DEGREES OF UNSOLVABILITY COMPLEMENTARY between recursively enumerable degrees, PARTI.

S.B. COOPER
University of Leeds, England

Received II Hamuary 1971

Given a set S of mutually incomparable degrees and a pair of degrees \mathbf{a} and b we cay that S is comple tentary between \mathbf{a} and \mathbf{b} whenever \mathbf{a} is the greatest lower bound of the members of S and b is the least upper bound. A degree a is mintimal if O is the least upper bound of the degrees strictly less than a. We obtain an indisation of the variety of decision problems to be found amongst degres of a particular type of looking at the pairs of degrees between which sets of degrees of that type are complementary. If S complementary between O and a we say that S is complenentary below a and we prove below that there is a pair of minimal degrees complementary below \mathbf{O}^{\prime}.

Spector [8] showed that minimal degrees exist and Sacks [6] construated one below \boldsymbol{O}^{\prime}, the largest recursively enumerable degree. Shoenfield [7] proved that given any degree strictly between O and O^{\prime} we may find a minimal degree below O^{\prime} which is incomparable with it. Lachlan [3] proved that no pair of recursively enumerable (r.e.) degrees is complementary below O^{\prime} even though there is a pair of r.e. degrees complementary below some r.e. degree (see Yates [10] and Lachlan [3]). We construct below a pair of minimal degrees with join \mathbf{O}^{\prime}. Shoenfield's theorem is an immediate corollary of this. Since the theorem y elds a pair complementary below O^{\prime} we have that no dramatic generalisation of Lachlan's theorem is possible. Related results proved elsewhere are:
(1) there is a pair of degrees complementary below any given r.e. degree other than \mathbf{O}, (2) there is a r.e. degree other than \mathbf{O} below which no set
of minimal degrees is complementary (although 'ates [11] has shown there to be countably many minimal predecessors for each non-zero r.e. degree), (3) there are three r.e. degrees complement.ry below O^{\prime}

We take $\left\{\Phi_{e} l e \geqslant 0\right\}$ to be a standard enumeration of the partal recursive functionals. $\left\{\Phi_{e, s} \mid e, s \geqslant 0\right\}$ is a double sequence of finite approximations to these functionals satisfying the following: (i) $\left\{\Phi_{e, s}\right\}$ is a recursive set, (ii) $\Phi_{e, s} \subseteq \Phi_{e, s+1}$ for each e and each $s \geqslant 0$. (iii) $\Phi_{z}=$ $U_{s \geqslant 0} \Phi_{e, s}$ for each $e \geqslant 0$, (iv) for each $s \Phi_{e . s}$ is empty for all but a finite set of numbers. The last condition is included in order to avoid an infinite search occurring at a stage of the construction. $\left\{R_{c}\right\}$ will be a standard list of the recursively enumerable sets with double sequence $\left\{R_{c, s}\right\}$ of approximations with properties similar to (i)-(iv) above for $\left\{\Phi_{c, s}\right\}$. And $\left\{F_{z}\right\}$ is an enumeration of the partial recursive functions, cach F_{c}, having its recursive tower $\left\{F_{e s} \mid s>0\right\}$ of finite approximations.
o is said to be a string of length $n+1$ if it is an initial segment (or heginning) $C[n]$ of a characteristic function C defined on exactly $n+1$ numbers. If σ is a string of length $n+1$ and $m \leqslant n$ we write $\sigma[m]$ for the beginning of σ of length $m+1$. If we write $\mathrm{th}(\sigma)$ for the lengeth of σ and $y\left(\sigma_{1}, \sigma_{2}\right)$ for the least number y for which $\sigma_{1}(r) \neq \sigma_{2}(y)$, there is a natural ordering \leqslant of the strings defined by:

$$
\begin{aligned}
& \sigma_{1} \leqslant \sigma_{2} \leftrightarrow \\
& \sigma_{1}=\sigma_{2} \text { or } \operatorname{lh}\left(\sigma_{1}\right)<\operatorname{lh}\left(\sigma_{2}\right) \text { or } \operatorname{lh}\left(\sigma_{1}\right)= \\
& \operatorname{lh}\left(\sigma_{2}\right) \operatorname{an} d \sigma_{1}\left(y\left(\sigma_{1}, \sigma_{2}\right)\right)<\sigma_{2}\left(y\left(\sigma_{1}, \sigma_{2}\right)\right) .
\end{aligned}
$$

Define an ordering \leqslant on the ordered pairs of sirings by:

$$
\begin{aligned}
& \quad\left(\sigma_{1}, \sigma_{2}\right) \leqslant\left(\pi_{1}, \pi_{2}\right) \leftrightarrow \\
& \sigma_{1}\left[y\left(\sigma_{1}, \sigma_{2}\right)-1\right]<\pi_{1}\left[1\left(\pi_{1}, \pi_{2}\right)-1\right] \text { or } \\
& \sigma_{1}\left[y\left(\sigma_{1}, \sigma_{2}\right)-1\right]=\pi_{1}\left[y\left(\pi_{1}, \pi_{2}\right)-1\right] \text { and } \sigma_{1}<\pi_{1} \text { or } c_{1}=\pi_{1} \\
& \text { and } \sigma_{2} \leqslant \pi_{2}
\end{aligned}
$$

This will enable us to talk of the least pair of strings with a given prope: ty.

0 is the string defined nowhere and 0 and 1 are the strings with domain $\{0$; and respective ranges $\{0\}$ and $\{1\}$.
$\sigma * \tau$ is the string defined by:

$$
\sigma * \tau(x)=\left\{\begin{array}{l}
\sigma(x) \text { if } x<\mathrm{lh} \sigma \\
\tau(x-\mathrm{ih} \sigma) \text { if } \mathrm{th} \sigma \leqslant x<\operatorname{lh} \sigma+\mathrm{lh} \tau \\
\text { undefined otherwise } .
\end{array}\right.
$$

If σ and τ are begimings of some characteristic fenction C then we say that σ and τ are compaitible, and write $\sigma \leq \tau$ or $\tau=a$ according to

A tree T is a mapping from the strings into the strings such that if $T(t * i)$ is defined where i is 0 or 1 then so are $T(\tau * 1-i)$ and $T(\tau)$, and such that the partial ordering induced on the domain of T coincide. with the ordering \subseteq on the range of T. The terms 'recursive tree' and 'partial recursive tree' will be used a natt ral informal way.

If $T(\tau * 0),(\tau * 1)(=T(\tau * 0) . T(\tau * 1))$ are defined then they comprise the syzag' on T based on $T(\tau)$. Otherwise if $T(\tau)$ i. defined then $T(\tau)$ is an erd string for T. A string σ is compatible with a tree T if σ lies on T (i.e., is in the range of T) or in an extension of an end string for $T . T^{\prime}$ is compatible with T if cevery string on T^{\prime} is compatible with T.

We say that two strings σ_{1}, σ_{2} split r for e through x if $\sigma_{1}, \sigma_{2} \supset \tau$ and $\Phi_{c}\left(\sigma_{1}, x\right)\left(\sigma_{2}, x\right)$ and $\Phi_{c}\left(\sigma_{1}, x\right),\left(\sigma_{2}, x\right)$ are defined and unequal. σ_{1}, σ_{2} split τ fore through x at stages it $\sigma_{1}, \sigma_{2} \supset \tau$ and $\Phi_{e, s}\left(\sigma_{1}, x\right)$, $\left(\sigma_{2}, x\right)$ are defined and unequal. Then σ_{1}, σ_{2} split τ for e through x if and only if o_{1}, σ_{2} split τ for e through x at some stage $s \geqslant 0$ since $\Phi_{2}=U_{s \geqslant 0} \Phi_{e, s}$ and if σ_{1}, σ_{2} split τ for e through x at stage s then σ_{1}, σ_{2} split τ for e through x a every stage $s^{\prime}>s$ because $\Phi_{e, s^{\prime}} \supseteq \Phi_{e, s}$.
before proving the main theorem we give a short proof of a weaker result.

Theorem 1. There is a pir of degrees complementary below \mathbf{O}^{\prime}.
Proof. Let D be a set of degree \mathbf{O}^{\prime} such that D is recursive in every infinite subset of D (i.e.. D is intro-reducible in the sense of [2]). We construct at stages $n \geqslant 0$ beginnings α_{n}, β_{n} of characteristic functions A and B respectively and take the required pair to be the degrees of A and B. For each n we will have $\mathrm{lh}\left(\alpha_{n}\right)=\operatorname{lh}\left(\beta_{n}\right)$. Strings α and β with $\alpha \supset \alpha_{n}$ and $\beta \supset \beta_{n}$ are said to be admissible at stage $n+1$ if for no $x \geqslant \operatorname{lh}\left(\alpha_{n}\right)$ do we have $\alpha(x)$ and $\beta(x)$ defined and each equal to 0 .

Stage 4 e of the construction.
Define

$$
\begin{aligned}
& x_{0}=\text { the least number in } D, \\
& x_{n+1}=\text { the least element of } D \text { greater than } \ln \left(\alpha_{4 n+3}\right) .
\end{aligned}
$$

Let $\alpha \supseteq \alpha_{4 e-1}$ and $\beta \supseteq \beta_{4 e-1}$ comrpise the iest pair of strings admissible at stage $4 e$ with $\operatorname{lh} \alpha=\ln \beta=x_{e}$.
Define

$$
\alpha_{4 e}, \beta_{4 c}=\alpha * 0 . \beta * 0 \quad \text { respectively. }
$$

Stage $4 e+1$
Look for the least triple (β, x, s) (under some recursive ordering) for which $\beta \supset \beta_{4 e}$ and $\Phi_{e, s}(\beta, i)$ is defined and such that if $\Phi_{e}(9, x)=1$ then $\beta(x) \neq 0$.
If no such (β, x, s) exists set

$$
\alpha_{4 e+1}, \beta_{4 e+1}=\alpha_{4 e} * 1, \beta_{4 e} * 1 \quad \text { respectively. }
$$

Otherwise let α, β^{\prime} be the least pair with $\alpha \supset \alpha_{4 e}, \beta^{\prime} \supset \beta_{4 e}, \alpha, \beta$ admissable at stage $4 e+1$ with $\beta^{\prime} \supseteq \beta, \operatorname{lh}(\alpha)=\operatorname{lh}\left(\beta^{\prime}\right)$ and such that $\alpha(x)$ is defined and is not equal to $\Phi_{t}(\beta, x)$.
Define

$$
\alpha_{4 e+1} \cdot \beta_{4 e+1}=\alpha \cdot \beta^{\prime} \quad \text { respectively }
$$

Stage $4 e+2$.
The same as stage $4 e+1$ but with α and β intercianged and $4 e+2$. $4 e+1$ written for $4 e+1,4 e$ respectively.

Stage $4 e+3$.
Let (m, \cdot) be the $e^{\text {th }}$ apri of numbers (in some recursive ordering).
We look for the least quadruple ($\beta^{1}, \beta^{2}, x, s$) for which β^{1}, β^{2} split $4 e+2$ for n through x at stage s.

If ($\beta^{1}, \beta^{2}, x, s$) does not exist set

$$
\alpha_{4 e+3}, \beta_{4 e+3}=\alpha_{4 c+2} * 1, \beta_{4 e+2} * 1 \quad \text { respectively, and }
$$

otherwise look for the least pair (α, s) with $\alpha \supset \alpha_{4 e+2}$ such that α, β^{1} and α, β^{2} are admissable pairs and $\Phi_{m, s}(\alpha, \gamma)$ is defined.

If α exists let β^{i} be he least of the strings β^{1}, β^{2} such that

$$
\Phi_{m}(\alpha, x) \neq \Phi_{n}\left(\beta^{i}, x\right)
$$

and take α^{*}, β^{*} to be the least admissable pair of strings of equal length with $\alpha^{*} \supseteq \alpha$ and $\beta^{*} \supseteq \beta^{i}$.
Define

$$
\alpha_{4 e+3}, \beta_{4 e+3}=\alpha^{*}, \beta^{*} \quad \text { respectively }
$$

Otherwise take $\alpha_{4 e+3}, \beta_{4 e+3}$ to be the least pair of admissable strings of equal length with $\alpha_{4 e+3} \supset \alpha_{4 e+2}$ and $\beta_{4 e+3}=\beta_{4 c+2}$ and with $\mathrm{h}\left(\alpha_{4 \mathrm{p}+3}\right) \geqslant \mathrm{h}\left(\beta^{1}\right)+\mathrm{h}\left(\beta^{2}\right)$.

