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a b s t r a c t

Neuromyelitis optica (NMO), an autoimmune disease of the central nervous system, is characterized by
an autoantibody called NMO-IgG that recognizes the extracellular domains (ECDs) of aquaporin-4 (AQP4).
In this study, monoclonal antibodies (mAbs) against the ECDs of mouse AQP4 were established by a ba-
culovirus display method. Two types of mAb were obtained: one (E5415A) recognized both M1 and M23
isoforms, and the other (E5415B) almost exclusively recognized the square-array-formable M23 isoform.
While E5415A enhanced endocytosis of both M1 and M23, followed by degradation in cells expressing
AQP4, including astrocytes, E5415B did so to a much lesser degree, as determined by live imaging using
fluorescence-labeled antibodies and byWestern blotting of lysate of cells treated with these mAbs. E5415A
promoted cluster formation of AQP4 on the cell surface prior to endocytosis as determined by im-
munofluorescent microscopic observation of bound mAbs to astrocytes as well as by Blue native PAGE
analysis of AQP4 in the cells treated with the mAbs. These observations clearly indicate that an anti-AQP4-
ECDs antibody possessing an ability to form a large cluster of AQP4 by cross-linking two or more tetramers
outside the AQP4 arrays enhances endocytosis and the subsequent lysosomal degradation of AQP4.

& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Neuromyelitis optica (NMO) is an autoimmune disease of the
central nervous system generally characterized by a disease-spe-
cific autoantibody called NMO-IgG [1]. A target of NMO-IgG is a
water channel, aquaporin-4 (AQP4) [2], and binding of NMO-IgG to
AQP4 expressed in astrocytic end-feet followed by complement-
dependent and cell-mediated disruption of astrocytes causes de-
myelination in NMO [3–7]. NMO-IgG-induced endocytosis of AQP4
accompanied by excitatory amino acid transporter 2 (EAAT2),
which leads to disruption of glutamate homeostasis and ex-
citotoxicity of oligodendrocytes, was also proposed [7,8].
r B.V. This is an open access article

.

AQP4 has two dominant isoforms—M1 and M23—both of
which are simultaneously expressed and functions as a homo/
heterotetramer randomly incorporating these two isoforms
[32,33]. AQP4 has a unique feature, namely formation of ortho-
gonal arrays of particles (OAPs), in which AQP4 tetramers are or-
thogonally arranged [9,10]. M23 lacks the initial 22 amino acids of
the N-terminal cytoplasmic domain of M1 due to the difference in
transcriptional start sites [11]. This 22-amino-acid domain inter-
feres with formation of the OAPs [12]; therefore, M1 homo-
tetramers form few arrays, while M23 homotetramers form much
larger arrays than do endogenously expressed AQP4 homo/
heterotetramers.

The epitopes for NMO-IgG in AQP4 are located in the extra-
cellular domains (ECDs), consisting of three loops connecting the
six transmembrane domains. In most cases, NMO-IgG pre-
ferentially binds to cells expressing M23 rather than to those
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.sciencedirect.com/science/journal/24055808
www.elsevier.com/locate/bbrep
http://dx.doi.org/10.1016/j.bbrep.2016.05.017
http://dx.doi.org/10.1016/j.bbrep.2016.05.017
http://dx.doi.org/10.1016/j.bbrep.2016.05.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbrep.2016.05.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbrep.2016.05.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbrep.2016.05.017&domain=pdf
mailto:yoabe@a6.keio.jp
http://dx.doi.org/10.1016/j.bbrep.2016.05.017


P. Huang et al. / Biochemistry and Biophysics Reports 7 (2016) 77–8378
expressing M1 alone, implying that OAP-formation of AQP4 con-
tributes to recognition by NMO-IgG since the primary sequences of
ECDs of M1 and M23 are identical [13–18]. Multiple groups have
reported that NMO-IgG only recognizes native AQP4 integrated
into a lipid bilayer, suggesting that the epitope of NMO-IgG is
formed by more than one loop in a conformational structure
[13,16,23]. But some NMO-IgG can recognize denatured AQP4 as
well as linear peptides corresponding to one of the extracellular
loops [34].

