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ABSTRACT Ampullosporin A and alamethicin are two members of the peptaibol family of antimicrobial peptides. These
compounds are produced by fungi and are characterized by a high content of hydrophobic amino acids, and in particular the
a-tetrasubstituted amino acid residue a-aminoisobutyric acid. Here ampullosporin A and alamethicin were uniformly labeled
with 15N, purified and reconstituted into oriented phophatidylcholine lipid bilayers and investigated by proton-decoupled
15N and 31P solid-state NMR spectroscopy. Whereas alamethicin (20 amino acid residues) adopts transmembrane alignments
in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) mem-
branes the much shorter ampullosporin A (15 residues) exhibits comparable configurations only in thin membranes. In contrast
the latter compound is oriented parallel to the membrane surface in 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine and POPC
bilayers indicating that hydrophobic mismatch has a decisive effect on the membrane topology of these peptides. Two-
dimensional 15N chemical shift – 1H-15N dipolar coupling solid-state NMR correlation spectroscopy suggests that in their trans-
membrane configuration both peptides adopt mixed a-/310-helical structures which can be explained by the restraints imposed by
the membranes and the bulky a-aminoisobutyric acid residues. The 15N solid-state NMR spectra also provide detailed informa-
tion on the helical tilt angles. The results are discussed with regard to the antimicrobial activities of the peptides.
INTRODUCTION

Peptaibols, including alamethicin (Alm) and ampullosporin,

are small hydrophobic peptides of fungal origin that are rich

in a-aminoisobutyric acid (Aib) and many of which exhibit

antimicrobial activities (reviewed in (1–4)). The closely

related isoforms of alamethicin encompass 20 residues,

nine of which are Aib residues in the case of the F50/7 var-

iant investigated in this work. These peptides have been thor-

oughly studied in the past as they are considered a paradigm

for channel formation in biological membranes. Structural

analysis of alamethicin by x-ray crystallography (5), as

well as NMR-spectroscopy in methanolic solution (6), or

in the presence of sodium dodecyl sulfate micelles (7,8) all

indicate that the conformations of alamethicin are predomi-

nantly helical with a flexible hinge region at the Gly-11 po-

sition (9) that results in a bend in the x-ray structures (5). In

the center of the alamethicin sequence the G-X-X-P motif re-

sults in a break of the helix conformation and a less stable

C-terminal structure which undergoes considerable confor-

mational averaging (6,7,10). These findings have been

confirmed by molecular dynamics simulations (11,12). In

addition, Fourier transform infrared spectroscopy, Raman

and circular dichroism (CD) spectroscopies show that the de-

gree of helicity is dependent on the physical state of the lipid,

the lipid/peptide ratio and the presence of transmembrane po-

tentials (reviewed in (3,4)).

When added to lipid bilayers and natural membranes, the

polypeptide exhibits a well defined pattern of successive

increases in conductance levels, each of a duration of

a few milliseconds (13–15) which resemble those seen in

the presence of large voltage- or ligand-gated channel pro-

teins (reviewed in (1–4)). At relatively high concentrations

alamethicin is also able to induce a liposomal leakage of

carboxyfluorescein-loaded vesicles while at the same time

water-membrane partitioning and aggregation phenomena

were found to be major determinants of the membrane activ-

ity of antimicrobial peptides (16). Even more bulky ions, like

Na-benzoyl-L-arginine-para-nitroanilide were found to pass

the membrane in the presence of alamethicin F50/5 (17). The

open alamethicin pore has been suggested to consist of

‘‘transmembrane helical bundles’’ or ‘‘barrel staves’’ (2)

composed of at least three (18) or four subunits (19). As

many as 20 distinguishable conductance states have been de-

scribed (20) and it has therefore been suggested that these

correspond to differently sized bundles of transmembrane

alamethicin helices (2). Although self-associated pores are

formed above a threshold concentration, the peptides remain

associated with the membrane surface at low peptide/lipid

ratios (21). Previously, the membrane interactions of alame-

thicin were investigated by oriented CD (22,23) and by ori-

ented solid-state NMR spectroscopy (24–26). In particular,
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the transition between the surface-associated state and trans-

membrane alignment was characterized as a function of pep-

tide/lipid ratio and of membrane phospholipid composition

(21–23).