Lemma 1, A and B are ectursive in O^{\prime}.

Proof. We examine the questions asked during the construction. The result will follows from the fact that they are u ifformly recursive in \mathbf{O}^{\prime} and in what we have defined at previous stages of the construction so that we could define α_{n}, β_{n} by a recursion schema asing O^{\prime} recursive functions.
(1)-(4) below correspond to the stages $4 e$ to $4 e+3$ of the construction.
(1) We require the number x_{2}, which depends only on $D \in O^{\prime}$ and on the strings $\alpha_{4 c-1}$ and $\beta_{4 c-1}$ already defined (the admissable pairs form a recursive set).
(2) The set of triples (β, x, s) that we are interested in is a r.e. set qualified by a predicate recursive in $\alpha_{4 e}$ and $\beta_{4 e}$.
(3) Similarly for the triples (a, x, s).
(4) The quadruples ($\beta^{1}, \beta^{2}, x, s$) and the pairs (α, s) each form the intersection of an α_{n}, β_{n} recursive set and a fixed r.e. set.

It follows that if we write $\mathbf{a}=\operatorname{deg} A$ and $\mathbf{b}=\operatorname{deg} B$ then $\mathbf{a} \cup \mathbf{b} \leqslant \mathbf{0}^{\prime}$.
Lemma $2 . \mathrm{O}^{\prime} \leqslant \mathrm{a} \cup \mathrm{b}$.

Proof. If we inspect the construction we find that the only stages at which we tail to choose an admissable pair α, β as extensions of α_{n}, β_{n} respectively are the stages $4 e \geqslant 0$ when $\alpha_{4 e}, \beta_{4 e}$ are chosen to be admissable apart from the fact that

$$
\alpha_{4 c}\left(x_{c}\right)=\beta_{4 c}\left(x_{e}\right)=0 .
$$

This means that $A \cap B$ is a subset of D and is infinite since infinitely mony numbers x_{e} are chosen. Since D is intro-reducible we have $D \leqslant_{T} A \cap B$ where $\operatorname{deg} A \cup B \leqslant \mathbf{a} \cup \mathbf{b}$.

It follows from lemmas 1 and 2 that $\mathbf{O}^{\prime}=a \cup \mathbf{b}$.

Lemma 3. a and bare incomparable

Proof. Assume that

$$
A=\Phi_{e}(B)
$$

for some number ε.
If a triple (β, x, s) exists satisfying stage $4 e+1$ of the construction then we have that $\Phi_{e}\left(\beta_{4 c+1}, x\right)$ is defined and is not equal to $\alpha_{4 c+1}$, which would mean that $\Phi_{e}(B, x) \neq A(x)$.

So for every pair (β, x) such that $\beta \supset \beta_{4 c}$ and $\Phi_{e}(\beta, x)$ is defined we have that $\Phi_{\rho}(\beta, x)=1$ which implies that A is empty, contradicting the fact that $A \cap B$ is an infinite subset of D.

Lemma 4. If $\Phi_{m}(A), \Phi_{n}(B)$ are total and $\Phi_{m}(A)=\Phi_{n}(B)$ then $\Phi_{m}(A)$ is recursive.

Proof. Let (m, n) be the $e^{\text {th }}$ pair of numbers. Then at stage $4 c+3$ we look for a pair $\beta^{1} ; \beta^{2}$ which split $\beta_{4,+2}$ for n through some number x at a stage $s \geqslant 0$. If β^{1}. β^{2} do not exist then $\Phi_{n}(B)$ will be recursive. In order to compute $\Phi_{n}(B, x)$ for a given number x we need only generate recursively the functionals $\Phi_{n, s}$ and also the extensions σ of $\beta_{4 c+2}$, and if for some such σ and some $s \geqslant 0$ we have

$$
\Phi_{n, s}(\sigma, s)=\delta
$$

then we have hat

$$
\Phi_{n}(B, x)=\delta .
$$

Otherwise there is a beginning β of B, which we can choose tc properly extend $\beta_{4 c+2}$, for which

$$
\Phi_{n}(\beta, x)=\delta \neq \delta
$$

so that for some $s^{*}>s$ we have

$$
\Phi_{n, s} *(\beta, x)=\delta^{\prime} \neq 0=\Phi_{n, s} *(\sigma . x)
$$

(since $\Phi_{n}=U_{s>0} \Phi_{n, s}$ and $\Phi_{n, s} \subseteq \Phi_{n, s+1}$ for each s) and : $0 \beta, \sigma$ split $\beta_{4 e+2}$ through x for n at stage s^{*}.
Say ($\beta^{1}, \beta^{2}, \alpha, s$) exists.

If (α, s) does not exist then since $\beta^{1} \cdot \alpha_{4 e+3}$ and $\beta^{2} \cdot \alpha_{4 c+3}$ are admissable pairs at stage $4 e^{+}+3$ and $\operatorname{lh} \alpha_{4 c+3}>\max \left|\beta^{3}\right| i=1$ or 2 there can be no extension α^{\prime} of $\alpha_{4,+3}$ for which $\Phi_{m}\left(\alpha^{\prime}, x\right)$ is deflined, so that $\Phi_{m}(A, x)$ is not defined.

If α exists then by choice of $\alpha_{4 e+3}$ and $\beta_{4 e+3}$ we have that

$$
\Phi_{n}\left(\beta_{4 c^{+}+3}, x\right), \Phi_{m}\left(\alpha_{4 c+3}, x\right)
$$

are defined and unequal so that

$$
\Phi_{n}(B) \neq \Phi_{m}(4) .
$$

It follows from the lemma that $a \cap b$ exists and is equal to 0 .
We can adapt the proof so as to replace $\mathbf{O}, \mathrm{O}^{\prime}$ by $\varepsilon, \mathrm{c}^{\prime}$ for any given $\mathrm{c} \geqslant \mathrm{O}$. This has the corollary that every degree is a non-trivial meet of a pair of degrees. Lachlan [3] has shows that if c is ree and strictly below O^{\prime} then we cannot in general choose the pair of degrees to be r.e. But we can ask:
(1) Is every degres below O^{\prime} a non-trivial meet of two degrees below \mathbf{O}^{\prime} ?. or
(2) Is thee some general class of ree degrees with non-trivial r.e. meets (e,. Robert Robinson's low degrees 151)?

Sacks [6] examines lattice embeddings for the degrees as a whole and Lachlan [4] and Thomason [9] obtain results about lattice embeddings in the ree degrees, but little is known about embed dirgs which preserve greatest and least clements in the degrees below \mathbf{O}^{\prime} or in the r.e. degrees between two compatable r.e. degrees.

Theorem 2. There cxists a pair of minimal degrees with least apper bound \mathbf{O}^{\prime}.

Proof. Let f be a recursive function which enumerates without repetitions a r.e. set D of degree O^{\prime}. At st iges $s \geqslant 0$ we construct strings α_{s}^{0} and α_{s}^{1} and take the pair of degrees to be the degrees of A^{0} and A^{1} where

$$
A^{i}(x)=\lim _{s} \alpha_{s}^{i}(x)
$$

for each $i \leqslant 1$ and each x. The strings α_{s}^{0} and α_{s}^{1} will be chosen to lic on sertain finite trees $T_{e, s}^{i}$ with $i \leqslant 1$ where at any given stage $s \geqslant 0$ there will only be a finite number of these trees different from

If $\sigma \subseteq \alpha_{s}^{p}$ for some $p \leqslant 1$ then σ is said to have rank e of the $p^{\text {th }} k i n d$ at stage $s+1$ where e is the least number for which

$$
\sigma \subseteq T_{e, s}^{p}(\delta)
$$

for some $\delta \leqslant 1$. We order the pairs (e.p) lexicographically upwards.
The method by which we make A^{0}. A^{1} to be of minimal degree is a constructivisation of that of Spector's in [8] but different from that of [11] in that not every syzygy defined on a tree $T_{e, s}^{p}$ at a stage $2 s+p-$ $1 \geqslant 0$ will be a splitting pair for ϵ, and also in that we will not expec: the limit trees

$$
T_{e}^{p}=\lim _{s} T_{e, s}^{p}
$$

to be partial recursive, although if A^{p} lies on an infinite splitting portion of T_{e}^{p} then we will be able to select a partial recursive splitting subtree of T_{e}^{p} on which A^{p} also lies.

If $T_{e, s}^{p}(\tau)$, say, is defined and has been chosen as a member of $s y z y g y$ which splits for e then if there is no syzygy for $T_{e, s}^{p}$ based on $T_{e, s}^{p}(\tau)$ which splits for e at stage s we say that $T_{e . s}^{p}(\tau)$ is a boundary siring for $T_{e, s}^{p}$ at stage s.

The method 1 y which we make D recursive in the join of the degrees of A^{0} and A^{1} is to ensure that if there is a stage s such that $T_{c+1 . s}^{0}$ and $T_{e+1, s}^{1}(0)$ are begirnings of 4^{0} and A^{2} respectively then

$$
D_{s}(e)=D(e)
$$

where $D_{s}=\{f(k) \mid k \leqslant s\}$.
Stage 0 of the construction.
Define

$$
T_{-1.0}^{p}=I \quad \text { (the identity tree) }
$$

for each $p=0$ or 1 .

$$
T_{e, 0}^{p}=\emptyset \quad \text { otherwise } .
$$

Define

$$
\alpha_{0}^{p}=0 \quad \text { for each } p=0 \text { or } i
$$

Stage $2 s+p+1$.
Define

$$
T_{1, s+1}=I
$$

Assume that $T_{i, s+1}^{p}$ has been defined for each $i<e$ and that $T_{e, s+1}^{p}(\tau)$ has been defined where τ is a string other than \emptyset and that

$$
T_{S N+1}^{p}(\tau)=T_{c s}^{p}(\tau)
$$

We may now base a syayg on $T_{i, s}^{p} \tau$) at stage $s+1$ through one of the following cases:

Case 1.
Let $T_{e, s}^{p}(\tau)$ have rank k of the $p^{\text {th }}$ kind at stage $s+1$.
Assume that $T_{c, s}^{p}(r * 0) .(T * 1)$ are defined and are compatible with sach tree $T l_{s+i}$ with $i<c$.

Also assume that one of the following hold:
(1) $T_{e, s}^{p}(T * 0),(\tau * 1)$ split for e at stage $s+1$, or
(2) there is no pair of strings $\sigma_{1}, \sigma_{2} \supset T_{e, s}^{p}(\tau)$ which split for e at stage $s+1$ and which satisfy the following conditions:
(i) σ_{i}, σ_{2} are compatible with every tree $T_{i, s+1}^{p}$ with $i<e$ and neither of σ_{1}, a_{2} properly extend a boundary string $T_{i, s+1}^{p}(\pi)$ with $i<e$ and

$$
T_{\varepsilon, s}^{p}(\tau) \subset T_{i, s+1}^{p}(\pi)
$$

(ii) if σ_{1} or σ_{2} extends some prohibited string π (a term to be defined later) where

$$
T_{e, s}^{p}(\sigma) \subset \pi
$$

then we may free π by stretching a string of rank $\because *$ of the $(1-p)^{\text {th }}$ kind where

$$
(k, p)<\left(k^{*}, 1-p\right)
$$

(iii) ly defining

$$
\sigma_{1}, \sigma_{2}:=T_{e . s+1}^{p}(\tau * 0),(\tau * 1)
$$

respectively we do not make some string π of rank k^{*} of the $q^{\text {th }}$ kind at stage $s+1$ liable to require attention at a stage greater than $2 s+p+1$ (again a term to be defined later) through a number $e^{\prime}>k^{*}$ where

$$
(k, p) \geqslant\left(k^{*}, q\right) \text { and } q \leqslant 1 \text {, or }
$$

$$
\begin{equation*}
T_{e, s}^{p}(\tau) \nsubseteq \alpha_{s}^{p} \tag{3}
\end{equation*}
$$

re define

$$
T_{e, s+1}^{p}(\tau * 0),(\tau * 1)=T_{e, s}^{p}(\tau * 0),(\tau * 1) \text { tespectively. }
$$

Case II.
Assume that case I does not hold and that none of (1) - 3) of case I holds.

