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Abstract

We propose extensions of the classical JSM-method and the Naı̈ve Bayesian classifier for the case of triadic relational data. We

performed a series of experiments on various types of data (both real and synthetic) to estimate quality of classification techniques

and compare them with other classification algorithms that generate hypotheses, e.g. ID3 and Random Forest. In addition to

classification precision and recall we also evaluated the time performance of the proposed methods.
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1. Introduction

During the last 5-7 years mining of triadic data has attracted attention of scientists working with social Web-

services like Bibsonomy1,2,3,4,5,6,7, which use triadic nature of the data (users, tags, resources). The main results

were obtained in the framework of unsupervised learning, namely triadic clustering, whereas, the classification task

for triadic data was a missing link. It is worth noting that in 2008 and 2009 Bibsonomy owners organised a series of

international competitions on spam detection (classification problem) and recommending tags and resources on triadic

data. However, the winners of the competition mainly used the content information. The best results were achieved by

employing SVM, however the triadic nature of data was not used. In this paper we try to bridge the gap and conduct

missing experiments on the real data.

Thus, we extend conventional JSM-method8,9,10,10 to the triadic case and propose appropriate modification of the

Naı̈ve Bayes classifier. We investigated the method applicability for the Bibsonomy data in the spam detection task,

conducted general experiments to analyse methods’ behaviour on different types of data sets in terms of accuracy and

performance.

The paper will describe several algorithms for a classification task on triadic labeled data and a series of experiments

with them on both synthetic and real datasets. The structure of the paper is the following: section 2.1 introduces basic

FCA notions, section 2.2 describes an extension of FCA to triadic case, section 3 introduces the task of triadic data
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classification and presents main approaches that we designed to this end, section 4 describes datasets and results of

the experiments, and, finally, 5 concludes the paper.

2. Basic FCA notions

2.1. FCA for dyadic case

First, we recall some basic notions from the Formal Concept Analysis (FCA)11. Let G and M be sets, called the

set of objects and attributes, respectively, and let I be a relation I ⊆ G×M: for g ∈ G, m ∈ M, gIm holds iff the object

g has the attribute m. The triple K = (G,M, I) is called a (formal) context.
If A ⊆ G, B ⊆ M are arbitrary subsets, then the Galois connection is given by the following derivation operators:

A′ = {m ∈ M | gIm for all g ∈ A},
B′ = {g ∈ G | gIm for all m ∈ B}. (1)

If we have several contexts, the derivative operator of a context (G,M, I) is denoted by (.)I .

The pair (A, B), where A ⊆ G, B ⊆ M, A′ = B, and B′ = A is called a (formal) concept (of the context K) with

extent A and intent B (in this case we have also A′′ = A and B′′ = B). For B,D ⊆ M the implication B → D holds if

B′ ⊆ D′.
The concepts, ordered by (A1, B1) ≥ (A2, B2) ⇐⇒ A1 ⊇ A2 form a complete lattice, called the concept lattice

B(G,M, I).

2.2. Triadic Formal Concept Analysis

A triadic context K = (G,M, B, Y) consists of sets G (objects), M (attributes), and B (conditions), and ternary

relation Y ⊆ G × M × B12. An incidence (g,m, b) ∈ Y shows that object g has attribute m under condition b.

For convenience, a triadic context is denoted by (X1, X2, X3, Y). A triadic context K = (X1, X2, X3, Y) gives rise to

the following dyadic contexts

K
(1) = (X1, X2 × X3, Y (1)), K(2) = (X2, X2 × X3, Y (2)), K(3) = (X3, X2 × X3, Y (3)),

where gY (1)(m, b) :⇔ mY (1)(g, b) :⇔ bY (1)(g,m) :⇔ (g,m, b) ∈ Y . The derivation operators (primes or concept-

forming operators) induced by K
(i) are denoted by (.)(i). For each induced dyadic context we have two kinds of such

derivation operators. That is, for {i, j, k} = {1, 2, 3} with j < k and for Z ⊆ Xi and W ⊆ Xj × Xk, the (i)-derivation

operators are defined by:

Z → Z(i) = {(x j, xk) ∈ Xj × Xk |xi, x j, xk are related by Y for all xi ∈ Z},
W → W (i) = {xi ∈ Xi|xi, x j, xk are related by Y for all (x j, xk) ∈ W}.

