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ABSTRACT 

This paper demonstrates that the celebrated Gale-Shapley algorithm for obtaining stable 
matchings in stable marriage problems is essentially an application of the dual simplex 
method. 

1. INTRODUCTION 

The stable marriage problem is a game theoretic model introduced by Gale 
and Shapley [4]. It involves two sets of players referred to as men and women. 
Each player has a set of acceptable potential mates, which are members of the 
opposite sex, and a strict preference order over these individuals. In the version 
we consider here, not all man-woman pairs are necessarily acceptable to each other. 
A matching consists of a set of disjoint pairs, where each pair consists of a man and 
a woman who find each other acceptable. A matching is called stable if there is no 
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man and woman who are mutually acceptable and who both prefer being matched 
to each other over the outcome they obtained in the matching, where singlehood 
is considered worse than being matched to any acceptable mate. 

Gale and Shapley [4] gave a constructive proof for the existence of a stable 
matching for problems where the numbers of men and women coincide and all 
man-woman pairs are acceptable. Interestingly, their algorithm has a social inter- 
pretation as acourtship process. Further, the natural modification of their algorithm 
applies to general stable marriage problems presented above where singlehood is 
permitted. The modified algorithm will always identify a stable matching (see [5]). 

We next describe the Gale-Shapley algorithm using its social interpretation. 
Initially all players are single. At each iteration of the algorithm, a man who is 
single proposes to the woman he prefers most among the women that are acceptable 
to him and to whom he has not yet proposed. If the woman that receives the proposal 
is single, she accepts it and she becomes tentatively matched to the proposing man. 
Otherwise, she keeps as a mate the man she prefers between her current mate and the 
new suitor. The man that was disfavored in this comparison rejoins the set of single 
men, and the algorithm continues to its next iteration. This courtship process ends 
at a stage where no more proposals can take place, as each single man has already 
proposed to all the women which he finds acceptable. Termination is guaranteed, 
since each man proposes at most once to the same woman. Further, it has been 
established that the final matching is stable; see Section 2 for a detailed proof. 

In the original version of the algorithm presented in [4], groups of men propose 
simultaneously. The version described in the above paragraph, where only one 
proposal takes place at each iteration, is essentially due to McVitie and Wilson 
[7]. In fact, they showed that the set of proposals and resulting stable matching 
coincide with those of the original Gale-Shapley algorithm. 

Gale and Shapley [4] demonstrate that a polygamous version of the stable 
marriage problem can be used to model the assignment of students to colleges, 
and they describe how their algorithm can be adapted to obtain a corresponding 
stable assignment. However, they were unaware of the fact that a variant of their 
algorithm had been in use since 1952 by the National Intern Matching Program 
(NIMP) to address the practical problem of assigning medical students to hospitals. 
Moreover, this remarkable episode, where practice preceded theory by a decade, 
remained unnoticed for another two decades until it was discovered by Roth [9] 
in a notable case study. As about 14,000 medical students are matched to their 
residency each year by NIMP, the stable marriage problem exhibits one of the 
most important real life applications of game theory. 

The main result of this paper asserts that the Gale-Shapley algorithm, as de- 
scribed above, is essentially an application of the dual simplex method. The 
framework for establishing this result relies on the recent characterization of stable 
marriages as extreme points of a polytope by Vande Vate [ 111 and Rothblum [ 101. 
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2. THE MODEL AND THE GALE-SHAPLEY ALGORITHM 

Formally, the data for the stable marriage problem consist of a set M = 
{ml,..., mq} whose members are called men, a set W = {WI,. . . , wr} whose 
members are called women, and a set of ordered pairs E s M x W called the set of 
acceptable pairs. For each man m E M the set of his acceptable mates is defined 
to be N(m) = {w E W:(m, w) E I}, and for each woman w E W the set of her 
acceptable mates is defined to be N(w) = {m E M : (m, w) E E}. Finally, to each 
v E M U W there corresponds a linear order over N(v) U {v} such that v is ordered 
last. We refer to this order as the preference order of v and denote it by >V. In 
particular, a >” b signifies that a precedes b with respect to >,,, and a >” b means 
that either a >v b or a = b. A matching is a set of pairs p c & such that no two 
pairs have the same man or the same woman. 