So there does exist a pair σ_{1}, σ_{2} as described in (2). We define

$$
T_{e, s^{+} 1}^{p}(\tau * 0),(\tau * 1)=\sigma_{1}, \sigma_{2}
$$

respectively, anci we require a string of ank k^{*} of the $(i, p)^{\text {th }}$ kind at stage $s+1$ to free all the prohibited strings π such that

$$
T_{e, s}^{p}(\tau) \subset \pi \subseteq \sigma_{1}
$$

or

$$
T_{e, s}^{p}(\tau) \subset \pi \subseteq \sigma_{2}
$$

where the choose k^{*} to be the largest possible such number.
Case III.
If cases I and II do not hold but

$$
T_{e, s}^{p}(\tau) \subseteq \alpha_{s}^{p}
$$

define

$$
T_{e, s+1}^{p}(\tau * 0),(\tau * 1)=\sigma_{1}^{\prime}, \sigma_{2}^{\prime}
$$

respectively where $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$ is the least pair of incompatible strings which extend $T_{e s}(t)$ and which are compatible with every tree $T_{i, s+1}^{p}$ with $i<e$. This concledes case III.

We say tiat e* is liable to equire attention through $x-1$ for q at stage $2 s+p+1$ if

$$
L_{s}(x-1)=1
$$

and e^{*} is the largest number for which there is a string $\sigma \supset T_{e^{*}, s+p-q}^{q}(0)$ which is incompatible with each $\Gamma_{8, w}^{q}(0), w \leqslant s$, such that

$$
T_{x, k}^{1}(0)<_{s+p}^{1-q} \therefore(1 \cdots q)
$$

and which is compatible with ach tree $T_{i, s+p}^{q} \cdot q$ such that $i<e^{*}$.
At stase $2 s+p+1$ we make a string π of rank i^{*} of the $q^{\text {th }}$ kind liable to require atfention at a stage greater than $2 s+p+1$ if at end of stage $2^{2}+p+1$ we have that $k^{*}, k^{* *}$ are liable to require attention through some $x-1$ for $q .1-q$ respectively at stage $2 s+p+2$, and

$$
\left(k^{*}, q\right)>\left(k^{* *}, 1-q\right)
$$

Assume now that the extensions $\sigma_{1} \cdot \sigma_{2}$ of $T_{\varepsilon, s+1}^{p}(\tau)$ as described in 1(2) do exist except that (iii) fails to gold. Then σ_{1} or σ_{2} extends a string $T_{x, f}^{p}(0)$ where $t \leqslant s$ and $x-i$ is great ${ }^{*}$ than the rank of $T_{e, s}^{p}(\tau)$. If e^{*} is liable to require attention throus ' 11 for p at stage $2 s+p+1$ we require T_{i}^{p}, (0) to be streched at stage $2+p+1$ unless this has already been done at some earlier stage for the potential syzvgy σ_{1}, σ_{2}. The now nomber enumerated in D at stage $s+1$
Let

$$
f(s+1)=x-1
$$

If $T_{c^{*}}^{*}(0)$ is liable to require attention through $x-1$ at stage $2 s+p+1$ for some $e^{*} \geqslant 0$ then $T_{e^{*} . s}^{p}(0)$ requires attention at stage $2 s+p+1$ through $x-1$. We will try to ensure at every subsequent stage $w>s$ that we either have

$$
T_{x, f}(0) \notin \alpha_{w}^{p} \text { or } T_{x, t}^{1 p}(0) \notin \alpha_{w}^{1-p}
$$

for each $t \leqslant s$, and so as to achieve this certain strings $T_{x, i}^{P}(0)$ with $: \leqslant s$ may become strings prohibited through x.

At stage $2 s+p$ we may have required some string to free a prohibited string π where we defined extensions of some strin through case 11 at stage $2 s+p$ one of which extended π. Assume that π was prohisited at stage $2 s+p$ by virtue of being a string $T_{y, t}^{1-p}(0)$ for some y, t where $t \leqslant t^{\prime}$ anci $f\left(t^{\prime}+1\right)=y-1$. Then we choose $T_{e^{2} s}^{p}(0)$ in a similar way to that above to be a string for which there is a proper extension a compatible with all the trees $T_{i, s}^{p}$ with $i<e^{*}$ and incompatible with sach string $T_{y, t}^{p}(0)$ such that $t \leqslant t^{\prime}$ and

$$
T_{y, t}^{1-p}(0) \subseteq \alpha_{s+p-1}^{1-p}
$$

And $T_{e^{*}, s}^{p}(0)$ is the string which is required to free π at stage $2 s+p+1$ if (and only if) $T_{e^{*}, s+1}^{p}(\emptyset)$ is defined and $T_{e^{*}, s}^{p}(0)$, (1) and σ are compatible with sach tree $T_{i, s+1}^{p}$ with $i<e$. Also we have that each string $T_{y, t}^{p}(0)$ with $t \leqslant i^{\prime}$ and

$$
T_{y, t}^{1-p}(0) \subseteq \alpha_{s+p-p}^{1-p}
$$

is prohibited through y at each stage $t^{*}>x+p$ such that we have not required $T_{y, t}^{p}(0)$ to be freed at a stage $t^{* *}$ such that

$$
t^{*}>t^{* *}>2 s+p
$$

We define $T_{e, s+1}^{p}{ }^{\prime}(\mathrm{j})$, (1) at stage $2 s+p+1$ if $T_{e, s+1}^{p}$ (0) is defined ar is not equal to α_{s+1}^{p}.

Case (a).
Assume that $T_{\epsilon, s}^{F}(0)$, (1) are defined and are compatible with every tree $T_{i, s+1}^{p}$ with $i<e$.
If e requires attention because $f(s+1)=x \cdots 10 ;$ if $T_{e, s}^{p}(0)$ is required to free a string π where π is prohibited by virtue of being a string $T_{x, f}^{1-p}(0)$ for some $t \leqslant s$, or if $T_{e, s}(0)$ is required to be stretched because we would have defined strings $T_{i, s+1}^{p}(\tau * 0),(\tau * 1)$ through case II apart from the fact that $T_{i, s+1}^{p}(\tau * 0)$ or $(t * 1)$ extends a string $T_{x, t}^{p}(0)$ for some $t \leqslant s$ then let $\sigma \supset T_{e, s}^{p}(0)$ be the least string incompatible with each $T_{y, t}^{p}(0)$ for

$$
t \leqslant \mu t^{\prime}\left(f\left(t^{\prime}+1\right)=y-1 \text { or } f^{\prime}=s\right)
$$

and

$$
T_{y,}^{p}(0)=a_{s+p}^{\prime} p
$$

where $z<y \leqslant x$ where z is chosen to ve the least number for which there exists such a string and such that σ is compatible with each tree $T p, s+1$ with $i<c$.
Define

$$
T_{i, N+1}^{\prime \prime}(0),(1)=0, T_{e, s}(1)
$$

respectively and in the former case every string $T_{x, t}^{q}(0)$ with $t \leqslant s$ and

$$
\gamma_{x, f}^{1-q}(0) \subset \alpha_{(x, b+q)+s}^{1-q}
$$

becomes prohibited through x.
We now indactively make changes in the defimitions of some of the stimgs $T_{i, i+1}(r), i<e$, Assume that the necessary changes have been made on 111 trees $T p_{s+1}, j<i$. Let $T p_{i, 1+1}(r)$ be the least string such that either $T_{i,+1}^{p}(T)$ is not compatible with some tree $T j, s+1$ with $j<i$, or

$$
T_{c, s}^{p}(0) \subseteq T_{l, s+1}^{p}(\tau) \subset \sigma
$$

and $T_{s+1}^{\prime}(\tau)$ is a boundary string for i at stage $s+1$. If no such string exisis we make no changes. Otherwise we re-define

$$
T P_{, s+1}(\tau)=\sigma
$$

and $T_{i, s+1}^{v}\left(T_{*} \pi\right)$ is urdefined for each $\pi=0$. We say that $T_{e, s}^{p}(0)$ is stretched to o $\left(=T_{e, s+1}^{p}(0)\right)$.
Otherwise we define

$$
T_{e, s+1}^{k}(0),(1)=T_{e, s}^{k}(0),(1) \quad \text { respectively }
$$

Case (b).
If $T_{e, s}^{p}(0),(1)$ are not defined and compatible witj every tree $T_{i, s+1}^{p}$, $i<e$. let $\sigma_{1} . \sigma_{2}$ be the least par of incompatible extensions of $T_{e, s+1}^{p}(\emptyset)$ compatible with every tree $T_{i, \mathrm{~s}+1}^{p}$ with $i<e$ where if one of these strings extends no string $T_{e, r}^{p}(0)$ with $: \leqslant s$ we take it to be σ_{2}.

Define

$$
T_{e, s+1}^{p}(0),(1)=\sigma_{1}, \sigma_{2} \quad \cdots \text { actively }
$$

In either of cases (a) or (b) if

$$
T_{c, s+1}^{p}(0),(1) \neq T_{e, s}^{P}(0),(1)
$$

define

$$
\left.T_{e, s+1}^{p}(0)=\alpha_{s+1}^{p} \because \Gamma_{\ell+1, s+1}^{p}, 0\right)
$$

otherwise merely defining

$$
T_{e, s+1}^{p}(0)=T_{e+1, s+1}^{p}(0)
$$

Lemma 5. For each number $c \geqslant 0$ and cach $p \leqslant 1 T^{\prime \prime}(0)=\lim _{s} T{ }_{s}(0)$ is defined.

Proof. First of all we show that there is a stage atter wheh $T_{\epsilon, s}^{G}(0)$. () do not change other than by being stretched. As inductive hypothesis we take:
(i) for all $s>$ some $t T_{i s}(0)$, (1) change value only through being stretched if (i,q)<(e,p).
(ii) $D_{t^{*}}[\ell]=D[e]$ where

$$
t=: t^{*}+q^{*}+1
$$

(iii) for each $i<$ some $\epsilon^{\prime}<c$, if $s>f$ then $T_{c, s}(0)$, (1) do not change value because of the definition of a new $s=y g y$ for T, w at a stage $2 w+p-1>2 s+p-1$.

We inductively verify the validity of the hypothesis for every $e^{*}<6$ and from this obtain the first part of the step in the man motuction.

We may assume that at no stage $s>t^{*}$ is $T_{e}^{p} 1_{s}(0)$ stretched. To see this we look at the three ways in which $T_{c-1}^{p}(0)$ might be stretched:

1. $T_{e-1, s}^{p}(0)$ may be required io free some prohibited string π through the definition of strings on a tree through case II.

But in order that this should happen the string for which new extensions are defined musi have rank k where

$$
(k, 1-p)<(c-1, p)
$$

And this means that some string $T_{e^{*}, s}(0)$ where

$$
\left(e^{*}, 1-p\right)<(e, p)
$$

changes at a stage $s>t^{*}$ and not through being stretched which contradicts (i) of the inductive inpothesis.
2. © 1 may require attention at some stage greater than f for p.

We show that this can happen at most a finite number of times. At stage $t e-1$ can only be liable to require attention through a finite number of numbers $x-1$ since $T_{x}^{p}(0)$ is only de ined for a finite number of numbers x with $f^{\prime} \leqslant t$, and $e^{-} 1$ con only require attention at most once through each of these mumbers. Also it is casy to see that if $T_{x, t^{\prime}}^{p}(0)$ is defined for no $t^{\prime} \leqslant t$ then $\varepsilon \quad 1$ camot require attention through $x-1$ at a state $2 x+p+1>f$. Since $e \quad 1$ is not liable to require attention through x I at stage t and since

$$
\left.D_{r^{*}}|c|=D \mid \epsilon\right]
$$

we must define extensions at some stage $>t$ of some string $T_{i, s}^{q}(\tau)$ of rank c^{\prime} which renders $e-1$ liable to require attention. This is because if $c-1$ becomes liable to require attention through $x-1$ through some e^{\prime} requirng attention at a stage $t^{\prime}>t$ through a number $x^{\prime}-1$ then we have $x<x^{\prime}$, since if a string of rank ${ }^{\prime}$ ' is stretched to be incompatible with ach string onto which the $x^{\prime \text { th }}$ teee of the $r^{\text {th }}$ kind maps 0 at stage: $2 u+r+1<t^{\prime}=2 s^{\prime}+r+1$ where

$$
\alpha_{s+r}^{1-r} \supseteq T_{x^{r} u+1}^{1, r}(0)
$$

then it will be stretched to be incompatible with all such strings of greater rank. And $x>x^{\prime}$ since otherwise by the construction there can have been no string of rank $>c^{\prime}$ of the $r^{\text {th }}$ kind incompatibie with each $T_{x, 4}^{r}(0)$ defined before stage t with

$$
\alpha_{s+r}^{1 \sim r} \geqslant T_{x, 4}^{1-r}(0)
$$

and compatible with all the $i^{\text {th }}$ trees at stage t^{\prime} with $i<e^{\prime}$.