Formally, a triadic concept of a triadic context K = (X1, X2, X3, Y) is a triple (A1, A2, A3) of A1 ⊆ X1, A2 ⊆ X2, A3 ⊆ X3,

such that for every {i, j, k} = {1, 2, 3} with j < k we have (Aj × Ak)(i) = Ai. For a certain triadic concept (A1, A2, A3),

the components A1, A2, and A3 are called the extent, the intent, and the modus of (A1, A2, A3). One can interpret K =

(X1, X2, X3, Y) as a three-dimensional cross table. Therefore, according to our definition, under suitable permutations

of rows, columns, and layers of the cross table, the triadic concept (A1, A2, A3) is interpreted as a maximal cuboid

full of crosses. The set of all triadic concepts of K = (X1, X2, X3, Y) is called the concept trilattice and is denoted by

T(X1, X2, X3, Y).

3. Main algorithms for triadic classification

Let a set of objects G be split into three partitions by some target attribute t. The first set includes all the objects

that are known to have a target attribute t, the second one consists of those objects that do not have a t, and the third

contains objects with unknown status of presence of an t attribute. The first set is called the set of positive examples of
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objects, or ¡¡+¿¿-class, the second one is a set of negative examples, ¡¡-¿¿-class, the third one is a set of undetermined

examples. Therefore a classification task constitutes in defining which of the first two classes undetermined examples

belong to.

In addition to a set of objects and a target attribute, we know sets of attributes and conditions for each object (i.e.

so called structural attributes and conditions). Then the task can be described in terms of Formal Concept Analysis:

• A positive context K+ = (G+,M, B, I+) describes a positive set of examples

• A negative context K− = (G−,M, B, I−) describes a negative set of examples.

• An undetermined set of examples is described by Kτ = (Gτ,M, B, Iτ) context.

An incidence relation Iε ⊆ Gε ×M × B, ε ∈ {+,−, τ} determines structural attributes and conditions for each object

from the corresponding class. For each context there is its own Galois operator, which we denote as (.)+ (.)−, and (.)τ.
In figure 1 we provide a basic example of triadic data classification which was inspired by Kaggle competition

Dogs vs. Cats.

Fig. 1: Dogs vs. Cats triadic classification

ASIRRA (Animal Species Image Recognition for Restricting Access) is a Human Interactive Proof that works

by asking users to identify photographs of cats and dogs. Usually, this task is difficult for computers, but people

can accomplish it quickly and accurately. In this example users have assigned tags to pictures of dogs and cats.

Thus we can employ these tag assignments for cat’s and dog’s classes done by humans to learn how to classify new

undetermined example. We will be predicting whether a picture features a dog or a cat using hypotheses in the form

S et o f people × S et o f tags.

This example explains basic idea of triadic classification. We have a set of positive examples, say cats, G+ =
{c1, c2, c3}, and a set of negative examples, dogs, G− = {d1, d2, d3}. A set of people, M = {Natali,Dima,Roma, S ebastian}
and a set of tags which users assigned to examples, B = {kitty, kitten, puss, doggy, pup, puppy}. We highlighted some

hyperedges on the example graph in figure 1; for example, Natali assigned tag kitty to cat c2 and S ebastian assigned

tag puppy to d1. Now we have to classify new undetermined examples using hypotheses generated from the sets of

people and tags related to positive and negative examples.
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3.1. Triadic JSM (weighted)

JSM-method was named in honor of English philosopher John Stuart Mill, who studied schemes of inductive

reasoning in the 19th century13, and was proposed by Viktor K. Finn in late 1970s. This method aims to describe

induction in a purely deductive form and give at least partial justification of induction14,15. The method was later

reformulated in FCA terms and considered as a machine learning technique for learning hypotheses from labeled data

(see detailed survey in16).

The workload of JSM-method can be split into two phases: learning (training) and classification.

Classification model is based on generic principles of learning by positive and negative examples: for given sets of

positive and negative examples we need to find classification hypotheses that cannot cover examples of the contrary

class.