A matching p defines a one-to-one mapping p(a) from M U W to itself as 
follows: p(m) = w, and p(w) = m if (m, w) E p, and p(v) = v if v E M U W and 
no pair in p has v as one of its entries. Given a matching ,u, we say that v E M U W 
is single or unmatched in p if p(v) = v; otherwise, we say that p(v) is v’s mute in 
p or that v is matched to p(v) in p. An acceptable pair (m, w) E E is a blocking 
pair for a matching I_L if 

&> G+, w and ~(4 G m, 

i.e., (m, w) is a blocking pair for p if both m and w prefer being matched to each 
other over their outcome in CL. A matching p is stable if it has no blocking pair; 
otherwise it is called unstable. Equivalently, p is stable if for each (m, w) E & the 
following stability condition holds: 

Am> Lm w or p(w) 2, m. (1) 

We give below a formal description of the variant of the Gale-Shapley algorithm 
presented in the Introduction. We shall refer to this procedure as Algorithm GS. 

ALGORITHM GS 

Initialization 

0. For each m E M let K(m) z N(m) = {w E W: (m, w) E E}. Also, let I_L be 
an empty matching. 

Main iteration 

1. Let m E M be such that p(m) = m and K(m) # 8. If no such m exists, stop 
with output CL* = CL. 
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2. Let w be the first woman in K(m) according to >,,,. 

lf~p) = w then I-L + CL U {(m, w)}. 

if’m bw p(w) then CL +- p U {(m, w)) \ {(&9, w)} 

3. K(m) +- K(m)\(w). Goto 1. 

It is clear that, at each point in the execution of Algorithm GS, the current set 
I_L is a matching. Each execution of step 2 of the main iteration is called a proposal 
from man m to woman w. When a proposal leads to a change in ~1, we say that the 
proposal led to acceptance; otherwise we say that the proposal led to rejection. In 
the former case we say that woman w accepts the proposal of man m, and we note 
that a woman accepts a proposal from a man only if they form a blocking pair for 
the current matching. 

THEOREM 1. Algorithm GS terminates, and its output p* is a stable matching. 

PROOF. The algorithm must terminate, since the number of acceptable pairs 
is finite and for each such pair (m, w) there is at most one iteration where man m 
proposes to woman w. Further, since at each point ~1 is a matching, the output CL* 
is a matching. We next show that CL* is stable. Let (m, w) E E satisfy p*(m) <m 
w. Then m must have proposed to w at some iteration and was either rejected 
immediately, or accepted but in a later iteration became single when w accepted 
a proposal from another man she prefers to m. Since p(w) is (weakly) increasing 
(with respect to >,,,), it follows that p*(w) >,+, m. Hence, (m, w) cannot be a 
blocking pair for CL*. ??

We observe that in step 1 of Algorithm GS there is some freedom in the selection 
of the man that makes the next proposal. Thus, the order in which the proposals 
are made can vary in different executions of Algorithm GS. Nevertheless, it is well 
known that for a given stable marriage problem, all executions of algorithm GS 
produce the same stable matching p* as output. This matching p* is called man- 
optimal, since it has the striking property that it assigns each man the best woman, 
according to his preference, that he can be matched to in any stable matching (see 
[4,5,8]). Moreover, McVitie and Wilson [7] prove that the man-optimal matching 
is also woman-pessimal, i.e., it assigns each woman the worst man, with respect to 
her preference, among those to whom she can be matched in some stable matching. 

3. THE DUAL SIMPLEX METHOD 

In this section we review the dual simplex method when applied to determine 
whether or not a system of linear equations with nonnegative constraints on the 



COURTSHIP AND LINEAR PROGRAMMING 115 

variables is feasible and to identify a basic feasible solution for the system when 
it is feasible. An alternative (standard) method for achieving this goal is the 
introduction of artificial variables and the use of phase I of the simplex method. 
For a more detailed description of the simplex method and its variants see, for 
example, the book by Bazaraa, Jarvis, and Sherali [ 11. 

Throughout this section let A be a matrix in RmX” whose rows are linearly 
independent, and let b be a vector in Rm. We consider the following linear system: 

Ax = 6, x > 0. (2) 

For a positive integer k, let Ik denote the set of indices { 1, . . . , k}. For j E Z, 
and i E Z,, let Ai be the jth column of A, and let Ai be the ith row of A. Thus, 
A{ = (A# = (A’), is the ijth element of A. A basis for A is a set of indices 
a & I,, with m elements, say B = cl,. . . ,jm}, such that the corresponding 
columns Ajl T”‘, Ajm are linearly independent. Each basis B determines a matrix 
B E RBx’* which gives, for each k E Z,,, the unique expansion of the column Ak in 
terms of the columns corresponding to the basis, i.e., 

Ak = c $A’. 

jEl3 

(3) 

The basic solution to (2) determined by a basis f? is the unique solution of 
Ax = b with Xk = 0 for each k E Z, \ B. The nonnegative basic solutions are 
called basic feasible solutions. It is well known that the extreme points of the 
convex polyhedron {x : Ax = 6, x > 0) are the basic feasible solutions of (2). 