NMO-IgG-induced endocytosis and/or degradation of AQP4
have been observed in some cell lines, including HEK293, CHO,
and U87-MG, ectopically expressing AQP4. However, while a group
demonstrated that NMO-IgG only induced endocytosis of M1, the
other group reported that recombinant NMO-IgGs cloned from
cerebrospinal fluid plasmablasts of an NMO patient induced en-
docytosis of both isoform [8,19–21]. In addition to AQP4 over-ex-
pressed in a stable cell line, NMO-IgG–induced endocytosis of
endogenous AQP4 in a primary culture of rat, mouse, and human
astrocytes was also reported [8,20,22]. On the other hand, one of
the recombinant monoclonal NMO-IgGs, rAb-53 induced little
endocytosis of endogenous mouse AQP4 (mAQP4) in primary
cultured astrocytes [15,21,23], despite the fact that it did en-
docytosis of ectopically expressed AQP4 in a stable cell line [21].
These conflicting findings may be attributable to differences in the
binding properties of each anti-AQP4 antibody contained in the
sera of NMO patients because as mentioned above, epitopes of
NMO-IgG vary among patients. One difficulty in analyzing the
binding properties of NMO-IgGs in patient sera is that they are
‘polyclonal’ ones containing multiple NMO-IgGs with a variety of
binding characteristics as well as other unrelated antibodies.
Therefore, it is impossible to address this question quantitatively
unless each anti-AQP4 antibody is cloned from patient plasma
cells, as Bennett et al. did previously [23].

In this study, we developed two NMO-IgG-like monoclonal
antibodies (mAbs) against the ECDs of mAQP4 using a baculovirus
display method [24]: one recognizing both M1 and M23, and the
other almost exclusively recognizing M23. Using these antibodies,
we examined the relationship between their binding properties
and subsequent endocytosis of AQP4 in astrocytes.
2. Materials and methods

2.1. Development of mAbs against the ECDs of mAQP4

mAbs against the ECDs of mAQP4 were developed using a ba-
culovirus display method [24,25]. To circumvent the im-
munological tolerance for mAQP4, gp64 transgenic mice [24] with
an AQP4 knockout genetic background [26] (Acc. No. CDB0758K,
http://www.cdb.riken.jp/arg/mutant%20mice%20list.html) were
used as hosts. After screening hybridoma culture supernatants by
flow cytometry and an ELISA using CHO cells stably expressing
mAQP4 M23 (Supplemental Fig. S1A, lane 1), eight clones were
obtained (Supplemental Fig. S1B).

2.2. Mice and primary culture of astrocytes

Primary cultured astrocytes derived from C57BL/6 J mice were
prepared as described previously [27]. Animal experiments were
performed according to the Guidelines for the Care and Use of La-
boratory Animals of Keio University School of Medicine (09084‐7).

2.3. Western blotting

Western blotting was performed as described [28]. To confirm
lysosomal degradation of AQP4 in astrocytes, 500 nM bafilomycin
A1 (Merck Millipore, Billerica, MA, USA) [29], was added to culture
media and incubated for 24 h. Antibodies used were monoclonal
anti-AQP4 (E5206, 1:2000, ref 25); rabbit polyclonal anti-AQP4
(Sigma, St Louis, MO); and monoclonal anti-actin (2F3, 1:5000,
Wako Pure Chemical Industries).

2.4. Blue native PAGE

To determine the size of complexes containing AQP4 in cells
treated with mAbs, Blue native PAGE (BN-PAGE) was performed as
previously reported [30]. Stable CHO-cell lines and mouse astro-
cytes were incubated with either E5415A or E5415B (1.5 μg/ml) for
3 h. Afterwards, cells were lysed in NativePAGE sample buffer (Life
Technologies, Carlsbad, CA, USA) containing 1% n-dodecyl-β-D-
maltoside (DDM). The lysates were centrifuged to collect the su-
pernatants (DDM-soluble fraction), which was mixed with 5%
Coomassie Brilliant Blue G-250 (detergent: G-250 ratio of 4:1),
loaded in polyacrylamide native gradient gels (3–12%), and elec-
trophoresed. Protein precipitated with the pellets (DDM-insoluble
fraction) was extracted with SDS sample buffer and subjected to
Western blotting. AQP4 and mouse IgG were detected with rabbit
antibody against the C-terminal domain followed by HRP-con-
jugated anti-rabbit IgG and HRP-conjugated anti-mouse IgG,
respectively.

2.5. Confocal microscopy

E5415A and E5415B were labeled with Alexa Fluor 555 as de-
scribed [29]. To examine endocytosis of AQP4 in astrocytes, pri-
mary cultured astrocytes were plated onto 3.5-cm glass base
dishes and grown for 3–4 days. For endosomal localization of
mAbs, cells were preincubated with 100 mg/ml Alexa-Fluor-488-
conjugated transferrin (Life Technologies) in Hanks' BSS for
10 min. Cells were then incubated with 2 mg/ml Alexa-Fluor-555-
labeled E5415A or E5415B for up to 3 h. For lysosomal localization,
astrocytes were incubated with either Alexa-Fluor-555-labeled
mAb in the presence of the lysosomal marker LysoTracker Green
DND-26 (1 mM, Life Technologies) for 3 or 24 h.