Ampullosporin A (AmpA) is a 15-mer peptaibol whose

x-ray structure exhibits a largely regular a-helix starting

from the acetylated N-terminus and contains a b-turn at the

C-terminus (27). This structure exhibits even more of

a bend when compared to the alamethicin x-ray structure.

AmpA helices possess a hydrophilic face formed by the

polar side chains of Gln-7, Gln-11, and the non-hydrogen

bonding carbonyl oxygens of Aib-10 and Gln-11, whereas

the hydrophobic face is formed by the bulky side chains of

Trp-1, Leu-5, Leu-12 and Leu-15ol. In the crystals, the dis-

tance between the Ca of the first residue and the Ca of the last

residue is 20.2 Å for AmpA (27), i.e., much shorter than that

of antiamoebin (24.4 Å), another 16-mer peptaibol (28).

When the structured regions are considered the length of the

AmpA helix (residues 1 to 10) is 13.5 Å and that of the anti-

amoebin helix is 9.4 Å (residues 1 to 7 of unit A pdb: 1JOH).

Ion channel activity of AmpA was demonstrated in

phosphatidylcholines (PCs) at P/L ratios as low as 1:3000

(29). However, in comparison to alamethicin, AmpA

displays only weak antimicrobial or channel-forming effects

(30). However, the peptide induces pigment formation in the

fungus Phoma destructiva (31); it also provokes hypother-

mia and inhibits locomotor activity in mice (30,31).

Whereas the biological activities of several peptaibols,

such as the antimicrobial, antimalarial and hemolytic

activities, the stimulation of catecholamine secretion, and

the uncoupling of mitochondrial oxidative phosphorylation

were reported to be generated from their membrane activi-

ties, the action mechanisms of the biological activities of

ampullosporin A remain unknown although it is suspected

that they form channels by related mechanisms (32,33).

Furthermore, despite intensive research, our understanding

of the detailed mechanisms of voltage-dependent channel-

formation by peptaibols remains incomplete. This is in part

because of the paucity of information about the structures

of the peptides in membranes, which might exhibit differ-

ent conformational and dynamic properties from their con-

formations in organic solvents or in the crystal.

Solid-state NMR spectroscopy is a powerful tool for inves-

tigating the structure of membrane-active peptides and pro-

teins, because it allows the study of amorphous and partly

mobile biological solids directly in the liquid-crystalline lipid

bilayers (34–39). Orientation-dependent nuclear spin interac-

tions such as the 15N chemical shift, the 15N-1H dipolar cou-

pling or the 2H quadrupolar splitting provide exquisite probes

of the orientation of membrane peptides relative to the bilayer

normal (24–26,40,41). Correlating the N-H dipolar coupling

and the 15N chemical shift in a two-dimensional solid-state

NMR spectrum (42) further allows the determination of the

orientational topology of membrane peptides with multiple
15N labels (34,35). In this study we report the 15N and 31P

solid-state NMR spectra obtained from mechanically ori-

ented bilayers to investigate the lipid-dependence of AmpA

alignment and the membrane-associated structure of both

peptaibols when in their transmembrane orientation.

MATERIALS AND METHODS

Alamethicin F50/7 (Alm), a natural isoform of the F50/5 analog where Ala6

is replaced by Aib, has the sequence Ac-Aib-Pro-Aib-Ala-Aib-Aib-Gln-

Aib-Val-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-Gln-Gln-Phe-OH (4) and was

prepared as previously described and is uniformly labeled with 15N at a

level R 92% (43).
15N-ampullosporin A (AmpA), with the sequence Ac-Trp-Ala-Aib-Aib-