So at some stage $t^{\prime}>t$ we base a syzygy on a string $T_{i, s+1}^{q}(\tau)$ of rank e^{\prime} of the $q^{\text {th }}$ kind at stage $s+1$ which renders $e-1$ hable to require attention at some stage greater than t. There are two pessibilities:
(a) $\left(e^{\prime}, q\right) \geqslant(e-1, p)$.

But this cannot happen since

$$
D_{t^{*}}[e]=D[e]
$$

and because $T_{i, s+1}^{q}(\tau * 0),(\tau * 1)$ are defined through case 11 and must satisfy condition (2) (iii) of the construction at stage t^{\prime}.
(b) As for case 1. above we cannot have

$$
\left(e^{*}, q\right)<(e-1, p)
$$

because of (i) of the inductive hypothesis.
3. We may require $T_{e-1, s}^{p}(0)$ to be stretched at a stage $2 s+p+1>t$.

This means that there are potential extensions $o_{1} . \sigma_{2}$ of a string $T_{e, s}^{p}(\tau)$ which satisfy all the requirements of case II at stage $2 s+p+1$ except for (iii) where $T_{e_{s, s}^{\prime}}^{p}(\tau)$ is of rank $\leqslant e-1$ of the $p^{\text {th }}$ kind at stage $s+1$. Then the assumption implies that if e^{*} is liable to require attention through $x-1$ for $1-p$ at stage $2 s+p+1$ where $T_{e=1, s}^{p}(0)$ is required to be stretched becaus: one of the potential extensions σ_{1} or σ_{2} extends a string $T_{x, w}^{v}(0) w_{1}$ th $w \leqslant s$ thea $x>e$ and

$$
\left(e^{*}, 1-p\right)<(e-1, p)
$$

and $e-1$ is lable to require attention through $x-1$ for p at stage $2 s+p+1$

$$
\left(e^{*}, 1-p\right)<(e-1, p)
$$

since no alterations are made to trees of the $(1-p)^{\text {th }}$ kind at stage $2 s+p+1$ and so if by taking

$$
\sigma_{1}, \sigma_{2}=T_{e, s+1}^{p}(t * 0),(t * 1)
$$

respectively we would have made a string π of $\operatorname{rank} k^{*}$ of the $q^{\text {th }}$ kind
liable to require attention at some stage greater than $2 s+p+1$ then we have

$$
(e-1, p)>\left(k^{*}, q\right)>\left(e^{*}, 1-p\right)
$$

We show that there can only finitely many such numbers x, or more specifically, if $e^{*}, ~-\quad$ are liathe to requite attention for $1 \cdots p, p$ respectively through $x-1$ at stage $2+p+1>r$ where

$$
\left(e^{*}, 1-p\right)<(c-1, p)
$$

then $e^{*}, c-1$ are liable to require attention, for $1 \cdots p, p$ respectively through $x-1$ at stage t. This is because if the former holds then $e-1$ is liable to require attention through x i at stage $2 s+p+1$ and from part 2 we know that in this ease \boldsymbol{e}^{\prime} I must have been liable to require attention through $x-1$ at stage t.

Lastly we notice that T_{i} in (0) can only be stetehed by being required to be serethed at a fimite number of stages through a given numborx . I for it T_{i} is (0) is stretched through being required to be stretched at a stage $2 s+p+1>t$ through $x-1$ then $e-1$ is not liable to require attention for p through $x-1$ at stage $2 x+p+3$ since $x>e$, and in fact is not liable to requ: attention for p through x - I at a stage $>2 s+p+S$ by a mmilar argument to that in which we limited the relevant numbers $x-1$ to a finite set.

So $T_{\varepsilon} \xi^{\prime}(0)$ is stretched at no stage $2 s+p+1>t$ and hence by the incuctive hypothesis $T_{\ell}^{P}(0)$ exists where

$$
T_{c}^{p}(0)=\lim _{s} T_{c, s}^{p}(0)=\lim _{s} T_{c}^{p}{ }_{1, s}(0)
$$

and

$$
T_{i, 1}^{p}(0)=T_{i}^{P}(0)
$$

We may assume that for all $i<e$ either there is a string τ^{i} for which

$$
T_{, s} p^{\left(T^{i}\right)}=T_{c}^{p}(0)
$$

for all $s>t^{*}$ or else $T_{e, s}^{p}(\emptyset)$ lies on $T_{i, s}^{p}$ for no $s>t^{*}$. If $T_{e, s}^{p}(0),(1)$ are to change at a stage $2 s+p+1>i$ other then through being stretched we nust at stage $2 s+p+1$ have $T_{i s+i}\left(\tau^{i} * 0\right),\left(\tau^{i} * i\right) \neq T_{i s}^{p}\left(\tau^{i} * 0\right),\left(\tau^{i} * 1\right)$ respectively for some $i<\vec{e}$.

We take as the hypothesis for a sub-induction:
There is a stage $2 t(i)+p+1>t$ such that for each $j<i$ wither for each $s>f(i) T_{j, s}^{p}\left(\tau^{j} * 0\right),\left(\tau^{j} * 1\right)$ split $T_{j, s}^{p}\left(\tau^{j}\right)$ for j at stage $s+1$ or $T_{j, s}^{p}\left(T^{i} * 0\right)$. ($r^{i} * 1$) split for j at no stage $s+1>t(i)$; and also for each $;<i$, each $\pi \supset \emptyset$, if for some $s>t(i)$ and every $\pi^{\prime} * q$ with $q \leqslant 1$ and $\pi^{\prime} * q \subset \pi$ we have that $T_{j, s}^{p}\left(\pi^{j} * \pi^{\prime} * q\right),\left(\pi^{j} * \pi^{i} * 1-q\right)$ split $\left.T\right]_{s}^{p}\left(r^{i}\right)$ for j at stage $s+1$ and are not boundary strings for a tree $T_{k, s}^{p}$ with $k<j$ then $T_{j, w}^{p}\left(\tau^{j} * \pi\right)$ changes at no stage $2 w+p+1>2 s+p+1$ except as a result of being stretched.

There are two possibilities for the number i:
(a) at no stage $2 s+p+1>2 t(i)+p+1$ do we define strings $T_{s+1}\left(\tau^{i} * 0\right)$. $\left(\pi^{i} * 1\right)$ which split $T_{i, s}^{p}\left(\tau^{i}\right)$ for i at stage $s+1$. In this case the next stage of the induction follows immediately.
(b) at a stage $2 s+p+1>2(i)+p+1$ the strings $T T_{s+1}\left(\tau^{i} * 0\right) .(\tau * 1)$ are defined and split for i at stage $s+1$.

If σ_{1}, σ_{2} are respective extensions of $T_{i, s+1}\left(\tau^{i} * 0\right)$, , $\left.T^{i} * 1\right)$ then σ_{1}, σ_{2} split for i at each stage $w+12 s+1$. This means that in there is a stage $w+1>s+1$ such that $T_{i w+1}^{p}\left(\tau^{i} * 0\right),\left(\tau^{i} * 1\right)$ do not split for i a, stage $w+1$ then at some stage $2 u+p+1>2 s+p+1$ we must have

$$
\left(T_{, u+1}^{p}\left(\tau^{i} * 0\right) .\left(\tau^{i} * 1\right)\right) \neq\left(T_{l, k}^{p}\left(\tau^{i} * 0\right) \cdot\left(\tau^{i} * 1\right)\right)
$$

other than as a result of a member of the latter syzug being stretched at a stage $2 u+p+1$. That is we must define strings $T_{f i+1}^{p}(\pi * 0),(\pi * 1)$ through case II at stage $2 u+p+1$ where $j<i$ and $T_{p, 4}^{p}(\pi)$ is a boundary string for some tiee $T_{k, i}^{p}$ with $k \leqslant j$ and where

$$
T_{j, u}^{p}(\pi) \subset T_{,, u}^{p}\left(\tau^{i} * q\right)
$$

for some $q \leqslant 1$ (If $T_{p}^{p}(\pi)$ is not such a boundary string then we would define strings $T_{j, u}^{p}(\pi)$ is o boundary string for some tree $T_{k, u}^{p}$ with $k \leqslant i$ and where

$$
T_{j, u}^{p}(\pi) \subset T_{j, u}^{p}\left(\tau^{i} * q\right)
$$

for sone $q \leqslant 1$ (If $T_{j, b}^{p}(\pi)$ is not suct a boundary string then we would define strings $T_{j, i+i}^{p}(\pi * 0),\left(\pi^{\prime} * 1\right)$ through case $I I$ where $\pi^{\prime} \subset \pi$ and by the construction this would preclude such a definition for $T_{j, u+1}^{p}(\pi * 0)$, $(\pi * 1)$ at stage $2 u+p+1)$.
Since $u>t^{*}$ we have

$$
T_{i, u}^{p}\left(\tau^{i}\right)=T_{i}^{p}\left(\tau^{i}\right)
$$

and so

$$
T_{b u}^{p}\left(\tau^{i}\right) \subseteq T_{j u}^{p}(\pi)
$$

and since $u>t(i)$ we cannot have $\pi=\tau^{i}$ by the inductive hypothesis which means that

$$
T_{b u}\left(r^{i}\right) \subset T_{j, u}^{p}(r) \subset T_{i, u}^{p}\left(r^{i} * q\right)
$$

for some $4 \leqslant 1$.
Choose $\Rightarrow s$ to be the least number for which we have that $T_{k \times 1}^{p}(\pi)$ is a boundary string for a tree $T_{k . v+1}^{p}$ with $k \leqslant j$ and for which we have that

$$
T_{p, v+1}^{p}\left(\tau^{i}\right) \subset T_{j, v+1}^{p}(\pi) \subset T_{i, v+1}^{p}\left(\tau^{i} * q\right)
$$

Le:

$$
T_{p, v+1}^{p}(\pi)=T_{, v+1}^{p}\left(\pi^{*}\right)
$$

There are now three possible ways in which the first part of the next step of the sub-induction can fall with $t(i+1)=s$:
() ether

$$
T_{k, y}^{p}\left(\pi^{*}\right) \subseteq T_{p, r}^{p}\left(\tau^{i}\right)
$$

and $T_{k, r}^{p}\left(\pi^{*}\right)$ alters through stretching at stage $2 v+p+1$, or

$$
T_{h . r}^{p}\left(\tau^{i} * q\right) \subseteq T_{k, v}^{p}\left(\pi^{*}\right)
$$

and $T_{2,}^{p}\left(\tau^{i} * q\right)$ alters through stretching at stage $2_{2}^{*}+p+1$,
(ii) $T_{k, v+1}^{p}\left(\pi^{*}\right)$ is defined at stage $2 v+p+1$ through case II of the construction,
(iii) $T_{k, n}^{p}\left(\pi^{*} * 0\right),\left(\pi^{*} * 1\right)$ split for k at stage 1 but $T_{k, n+1}^{p}\left(\pi^{*} * 0\right),\left(\pi^{*} * 1\right)$ do not split for k at stage $v+1$.

If the first part of (i) occurs then

$$
T_{k, v+1}^{p}\left(\pi^{*}\right)=T_{k, v+1}^{p}\left(\tau^{i}\right)
$$

if the latter is to be defined.
For the second part we notice that if

$$
T_{k, v+1}^{p}\left(\tau^{i} * q\right) \supset T_{k, v+1}^{p}\left(\pi^{*}\right)
$$

then by the iature of the stretching operation $7_{k, r+1}\left(\pi^{*}\right)$ cannot be a boundary string for $T_{k, r+1}^{p}$.