To distinguish between mAbs bound to cell-surface and to in-
tracellular AQP4, primary cultured astrocytes were incubated with
2 mg/ml of each mAb at 37 °C for the indicated times. Cells were
then cooled to 4 °C to avoid further endocytosis and washed with
ice-cold PBS. mAb bound to surface AQP4 was labeled with Alexa-
Fluor-488-conjugated goat anti-mouse IgG (Life Technologies) at
4 °C for 1 h. Subsequently, cells were fixed with 4% PFA, washed
with PBS, and permeabilized with 0.3% Triton X-100 in PBS. mAb
bound to intracellular AQP4 was then labeled with Alexa-Fluor-
555-conjugated goat anti-mouse IgG (Life Technologies) at 4 °C for
1 h.

2.6. Statistical analysis

Statistical analysis was performed using JMP ver. 11.0.0 (SAS
Institute Inc., Cary, NC, USA). Data were analyzed using one-way
ANOVA followed by the Tukey-Kramer method.
3. Results and discussion

3.1. Development of mAbs recognizing the ECDs of mAQP4

We developed mAbs against the ECDs of mAQP4 (Supplemental
Fig. S1B), which mimic NMO-IgG. Similarly to NMO-IgGs we have
examined so far [13] as well as those other groups have demon-
strated [16,23], these mAbs did not recognize denatured AQP4 as
determined by Western blotting of lysate derived from mouse
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Fig. 1. Induction of endocytosis of AQP4 by mAbs in primary cultured astrocytes. (A and B) Localization of fluorescence-labeled E5415A (A, magenta) or E5415B (B, magenta)
and Alexa-Fluor-488-labeled transferrin (green) in primary cultured astrocytes was examined by confocal microscopy up to 3 h. Bar¼5 mm. (C and D) Localization of
fluorescence-labeled E5415A (C, magenta) or E5415B (D, magenta) and Lysotracker 488 (green) in primary cultured astrocytes was examined by confocal microscopy after
incubation for 12 and 24 h. Bar¼10 mm.

Fig. 2. Effect of mAbs on levels of endogenous AQP4 in primary cultured astrocytes. (A) Representative immunoblots of lysates treated with 1 mg/ml of C9401 (lane 2),
E5415A (lanes 3 and 4), or E5415B (lanes 5 and 6) in the absence (lanes 2, 3, and 5) or presence (lanes 4 and 6) of 500 nM bafilomycin A1 at 37 °C for 24 h using anti-AQP4
(upper panel) or anti-actin (lower panel) antibody. (B) Effect of E5415A or E5415B on levels of endogenous AQP4 (black column) and actin (grey column). Values are
determined by Western blotting and estimated as fold relative to non-treated cells (A, lane 1). **(Po0.01), significant difference versus cells treated with C9401 alone; and
## (Po0.01) and # (Po0.05), significant difference between the groups as determined by the Tukey-Kramer method.
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Fig. 3. Cluster formation of AQP4 by binding of E5415A on an astrocytic membrane. Primary cultured astrocytes treated with E5415A (A, C, E, and G) or E5415B (B, D, F, and H)
for 10 min (A and B), 1 h (C and D), or 3 h (E and F), or 24 h (G and H) at 37 °C were cooled to 4 °C and further treated with Alexa-Fluor-488-labeled anti-mouse IgG (green) at
4 °C for 1 h. Then cells were fixed with 4% PFA and permeabilized to detect intracellular mAb with Alexa-Fluor-555-labeled anti-mouse IgG (magenta). Bar¼5 mm. The lower
panels are global images of the upper panels. Magnified areas are indicated by white boxes. Bar¼10 mm. (I) Quantification of the number of dots on the cell surface of
primary cultured astrocytes incubated with E5415A (red bars) or E5415B (blue bars) followed by visualized with Alexa-Fluor-488-labeled anti-mouse IgG. Fifteen to twenty
one images from five cells were taken in each experiment. Numbers of dots in 400 mm2 were counted using ImageJ2 (National Institute of Health, Bertesda, MD, http://
imagej.nih.gov/ij/) software. Values are means7SD of four independent experiments. **(Po0.01), significant difference versus cells treated with E5415A for 10 min; ##
(Po0.01), significant difference between the groups; and NS, not significant as determined by the Tukey-Kramer method.
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cerebellum (data not shown). Among these clones, we chose
E5415A and E5415B as clones recognizing both M1 and M23 iso-
forms and almost exclusively recognizing M23, respectively, for
the subsequent experiments.