Leu-Aib-Gln-Aib-Aib-Aib-Gln-Leu-Aib-Gln-Leu-OH was isolated from

cultures of Sepedonium ampullosporum HKI-053 grown on 15N enriched

medium (Supplementary Material). The strain was cultivated as a surface

culture (25 l) at 23�C in 500 mL Erlenmeyer flasks containing 100 mL

medium 7* (the asterisk indicates uniform labeling with 15N) composed

as follows (g/L): maltose 5, 15N-Celtone-Powder 2, KH2PO4 2, MgSO4$7

H2O 0.5, ZnSO4$7 H2O 0.008, pH 5.8 - 6.2. After 34 days of cultivation

the culture broth was dispersed and extracted with ethyl acetate. The resi-

due (924 mg) was subjected to silica gel chromatography (silica gel 60,

Merck, Darmstadt, Germany) 0.063-0.1 mm, gradient: 100 % CHCl3,

9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 100 % methanol). Fractions containing
15N-ampullosporin A were tested by analytical high performance liquid

chromatography (HPLC). The combined fractions were subjected to size

exclusion chromatography (Sephadex LH-20, methanol) and analyzed by

HPLC using a Nucleosil 100 C18 column (100 Å pore size, 3 mm �
125 mm) and an acetonitrile-water/0.1% trifluoro acetic acid gradient at

a flow rate of 1 mL/min. The final purification was achieved by preparative

HPLC using a Shimadzu LC8A apparatus, equipped with a Eurosher 100

C8-column (5 mm, 250 � 32,5 mm), at a flow rate of 9 mL/min and a gra-

dient 50 to 90% acetonitrile in water/0.1% trifluoro acetic acid. The peptide

was detected at 220 nm. The identity of the product was confirmed by mass

spectrometry (MS) of the full-length peptide and fragments thereof

(Fig. 1).

The high resolution heteronuclear single quantum correlation spectrum of

the peptide in CD3OH is shown in the Supplementary Material. Fifteen 15N

resonances are observed within the isotropic chemical shift positions of the

amides (between 112–135 ppm for 15N and 7.3–8.3 ppm for 1H). An addi-

tional 1H resonance at 10.4 ppm was assigned to the tryptophan side chain.

Three glutamine side chains exhibit 15N isotropic chemical shift values at

~97 ppm. The data therefore indicate that all sites were labeled with 15N.

The phospholipids 1,2-didecanoyl-sn-glycero-3-phosphocholine (di-

C10:0-PC); 1,2-dilauroyl-sn-glycero-3-phosphocholine (di-C12:0-PC);

1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (di-C14:1-PC); 1,2-dimyr-

istoyl-sn-glycero-3-phosphocholine (DMPC; di-C14:0-PC); and 1-palmi-

toyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC; C16:0,C18:1-PC) were

from Avanti Polar Lipids(Alabaster, AL). All commercial material was

used without further purification.

Sample preparation for NMR

For solid-state NMR measurements 0.75–4 mg of ampullosporin A or

alamethicin (both uniformly labeled with 15N) were dissolved in trifluoroe-

thanol and chloroform, respectively, and mixed with the appropriate amount

of lipid. The solution was then spread onto 30 ultra-thin cover glasses (9 �
22 mm, Marienfeld, Lauda-Königshofen, Germany) and the samples first

dried in air and thereafter in high vacuum overnight to remove all organic

solvent. Subsequently, the membranes were equilibrated at 93% relative

humidity. For NMR measurements the samples were tightly sealed, inserted

into a double resonance flat-coil probe head (44), and introduced into

the magnet with the bilayer normal aligned parallel to the magnetic field

direction.
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FIGURE 1 (A) Mass spectrum of 15N-ampullosporin A. (B) Mass spectrometry/mass spectrometry (MS/MS) spectrum of the N-terminal fragment of
15N-ampullosporin A. (C) MS/MS spectrum of the C-terminal fragment of 15N-ampullosporin A.
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Solid-state NMR spectroscopy:

The proton-decoupled 15N cross-polarization (CP) spectra of static aligned

samples were acquired at 40.54 MHz on a Bruker Avance wide bore 400

NMR spectrometer. An adiabatic CP pulse sequence was used with a spectral

width, acquisition time, CP contact time and recycle delay times of 75

kilohertz (kHz), 3.5 ms, 500 ms and 3 s, respectively. The 1H p/2 pulse

and spinal64 heteronuclear decoupling field strengths B1 corresponded to

a nutation frequency of 42 kHz. 40 k scans were accumulated and the spectra

were zero filled to 4 k points. An exponential line-broadening of 100 Hz was

applied before Fourier transformation. Spectra were externally referenced to
15NH4Cl at 41.5 ppm. Samples were cooled with a stream of air at a temper-

ature of 22�C. For the DMPC sample containing alamethicin the temperature

of the air was set to 37�C to assure that the lipid bilayers were in their fluid

phase.

