) € E\ 2, 28)
1 i P(m) = m,
v o= if Wim=m 29)
0 if pP(m)+#m,
B —
ﬁz{lﬁuw w,

0 if ww)#w, (30)

and, with x* defined by (28),

Bow= %+ > & 42, —1 foreach (mw)el. (31

J>mw j>wm

In particular, th,,, € {—1,0,1}, for all (m,w) € E. Further, t,,, = O for all
(m,w) € Il(p) and t, ,, = —1 if and only if m is single in pP, m did not propose to
w in any iteration prior to the obtainment of yP, and i (w) <, m.

. , , . . S (P wptly
(b) If algorithm GS does not terminate in iteration p, then B+ 1] = — L.

PROOF. Wefirstestablish (a). It is easy to verify that the vector (x*, r*, 57, #)
defined by the right hand side of (28)—(31) satisfies (13)—(14). Further, the defi-
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nition of # in (31) assures that (15) is satisfied as well. So (x?, /7, 5P, #) satisfies
(13)-(15).

We next note that (28) assures that for (m, w) € £, zj>,,.w Xmj + wam Xipw +
Xmw € {0,1,2}, implying that #,,, € {—1,0,1}. Also, if (m,w) € II(p), then
the construction of Algorithm GS assures that either (m, w) € p? or p’(w) >, m
and pf(m) <,, w; in either case we have that Zj>mw Xmj D s m Xiw + Xmw =
1, implying that tf;,w = (. Finally, tf’,,,w = —1 for (m,w) € C if and only if
Zj>,,,wxm,i + D isumXiw + Xmw = 0, i, pP(m) <, wand W) <, m. It
follows from the definition of Algorithm GS that this occurs if and only if m is
single in 4#”, m has not yet proposed to w by the time i is formed, and 7 (w) <,, m.

In order to establish (a) it remains to show that the solution of (13)—(15) given
by (28)—(31) is the basic solution corresponding to B(p). Indeed, we have that
the variables corresponding to the indices that are not in B(p), namely x/ ; for
(i,)) € E\I(p) C E\ ¥ and & for (i, ) € TI(p), are all zero.

We next prove (b). Letm = mP*! and W = wP*!. We consider two cases.
First assume that p#(w) = w, i.e., w is single in . In this case, in the iterations
prior to the formation y# no man proposed to W and m did not propose to any
woman which he prefers less than w. Thus,

B(p) 2 {[i,w]:i < m} U{[M,j]1:j <a W}UMUW.
Lemma 3 shows that

Almw) Z Aliw] _ Z APl L AP L AW,

i <pim J<aw

We have obtained an expansion of A%*") as a linear combination of columns

of A corresponding to indices in B(p); hence, the coefficients of the expansion give

{

the elements of the vector B In particular we see that the coefficient of A[™*!
(mw) _ -1

in this expansion is —1, i.e., E(P)[m,m

Next assume that 4 (W) # W and let m' = pP(W), i.e., wis matched tom’ € M
in p?. In this case, in the iterations preceding the formation of ¢ no man i whom
w prefers to m’ has proposed to her and neither man ' nor man m proposed to
any woman j that he prefers less than w. So {i,w) € £:i > m'} NH(p) = 0,
and for m € {m,m'},{(m,j) € £:j <, w} NI(p) = 0. Further, m’" <y /m and
(m’,w) € lI(p). It follows that B(p) includes the set

{{m' W)} U {[m,)]:j <a WU {lm',jl;j <w w}
U {[i,w] :m' <gi<;mpUMUW.
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As (m,w) € £,(m', W) € €, and m >5 m', we conclude from Corollary 5 that

Almw) A B) _ Z Al Z Al )
J<mw J< W
— > AR A g

m' <Gi<gm

We have obtained an expansion of A (7, W) as a linear combination of columns
of A corresponding to indices in B(p); hence, the coefficients of the expansion

give the elements of the vector F(m’w). In particular, we see that the coefficient of

Al™# in this expansion is —1, i.e., Ef‘,;";;”f =-1. [ |

THEOREM 7. Let (°,. .., u9) be the sequence of matchings generated by
an execution of Algorithm GS where 7 = p* is the output of the execution. Then,
forp=1,...,q, B(p) is a basis for (13)-(16), and if p < q, B(p + 1) is obtained
by executing an iteration of Algorithm FDS.

PROOF. We first observe that II(0) = @; hence B(0) = {[m,w]:(m,w)
€ £} UM U W. Equations (17)~(19) imply that the columns {A”:m € M},
{A¥:w € W}, and {-Al""1:(m,w) € £} are the corresponding unit vectors.
Thus, we have that B(0) is a basis for (13)—(16).

Next assume for p = 0,...,q — 1 that B(p) is a basis for (13)-(16). The
matching p?*! is formed by the acceptance by w?*! of a proposal from m?*!.
This implies that u?(m?*1) = mP*!, mP*1 did not propose previously to w?*! and
pP WPty < pt1 mPH1. Then, by part (a) of Lemma 6, tf"',,“,w,prl = —1, and there-
fore its corresponding index [mPt!, wP+!] can be selected in step 1 of Algorithm

—_ (mp+1 wp+l) .
FDS. Now, by part (b) of Lemma 6, B(p)[ o k1] = —1, and thus the index

(mP*1 wP+1) can be selected in step 2 of Algorithm FDS. These selections imply
that the new basis determined in the following execution of step 3 of Algorithm FDS
will be Bp)u {{mP ™!, wPTHY I\ {[m?+!, wP*11}, which, by (27), equals B(p+1). B

The rules for changing bases in an application of Algorithm FDS corresponding
to the execution of Algorithm GS assure that the set of variables that enter a basis
and the set of variables that leave a basis are disjoint; see (27). Hence a variable
that enters a basis never leaves, and a variable that leaves a basis never enters.
Thus, the remarks following Theorem 3 show that such applications of Algorithm
FDS follow an implementation of a Bland type pivoting rule.

‘We have seen that each execution of Algorithm GS corresponds to an execution
of Algorithm FDS using a Bland type pivoting rule. Hence, Theorem 3 gives an
independent proof for the convergence of Algorithm GS. But we have not been able
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to use pure linear programming-arguments to show that termination will always
occur with a feasible solution of (13)~(16). As termination of algorithm FDS
will always produce a basic solution, and as the basic feasible solutions of (13)—
(16) correspond to the stable matchings, such a proof would prove the existence
of stable matchings. [We note, however, that the known existence of a stable
matching assures that any implementation of algorithm FDS to (13)—(16) with a
Bland type pivoting rule will produce a basic feasible solution of (13)-(16).]
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