3.2. Effects of mAbs against the ECD of AQP4 on the endocytosis of
AQP4 in astrocytes

Using these mAbs, we first examined whether these antibodies
enhance endocytosis of endogenous AQP4 in astrocytes. Both
Alexa-Fluor-555-labeled E5415A and E5415B bound to astrocytes
within 1 h (Fig. 1(A), (B), magenta). However, while fluorescence-
labeled E5415A co-localized with Alexa-Fluor-488–conjugated
transferrin in astrocytes during 3 h of incubation (Fig. 1(A)),
fluorescence-labeled E5415B stayed on the cell surface up to 3 h of
incubation, and little co-localization with Alexa-Fluor-488–con-
jugated transferrin was observed (Fig. 1(B)). Fluorescence-labeled
E5415A was then detected in lysosomes as determined with Ly-
soTracker Green DND-26 during 24 h of incubation (Fig. 1(C)). On
the other hand, co-localization of E5415B with lysosomal markers
was much less than that of E5415A (Fig. 1(D)). These observations
demonstrated that E5415A enhanced endocytosis and transpor-
tation of endogenous AQP4 to lysosomes in astrocytes. Consistent
with these observations, 24-h treatment with E5415A reduced
endogenous AQP4 in astrocytes (Fig. 2(A), lane 3; Fig. 2(B)). Si-
multaneous treatment with bafilomycin A1 significantly restored
the level of AQP4, indicating that AQP4 underwent lysosomal de-
gradation (Fig. 2(A), lane 4; Fig. 2(B)). Although 24-h treatment of
primary cultured astrocytes with E5415B also reduced endogenous
AQP4, the level of the reduction induced by E5415B was less than
that by E5415A (Fig. 2(A), lane 5; Fig. 2(B)).

3.3. E5415A promoted cluster formation of AQP4 on the cell surface
of astrocytes prior to internalization

Although both E5415A and E5415B similarly bound to AQP4
expressed on the cell surface of astrocytes fixed before staining
(Supplemental Fig. S8), E5415A enhanced endocytosis of AQP4 to a
greater degree than did E5415B. This prompted us to examine
what determined this difference between these two antibodies.
Binding experiments with these mAbs using some CHO-cell clones
expressing mAQP4 demonstrated that OAP-formation of AQP4 is
advantageous for both E5415A and E5415B, providing them with a
common binding site (Supplemental Fig. S2). OAP formation of
AQP4 tightened the binding of both E5415A and E5415B to AQP4
by enhancing their re-association to AQP4 (Supplemental Fig. S3
and S4). In addition, E5415A had another binding site independent
of OAP formation of AQP4 (the E5415A-specific binding site), to
which E5415B hardly bound (Supplemental Fig. S2). E5415A
strongly enhanced endocytosis of AQP4 in CHO cells expressing at
least the M1 isoform (Supplemental Fig. S5-S7), suggesting that
the binding of E5415A to the E5415A-specific site enhanced en-
docytosis of AQP4. E5415A induced complement-dependent cy-
totoxicity in CHO cells expressing M1 alone (Supplemental Fig. S9).
This result strongly suggested that OAP-independent binding of
E5415A to AQP4 promoted cluster formation of AQP4, since clus-
tering of IgG as a result of that of AQP4 is necessary for multivalent
binding of complement C1q. Phuan et al. had demonstrated that a
recombinant NMO-IgG, rAb58, which binds to both M1 and M23
with similar affinity in a monovalent manner [15], induced no
complement-dependent cytotoxicity (CDC) in cells expressing the
M1 isoform alone [31]. This result supports our idea. Thus, we
examined whether either antibody promoted clustering of AQP4
on the cell surfaces of astrocytes.

Incubation of live astrocytes with E5415A resulted in binding of
the antibody within 10 min (Fig. 3(A)), and in 1 h, coarse punctate
distribution of the antibody on the cell surface, which is re-
presented by significant reduction of number of dots in a field
(Fig. 3(I)), was observed (Fig. 3(C), green). Intracellularly localized
E5415A was not detected in astrocytes until after 24 h of incuba-
tion with this antibody, indicating that the reduction of the
number of dots was not due to loss of AQP4 from the cell surface
by its endocytosis (Fig. 3(A), (C), (E), (G), magenta). These results
suggest that E5415A promotes cluster formation of AQP4 on the
cell surface of astrocytes before internalization. Consistent with
the result observed in astrocytes, E5415A also changed the smooth
cell-surface staining pattern of CHO cells expressing M1 alone to a
punctate one (Supplemental Fig. S10). On the other hand, in-
tracellularly localized E5415B in astrocytes was not obvious up to
24 h of incubation (Fig. 3(B), (D), (F), (H), magenta). Although cell-
surface E5415B (Fig. 3(B), (D), (F), (H), green) also showed punctate
distribution, it was relatively fine throughout the incubation time
as compared with E5415A (Fig. 3(I)). These observations support
the notion that cluster formation of AQP4 by E5415A triggers
endocytosis.