The two-dimensional PISEMA experiment was used to correlate the
15N-1H dipolar coupling with the 15N chemical shift of the same nitrogen

(45). The effective 1H B1 field of the spin-lock amplitude was 45 kHz.

During the spin exchange period the amplitude of the 1H B1 field was de-

creased to 36.8 kHz to maintain the Hartmann– Hahn match condition with

an effective field along the magic angle of 45 kHz. For the experimental

set-up a fully 15N, 13C labeled N-acetyl leucine single crystal was used.

Proton-decoupled 31P solid-state NMR spectra were acquired at

161.953 MHz on a Bruker Avance widebore 400 NMR spectrometer equip-

ped with a double resonance flat-coil probe (44). Proton decoupled 31P spec-

tra were acquired using a Hahn-echo pulse sequence with a p/2 pulse of

2.5 ms. The spectral sweep width was 75 kHz, the echo- and recycle delays

were 40 ms and 3 s, respectively. Samples were cooled with a stream of air at

a temperature of 22�C. For DMPC samples the temperature was increased to

37�C to keep the lipid bilayers in their fluid phase. Spectra were referenced

externally to 85% H3PO4 at 0 ppm.

Spectral simulations

All numerical simulations were accomplished on a 3.4-GHz Pentium(R)

D workstation operating under Windows XP Professional using the

SIMPSON/SIMMOL software package (46). The calculated PISEMA

spectra were visualized using the GSim software, version 0.12.0. (http://

www.dur.ac.uk/vadim.zorin/soft.htm). The 15N-1H dipolar coupling was

9.9 kHz corresponding to a 1.07 Å interspin distance (36) and the amide
1H chemical shift anisotropy tensor diso ¼ 9.3 ppm, daniso ¼ 7.7 ppm, h ¼
0.65 (i.e., s11 ¼ 2.95, s22 ¼ 7.95, s33 ¼ 17; low radio frequency field limit

(47)). Whereas magic-angle spinning solid-state NMR spectra of alamethi-

cin and of ampullosporin A show two isotropic signal intensities, the heter-

onuclear single quantum correlation spectra of peptaibols are indicative of a

low-field displacement of the isotropic 15N chemical shifts of Aib when

compared to the amide bonds of other amino acid residues (see Fig. S1 in

the Supplementary Material). Therefore the following 15N amide chemical

shift tensors were used: for Aib diso ¼ 129.5 ppm, daniso ¼ 105 ppm, h ¼
0.2 (i.e., s11 ¼ 66.5, s22 ¼ 87.5, s33 ¼ 234.5) and for all other residues

diso ¼ 117.5 ppm, daniso ¼ 105 ppm, h ¼ 0.2 (i.e., s11 ¼ 54.5, s22 ¼
75.5, s33 ¼ 222.5). The experimental evidence that led to this choice will

be discussed in detail in another article (E. Salnikov, P. Bertani, J. Raap

and B. Bechinger, unpublished). When the spectra are acquired with the ex-

ternal magnetic field direction perpendicular to the bilayer plane this set of

tensors accounts for the anisotropic chemical shift or dipolar interactions re-

gardless of motional averaging around the bilayer normal.

To better represent the experimental spectra a line-broadening of 300 Hz

was applied in the direct dimension and of 1 kHz in the indirect dimension.

To only take the 15N-1H dipolar couplings of the amides into account,

the proline residues (numbers 2 and 14 in the alamethicin sequence) were

excluded from the simulation.