So, we have three formal tricontexts: the positive context K+ = (G+,M, B, I+), the negative context K− = (G−,M, B, I−),

and the context of undetermined examples Kτ = (Gτ,M, B, Iτ). The learning process is based on K−−, K+ and its results

are used for classification of objects from Kτ.
A triple of sets (A+,D+,C+), where A+ ⊆ G+,D+ ⊆ M,C+ ⊆ B, is called a positive formal triconcept if it is the

formal triconcept of a context K+. A set A+ is called positive formal extent, D+ is a positive formal intent, C+ is a

positive formal modus. If a positive formal intent D+ and apositive formal modus C+ are not contained in any intent

and modus of negative examples (i.e. ∀g− ∈ G−, {D+ × C+} � {g−}−), then the pair (D+,C+) is called a positive (+)-

hypothesis. A set A+ is called a formal extent of hypothesis (D+,C+). If pair (D+,C+) does not fulfill the condition

∀g− ∈ G−, {D+ × C+} � {g−}−, then this couple is called a positive (+)-falsified hypothesis. Negative hypotheses are

defined in a similar way.

Hypotheses are used for classification of undetermined examples.

If an undetermined example contains a positive hypothesis (D+,C+) (i.e. {D+ ×C+} ⊆ {gττ} ), then we call (D+,C+)

a hypothesis about positive classification of the object gτ. Similarly the hypothesis about negative classification of

object gτ is defined. The weight of hypothesis (Dε,Cε) is a number of elements in its extent (Dε × Cε)ε, where

ε ∈ {+,−}.
There is a general classification scheme:

1. Find all positive and negative hypotheses

2. For each object gτ that needs to be classified:

(a) Calculate a sum of weights for each class of hypotheses that object gτ satisfies.

(b) Classify an object as:

• Positive, if sum of weights of positive hypotheses more than of negative ones

• Negative, if sum of weights of negative hypotheses more than of positive ones

• Unclassifiable, if sum of weights of hypotheses from both classes are equal

3.2. Naı̈ve Triadic Bayes

Each example g ∈ Gτ is described by a set of attributes and conditions: 〈m1 . . .mn, b1 . . . bk〉. We have to find the

most probable class C, an object with such attributes and conditions belongs to. We assume that elements m ∈ M, b ∈ B
are independent. Then we have to find C such that:

C = arg max
h∈{+,−}

p(x = h|m1 . . .mn, b1 . . . bk)

According to Bayes theorem:
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C = arg max
h∈{+,−}

p(m1 . . .mn, b1 . . . bk |x = h)p(x = h)

p(m1 . . .mn, b1 . . . bk)
= (2)

= arg max
h∈{+,−}

p(m1 . . .mn, b1 . . . bk |x = h)p(x = h) (3)

Expand the probability p(m1 . . .mn, b1 . . . bk |h) as follows:

p(m1 . . .mn, b1 . . . bk |h) = p(m1|h)p(m2 . . .mn, b1 . . . bk |h,m1) = (4)

= p(m1|h)p(m2|h,m1)p(m2 . . .mn, b1 . . . bk |h,m1,m2) = · · · = (5)

= p(m1|h)p(m2|h,m1) . . . p(mn|h,m1 . . .mn−1)p(b1 . . . bk |h,m1 . . .mn) = (6)

= p(m1|h) . . . p(mn|h,m1 . . .mn−1)p(b1|h,m1 . . .mn) . . . p(bk |h,m1 . . .mn, b1 . . . bk) = (7)

=
〈

we apply the fact that m1 . . .mn, b1 . . . bk are independent
〉
= (8)

=

n∏

i=1

P(mi|h)

k∏

i=1

P(bi|h) (9)

When counting probabilities as frequencies add smoothing according to Jeffrey-Perks rule:

p( f |h) =
n + 1/2

N + |A|/2 ,

where n is a number of objects in the class having attribute f , N is the total number of objects in the class , A is a set

of attributes of the objects.

3.3. Triadic Close-by-one

As the main of idea of triadic formal concepts generation we exploit the two-level generation scheme of TRIAS

algorithm6 on associated dyadic contexts.

Let I = {(g, (m, b))|∀(g,m, b) ∈ I} be a new incidence relation built on K = (G,M, B, I). We can represent K by a

dyadic formal context K2 = (G,M × B, I).