To further confirm the cluster formation of AQP4 by E5415A, we
employed BN-PAGE of lysates solubilized in 10% DDM-containing
buffer to see the size of complexes containing AQP4 tetramers. As
previously reported [18,31], when M1 alone was expressed in CHO
cells, a single band corresponding to a single AQP4 tetramer was
dominantly observed (Fig. 4, lane 2, indicated with arrow a). But in
addition to the single tetramer, a ladder of larger complexes as
well as a smear migrating slowly in the electrophoresis, which
were derived from huge arrays, were observed in CHO cells ex-
pressing M23 alone (Fig. 4, lane 1). In addition, a significant level
of AQP4 was detected in the DDM-insoluble, SDS-soluble fraction
in cells expressing M23 alone (Fig. 4, lane 1, lower panel), whereas
AQP4 in this fraction was much less in those expressing M1 alone
(Fig. 4, lane 2, lower panel). When CHO cells expressing M1 alone
were incubated with E5415A for 3 h, the single AQP4 tetramer was
reduced (Fig. 4, lane 3, arrow a) and a strong signal migrating more
slowly than the single AQP4 tetramer was observed (Fig. 4, lane 3,
arrow c). This band was also detected with anti-mouse IgG, in-
dicating that the band is a complex containing at least E5415A and
AQP4 (Fig. 4, lane 6, arrow c). Interestingly, AQP4 in the DDM-in-
soluble fraction in E5415A-treated CHO cells expressing M1 alone
increased (Fig. 4, lane 3), indicating that some population in AQP4-
E5415A complexes becomes resistant to DDM in E5415A-treated
CHO cells expressing M1 alone.

In the case of primary cultured astrocytes, in the absence of
treatment with mAbs, a single AQP4 tetramer and a ladder with
higher molecular masses were also observed; however, a smear
like the one observed in CHO cells expressing M23 alone (Fig. 4,
lane 1) was not apparent (Fig. 4, lane 7). When astrocytes were
incubated with E5415A, the level of the single AQP4 tetramer was
reduced (Fig. 4, lane 8, arrow a), and a band corresponding to the
dominant AQP4-E5415A complex detected in E5415A-treated CHO
cells expressing M1 alone was also observed (Fig. 4, lanes 8, 11,
arrow c). Furthermore, the ladder became obscure, and instead, a
long smear consisting of AQP4 and E5415A appeared. And AQP4 in
the DDM-insoluble fraction increased. These observations in-
dicated that binding of E5415A to endogenous AQP4 in astrocytes
resulted in the formation of huge complexes of AQP4 and E5415A
and that some of them became resistant to DDM, supporting the
idea that E5415A promotes clustering of AQP4 on astrocyte sur-
faces. In contrast, when astrocytes were incubated with E5415B,
the level of the single AQP4 tetramer was not altered, and equi-
distant upward shifts of the ladder were observed. In addition, the
amount of AQP4 in the DDM-insoluble fraction in E5415B-treated
cells was much less than that in E5415A-treated cells (Fig. 4, lanes
9, 8, respectively). Thus, it is highly likely that E5415B mainly
bound to AQP4 located within arrays without cross-linking more



Fig. 4. BN-PAGE analysis of complexes containing AQP4 in cells treated with mAbs. CHO cells stably expressing M23 alone (lanes 1 and 4), CHO cells stably expressing M1
alone (lanes 2, 3, 5, and 6), or primary cultured astrocytes (lanes 7–12) were incubated in the absence (lanes 1, 2, 4, 5, 7, and 10), or presence of 1.5 μg/ml of E5415A (lanes 3, 6,
8, and 11) or E5415B (lanes 9 and 12) for 3 h. DDM-soluble fractions (upper panels) and DDM-insoluble, SDS-soluble fractions (lower panels) were subjected to BN-PAGE and
SDS-PAGE, respectively. Complexes containing AQP4 (lanes 1, 2, 3, 7, 8, and 9) and the mAbs (lanes 4, 5, 6, 10, 11, and 12) were detected with rabbit anti-AQP4 C-terminal
domain antibody followed by HRP-labeled anti-rabbit IgG (α-AQP4) and HRP-labeled anti-mouse IgG (α-mouse IgG), respectively. A single AQP4 tetramer is indicated by
arrow a. Complexes containing AQP4 and mouse IgG observed in cells treated with the mAbs for 3 h by Blue native PAGE are indicated by arrows b and c.
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than an array, which fails to contribute to further clustering of
AQP4 or to the enhancement of endocytosis. Interestingly, a band
containing AQP4 and mouse IgG (E5415B) migrating slightly faster
than the dominant AQP4-E5415A complex detected in E5415A-
treated CHO cells expressing M1 alone as well as in astrocytes was
observed (Fig. 4, lanes 9, 12, arrow b), which was also detected as a
minor band in E5415A-treated CHO cells expressing M1 alone and
in astrocytes (Fig. 4, lanes 3, 6, 8, 11, arrow b).