Consider the maximization of the zero objective 0 .x subject to x satisfying (2). 
Then all basic feasible solutions of (2) are optimal, and finding a basic feasible 
solution of (2) is equivalent to finding an optimal basic feasible solution. The latter 
can be accomplished by using the dual simplex method starting from an arbitrary 
basic solution. We refer to this particular application of the dual simplex method 
as Algorithm FDS, which stands for “feasibility dual simplex.” We next describe 
the method formally. 

ALGORITHM FDS 

Initialization 

0. Let B be a basis for A. 

Main iteration 

1. Let x be the basic solution determined by B. If x 2 0, then stop with output 
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x* E X. Otherwise, choose r from the set 

{jEB:Xj<O}. 

2. Let B satisfy (3) with respect to a. If $ 2 0 for all j 9 ,13, stop. Otherwise, 
select k from the set 

{kqX?:B;<O}. 

3. B c B u {k}\(r). Go to 1. 

An initial basis for the algorithm can be found by Gaussian elimination. Note 
that Gaussian elimination will actually verify the assumption that the rows of A 
are linearly independent. The possible outcomes of a main iteration of Algorithm 
FDS are summarized below. 

THEOREM 2. (a) If Algorithm FDS stops in step 1, then x* is a basic feasible 
solution for (2). 

(b) IfAlgorithm FDS stops in step 2, then there is no feasible solution for (2). 
(c) After each execution of step 3, I3 is a basis for A. 

PROOF. Algorithm FDS is the standard dual simplex method applied to the 
linear program where 0 . x is maximized subject to x satisfying (2). Thus, the 
conclusions of the theorem are standard; e.g., see Bazaraa, Jarvis, and Sherali [ 11. 

??

Since Algorithm FDS is a special application of the dual simplex method, all 
known results about the latter apply to it. In particular, when a basis a is updated 
through the execution of step 3, the new basic solution x’ is computable from the 
old basic solution x and the old coefficients B by 

(4) 

for j E B\(r). (5) 

In an iteration of Algorithm FDS, we refer to the index r selected in step 1 
as the leaving index and to the index k selected in step 2 as the entering index. 
The selection criterion for the leaving and entering indices is called the pivoting 
rule of Algorithm FDS. We note that, in general, a pivoting rule does not neces- 
sarily specify the entering and leaving indices in a univocal way, and it does not 
necessarily guarantee the termination of the algorithm. Following Bland [2], we 



COURTSHIP AND LINEAR PROGRAMMING 117 

consider the following pivoting rule for algorithm FDS: 

In step 1: choose r = minti E f?: Xj < 0). 

In step 2: choose k = minfi $ B: $r < 0). 

(6) 

(7) 

We refer to this pivoting rule as Bland’s rule. As Algorithm FDS is a dual simplex 
method, it follows that this pivoting rule guarantees termination; see Bazaraa, 
Jarvis, and Sherali [ 11. 

We next consider pivoting rules obtained by a relaxing of (7). Let r be the 
leaving index chosen by (6); then choose the entering index k by 

k= 
any index in S E fi @ 23 : j < r and 2; < 0) if S # 0, 
min~@a:$<O} 

(8) 
otherwise. 

We shall call any pivoting rule that satisfies (6) and (8) a Bland type pivoting rule. 

THEOREM 3. Algorithm FDS implemented with any Bland type pivoting rule 
terminates in a$nite number of iterations. 

PROOF. The (classical) arguments that establish termination of the general 
dual simplex method under Bland’s rule corresponding to (6)-(7) (e.g., [2] or [I]) 
show the termination of the method under any relaxation of Bland’s rule which 
corresponds to (6)-(g). As Algorithm FDS is an application of the dual simplex 
method, the conclusion of our theorem follows. ??

We note that the above result is valid, mutatis mutandis, for general simplex 
or dual simplex method under any modification of Bland’s original rule which 
corresponds to relaxing (7) through (8). 