The root mean-square deviation (RMSD) was calculated from the differ-

ence between experimental and simulated spectra in the regions 30–270 ppm

and 1–13.7 kHz according to:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼ 1

�
Iexp;i � Isim;i

�2
=N

s

noise
;

where N is the number of data points, and noise is the uncertainty of the

experimental spectrum.

noise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼ 1

I2
exp;i

n

s
;

where n is the number of data points of a region devoid of signal. As artifacts

tend to accumulate in the spectral regions of 0 kHz dipolar, splitting this area

was excluded during error analysis. The simulated data were adjusted by

a multiplicative factor to give the best overall agreement with the experimen-

tal data (i.e., lowest RMSD).The lower the RMSD is the better the simula-

tion fits the experimental data, with values <1 indicative of simulations that

deviate from experiment by only the experimental noise level.

RESULTS

To optimize ampullosporin production, Sepedonium ampul-
losporum HKI-053 was grown under various fermentation

conditions (Supplementary Material). The best production

was observed in a resting culture at 23�C using medium 7*

(experimental). Uniform15N labeling was achieved by ex-

changing peptone for a mixture of 15N-labeled amino acids.

The crude extract from a scaled-up culture (24.5 L) was pu-

rified by open column chromatography (silica, Sephadex)

and semipreparative HPLC, yielding 96 mg of pure 15N-

ampullosporin A. The successful isotope labeling was dem-

onstrated by MS (Fig. 1 A). In the mass spectrum only peaks

deriving from 15N-ampullosporin A were detected. As ex-

pected, the molecular mass (m/z ¼ 1640.9) of the labeled

compound was shifted by 19 units as compared to unlabeled

ampullosporin A (m/z ¼ 1621.9). In addition, MS/MS anal-

yses of C- and N-terminal fragments indicated that all daugh-

ter ions reflect the uniform 15N labeling (Fig. 1, B and C).

Experimental spectra of 15N uniformly labeled AmpA in

PCs of different hydrocarbon tail lengths at pH ¼ 4.5 and

a peptide/lipid molar ratio of 1:100 are shown in Fig. 2,

A–D. The 31P NMR signals of the same samples monitoring

the order of the phospholipid headgroups indicate that the

membranes are well oriented (Fig. 3, A and B). The 15N sig-

nal intensities in the region 65–120 ppm for thick mem-

branes of POPC and di-C14:1-PC are indicative of in-planar

alignments of the peptide helices. In contrast, the peptide

exhibits 15N chemical shifts in the 200 ppm region, i.e.,

transmembrane orientations when associated with di-

C12:0-PC and di-C10:0-PC. Notably, the 15N chemical shift

values are somewhat lower for di-C10:0-PC when compared

to di-C12:0-PC indicating that the averaged peptide helix tilt

angle is larger for thinner membranes.

When the oriented AmpA sample in POPC is tilted by 90� rel-

ative to the sample alignments shown in Fig. 2 A the resonances

are observed in the regions 100–110 ppm and 120–150 ppm

(Fig. 2 F). The absence of powderpattern line shapes at this sam-

ple alignment is indicative of motional averaging and fast rota-

tional diffusion around the normal of the bilayer (48,49).
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FIGURE 2 Proton-decoupled 15N solid-state NMR spectra of ampullosporin A labeled uniformly with 15N and reconstituted into oriented PC membranes:

(A) POPC (C16:0,C18:1-PC), (B) di-C14:1-PC, (C) di-C12:0-PC, (D) di-C10:0-PC. (E) POPC, P/L ratio 1:100 and pH 7.5. (F) Same sample as A but at a 90�

tilted sample alignment. The peptide/lipid molar ratio of samples A–D and F is 1:100 and the pH value is 4.5. (G and H) POPC, pH 7.5, P/L ratio 1:10. The

sketches next to the corresponding panels show the membrane/glass plate stacks and the magnetic field direction (arrows). The bilayer normal is parallel to the

external magnetic field for A–E and G, and perpendicular for F and H.
Previously it has been observed that the presence of salt

and buffer solutions make the preparation of oriented phos-

pholipid bilayers more difficult. Therefore, an AmpA sample

was prepared that is identical to that of POPC, P/L 1:100

(Fig. 2 A), except that the pH was adjusted and stabilized

at pH 7.5 by the addition of small amounts of 1 N NaOH

and 100 mL of 10 mM Tris buffer. The proton-decoupled
31P solid-state NMR spectrum indicates a predominant

peak at 30 ppm indicative of well oriented lipid bilayers.