Taken together, these two mAbs with different binding prop-
erties, and our analysis of the consequences of their binding to
AQP4, clearly demonstrated that an anti-AQP4-ECDs antibody
possessing an ability to form a large cluster of AQP4 by cross-
linking two or more tetramers outside the AQP4 arrays enhances
endocytosis and the subsequent lysosomal degradation of AQP4,
which clarifies the controversial effects of a variety of NMO-IgGs
on AQP4.
Acknowledgements

The authors thank Ms. Wakami Goda and Ms. Manae Imamura
for invaluable help; Ms. Mizuki Okada and Mr. Yasuhiro Furuuchi
for preparation of primary cultured astrocytes; Dr. Dovie Wylie,
Ms. Michi Enoto, Ms. Yuri Atobe, Ms. Yoshiko Yagyu, Ms. Yoko
Yamamoto for expert assistance; Mr. Simon Chau for reviewing the
manuscript; Ms. Yumiko Matsushima, Ms. Sayaka Inui, Ms. Yoko
Honjo, Ms. Manami Tanaka, Ms. Kaori Miyamoto and Ms. Satoko
Nakajima for taking care of mice; Collaborative Research Re-
sources, School of Medicine, Keio University for technical assis-
tance; and all members of the Department of Pharmacology,
School of Medicine, Keio University for cooperation.

This work was supported by grants from Japan Society for the
Promotion of Science Grant-in-Aid for Scientific Research (C)
(22590940) (YA); Keio Gijuku Academic Development Funds (YA);
Grant-in-Aid for Scientific Research (B) (21390061) (MY); the Ja-
pan New Energy and Industrial Technology Development Organi-
zation (NEDO, P08005) (MY); Keio University Special Grant-in-Aid
for Innovative Collaborative Research Projects (MY); Translational
Research Network Program from Japan Agency for Medical Re-
search and Development (A151TR) (MY); FIRST program of Japan
Society for the Promotion of Science (TH); Grants-in Aid for Sci-
entific Research from the Ministry of Education, Science and
Technology of Japan (25220205) (TH); the NFAT project of the
Japan New Energy and Industrial Technology Development Orga-
nization (NEDO, P06009) (TH); the Grants-in-Aid for Scientific
Research from the Ministry of Education, Science and Technology
of Japan (22229008) (KF); Grants-in-Aid for Scientific Research
(Research of Neuroimmunological Diseases) from the Ministry of
Health, Welfare and Labor of Japan (201324020A) (KF).
Appendix A. Transparency document

Transparency document associated with this article can be
found in the online version at http://dx.doi.org/10.1016/j.bbrep.
2016.05.017.
References

[1] V.A. Lennon, D.M. Wingerchuk, T.J. Kryzer, S.J. Pittock, C.F. Lucchinetti,
K. Fujihara, et al., A serum autoantibody marker of neuromyelitis optica: dis-
tinction from multiple sclerosis, Lancet 364 (2004) 2106–2112.

[2] V.A. Lennon, T.J. Kryzer, S.J. Pittock, A.S. Verkman, S.R. Hinson, IgG marker of
optic-spinal multiple sclerosis binds to the aquaporin-4 water channel, J. Exp.

http://dx.doi.org/10.1016/j.bbrep.2016.05.017
http://dx.doi.org/10.1016/j.bbrep.2016.05.017
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref1
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref1
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref1
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref1
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref2
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref2


P. Huang et al. / Biochemistry and Biophysics Reports 7 (2016) 77–83 83
Med. 202 (2005) 473–477.
[3] K. Fujihara, Neuromyelitis optica and astrocytic damage in its pathogenesis, J.

Neurol. Sci. 306 (2011) 183–187.
[4] A.S. Verkman, P.W. Phuan, N. Asavapanumas, L. Tradtrantip, Biology of AQP4

and anti-AQP4 antibody: therapeutic implications for NMO, Brain Pathol. 23
(2013) 684–695.

[5] C.F. Lucchinetti, Y. Guo, B.F. Popescu, K. Fujihara, Y. Itoyama, T. Misu, The pa-
thology of an autoimmune astrocytopathy: lessons learned from neuromyelitis
optica, Brain Pathol. 24 (2014) 83–97.

[6] M.C. Papadopoulos, J.L. Bennett, A.S. Verkman, Treatment of neuromyelitis
optica: state-of-the-art and emerging therapies, Nat. Rev. Neurol. 10 (2014)
493–506.

[7] A. Zekeridou, V.A. Lennon, Aquaporin-4 autoimmunity, Neurol. Neuroimmu-
nol. Neuroinflamm. 2 (2015) e110.

[8] S.R. Hinson, S.F. Roemer, C.F. Lucchinetti, J.P. Fryer, T.J. Kryzer, J.L. Chamberlain,
et al., Aquaporin-4-binding autoantibodies in patients with neuromyelitis
optica impair glutamate transport by down-regulating EAAT2, J. Exp. Med. 205
(2008) 2473–2481.

[9] B. Yang, D. Brown, A.S. Verkman, The mercurial insensitive water channel
(AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary
cells, J. Biol. Chem. 271 (1996) 4577–4580.

[10] C.S. Furman, D.A. Gorelick-Feldman, K.G. Davidson, T. Yasumura, J.D. Neely,
P. Agre, et al., Aquaporin-4 square array assembly: opposing actions of M1 and
M23 isoforms, Proc. Natl. Acad. Sci. USA 100 (2003) 13609–13614.