Consider an application of the dual simplex method which has the following 
(uncommon) property: a variable which leaves a basis never reenters, and a variable 
which enters a basis never leaves. Assume that q iterations are needed to reach 
termination. In this case we can order the variables in the following way: variables 
that leave a basis during the execution of the method will be put in positions 
2,4, . . . ,2q consecutively, variables that enter a basis will be put in positions 
1,3,... ,2q - 1 consecutively, and the remaining variables will be put in arbitary 
positions 2q + 1 and higher. It is easy to verify that the given execution of 
the dual simplex method follows the modified version of Bland’s rule given by 
(6) and (8). Thus, any execution of the dual simplex method which has the 
above-listed (uncommon) property is an implementation of a Bland type pivoting 
rule. 
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We observe that the above correspondence of solutions of (9)-(12) to solutions 
of (13)-( 16) is one-to-one and maps the extreme points of the stable marriage 
polytope onto the extreme points of the polytope defined by (13)-( 16). 

Let A be the coefficient matrix corresponding to Equations (13)-(15). Then 
A E @!4U”U&)X(MUWUEU&‘) where E’ is an isomorphic copy of E. So A has 

PI + I WI + l&l rows and Ii/ + JWJ + 2)E) columns. We index the rows of A 
by m E M, w E W, and (m, w) E A, according to their provenance from either 
(13), (14), or (15), respectively; e.g., we write A,,A,, and A,,,. Also, we index 
the columns of A corresponding to x,,,,,, t,,,,,,,, r,,,, and sw by (m, w), [m, w], m, and 
w, respectively, e.g., A(mlW),A[ m~wl A”’ and AW. (The reader will notice that for 
brevity we do not use the notation A(,,:), and use A,,, ’ instead.) 

For m E M, w E W, and (i, j) E & we let em, ew, and eij denote the corre- 
sponding unit vectors in the IM( + (WI + (&(-dimensional Euclidean space con- 
taining the columns of A, i.e., all coordinates of these vectors are zero except that 
(em),,, = (eW), = (e’j)ij = 1. We observe that 

A”’ = em for each m E M, (17) 
A” = ew for each w E W, (18) 

AhWl = _e%w for each (m, w) E E. (19) 

It follows that these vectors are linearly independent. Thus, rank A = JMJ + 1 WI + 
181, implying that the rows of A are linearly independent. We next describe the 
columnA(m~“) that corresponds to the variable x,,,. Let (m, w), (i, j) E E, m’ E M, 
and w’ E W, then 

A$‘“) = 1 if m’= 112, 
0 otherwise, 

A$+) = 1 if w’= w, 
0 otherwise, (21) 

1 if i= m, j= w, 

A!md = 1 if i=m, j<, w, 
‘J 1 if i <w m, j= w, (22) 

0 otherwise. 

So, for each (m, w) E E, 

Ah”) = c ernj + c &P _t em + p, (23) 
j&w j%m 

The following lemma and its corollary establish some linear relations among 
the columns of A. They will be key to our development. 
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LEMMA 4. Let (m, w) E E. Then 

Ah”) = _ c A[i,Wl - c A’mjl + A”’ + AW. (24) 
i<,m j&m 

PROOF. The representation of Almv”‘) given by (24) follows directly by sub- 
stituting (17)-( 19) into (23). ??

COROLLARY 5. Let (m, w) E & and (m’, w) E E, where m >W m’. Then 

Ah4 = AW?) -c A[md + c Ah’41 

j&w j<,jw 
(25) 

- c A[iPl + Am _ A”‘. 

m’ cw i&m 

PROOF. By applying Lemma 4 to the pairs (m, w) and (m’, w) we see that 

A(“‘w) -Ah’?) = _ c Ahwl _ c Abd + Am + AW 

i<,m j<d+ > 

_ 

( 

_ c A[hwl _ c A[m’d + Am’ + Aw 

i<,m’ j<,rw > 

ZZ- 
c 

A[mdl + c A[m’d 

j&w j<ntt w 

- 
c 

A[iyWI + Am _ Am’, 

m’&i<,m 

establishing (25). ??

As the rows of A are linearly independent, Algorithm FDS can be used to find 
a basic feasible solution for (13)-(16). We next identify iterations of Algorithm 
GS with iterations of Algorithm FDS. 