If (ii) holds then there is a $\pi^{\prime} \subset \pi^{*}$ such that

$$
T R_{, v}\left(\pi^{\prime}\right) \subset T_{k, v+1}^{p}\left(\pi^{*}\right) \subset T_{i, v+1}^{p}\left(r^{i} * q\right)
$$

and such that $T_{k . r}^{p}\left(\pi^{\prime}\right)$ is a boundary string for a tree $T_{k, x+1}^{p}$ with

$$
k^{\prime} \leqslant k \leqslant j .
$$

Arguing as above we must also have

$$
T_{k, r}\left(r^{i}\right) \subset T_{k, r}\left(\pi^{\prime}\right)
$$

which contradicts the choice of r.
Finally (iii) cannot occur since by the second part of the hypothesis of the sub-induction it would mean that there is a $\pi^{\prime} * q^{\prime}$ wh re $q^{\prime} \leqslant 1$ such that

$$
\tau^{k} \subset \pi^{\prime} * q^{\prime} \subset \pi^{*} * r
$$

for some $* \leqslant 1$ and such that $T_{k, v}^{p}\left(\pi^{\prime} * q^{\prime}\right),\left(\pi^{\prime} * 1-q^{\prime}\right)$ do not split for k at stage v. And this would imply by definitio 1 of case 11 of the construc-
tion that we have a string

$$
T_{R, v}^{V^{*}}\left(T^{*} \alpha\right) \subseteq T_{v}^{v}\left(\pi^{*}\right)
$$

with $a \supset \emptyset$ which is a boundary string for some tree $T_{k, v}^{,}$with

$$
k^{\prime}<k \leqslant j
$$

Since

$$
T_{k, r}^{p}\left(\tau^{k} * \sigma\right) \supset T_{k, 1}^{p}\left(\tau^{k}\right)=T_{k, r}\left(\tau^{i}\right)
$$

and

$$
T_{k, p}^{p}\left(\pi^{*}\right) \subset T_{3, k}^{p}\left(\tau^{i} * q\right)
$$

this contradices the definition of 1 again.
The second half of the $(1+1)^{\text {th }}$ step of the sub-induction proceeds exactly as does the proof of the first hald when case (b) applies. The only difficulty is that we must deal with the relevant spliting pairs $T_{i s+1}(\pi * 0),(\pi * 1)$ on $T_{i, s+1}^{\eta}$ above $T_{i, s+1}^{P}\left(T^{i}\right)$ by induction on the length of π where the base of the induction is given by the first part of the subinduction.

It follows that $t(c)$ exists.
Let $i<e$ be the greatest number for which $T_{i, t(e)+1}^{p}\left(T^{i} * 0\right),\left(\tau^{i} * 1\right)$ are defined and split for i at stage $t(e)+1$. Then from the proof of the subinduction for each $w>t(c)$ we have

$$
T_{i, w}^{p}\left(\tau^{i} * 0\right),\left(T^{i} * 1\right) \subseteq T_{i, w+1}^{p}\left(T^{i} * 0\right),\left(T^{i} * 1\right)
$$

respectively and if $i<j<e$ and $T_{j, w+1}^{p}\left(\tau^{j} * 0\right),\left(\tau^{j} * 1\right)$ are defined then

$$
T_{j, w+1}^{p}\left(\tau^{j} * 0\right),\left(\tau^{j} * 1\right)=T_{i, w+1}^{p}\left(\tau^{i} * 0\right),\left(\tau^{i} * 1\right)
$$

respectively.
So at each stage $2 w+p+1>2 f(e)+p+1$ we have

$$
T_{e, w+1}^{p}(0),(1) \supseteq T_{i, t(c)+1}^{p}(0),(1)
$$

respectively where we only fail to have equality when $T_{e, w+1}^{p}(0),(1)$ have been stretched for some reason.

As in the proof of the first part of the sub-induction we never have a boundary string π for a tree $T_{, w+1}^{p}$ with $j<e$ where

$$
T_{e, w+1}^{e}(0) \subset \pi \subset T_{e, w+1}^{p}(0)
$$

or

$$
T_{e, w+1}^{p}(\emptyset) \subset \pi \subset T_{e, w+1}^{p}(1)
$$

and hence

$$
\vec{i}_{e, w+1}^{p}(0),(1) \supseteq T_{e, w}^{p}(0),(1)
$$

respectively for each $w>t(e)$ and $T_{e, w}^{p}(0)$. (1) only change value at a stage $2 w+p+1$ through being stretched.

It follows easily from the lemma that $\lim _{s} T_{i=s}^{p}$ exists for all e and or each $p \leqslant 1$.

Fron the proof of lemma 5 we have that $\lim _{s} T_{e, s}^{p}(0)$ exists for each e, p. If there is a stage t such that

$$
T_{e, s}^{p}(\tau) \subseteq \alpha_{s}^{p}
$$

for no $s>t$ then 'y construction if

$$
\left(T_{e, s+1}^{p}(\tau * 0),(\tau * 1)\right) \neq\left(T_{e, s}^{p}(\tau * 0),(\tau * 1)\right)
$$

for some $s>t$ other than through a member of the syzugy being stretched we have that $T_{e, w}^{p}(\tau * 0),(\tau * 1)$ are defined for no $w>s$. And since we only stretch strings $T_{i, s}^{M}(0)$ such that

$$
T_{i s}^{p}(0) \subseteq \alpha_{s}^{E}
$$

at stage $2 s+p+1$, we cannot stretch $T_{e, s}^{p}(\tau * 0) .(\tau * 1)$ at a stage $s>t$. If

$$
T_{e, s}^{p}(\tau) \subseteq \alpha_{s}^{p}
$$

for each $s>a$ stage t we notice that if τ has length K then neither of $T_{e, s}^{p}(\tau * 0)$ or $(\tau * 1)$ have rank greater than $e+\kappa+1$ at any stage $s \geqslant 0$. Hence $\lim _{s} T_{e, s}^{p}(\tau * 0),(\tau * 1)$ exist since $\lim _{s} T_{c+K+1 . s}^{p}(0)$ exists.

Lemma 6. D is recursive in the recursine join of A^{0} and A^{1}.

Proof. Since $\lim _{s} T_{e, s}(0)$ exists for each $c=0$ and cach $p=0$ or 1 we have that if

$$
A^{0}, A^{1}=\lim _{s} \alpha_{s}^{0}, \lim _{s} \alpha_{s}^{p}
$$

respectively then A^{0}, A^{1} are well defined sets of degree less than or equal to 0 .

We show that whenever $s\left(e^{\prime}\right)$ is a number for which $T_{\ell+1, s(c)}^{0}(0)$ and $T_{e^{+}+1\left(c_{0}\right)}^{1}(0)$ are respective beginnings of A^{0} and A^{1} it happens that

$$
D D_{s(c)}(c)=D(c)
$$

The lemme follows from the faet that the whole construction proceeds uniformly recursively and from the fact that there always exists such a numberses).

Assume that there are numbers s and e such that

$$
c \in D
$$

bet for which

$$
D_{s}\left(c^{\prime}\right)=1
$$

and $T_{i+1 s}^{p}(0)$ is a beginning of $A p$ for each number $p \leqslant 1$. Let

$$
s^{*}=\mu s\left(c \in D_{s+1}\right)
$$

so that $s \leqslant s^{*}$ and either some number $e(0)$ requires attention through e at step $2 s^{*}+1$ or some number $e(1)$ requires attention through e at step $2 s^{*}+2$. We need only verify that some number $c^{*} \geqslant 0$ is liable to require attention through e for 0 or 1 at stage $2 s^{*}+1$ or stage $2 s^{*}+2$ respectively, which is easy since at worst we can take

$$
c(p)=0
$$

for each $p=0$ or 1.
To prove this for each $p \leqslant 1$ take as inductive hypothesis:
$T_{0, w}(0)$ is defined and if $T_{0, w}^{0}(0)=\pi$
then for some string σ we have that $\pi * \sigma$ is incompatible with each $T_{e+1, u}^{p}(0)$ with $u \leqslant w$.

The base of the induction is given by $w=1$ since $T p, 10)$, (1) are defined for each $p \leqslant 1$ but $T_{y, t}^{p}(0)$ is defined for no numbers v, u, p where

$$
y>0,0 \leqslant n \leqslant 1 \text { and } 0 \leqslant u \leqslant 1
$$

Assuming that the induction falls let the hypothesis hold for $w=w$ but not for $w=W+1$, and let

$$
T_{0, w}^{p}(0)=\Pi
$$

and let $\Pi * \Sigma$ be incompatible with each $T_{e+1.4}^{p}(0)$ with $u \leqslant \|^{*}$. So

$$
\Pi * \Sigma \subseteq T_{e+1, w+1}^{\prime \prime}(0)
$$

or

$$
T_{0 . w^{\prime}+1}^{p}(0) \neq \Pi
$$

If

$$
\Pi * \Sigma \subset T_{\varepsilon+1, w+1}^{p}(0)
$$

then they hypothesis holds for $w=w^{3}+1$ for

$$
\pi * \sigma=T_{*+1 . n^{\prime}+1}^{p}(1)
$$

We cannot have

$$
\Pi_{*} \Sigma=T_{e+1 w+1}^{r}(0)
$$

unless the hypothesis hold for $w=1 w^{\prime}+1$ with more than one string a (say Σ and Σ^{*}) since by the construction of $T_{c+1, W^{+}+1}(0)$. (1) we would not have a $u<W+1$ for which

$$
T_{e+1, \mu}^{p}(0) \subseteq T_{i+1, w+1}^{p}(1)
$$

unless

$$
T_{e+1 . k}^{p}(0) \subseteq T_{e+1 . w^{\prime}+1}^{p}(0)
$$

So if

$$
\Pi * \Sigma=T_{i+1, w^{\prime}+1}^{r}(0)
$$

the hypothesis would follow for $w=16+1$ with

$$
0=2 *
$$

If

$$
T G_{0,+1}(0) \neq \Pi
$$

then since

$$
T_{1, W}^{P}=T_{1,1 W^{+}+1}=I
$$

for each $p \leqslant 1$ it must happen that $T Z_{6, w}(0)$ is stretched to $T_{0, w+1}^{p}(0)$ at stage $210+p+1.11$

$$
T G, w+i(0) \subset \Pi * \Sigma
$$

then the inductive step follows using

$$
\pi * \sigma=\Pi * \Sigma
$$

again. If

$$
T B_{0, w^{+}+1}(0) \supseteq \Pi: \Sigma
$$

then we may take for $w=w+1$

$$
\pi=T_{0, w^{\prime}+1}^{p}(0), \sigma=\pi * q
$$

for some $q \leqslant 1$ such that α_{W+1}^{p} is incompatible with $\pi * q$.
By the construction $T_{0 . W^{w+1}}^{p}(0)$ is incompatible with $\Pi * \Sigma$ then since $\Pi * \Sigma$ satisfies the hypothesis for $w=W^{\prime}$ we must have that $T_{0, W+1}^{p}(0) * q$ satisfies the hypothesis for $w=w+1$ for some $q \leqslant 1$.

So $c(n)$ requires attention at step $2 s^{*}+p+1$ for some $p \leqslant 1$ which means that

$$
T_{*+1, s}^{q}(0) \nsubseteq \alpha_{s}^{q} q_{1+1}
$$

for some $q \leqslant 1$.

Let $t^{*}>s^{*}$ be the least number such that

$$
T_{e+1, s}^{q}(0) \subseteq \alpha_{w+1}^{q}
$$

for each $q \leqslant 1$ and each $w \geqslant t *$.
Inspection of the construction gives us that at each stage greater than $2 s^{*}+p+1$ for each $u<s^{*}+1$ if

$$
T_{e+1 \mu}^{q}(0) \subseteq \alpha_{w}^{q}
$$

for some $q \leqslant 1$ then $T_{c^{\prime}+1, u}^{\prime}(0)$ is a string prohibited through $e+1$ for some $q^{\prime} \leqslant 1$, and so at each stage $2 w+p+1>2 t^{*}+p+1$ there is a string σ prohibited through $e+1$ such that

$$
\sigma \subseteq \alpha_{w+1}^{0} \quad \text { or } \quad \sigma \subseteq \alpha_{w+1}^{1}
$$

By the construction if there is a string o prohibicd through $e+1$ for q at the end of stage $2 t^{*}+q+1$ where

$$
\sigma \subseteq \alpha_{f^{*+1}}^{q}
$$

but

$$
\sigma \nsubseteq a_{q^{*}}^{q}
$$

then this camot occur through a string $T_{e^{*}, s^{*}}^{Q^{*}}(\tau)$ being stretched where

$$
T_{e^{*}, t^{*}}^{q}(\tau)=\alpha_{i^{*}}^{q}
$$

and

$$
\sigma \subseteq T_{\varepsilon^{*}, t^{*+1}}^{q}(\tau) \subseteq c_{i^{*}+1}^{q}
$$