[11] M. Lu, M.D. Lee, B.L. Smith, J.S. Jung, P. Agre, M.A. Verdijk, et al., The human
AQP4 gene: definition of the locus encoding two water channel polypeptides
in brain, Proc. Natl. Acad. Sci. USA 93 (1996) 10908–10912.

[12] H. Suzuki, K. Nishikawa, Y. Hiroaki, Y. Fujiyoshi, Formation of aquaporin-4
arrays is inhibited by palmitoylation of N-terminal cysteine residues, Biochim.
Biophys. Acta 2008 (1778) 1181–1189.

[13] G.P. Nicchia, M. Mastrototaro, A. Rossi, F. Pisani, C. Tortorella, M. Ruggieri, et al.,
Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis
optica autoantibodies, Glia 57 (2009) 1363–1373.

[14] F. Pisani, M. Mastrototaro, A. Rossi, G.P. Nicchia, C. Tortorella, M. Ruggieri, et al.,
Identification of two major conformational aquaporin-4 epitopes for neuro-
myelitis optica autoantibody binding, J. Biol. Chem. 286 (2011) 9216–9224.

[15] J.M. Crane, C. Lam, A. Rossi, T. Gupta, J.L. Bennett, A.S. Verkman, Binding affi-
nity and specificity of neuromyelitis optica autoantibodies to aquaporin-4 M1/
M23 isoforms and orthogonal arrays, J. Biol. Chem. 286 (2011) 16516–16524.

[16] K. Miyazaki, Y. Abe, H. Iwanari, Y. Suzuki, T. Kikuchi, T. Ito, et al., Establishment
of monoclonal antibodies against the extracellular domain that block binding
of NMO-IgG to AQP4, J. Neuroimmunol. 260 (2013) 107–116.

[17] F. Pisani, A. Sparaneo, C. Tortorella, M. Ruggieri, M. Trojano, M.G. Mola, et al.,
Aquaporin-4 autoantibodies in Neuromyelitis Optica: AQP4 isoform-depen-
dent sensitivity and specificity, PLoS One 8 (2013) e79185.

[18] G.P. Owens, A. Ritchie, A. Rossi, K. Schaller, S. Wemlinger, H. Schumann, et al.,
Mutagenesis of the aquaporin 4 extracellular domains defines restricted
binding patterns of pathogenic neuromyelitis optica IgG, J. Biol. Chem. 290
(2015) 12123–12134.

[19] S.R. Hinson, S.J. Pittock, C.F. Lucchinetti, S.F. Roemer, J.P. Fryer, T.J. Kryzer, et al.,
Pathogenic potential of IgG binding to water channel extracellular domain in
neuromyelitis optica, Neurology 69 (2007) 2221–2231.
[20] S.R. Hinson, M.F. Romero, B.F. Popescu, C.F. Lucchinetti, J.P. Fryer, H. Wolburg,

et al., Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to
aquaporin-4 in astrocytes, Proc. Natl. Acad. Sci. USA 109 (2012) 1245–1250.

[21] J. Ratelade, J.L. Bennett, A.S. Verkman, Evidence against cellular internalization
in vivo of NMO-IgG, aquaporin-4, and excitatory amino acid transporter 2 in
neuromyelitis optica, J. Biol. Chem. 286 (2011) 45156–45164.

[22] T. Vincent, P. Saikali, R. Cayrol, A.D. Roth, A. Bar-Or, A. Prat, et al., Functional
consequences of neuromyelitis optica-IgG astrocyte interactions on blood-
brain barrier permeability and granulocyte recruitment, J. Immunol. 181
(2008) 5730–5737.

[23] J.L. Bennett, C. Lam, S.R. Kalluri, P. Saikali, K. Bautista, C. Dupree, et al., In-
trathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis op-
tica, Ann. Neurol. 66 (2009) 617–629.

[24] R. Saitoh, T. Ohtomo, Y. Yamada, N. Kamada, J. Nezu, N. Kimura, et al., Viral
envelope protein gp64 transgenic mouse facilitates the generation of mono-
clonal antibodies against exogenous membrane proteins displayed on bacu-
lovirus, J. Immunol. Methods 322 (2007) 104–117.

[25] J. Ramadhanti, P. Huang, O. Kusano-Arai, H. Iwanari, T. Sakihama, T. Misu, et al.,
A novel monoclonal antibody against the C-terminal region of aquaporin-4,
Monoclon. Antib. Immunodiagn. Immunother. 32 (2013) 270–276.

[26] H. Ikeshima-Kataoka, Y. Abe, T. Abe, M. Yasui, Immunological function of
aquaporin-4 in stab-wounded mouse brain in concert with a pro-in-
flammatory cytokine inducer, osteopontin, Mol. Cell. Neurosci. 56 (2013)
65–75.