Given an execution of Algorithm GS, we enumerate the (distinct) generated 
matchings. In particular p” - 8 is the initial empty matching, and if q proposals 
are accepted during the particular execution of Algorithm GS, then, for p = 
1 . . > q, @ denotes the pth generated matching. Also, let (mP, Wp) E E denote the 
pair that becomes matched when CLp is formed, i.e., (mp, Wp) E 4, pJ’-‘(mp) = mJ’, 
and @-‘(wp) # mp. Note that if j # k then (m’, w’) # (mk, wk), but it need not 



COURTSHIP AND LINEAR PROGRAMMING 121 

hold that mi # mk or that wi # wk. For p = 0, 1, . . . , q, let II@) = {(mk, wk) : k = 
1 , . . . ,p}, so III(p) is the set of all pairs (m, w) E & such that a proposal from m 
to w was accepted on or before the iteration where pp was formed. We associate 
with the matching @’ the following set B(p) of column indices of A: 

WP> = {(m, 4 : Cm, w> E IXP)) 
U{[m,w]:(m,w) E E\II(p)}UMU W. 

(26) 

We observe that as II(p + 1) = II(p) u {(&‘+I, up+*)}, 

B(p + 1) = B(p) u { (nP+‘) I@+‘)} \ {[d+‘, #g+l]}. (27) 

The next lemma is key to our main result. 

LEMMA 6. Let ,LLJ’ be the pth matching generated by Algorithm GS. Assume 
that 23(p) is a basis for (13)-(16), and let B(p) denote the matrix of expansion 
coeficients corresponding to the basis B(p), i.e., 3 = i?(p) satisfies (3) with 
l3 = B(p). Then: 

(a) The basic solution (9, Tp, 9, P) that corresponds to L3(p) is given by 

4t,w = { 
1 if (m,w>EI1P, 
0 if (m,w)EE\I1P, 

I”,= 
i 

1 if $(m) =m, 

0 if CLP(m) # m, 

s”,= 
1 

1 if J(w) = w, 

0 if LJP(w) # w, 

(28) 

(29) 

(30) 

and, with Xp defined by (28), 

c,w= cG,i+ c4w+$,,- 1 foreach 
j>mw Dwm 

(m, w) E E. (31) 

In particular, &,w E { - 1, 0, l}, for all (m, w) E E. Further, t$& = 0 for aEl 
(m, w) E II(p) and t&, = - 1 tf and only if m is single in CLp, m did not propose to 
w in any iteration prior to the obtainment of pp, and 4(w) <,,, m. 

(b)Ifalgorithm GSdoesnotterminate in iterationp, theni?@$,‘$:,‘,$~l) = - 1. 

PROOF. We first establish (a). It is easy to verify that the vector (Xp, Tp, sp, 1p) 
defined by the right hand side of (28)-(31) satisfies (13)-(14). Further, the defi- 
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nition of 6’ in (31) assures that (15) is satisfied as well. So (9, Pp, sp, P) satisfies 

(13H15). 
We next note that (28) assures that for (m, w) E E, xj,mw x,,,d + Ci,,m _qw + 

x~,, E (0, 1,2}, implying that &+ E { - 1, 0, 1). Also, if (m, w) E II(p), then 
the construction of Algorithm GS assures that either (m, w) E pp or p(w) &, m 
and pP(m) <m w; in either case we have that cj,mw x,,,J + xi>,,, Xi,w + x,,,, = 
1, implying that &,, = 0. Finally, &,,,, = - 1 for (m, w) E C if and only if 
Cj>mwXmj + Ci>,mXi,W + xl?l,W = 0, i.e., pJ’(m) <,,, w and ,L#(w) <w m. It 
follows from the definition of Algorithm GS that this occurs if and only if m is 
single in P, m has not yet proposed to w by the time @’ is formed, and $(w) <,+, m. 

In order to establish (a) it remains to show that the solution of (13)-( 15) given 
by (28)-(31) is the basic solution corresponding to B(p). Indeed, we have that 
the variables corresponding to the indices that are not in B(p), namely .$ for 

(i,j) E E \ IUP) c E \ CLp and {j for (i,j) E II(p), are all zero. 
We next prove (b). Let Ei = mp+’ and W = wP+‘. We consider two cases. 

First assume that $‘(iQ) = W, i.e., Z is single in I_L P. In this case, in the iterations 
prior to the formation PP no man proposed to i? and E did not propose to any 
woman which he prefers less than Z. Thus, 

WJ) 2 {[i, g : i LG ti} U { [E,j] :j crT w} u M u w. 

Lemma 3 shows that 

Ah”) = _ c A[‘? *I _ 1 Ahjl + A” + Aw. 

i <pfi j <fib? 