However, additional signal intensities at<30 ppm are appar-

ent (Fig. 3 B) and are indicative of some disorder at the level

of the phospholipid headgroup due to the presence of salt.

Nevertheless, the proton-decoupled 15N spectrum of this

sample when aligned with the bilayer normal parallel to

the external magnetic field exhibits the same overall features

as the one in the absence of salt and at pH 4.5 (Fig. 2, A and

E). To optimize sample alignment and resolution for the

structural analysis by two-dimensional solid-state NMR,

the samples were prepared without the addition of buffer

as shown in Fig. 2, A–D and F. It is worth noting that neither

peptide contains an ionizable group between pH 0-14.

To increase the signal/noise ratio during the structural

analysis of polypeptides by solid-state NMR it is advanta-

geous to work with the highest possible concentration of
Biophysical Journal 96(1) 86–100
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peptides reconstituted into oriented membranes. However,

due to the limited coil volume this also requires an increase

in the peptide/lipid ratio. A sample was prepared at pH 7.5

with a peptide/lipid ratio of 1:10 and the proton-decoupled
15N spectrum recorded. The spectrum, obtained with perpen-

dicular bilayer orientation (Fig. 2 G), shows signal intensities

in the range of 200–60 ppm when at the same time the 31P

NMR spectrum of this preparation is indicative of well

oriented membranes (Fig. 3 C). When the sample is tilted

by 90� (Fig. 2 H) the changes in the spectral line shape are

much less pronounced when compared to the situation at

P/L 1/100 (Fig. 2, A and F). Notably, pronounced signal in-

tensities are observed at 110-150 ppm indicative of isotropic

realignment of amide resonances or helical tilt angles close

to the magic angle. The ensemble of spectra indicates

a more heterogeneous conformation and/or alignment of

the peptides and an important contribution of tilted con-

formations and/or of peptide regions undergoing isotropic

averaging.

To get a better insight into the secondary structures of the

peptides when bound to the lipid bilayer two-dimensional

solid-state NMR spectra were recorded where the 15N -1H di-

polar coupling was correlated to the 15N chemical shift (45).

The PISEMA spectrum of AmpA, labeled uniformly with
15N and reconstituted into oriented di-C10:0-PC, is shown

in Fig. 4 A. The intensities exhibiting 15N chemical shifts

R150 ppm are assigned to transmembrane amide 15N atoms

as no other AmpA resonances are expected in this region.

The two-dimensional spectrum is characterized by a group

of resonances between 185 and 210 ppm as well as between

160 and 170 ppm with signal intensities between 170 and

185 ppm being weak or absent. The resonances at ~120

ppm appear in all spectra of AmpA bound to PC membranes,

regardless of their hydrophobic thickness (Fig. 2), and are

therefore tentatively assigned to amino acid side chains of

AmpA which carry a 15N label (three Gln and one Trp resi-

dues). The isotopic resonances of these residues are indeed

expected in this chemical shift range (50) with near zero

dipolar couplings.

To analyze the experimental PISEMA spectra the

expected resonances were simulated for a range of model

secondary structures that are likely to represent the confor-

mation of the peptide in its membrane-associated state using

the SIMMOL and SIMPSON software (46). First, the spectra

resulting from the crystal structure of AmpA were calculated

(27). The structure represents an a-helix for the most N-ter-

minal 10 residues and ends with a pronounced kink and

a less regular conformation at the C- terminus. The best sim-

ulation of the PISEMA experiment was obtained when the

AmpA structure (pdb: AMPA) was aligned in such a manner

that the N-terminal a-helix was tilted by 36.4� relative to the

membrane normal. The alignment of the more C-terminal

residues much depends on the azimuthal angle and can

vary over almost the whole range of tilt angles. We therefore

tested different pitch angles (5� step size with the tilt angle

adjusted manually for each pitch angle and 72 different pitch

angles in total) and the calculated spectrum which best fit the

experimental spectrum is shown in Fig. 4 B. Even after this

optimization the model does not explain all of the observed

resonances and, in addition, creates intensities which are ab-

sent in the experimental spectrum.