[27] Y. Abe, H. Ikeshima-Kataoka, W. Goda, T. Niikura, M. Yasui, An astrocyte-spe-
cific enhancer of the aquaporin-4 gene functions through a consensus se-
quence of POU transcription factors in concert with multiple upstream ele-
ments, J. Neurochem. 120 (2012) 899–912.

[28] Y. Abe, Y. Kita, T. Niikura, Mammalian Gup1, a homolog of Saccharomyces
cerevisiae glycerol uptake/transporter 1, acts as a negative regulator for
N-terminal palmitoylation of Sonic hedgehog, FEBS J. 275 (2008) 318–331.

[29] K. Miyazaki-Komine, Y. Takai, P. Huang, O. Kusano-Arai, H. Iwanari, T. Misu,
et al., High avidity chimeric monoclonal antibodies against the extracellular
domains of human aquaporin-4 competing with the neuromyelitis optica
autoantibody, NMO-IgG, Br. J. Pharmacol. 173 (2016) 103–114.

[30] J. Kato, M.K. Hayashi, S. Aizu, Y. Yukutake, J. Takeda, M. Yasui, A general an-
aesthetic propofol inhibits aquaporin-4 in the presence of Zn2þ , Biochem. J.
454 (2013) 275–282.

[31] P.-W. Phuan, J. Ratelade, A. Rossi, L. Tradtrantip, A.S. Verkman, Complement-
dependent cytotoxicity in neuromyelitis optica requires aquaporin-4 protein
assembly in orthogonal arrays, J. Biol. Chem. 287 (2012) 13829–13839.

[32] J.D. Neely, B.M. Christensen, S. Nielsen, P. Agre, Heterotetrameric composition
of aquaporin-4 water channels, Biochemistry 38 (1999) 11156–11163.

[33] J.M. Crane, J.L. Bennett, A.S. Verkman, Live cell analysis of aquaporin-4 M1/
M23 interactions and regulated orthogonal array assembly in glial cells, J. Biol.
Chem. 284 (2009) 35850–35860.

[34] R. Iorio, J.P. Fryer, S.R. Hinson, P. Fallier-Becker, H. Wolburg, S.J. Pittock, et al.,
Astrocytic autoantibody of neuromyelitis optica (NMO-IgG) binds to aqua-
porin-4 extracellular loops, monomers and high order arrays, J. Autoimmun.
40 (2013) 21–27.

http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref2
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref2
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref3
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref3
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref3
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref4
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref4
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref4
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref4
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref5
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref5
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref5
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref5
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref6
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref6
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref6
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref6
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref7
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref7
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref8
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref8
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref8
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref8
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref8
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref9
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref9
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref9
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref9
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref10
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref10
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref10
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref10
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref11
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref11
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref11
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref11
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref12
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref12
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref12
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref12
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref13
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref13
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref13
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref13
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref14
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref14
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref14
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref14
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref15
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref15
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref15
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref15
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref16
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref16
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref16
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref16
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref17
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref17
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref17
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref18
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref18
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref18
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref18
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref18
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref19
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref19
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref19
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref19
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref20
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref20
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref20
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref20
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref21
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref21
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref21
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref21
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref22
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref22
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref22
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref22
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref22
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref23
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref23
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref23
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref23
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref24
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref24
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref24
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref24
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref24
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref25
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref25
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref25
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref25
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref26
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref26
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref26
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref26
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref26
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref27
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref27
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref27
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref27
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref27
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref28
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref28
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref28
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref28
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref308021
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref308021
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref308021
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref308021
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref308021
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref30
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref30
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref30
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref30
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref30
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref30
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref30
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref30
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref30
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref31
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref31
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref31
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref31
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref32
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref32
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref32
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref33
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref33
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref33
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref33
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref34
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref34
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref34
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref34
http://refhub.elsevier.com/S2405-5808(16)30078-4/sbref34

	The binding property of a monoclonal antibody against the extracellular domains of aquaporin-4 directs aquaporin-4 toward...
	Introduction
	Materials and methods
	Development of mAbs against the ECDs of mAQP4
	Mice and primary culture of astrocytes
	Western blotting
	Blue native PAGE
	Confocal microscopy
	Statistical analysis

	Results and discussion
	Development of mAbs recognizing the ECDs of mAQP4
	Effects of mAbs against the ECD of AQP4 on the endocytosis of AQP4 in astrocytes
	E5415A promoted cluster formation of AQP4 on the cell surface of astrocytes prior to internalization

	Acknowledgements
	Transparency document
	References