If a pair (A2,Q), where A2 ⊆ G,Q ⊆ M × B, is a formal triconcept of K2, then there exist a triple (A3,D,C) such

that A3 = A2,D × C = Q,D ⊆ M,C ⊆ B, which is a formal triconcept of K. Thus, by finding concepts of K2, we

generate concepts of K.

In the original TRIAS algorithm the authors use a NextClosure procedure for finding concepts of K2. In this paper

we use ¡¡Close-by-one¿¿ algorithm (CbO)17 since it maintains a tree structure in the process of concepts generation

for more reliable access to the generated concepts. This approach also benefits from its suitability for parallel compu-

tations. The original CbO allows to build a tree of canonically generated extents, but we modify it slightly since we

do not need to know the order and the relationships between the concepts. Its pseudocode is presented below:

The initial parameters are A = ∅, n = 0, and currdeep = 0. W is a set of objects or attributes for a target class. The

variable FConcepts stores a set of generated formal concepts. The functions Add and AddRange add to FConcepts
one or several new formal concepts respectively. Each new recursive call of CbO is similar to a descent by one level

in the tree of canonically generated formal concepts of the original CbO algorithm, therefore the parameter maxdeep
can control the descent depth in the tree. It can also be seen that the proposed CbO modification is not able to generate

concepts with empty extents or intents, which are evidently useless for classification.

The algorithm ¡¡Close-by-one¿¿ has its dual version with respect to sets of objects and attributes. That is, if we

assume A ⊆ G,W = G, then formal concepts are generated starting with concepts of minimal extents; similarly, if

A ⊆ M × B,W = M × B, then the generation starts with minimal concept by intent and modus. This peculiarity is a

beneficial feature of the algorithm since for JSM-method we enough to have only concepts with maximal (minimal by

intent and modus) formal concepts. By setting the target sets A ⊆ M×B,W = M×B and the parameter currdeep = 1,

we obtain the concepts avoiding unnecessary computations.
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Algorithm 1 CbO algorithm

Input: A is a set of objects (or attributes),

n is an object (or attribute), maxdeep is a maximal tree depth, currdeep is a current tree level

Output: FConcepts
1: if (|A| < |W |)&(currdeep < maxdeep) then
2: for all i ∈ range(n, |G|) do
3: if min({k|gk ∈ (A ∪ gi)

′′ \ A}) ≥ i then
4: FConcepts.Add(A′′, A′)
5: j = min({k|k > i, gk � (A ∪ gi)

′′})
6: FConcepts.AddRange(CbO((A ∪ gi)

′′, j, currdeep + 1))

7: end if
8: end for
9: end if

10: return FConcepts

4. Data sets and experiments

4.1. Synthetic data

4.1.1. Contexts generated with normal distribution
The contexts based on normal distribution are generated according to the following procedure.

Let tricontext K define three-dimensional tensor of size G × M × B and k be a number of clusters, then probability

of belonging to the cluster Ki is P(Ki) = 1/k.

Inside a cluster triple coordinates are defined as follows: (x, y, z) ∼ (N(cix, σ
2
ix),N(ciy, σ

2
iy),N(ciz, σ

2
iz)), where

parameters of normal distributions are unique and randomly chosen for each i − th cluster. If the density of the

context, p, is given, then |G| ∗ |M| ∗ |B| ∗ p triples are generated using the aforementioned law.

4.1.2. Context with cubes and noise
On the main diagonal of tensor G×M×B, describing the initial triadic context, we have n non-overlapping cuboids

of arbitrary sizes. A white noise of density p is also introduced inside the context. Next, the generated context is split

into two parts: positive and negative contexts for JSM-method.

4.1.3. Context with random cubes
In a tensor G × M × B, which defines the triadic context, there are n cuboids of arbitrary sizes and positions. Also

a white noise with a rather low density 0.002 is introduced.

4.1.4. Testing whether all possible hypothesis are necessary
Since the task of all concepts’ generation for a given context is resource consuming, we use rather small context: in

each experiment we use positive and negative context of size 50 × 50 × 50. Three contexts for each class respectively

were generated with the following parameters:

1. Random contexts with density 0.15

2. Contexts with 6 Gaussian clusters and 0.2 noise density

3. Context with 6 cubes and 0.1 noise density

4. Context with 8 random cubes and 0.03 noise density

Averaged results for these three types of experiments for JSM-method with weighted votes are given in Table 1.