We have obtained an expansion of A(“@) as a linear combination of columns 
of A corresponding to indices in a(p); hence, the coefficients of the expansion give 

the elements of the vector B@*). In particular we see that the coefficient of A[maio] 
in this expansion is - 1, i.e., B@)/$‘$ = - 1. 

Next assume that 4(Z) # W and let m’ = J(G), i.e., E is matched to m’ E A4 
in CLp. In this case, in the iterations preceding the formation of clp no man i whom 
iV prefers to m’ has proposed to her and neither man m’ nor man m proposed to 
any woman j that he prefers less than W. So {i, i?) E & : i >* m’} f~ II(p) = 8, 
and for m E {?I, m’}, {(m,j) E E :j <,,, W} fl II(p) = 0. Further, m’ cw fi and 
(m’, TV) E III(p). It follows that B(p) includes the set 

{(m’,F)} U {[E&j] :j -CM W} U {[m’,jl;j cm/ w} 

U {[i,E]:m’<ioi~ii,E}UMUW. 
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As (?Z, F) E E, (m’, W) E E, and ?E >. m’, we conclude from Corollary 5 that 

A@@) _ Ah’,“) - _ c A[“d + c Ab’d 

j-&W j<,jiii 

- c A[‘,“] + A” _ Am’. 

m’ <;;i<;;m 

We have obtained an expansion of A (E, W) as a linear combination of columns 
of A corresponding to indices in a(p); hence, the coefficients of the expansion 

give the elements of the vector B@@). In particular, we see that the coefficient of 

A[mvW] in this expansion is -1, i.e., $i:$/ = -1. ??

THEOREM 7. Let (PO,. . . , pq) be the sequence of matchings generated by 
an execution of Algorithm GS where pq = p* is the output of the execution. Then, 
forp= l,... , q, B(p) is a basis for (13)-(16), and ifp < q, Z?(p + 1) is obtained 
by executing an iteration of Algorithm FDS. 

PROOF. We first observe that n(O) = 8; hence B(0) = {[m, w] : (m, w) 
E E} U M U W. Equations (17)-(19) imply that the columns {A”’ : m E M}, 
{A”’ : w E W}, and {-A [mywl : (m, w) E E} are the corresponding unit vectors. 
Thus, we have that B(0) is a basis for (13)-( 16). 

Next assume for p = 0, . . . , q - 1 that a(p) is a basis for (13)-(16). The 
matching I1p+l is formed by the acceptance by wP+l of a proposal from rnp+' . 
This implies that r-Lp(m!‘+‘) = rnP+’ , rnJ’+ 1 did not propose previously to uJ’+’ and 
@(wJ’+‘) <@+I mP+‘. Then, by part (a) of Lemma 6, t”,+, ti,+, = -1, and there- 

fore its corresponding index [m P+’ , WP+‘] can be selected in step 1 of Algorithm 

FDS. Now, by part (b) of Lemma 6, B(p){$~,‘,$:,) = -1, and thus the index 

(mJ'+' , I@+‘) can be selected in step 2 of Algorithm FDS. These selections imply 
that the new basis determined in the following execution of step 3 of Algorithm FDS 
will be B(p)U {(mp+‘, ti+‘)}\{[ mp+‘, @+‘I}, which, by (27), equals &p+l). ??

The rules for changing bases in an application of Algorithm FDS corresponding 
to the execution of Algorithm GS assure that the set of variables that enter a basis 
and the set of variables that leave a basis are disjoint; see (27). Hence a variable 
that enters a basis never leaves, and a variable that leaves a basis never enters. 
Thus, the remarks following Theorem 3 show that such applications of Algorithm 
FDS follow an implementation of a Bland type pivoting rule. 

We have seen that each execution of Algorithm GS corresponds to an execution 
of Algorithm FDS using a Bland type pivoting rule. Hence, Theorem 3 gives an 
independent proof for the convergence of Algorithm GS. But we have not been able 
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to use pure linear programming-arguments to show that termination will always 
occur with a feasible solution of (13~(16). As termination of algorithm FDS 
will always produce a basic solution, and as the basic feasible solutions of (13)- 
(16) correspond to the stable matchings, such a proof would prove the existence 
of stable matchings. [We note, however, that the known existence of a stable 
matching assures that any implementation of algorithm FDS to (13)-(16) with a 
Bland type pivoting rule will produce a basic feasible solution of (13)-( 16).] 
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