This is because as in the proof of the above of the above induction we can show that there is an extension of $T_{e^{*} \|^{*}}(t)$ compatible with each tree $T_{i, t^{*}+1}^{G}$ with $i<e^{*}$ but incompatible with each spring $T_{e+1.4}^{q}(0)$ such that

$$
T_{e^{+1, t}}^{q}(0) \nsubseteq T_{e^{*}, r^{*}}^{q}(\tau)
$$

and $u<s^{*}+1$. By the choice of t^{*} there is no string $T_{c+1, s}^{q}(0)$ with
$r<s^{*}+1$ and

$$
T_{\epsilon^{+}+1, r}(0) \subseteq T_{e^{*}, I^{*}}^{q}
$$

and so by the definition of the stretching operation

$$
\sigma \subseteq T_{c^{*}, t^{*+1}}
$$

This means that we require a string to free σ at stage $2 t^{*}+q+2$. And each string $T_{c+1, u}^{1-\psi}(0)$ with $u \leqslant s^{*}$ and

$$
T_{e+1, s}^{q}(0) \subset \alpha_{i+1}^{q}
$$

becomes prohibited for 1 q at stage $2 t^{*}+q+2$
We construct a function $E(2 w+r+1)$ where $r \leq 1$ which we take to be undefined for

$$
2 w+y+1 \leqslant 2 r^{*}+q+1 .
$$

and take as inductive hypothesis: At stage $2 w+r+1>2 t^{*}+q+1$ we define string $T_{\because}^{r} w+1(\tau * 0),(\tau * 1)$ through case II of the construction esulting in a requirement for a string to free a string prohibited throughe +1 at stage $2 w+r+2$ where $T_{\because w+1}^{r}$ has rank $E(2 w+r+1)$ and

$$
(E(2 w+r+1), r)<(E(2 w+r), 1-r)
$$

if $E(2 w+r)$ is defined.
We examine stage $2 W+R+1$ assuming the result for each stage $2 w+r+1$ with

$$
2 w^{\prime}+R+1>2 w+r+i>2 t^{*}+q+1
$$

At stage $2 t^{\prime}+R+1$ a string of rank k is requirea to free a string σ prohibited throigh $e+1$ and all strings $T_{k+1, k}^{R}(0)$ with $u \leqslant s^{*}$ and

$$
T_{z+1, u}^{1-R}(0) \subset \alpha_{w-R}^{1-R}
$$

are prohibited for R at stage $2 W+R+1$ by virtue of the fact that extensions of some string of rank k^{\prime} were defined at stage $21^{\prime}+R$ through case II where

$$
\left(k^{\prime}, 1-R\right)<(k, R) .
$$

We can only fail to free σ if we define strings $T_{c}^{R} \cdot W^{+1+1}(\tau * 0),(\tau * 1)$ through case II for some $e^{\prime} \geqslant 0$ one of which extends a string a^{\prime} progibited through $e+1$. But in this case we require a string to free σ^{\prime} at stage $2 W+R+2$, and since such a string cannot have rank greater than k. and by the conditions laid down for case II of the construction we must have that

$$
\left(k^{\prime}, 1-R\right)>\left(\operatorname{rank} T_{e, W^{\prime}+1}^{R}(\tau), R\right) .
$$

If $E(2 W+R)$ is defined so that

$$
k^{\prime}=E(2 W+R)
$$

we obtain the result by defining

$$
E(2 W+R+1)=\operatorname{rank} T_{e, W+1}^{R}(r) .
$$

But from this we see that we have obtained an infimite descending sequence of numbers and so there is no such t^{*} and the lemma follows.

Lemma 7. A^{0} and A^{1}, re of minimal degree.

Proof. We show for each $p \leqslant 1$ and each $e \geqslant 0$ that if $\Phi_{c}\left(4^{p}\right)$ is total then either $\Phi_{e}\left(A^{p}\right)$ is recursive or A^{p} is recursive in $\Phi_{c}(A)$. It will fotlow that the degrees of A^{0} and A^{1} are minimal by lemma 6 and from the fact that \mathbf{O}^{\prime} is neither recursive nor minimal.

We say that trees T and $T^{\prime \prime}$ are mutually compatible if $T(0)$ and $T^{\prime}(0)$ are compatible and (considering a tree as an array or strings) we have that

$$
\{\sigma \mid \sigma \in T \quad \text { and } \quad \sigma \supseteq T(\emptyset)\}
$$

is compatible with

$$
\{\sigma \mid \sigma \in T \quad \text { and } \quad \sigma \geq T(0)\}
$$

and vice-versa. We write $T \simeq T^{\prime \prime}$.

We describe a uniformly recursive se of trees

$$
\left\{\Psi_{c, s}^{p} \mid e, s \geqslant 0,1 \geqslant p \geqslant 0\right\}
$$

whose members have the following properties:
 σ^{\prime} such that $\sigma \subseteq \sigma^{\prime}$ and

$$
\sigma^{\prime} \in \Psi_{\epsilon, 5+1}^{p}
$$

(2) $\Psi_{e+1, s}^{p} \subseteq \Psi_{e, s}^{p}$
for each e, s, p.
(3) $\Psi_{e, s}^{p}=T_{e, s}^{p}$
for cach c, s, p and no string σ on $\Psi_{e s, s}^{p}$ is a boundary string for a tree $T{ }_{i s}$ with $: \leqslant c$ unless σ is an end string for $\Psi_{e, s}^{p}$.
(4) either $\Psi_{c, s}^{p}$ is a spliting tree fore at stages $s=0$ or there are only finitely many pairs of strings σ_{1}, σ_{2} such that for some $s \geqslant 0$

$$
\sigma_{1}, \sigma_{2} \in \Psi_{e, s}^{p}
$$

and σ_{1}, σ_{2} split for c at stage s.
(5) for each e. p we have that

$$
\Psi_{c}^{p}=\lim _{s} \Psi_{e, s}^{p}
$$

exists and contains infinitely many beginnings of $A p$.
Assume that $\Psi_{e s}^{p}$ has been defined for each $e<e^{*}+1$ and each $s \geqslant 0$ for some given $\eta \leqslant 1$ (We take $\Psi_{-1, s}^{p}=I$ for each $s \geqslant 0$ and each $p \leqslant 1$).

If for every

$$
\pi \in \Psi_{e^{*}}^{p} \cap\{A p[n] n \geq 0\}
$$

there is a pair

$$
T_{e}^{p} p+1(T * 0) \cdot(t * 1) \in \Psi_{e^{*}}^{p}
$$

which split π for $e^{*}+1$ define $s\left(e^{*}+1\right)$ to be the least number for which there is a string

$$
T_{\left.e^{*}+1, s()^{*+1}\right)}^{p}(\tau)=T_{e^{*+1}}^{p}(\tau) \in \Psi \Psi_{e^{*}}^{p} \cap \underset{e^{*}, s\left(r^{*}+1\right)}{p}
$$

and take $\pi\left(e^{*}+1\right)$ to be the least such string $\pi_{e^{*+1}+e^{*+1}}(\tau)$ which is a beginning of A^{p}. There must be such a string as long as we can prove (5) for $\Psi_{e^{*}}^{p}$ and since by the construction every beginning of A^{p} is compatible with $T_{e^{*+1}}^{p}$ and since by assumption there is a string

$$
T_{e^{*+1}}^{p}(\tau) \in \Psi_{e^{*}}^{p}
$$

Then $\Psi_{e^{*}+1, s}^{p}$ is defined to be empty if $s<s\left(c^{*}+1\right)$ and otherwise is the set of strings

$$
\left\{T_{e^{*}+1, s}^{p}(\tau) \in \Psi_{e^{*}, s}^{p} \mid \text { for each } T_{e^{*}+1, s}^{p}\left(\tau^{\prime} * q\right)\right.
$$

with $q \leqslant 1$ and $\pi \subset T_{e^{*}+1 . s}^{p}\left(\tau^{\prime} * q\right) \subseteq T_{e^{* *+1, s}}^{p}(\tau)$ we have that $T_{i^{*}+1, s}\left(\tau^{\prime} * q\right)$, $\left(\tau^{\prime} * 1-q\right)$ split for $\left.e^{*}+1\right\}$ arranged in a tree-like array.

Otherwise choose a

$$
\pi \in \Psi_{e^{*}}^{p} \cap\left\{A^{p}[n] \mid n \geqslant 0\right\}
$$

such that no pair

$$
T_{e_{*+1}}^{p}(\tau * 0) \cdot(\tau * 1) \in \Psi_{c^{*}}^{p}
$$

split π for $e^{*}+1$.
Define $s\left(e^{*}+1\right)$ to be the least number for which there is a

$$
T_{\left.c^{*+1}, s c^{*}+1\right)}(\tau)=T_{e^{*+1}}^{p}(\tau) \in \Psi_{c^{*}}^{p} \cap \Psi_{c^{*}}^{p}\left(e^{*}+1\right)
$$

with

$$
T_{e^{*+1}}^{p}(\tau) \supset \pi
$$

if such a number exists and take $\pi\left(c^{*}+1\right)$ to be the last such string

$$
T_{e^{*+1}}^{p}(\tau) \subset A^{p}
$$

And if $s\left(e^{*}+1\right)$ is still not determined take it to be $s\left(f^{*}\right)$ and take $\pi\left(e^{*}+1\right)=\pi$.

In both of the latter cases $\Psi_{e^{*+1, s}}^{p}$ is nowhere defined for $s<s\left(e^{*}+1\right)$ and is

$$
\left\{\Psi_{c^{*} s}^{E_{s}}(r) \supseteq \pi\left(e^{*}+1\right)\right\}
$$

otherwise with the tree ordering induced by $\Psi_{e^{*}, s}^{p}$.
We now verify the facts (1)-(5) for

$$
\left\{\Psi_{e^{*+1, s}}^{p} \mid S \geqslant 0\right\}
$$

using these facts for each set

$$
\left\{\Psi_{e . s}^{p} \mid s \geqslant 0\right\}
$$

with $e \leqslant e^{*}$ and also using any relevant details arising from the inductive definitions.

From the uniform recursiveness of the approximating trees and from (1) it will follow that each Ψ_{e}^{p} is 'almosl' partial recursive so that by a modified Spector-type argument the lemma will follows from (4) and (5).

We distinguish three cases in the defirition of $\left\{\Psi_{e^{*+1 . .}}^{p}\right\}_{s \geqslant 0}$ and treat each in turn.

Case 1. Say

$$
\Psi_{e^{*+1, s}}^{p}(\tau)=T_{e^{*}+1, s}^{p}\left(\tau^{\prime}\right) \notin \Psi_{e^{*+1, s+1}}^{p} .
$$

From the definition of $\Psi_{e, s}^{p}$ for $e \leqslant e^{*}+1$ we see that if $T_{e, s}^{p}(0)$ is a boundary string for $T_{e, s}^{p}$ and

$$
T_{e, s}^{p}(\sigma) \subseteq \Sigma
$$

for some string $\Sigma \in \Psi_{e, s}^{p}$ then

$$
T_{e, s}^{p}(\sigma) \in \Psi_{e, s}^{p}
$$

or

$$
T_{e . s}^{p}(\sigma) \subset \pi(e)
$$

In the former case $T_{e, s}^{p}(\sigma)$ is an end string for $w_{e, s}^{p}$ by (3) and so

$$
\left.T_{e, s}^{p}(\sigma) \not \subset \Psi_{e}^{p}+1, s, s\right)
$$

and in the latter case $T_{e, s}^{p}(\sigma)$ is a boundary string for $T_{c, s+1}^{p}$ by the choice of $\pi(e)$. This means that $T_{c^{*+1 . s+1}}^{p}\left(r^{\prime}\right)$ is defined and

$$
T_{e^{*+1, s+1}}^{p}\left(\tau^{\prime}\right) \supset T_{e^{*}+1, s}^{p}\left(\tau^{\prime}\right)
$$

since $T_{e^{*}+1, s}^{p}\left(\tau^{\prime}\right)$ can only change through being stretched. And since only boundary strings are stretched we have that $T_{e^{*}+1, s}^{p}\left(\tau^{\prime}\right)$ is a boundary string for some tree $T_{e, s}^{p}$ with $e \leqslant e^{*}+1$ and so by (3) and the definition of $\Psi_{e^{*+1, s}}^{p}$ we have that $T_{e^{*}+1, s}^{p}\left(\tau^{\prime}\right)$ is an end string for $\Psi_{e^{*+1, s},}^{p}$. Since $T_{e^{*}+1, s}^{p}\left(\tau^{\prime}\right)$ is a member of a splitting $s y z a g \cdot$ for $c^{*}+1$ at stage s. $T_{e^{*+1, s+1}}^{p}\left(\tau^{\prime}\right)$ is a member of $s y z y g g^{\prime}$ splitting for $c^{*}+1$ a stage $s^{*} 1$. Finally

$$
T_{e^{*+1, s+1}}^{p}\left(\tau^{\prime}\right) \in \Psi_{e^{*}, s+i}^{p}
$$

since otherwise let $e<e^{*}+1$ be the least number for which

$$
T_{e^{*+1, .+1}}^{p}\left(T^{\prime}\right) \notin \Psi_{e . s+1}^{p}
$$

Say there is a string II win is a boundary string for $T_{e, s+1}^{p}$ where

$$
\Pi \subset T_{e^{*+1, s+1}}^{p}\left(\tau^{\prime}\right)
$$

Then by definition of the stret hing operation we must have

$$
\Pi \subset T_{e^{*}+1 . s}^{p}\left(\tau^{\prime}\right)=\Psi_{c^{*}+1, s}^{p}(\tau)
$$

which contradicts (3) by definition of $\Psi_{e^{*+1 . s}}^{p} \Psi_{e, s+1}^{p}$ will be defined through case (1) since otherwise every end string for $\Psi_{e, s+1}^{p}$ is an end string for $\Psi_{e-1, s+1}^{p}$. So $T_{e^{*+1, s+1}}^{p}\left(\tau^{\prime}\right)$ hes on $T_{e, s+1}^{p}$ and there is an end string Π for a tree $\Psi_{e, s+1}^{p}$ with $e^{e}<e$ such that

$$
\Pi \subset T_{e^{*}+1 . s+1}^{p}\left(\tau^{\prime}\right)
$$

which contradicts the way in which we choose e.