It is clear that, usage of all formal concepts does not increase classification quality. Averaged F-measure for all

hypotheses equals 0.752, for maximal hypotheses it is about 0.740, almost identical result. Since there is a large

speed up in the computational time for hypotheses of a maximal extent, we use only them later on in the classification

framework of JSM-method with weighted voting.
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Fig. 2: Plane projection of (G × M) or 2D-evolvent of two contexts with parameters |G| = 200, |M| = 30, |B| = 30,K = 6, p = 0.15

Fig. 3: Plane projection of (G × M) or 2D-evolvent of two contexts with parameters |G| = 200, |M| = 30, |B| = 30, N = 10, p = 0.005

4.1.5. Quality assessment
We have built 10 contexts of each type of size 250 × 100 × 100; each of them consists of two equal subcontexts

w.r.t. to the number of objects, with the same parameter values as in the previous example.
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Fig. 4: Plane projection of (G × M) or 2D-evolvent of two contexts with parameters |G| = 200, |M| = 30, |B| = 30, N = 8

Table 1: Classification results of weighted JSM-method on synthetic datasets

Context type Uniform noise With cuboids with rand. cuboids With clusters

concepts all maximal all maximal all maximal all maximal

True Positive 0,22 0.22 0.5 0.5 0.25 0.20 0.32 0.32

False Positive 0.23 0.27 0 0 0.08 0.08 0 0.03

True Negative 0.26 0.23 0.5 0.5 0.42 0.42 0.45 0.42

False Negative 0.29 0.25 0 0 0.25 0.28 0 0

Unknown 0 0.03 0 0 0 0.02 0.23 0.23

One fifth part of each context was taken as a test, the training was performed on remaining context objects. This

rather large number of experiments was performed since we would like to have enough statistics about the behaviour

of different methods on different context types. We also include classification methods based on decision trees from

machine learning package Weka.

Averaged results for F-measure and a fraction of unclassified objects in 10 experiments for each method and

context type are presented in Table 2.

All the methods perfectly classified data with cuboids. The methods show the worst results, as we expected, on

uniform contexts. Also rather poor results were demonstrated on random (possibly overlapping) cuboids.

4.2. Bibsonomy data

We have also conducted experiments on real data of bibsonomy.org, which was provided to us during ECML

PKKD Discovery Challenge in 200818. BibSonomy allows to share reference lists and assign tags to books and

papers. In the data set objects consist of bibsonomy users, the set of attributes is a set of tags, and conditions are

papers (i.e. id), the target attribute is a label, which indicates whether a given user is a spammer (bot-spammer) or

non-spammer (an ordinary human user). Thus, this data gives rise to a triadic context with a target attribute spammer-
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Table 2: Classification results of JSM-methods and other machine learning methods on synthetic datasets

Method Context F-measure

JSM

Uniform 0.5

clusters 0.92

cuboids 1

rand. cuboids 0.6

Naı̈ve Bayes

Uniform 0.54

clusters 0.92

cuboids 1

rand. cuboids 0.6

Decision trees Id3

Uniform 0.52

clusters 0.92

cuboids 1

rand. cuboids 0.84

Decision trees Random forest

Uniform 0.52

clusters 0.88

cuboids 1

rand. cuboids 0.86

Table 3: Bibsonomy dataset statistics

|U | |T | |R| Triples count Density

Non-spammers 2467 268692 69904 816197 1, 761 ∗ 10−8

Spammers 29248 380434 1626805 13258759 7, 324 ∗ 10−10

Table 4: Bibsonomy random sample statistics

|U | |T | |R| Triples count Density

Non-spammers 565 8720 29372 53129 3, 671 ∗ 10−7

Spammers 499 17626 22362 161752 8, 224 ∗ 10−7

non-spammer. There is an additional information for each book: url address, short textual description, label whether

a user bookmarked it or not.

For the first experiment with the Bibsonomy data we have used a dataset that contains a list of tuples (tag assign-

ments): who attached which tag to which resource/content.