This proves (1) for e^{*+1}.
We obtain $\Psi_{e^{*+1, s}}^{p} \subseteq \Psi_{e * s}^{p}$ directly from the construction.
To see that

$$
\Psi_{c}^{* *}+1, s \approx T_{e+1, s}^{p}
$$

for each s we first note that every string on $\Psi_{e^{*+1 . s}}^{p}$ also lies on $T_{e^{*+1 . s}}^{p}$ and so $\Psi_{e^{*+1, s}}^{p}$ is compatible with $T_{e^{*+1, s}}^{p}$ and $T_{e^{*+1, s}}^{p}(0)$ and $\Psi_{e^{*+1, s}}^{p}(\phi)$ are compatible by the construction.

Assume that

$$
\left\{\sigma \mid \sigma \in T_{e^{*+1 . s}}^{p} \text { and } \sigma \supseteq ⿶_{v^{v}}^{p}{ }_{c}^{*+1 . s}(\emptyset)\right\}
$$

is not compatible with $\Psi_{e^{*}+1 . s}^{p}$
Then for some $T_{e^{*}+1, s}^{p}$ with

$$
T_{e^{*+1, s}}^{p}(t) \supset \Psi_{e^{*+1 . s}}^{p}(0)
$$

we have that $T_{e^{*+1, s}}^{p}(\tau)$ neither lies on $\Psi_{e^{*+1 . s}}^{p}$ nor extends an end string for $\Psi_{e^{*+1}}^{p}$.
So for some

$$
\Psi_{\varepsilon^{*+1}}^{p}(\pi)=T_{e^{*}+1, s}^{p}\left(\tau^{\prime}\right)
$$

we have that

$$
\Psi_{e^{*+1} . s}^{p}(0) \subset T_{e^{*+1} s}^{p}(t) \subset \Psi_{e^{*+1} s, s}^{p}(\pi)
$$

which by the definition of $\Psi_{e}^{p}+1 . s$ implies that

$$
T_{e^{*+1 . s},}^{p}(\tau) \notin \Psi_{e^{*}, s}^{p} .
$$

Let e be the least number such that

$$
T_{e^{*}+1 . s}^{p}(\tau) \not \ddagger \Psi e, s
$$

Since

$$
\Psi_{e^{*+1, s}}^{p} \subseteq \Psi_{e, s}^{p}
$$

so that

$$
T_{e^{*+1, s}}^{p}(\tau) \supseteq \Psi_{\epsilon, s}^{p}(\emptyset)
$$

we must have $\Psi_{e, s}^{p}$ defined by means of case 1 and so by the definition of $\Psi_{e, s}^{p}$ and the fact that

$$
T_{e^{*+1, s}}^{p}(\tau) \subset \Psi_{e^{*+1, s}}^{p}(\pi)
$$

we have that $T_{e^{*}+1, s}^{p}(\tau)$ lies on $T_{e, s}^{p}$. Say

$$
T_{e^{*} \tau 1, s}^{p}(\tau)=T_{e . s}^{p}\left(\pi^{\prime}\right)
$$

where

$$
\Psi_{e, s}^{p}(\emptyset) \subset T_{e, s}^{p}\left(\pi^{\prime}\right) \subset \Psi_{e, s}^{p}\left(\pi^{\prime}\right)
$$

some π^{\prime}. Then by the definition of $\Psi^{p} p, s$

$$
T_{e, s}^{p}\left(\pi^{\prime}\right) \in \Psi_{e, s}^{p}
$$

since

$$
T_{e^{*+1, s}}^{p}(\tau) \in \Psi_{e, s}^{p}
$$

for each $e^{\prime}<e$, which is a contradiction.
Now let

$$
\Psi_{e^{*+1, s}}^{p}(\tau) \subset \Psi_{e^{*+1, s}}^{p}\left(\tau^{\prime}\right)
$$

some τ, be a boundary string for a tree $T_{e, s}^{p}$ with $c \leqslant e^{*}+1$, and choose e to be the least such number. Since

$$
\Psi_{\epsilon^{\prime}, s}^{p} \supseteq \Psi_{* *+1, s}^{p}
$$

 $e^{\prime} \leqslant e^{*}+1$. Ey the definition of a case 1 construction $\Psi_{e . s}^{p}$ cannot be defined as a silutting tree for e. But zeither of the other cases can hold since $\Psi_{e^{*+1, s}}^{p}(\tau)$ being a boundary string for $T_{e, s}^{p}$ would contradict the choice of $s(e)$ and $\pi(e)$.

By the definition of $\Psi_{e^{*+1}, s}^{p}$ we have that $\Psi_{e^{*+1}}^{p}$ is a splitting tree for $e^{*}+1$ at each stage $s \geqslant 0$.

From the proof of (1) we see that if $\Psi^{*}{ }^{*}+1, s(r)$ is defined and is not an end string for $\Psi_{e^{*+1, s}}^{p}$ then

$$
\Psi_{t^{*+1, s}}^{p}(\tau)=\Psi_{e^{*}+1 w}^{p}(\tau)
$$

for each $w>s$, and if $\Psi_{c^{*+1}, s}^{p}(\tau)$ is an end string for $\Psi_{e^{*+1, w}}^{p}$ then for some σ we have that for each $w \geqslant s$

$$
\Psi_{e^{*+1, w}}^{p}(\tau)=T_{e^{*+1, w}}^{p}(\sigma)
$$

where $T_{e^{*+1, w}}^{p}(\sigma)$ is defined and changes only by virtue of being stretched. Since $\lim _{s} T_{e^{*+1, s}}^{p}(\sigma)$ exists so does $\lim _{s} \psi_{e^{*+1, s}}^{p}(\tau)$.
$B \cdot$ definition

$$
\pi\left(e^{*}+1\right)=\Psi_{e^{*}+1}^{p}(0)
$$

is a beginning of A^{p}. Let $\left.\Psi_{e^{*}+1}^{p} \tau\right)$ be some beginning of A^{p} where

$$
\Psi_{e^{*+1}}^{p}(\tau)=T_{e^{*+1}}^{p}(\sigma) .
$$

since case 1 applies there is a pair

$$
T_{e^{*+1}}^{p}(\sigma * \rho * 0),(\sigma * t * 1) \in \Psi_{p^{*}}^{p}
$$

which split $T_{e^{*+1}}^{p}(\sigma)$ for $e^{*}+1$. by the second part of (3) we deduce that $T_{e^{*+1}}^{p}(\sigma * 0),(\sigma * 1)$ split $T_{e^{*+1}}^{\eta}(\sigma)$ for $e^{*}+1$, and since

$$
T_{e^{*+1}}^{p}(\sigma) \subset A^{p}
$$

$T_{e^{*+1}}^{p}(\sigma * q)$ is a beginning of A^{p} for some $q \leqslant 1$. So as in the proof of the first part of (3) and by (5) for each tree T_{e}^{p} with $e<e^{*}+1$ we have that

$$
T_{e^{*+1}}^{p}(\sigma * q) \in \Psi_{e}^{p}
$$

for each $e<e^{*}+1$. This means that $T_{e^{*+1}}^{p}(\sigma)$ is a boundary string for no tree T_{e}^{p} with $e \leqslant e^{*}+1$.

We show that $T_{e^{*+1}}^{p}(0 * 1-q)$ lies on each tree Ψ_{e}^{p} with $e<e^{*+1}$.
Assume that e is the least number for which

$$
T_{e^{*+1}}^{p}(\sigma * 1-q) \notin \Psi_{\varepsilon}^{p},
$$

so that Ψ_{e}^{p} is defined by case 1 and

$$
T_{e^{*+1}}^{p}(\sigma)=T_{e}^{p}(\rho)
$$

for some ρ.
Since $T_{e^{*+1}}^{p}(\sigma * 0),(\sigma * 1)$ split for $e^{*}+1$ and since $T_{e^{*+1}}^{p}(\sigma)$ is not a boundary string tor T_{e}^{p} but $T_{e}^{p}(\rho)$ is a member of a pair which splits for e by definition of Ψ_{e}^{p} we have that

$$
T_{e^{*+1}}^{p}(c * 1 \sim q) \in T_{e}^{p}
$$

Otherwise we would have that for some string $\pi T_{c}^{p}(\rho * \pi)$ is a boundary string for T_{e}^{p}
and

$$
T_{e+1}^{p}(\sigma) \subset T_{e}^{p}(\rho * \pi) \subset T_{e^{*+1}}^{p}(\sigma * 1-q)
$$

which would contradict condition (i) of case II of the main construction. From this we get

$$
T_{e^{*+1}}^{p}(\sigma * 1-q) \in \Psi_{e}^{p}
$$

a contradiction. So the definition of $\Psi_{e^{*+1}}^{\rho}$ implies that

$$
T_{e^{*+}}^{p}(\sigma * 0),(\sigma * 1) \in \Psi_{e^{*+1}}^{p}
$$

and so there are beginnings of A^{p} of rhitrarily long length on $\Psi_{c^{*+1}}^{p}$. Cases 2 and 3.

The only real difference between these cases lies in the definition of $\pi\left(e^{*}+1\right)$, which will appear in the proof of (5).

If

$$
\sigma \in \Psi_{e^{*+1, s}}^{p}-\Psi_{e^{*+1, s+1}}^{p}
$$

then by the definition of $\psi^{p} *+1, s+1$ we have that

$$
\sigma \in \Psi_{e^{*} s}^{p}-\Psi_{e^{*}, s+1}^{p}
$$

and so by the inductive hypothesis o is an chd string for $\Psi^{*}{ }^{p}$, and for some p we have that

$$
\Psi_{e^{*}, s+1}^{p}(\rho) \supset \sigma
$$

By the definition of $\Psi_{e^{x}+1, s: 1}^{p}$

$$
\Psi_{c^{*} s+1}^{p}(p) \in \Psi^{p} p^{*}+1, s+1
$$

since

$$
\Psi_{e^{*}, s+1}^{p}(\rho) \supset \pi\left(s^{*}+1\right)
$$

By definition we have

$$
\mathbf{w}_{c}^{p} p_{m+1, s} C, \mathbf{w}_{c^{*}, s}^{p^{\prime}}
$$

By the choice of $\pi\left(e^{*}+1\right)$ there is no pair

$$
T_{e^{*+1}, s+1}^{p}(\tau * 0),(\tau * 1) \in \Psi_{e^{*}, s+1}^{p}
$$

above $\pi\left(c^{*}+1\right)$ which is defined threugh case II. So for each string τ and cach numbers such that $T_{* *+1, s+1}^{p}(\tau * 0),(\tau * 1)$ are defined and compatible with $\pi\left(c^{*}+1\right)$ and are beginnings of strings on $\Psi_{c^{*} s+1}^{p}$ there is a string π and a number $e<e^{*}+1$ for which $T_{e, s+1}^{p}(\pi)$, $\left.\because * 0\right)$, $(\pi * 1$, are defined and equal to $T_{e^{*+1, i+1}}^{p}(\tau),(\tau * 0),(\tau * 1)$ respectively. So the tree T consisting of those strings σ such that

$$
o \in T_{e^{*+1 . s}}^{p}
$$

and σ is compatible whin $\pi\left(e^{*}+1\right)$ and σ is a beginning of a string on $\Psi_{e^{*+1 s}}^{p}$ is mutually compatible with $T_{e^{*} s}^{p}$. Also

$$
T_{\epsilon} p_{*, s} \simeq \Psi_{e^{*} s}^{p}
$$

by the inductive hypothesis and

$$
\Psi_{e^{*}, s}^{p} \simeq \Psi_{e^{*+1, s}}^{p}
$$

by definition of $\Psi_{e^{*}+1, s}^{p}$. Hence

$$
\Psi_{\dot{e} *+1, s}^{p} \simeq T
$$

which implies that

$$
T_{e^{*+1, s}}^{p} \simeq \Psi_{e^{*+1}, s}^{p}
$$

Since

$$
T_{e^{*+1, s}}^{p} \neq \emptyset
$$

implies that

$$
T_{e^{*+1, s}}^{p}(0)=\pi\left(e^{*}+1\right) \in \Psi^{p} e^{* *+1, s}
$$

the first part of (3) follows for $e^{*}+1$.
Since

$$
\Psi_{e^{*+1, s}}^{p} \subseteq \Psi_{e^{*}, s}^{p}
$$

and there are no boundary strings for trees $T_{c, s}^{p}$ with $e \leqslant e^{*}$ on $\Psi_{e^{*}, s}^{p}$ other than end strings, and since there are no boundary strings for $T_{e^{*+1, s}}^{p}$ on $\Psi_{e^{*} s}^{p}$ since case 2 or 3 applies, the second part of (3) follows.

We show that the second part of (4) holds for $\Psi_{e^{*+1}}^{p}$ and treat cases 2 and 3 separately.

Assume that $\Psi_{e^{*+1 . s}}^{p}$ is defined through case 2 at each stage $s \geqslant 0$ but that there are infinitely many pairs

$$
\sigma_{1}, \sigma_{2} \in \Psi_{e^{*+1}}^{p}
$$

which split for e^{*+1}.
We know that $\Psi_{e^{*+1}}^{p}(\emptyset)$ is a beginning of A^{p} and lies on $T_{e^{*+1}}^{p}$ and that no string on $\Psi_{e^{*+1}}^{p}$ hich is not an end string for $\Psi_{e^{*+1}}^{p}$ can be a boundary string for a tree T_{e}^{p} with $e \leqslant e^{*}+1$. Also we know that there is no
pair

$$
T_{e^{*+1}}^{p}(t * 0) \cdot(t * 1) \in \Psi_{e^{*+1}}^{p}
$$

which split for $e^{*}+1$.
So there are infimitely many paits $o_{1},{ }_{2}$ such that at some sta $: s \geqslant 0$ we have:
(a) $\sigma_{1}, \sigma_{2} \in \Psi{ }_{e^{*}+1 . s .}$
(b) σ_{1}, σ_{2} split $\dot{w}_{e^{*}+1, s}(0)$ for $e^{*}+1$, stage s where

$$
\psi_{i}^{\dot{p}}+1, s(0) \subseteq \alpha_{s}^{p}
$$

(c) $T_{e^{*}+1, s^{(T)}}$ is defined and

$$
T_{c^{*}+1 . s}(\tau)=\Psi_{c^{*+1, s}}^{p}(0)=T_{c^{*+1}}^{p}(\tau)
$$

(d) if $\pi \subseteq \sigma_{1}$ or σ_{2} and π is a bound ung for a tree $T_{e, s}^{p}$ for some $c \leqslant c^{*+1}$ then

$$
\pi \subseteq T_{c^{\prime}+1 . s}^{p}
$$

Since we have (3) for each $e \leqslant e^{*}+1,1$, gives that σ_{1} and σ_{2} are compatible with each tree $T_{e, s}^{*}$ with $e \leqslant e^{*}+1$.

Looking at case $I I$ of the main construction we see that either:
[1] there are infinitely many beginnings of A^{p} which are beginnings of string π pronitited at a stage $s \geqslant 0$ where we are unabie to free π at stage $s+1$ other than by stretching a string of rank k^{*} of the $(1-p)^{\text {th }}$ kind where

$$
\left(k^{*}, 1-p\right)<\left(\operatorname{rank} T_{c^{*}+1 . s}^{p}, p\right)
$$

(since by lemma o no beginning of $A p$ is prohibited at infinitely many stages), or
[2] at stage $2 s+p+1$ we have

$$
T_{e^{*+1 . s}}^{p}(\tau)=T_{e^{*+1}}^{p}(\tau)
$$

and there are strings σ_{1} and σ_{2} on $\Psi_{e^{*+1 . s}}^{p}$ which we would define to be
$T_{e^{*+1, s+1}}^{p}(\tau * 0),(\tau * 1)$ respectively if it were not for the fact that condition (iii) for case II does not hold for σ_{1}, σ_{2}, where we can choose (σ_{1}, σ_{2}) and s to be as large as we like.

To see that [1] does not apply we notice that for each x there can only be finitely many prohibited strings $T_{x, t}^{p}(0)$ and that since

$$
T_{e}^{p}=\lim _{s} T_{e, s}^{p}
$$

exists for each e there are only finitely many strings

$$
T_{x, t}^{1-p}(0) \subseteq T_{e, s}^{1-p}(0)
$$

at some stage $s \geqslant 0$ with

$$
(e-1,1-p)<\left(\operatorname{rank} T_{e^{*}+1, s}^{p}(\tau), p\right)
$$

So eventually we must be able to choose our splitting pair σ_{1}, σ_{2} such that if

$$
T_{x, t}^{p}(0) \subseteq \sigma, \quad \text { or } \quad T_{x, t}^{p}(0) \subseteq \sigma_{2}
$$

where $T_{x, t}^{?}(0)$ is prohibited then $T_{x, t}^{p}(0)$ can be freed by stretching a string $T_{e, s}^{1-p}(0)$ where

$$
(e-1,1-p)<\left(e^{\prime}, 1-p\right)
$$

Again the fact that there are only finitely many strings

$$
\quad T_{x, i}^{1-p}(0) \subseteq T_{e, s}^{1-p}(0)
$$

at some stage $s \geqslant 0$ with

$$
(e-1,1-p)<\left(\operatorname{rank} T_{e^{*+1, s}}^{p}(\tau), p\right)
$$

implies that we can only make strings of ranke with

$$
(e, 1-p)<\left(\operatorname{rank} r_{e^{*+1, s}}^{p}(t), p\right)
$$

liable to require attention through a finite set of numbers. Let $X-1$ be the largest such number. If we take t^{*} to be a stage such that

$$
T_{x, s}^{q}(0)=T_{s}^{q}(0)
$$

for each $q \leqslant 1$ each $s>i^{*}$ then [2] cannot occur at a stage $2 s+p+1>$ $2 t^{*}+p+1$ since in this case a string of rank less thạn X or the $p^{\text {th }}$ kind would be required to be strecthed at stage $2 s+p+1$.

If the second part of (4) does not hold for $\Psi_{e^{*+1}}^{p}$, then $\Psi_{e^{*+1}}^{p}$ is not defined through case 3 . If there is no string $T_{e^{*+1}}^{p}(\tau)$ such that

$$
r_{e^{*+1}}^{p}(\tau) \in \Psi_{e^{*}}^{p}
$$

then since A lies on $\Psi_{e^{*}}^{p}$ and by the construction either A lies on $T_{e^{*}+1}^{p}$ or some beginning of A is an end string for $T_{e^{*}+1}^{p}$ we have that for some $t^{*}>0$, some τ, each $s>t^{*}, T_{e^{*}+1, s}^{p}(\tau)$ is defined and

$$
T_{e^{*+1, s}}^{p}(\tau)=T_{e^{*+1} s-1}^{p}(\tau)
$$

and there is no syzygy for $T_{i^{*}+1, s}^{\beta}$ based on $T_{e^{\alpha}+1, s}^{p}(\tau)$ which contradicts case III of the construction of $T_{e^{*}+1 . s}^{p}$

Since (5) holds for $e=e^{*}$ (5) holds for $e=e^{*}+1$.
The end of the proof is a straight-forward modification of the arguments of [8].

Assume that Ψ_{e+1}^{p} is defined through case 2 or case \therefore Choose a $\pi \supseteq \Psi_{e+1}^{p}(\emptyset)$ above which no pair of strings on Ψ_{e+1}^{p} split for ϵ. Define
$s(x)=\mu s\left[\Phi_{e s}(\sigma, x)\right.$ is defined with $\sigma \in \Psi_{e+1, s}^{p}$ and $\left.\sigma \supset \pi\right]$ and $\sigma_{x}=$ $\mu \sigma\left[\Phi_{e, s(x)}(\sigma, x)\right.$ is defined with $\left.\sigma \in \Psi_{e+1, s(x)}^{p}, \sigma \supset \pi\right]$?nd

$$
f(x)=\oiint_{e . s(x)}\left(\sigma_{x}, x\right)
$$

f is partial recursive and since A^{p} is on Ψ_{e+1}^{p} if $\Phi_{e}(A)$ is total then f is recursive. Say $f \neq \Phi_{e}(A)$. Then for some beginning $A[n]$ of A and some $x \geqslant 0$ we have $A[n] \in \Psi_{e+1}^{p}$ and $\Phi_{e}(A[n], x)$ is defined and

$$
\Phi_{e, s(x)}\left(\sigma_{x}, x\right) \neq \Phi_{e}(A[n], x)
$$

So by (1) and (5) there is a $\sigma \supseteq \sigma_{x}$ such tinat $\sigma \in \Psi_{e}^{p}$ and $\left.\sigma . A \mid n\right]$ split π for e, a contradiction.

Assume that Ψ_{e+1}^{p} is defined through case 1 . We show how to compure arbitrarily large beginnings of A whenever $\Phi_{e}(A)$ is total by asking questions uniformly recursive in $\Phi_{e}(A)$. Assume that $A|n|$ is given where

$$
A[n]=\Psi_{e: 1, s}^{p}(\tau)
$$

for some $s \geqslant 0$, some τ.
Wait until $\Psi_{e+1, t}^{p}(\tau * 0),(\tau * 1)$ are defined for some $t \geqslant s$, so that

$$
\Psi_{e+1, \tau}^{p}(\tau) \supseteq A[n]
$$

by (1) and is a beginning of A by (5), which implies that

$$
\Psi_{e+1, t}^{p}(\tau * q) \subset A
$$

for some $q \leqslant 1$. By the construction $\Psi_{e^{p}+1, i}^{p}(\tau * 0),(\tau * 1)$ split for e through some $x \geqslant 0$ at stage t and so $\Psi_{c+1, t}^{p}(\tau * q)$ is a beginning of A where

$$
\Psi_{\varepsilon+1, t}^{p}(\tau * q) \supset A[n]
$$

and

$$
\Phi_{e, t}\left(\Psi_{e+1, t}^{p} x\right)=\Phi_{e}(A, x)
$$

Hence

$$
A \leqslant_{T} \Phi_{e}(A)
$$

Corollary (Shoenfield). There is a minimal degre below O^{\prime} incomparable with any given degree strictly between O and O^{\prime}.

Another problem concerning joins is that of characterising the joins of degrees of sets satisfying particular separation properties. Also docs theorem 2 remain true when we include the degrees of partial functions? Case [1] has shown that the degrees constructed in the proof of theorem 2 will not be minimal partial degrees.

References

[1] J. Case, Enumeration Reducibility and Lartial Degrees, Ann. Math. Logic 2 (19/1) 419439.
[2] C. Jockush, Ir., Informb introreducthe sets, 1.S.1. 33(1966) 521-536.
i] A.th. Lachan, Lower bounds for pairs of recursively enumerable degrees, Proc. Lon. Math. Soc. $16(1966) 537-519$.
[4] A.H. Lachlan, Embedding non-distributive lattices in the recursively enumerable degrees, to appear.
[5] W. Robinson, A dichotony of the recursively enumerable sets, Zeii. f. math. Logik, 14 (1968) 339-356.
[6] G.E. Sacks, Degrees of Unsolvability, Annals of Math. Study 55, Princeton 1963.
[7] J.R. Shoenfield, A theorem on minimal degrees, J.S.L. 31 (1966) 539-544.
[8] C. Spector, On degrees of recursive unsolvability. Ann. of Math. 64 (1956) 581-592.
[9] S.K. Thomason, Sub-lattices of the recursively enumerable degrees. to appear.
[10] C.E.M. Yates. A minimal pair of recursively coumerable degrees, J.S.L. 31 (1966) 159168.
[11] C.E.M. Yates. Initial cegments of the degrees of unsolvability, Part II: Minimal degrees, J.S.L. $35(1970) 243-266$.