1. user (number, no user names available)

2. tag

3. content id (matches bookmark.content id or bibtex.content id)

4. content type (1 = bookmark, 2 = bibtex)

5. date

For our purposes we need only fields 1, 2, and 3 of the tuple above. For each record in the datatable we know

whether it is a spam record or not.

Considered data is rather large and highly sparse (Table 3), therefore we generate random subsamples from both

sets, 500 objects from each set (Table 4). Since the number of objects in the subsamples is drastically less than

the number of attributes and conditions, we decided to use all concepts generated by JSM-method; in other words,

Close-by-one shows better performance starting with search of concept extents of a smaller size.

Experiment results are given in Table 5.



937 Roman Zhuk et al.  /  Procedia Computer Science   31  ( 2014 )  928 – 938 

Table 5: Classification results of triadic versions of JSM and Naı̈ve Bayes on Bibsonomy data

Method Context Value F-measure

JSM

True Positive 0

—

False Positive 0

True Negaitve 0

False Negative 0

Unknown 213

Naı̈ve Bayes

True Positive 98

0,9

False Positive 5

True Negaitve 95

False Negative 15

Unknown 0

Table 6: Bibsonomy data sample after metainformation fusion

|U | |T | |R| Triples count Density

Non-spammers 565 8720 5062 67031 2, 6688 ∗ 10−6

Spammers 499 17626 15357 323455 2, 394 ∗ 10−6

Table 7: Classification results of triadic versions of JSM and Naı̈ve Bayes on Bibsonomy data after metainformation fusion

Method Context Value F-measure

JSM

True Positive 24

0.54

False Positive 24

True Negative 92

False Negative 40

Unknown 55

Naı̈ve Bayes

True Positive 38

0.5

False Positive 0

True Negative 100

False Negative 75

Unknown 0

All JSM-based methods were not able to classify the objects. The explanation lies in the data peculiarities: pairs

(tag, book id) of each (spam) user are unique. Surprisingly good results were shown by Naı̈ve Bayes classifier. It can

be explained by the assumption made: all attributes (tags) are independent from conditions (content id), which does

not take into account triadic data nature. Tag sets of each class are almost unique, this implies comparatively good

performance of Naı̈ve Bayes.

Since the results of the first experiment were rather disappointing, we were seeking different ways to cope with the

unique content id’s. We made an assumption that even though paper ids are different, but there are, almost for sure,

papers with the same content. Since the database contains some additional metainformation, we came up with an idea

to use it in the classification. Each unique condition (paper id) was associated with two new conditions: url-address

and bookmark/reference label, i.e. each triple (user, tag, book id) generates two new triples (user, tag, url) and (user,

tag, type). By doing so we have a new context with the following parameters (see Table 6). The increase of the size

of the set B is explained by the fact that many papers feature the same url-address. As a result we have a context with

the parameters described in the Table 6.

Experimental evaluation (Table 7) shows that the methods demonstrated their average values of precision, which

is quite acceptable. It also worth noting that even though Naı̈ve Bayes demonstrated the lowest F-measure, it did not

leave objects unclassified. According to the results we make a conclusion that the idea of using metainformation was

fruitful: the methods showed their average performance in the object classification task.
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5. Conclusion

We have considered several methods of triadic data classification in this paper. We proposed a modification of

Naı̈ve Bayes classifier for the case of triadic contexts as well as two JSM method modifications. We conducted a

series of experiments on the data of various types to investigate the quality of classification for a particular data type.

JSM-method with votes showed relatively good results, whereas the original JSM-method, even having high F-

measure values, left a large fraction of examples unclassified.

Due to the peculiarities of the real Bibsonomy data (description of each spammer is unique in terms of tags and

resources), all the classification methods showed unsatisfactory results. It was partially overcome by using meta-

information as additional formal conditions.

In the future studies on the topic we plan to consider more flexible classification techniques based on OAC-

triclusters2.
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18. A. Hotho, D. Benz, R. Jäschke, B. Krause (Eds.), ECML PKDD Discovery Challenge 2008 (RSDC’08), Workshop at 18th Europ. Conf. on

Machine Learning (ECML’08) / 11th Europ. Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD’08), 2008.