Next the PISEMA spectrum of an ideal a-helix (4 ¼
�65�, j ¼ �45�) was simulated at different orientations.

A tilt angle of 32� represents well the range of experimen-

tally observed 15N chemical shift values (160–170 and

185–210 ppm) and results in the spectrum shown in Fig. 4 C.

However, this model also fails to explain many details

observed in the experiment. It should be noted that due to

the differential use of 15N chemical shift tensors for Aib

and all other residues the simulated spectrum is the result

of two incomplete helical wheels that are slightly shifted rel-

ative to each other (Fig. S2). In a third simulation the

PISEMA spectra of a 310-helix (4 ¼ �50�, j ¼ �31�)
was calculated at different orientations. The best fit was

FIGURE 3 Proton-decoupled 31P spectra of oriented samples of ampullo-

sporin A in PC membranes at the peptide/lipid molar ratios indicated. (A)

di-C10:0-PC (1/100), (B) POPC, pH 7.5 (1/100), (C) POPC, pH 7.5 (1/10).
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FIGURE 4 Experimental and simulated PISEMA spectra for ampullosporin A labeled uniformly with 15N and reconstituted into oriented di-C10:0-PC at

a peptide/lipid ratio of 1/100. (A) Experimental spectrum. (B) Simulated spectrum of the x-ray diffraction structure of ampullosporin A (pdb: AMPA) super-

imposed on the experimental spectrum (light gray); (C) Simulation of an ideal a-helix (4 ¼ �65�, j ¼ �45�). (D) The simulation shown in panel E is

represented with reduced line-broadening to resolve the peaks and to monitor the origin of the simulated signal intensities. (E) Simulated spectrum of an ideal

310-helix (4 ¼ �50�, j ¼ �31�). (F) simulation of a mixed a-/310-helical peptide (the first eight residues folded in a-helical and the last seven residues in

310-helical conformation). The simulation details are summarized in Table 1.
obtained at a tilt angle of 31.3� (Fig. 4 E). This conformation is

consistent with the lack of intensities in the region 170–185

ppm, as observed in the experimental spectrum (Fig. 4, D
and E), without creating additional intensities far removed

from the experimental peak positions. Finally Fig. 4 F shows

a mixed a-/310-helical structure where the first eight residues

are a-helical and the last seven are 310-helical. The RMSD

values from the simulations of the PISEMA spectrum of

AmpA in di-C10:0-PC are summarized in Table 1.

A remarkable feature of the spectrum shown in Fig. 4 A is

the lack of intensities in the chemical shift region 170–185

ppm when AmpA was reconstituted into di-C10:0-PC. Since

the PISEMA spectra were recorded using cross-polarization,

it remains possible that the efficiency of the magnetization

transfer from 1H to 15N is dependent on the resonance

position. ‘‘Holes’’ in the spectra around the chemical shift

position of the magic angle have been observed previously

in cross-polarized 15N or 31P solid-state NMR spectra of

membranes (49,51). However, similar experiments per-

formed with ampullosporin A reconstituted into oriented

di-C12:0-PC exhibit clear signal intensities in this chemical

shift region which is indicative that magnetization transfer

works well. Again, the experimental spectrum (Fig. 5 A)

was compared to spectral simulations for structural models

representing either the crystal structure, a perfect a-helix

(4 ¼ �65�, j ¼ �45�) or a perfect 310-helix (4 ¼ �50�,
j ¼ �31�). Using the crystal structure with the N-terminal

helix tilted by 31.4� matches only some of the features of

the experimental spectrum (Figs. 5 B). Although a perfect

a-helix better represents some of the spectral features it

does not provide an explanation for the marked intensity in

the center of the helical wheels (Fig. 5 C). Better fits are ob-

tained by 310- (Fig. 5 E) or mixed a-/310-helical

TABLE 1 Summary on the simulations of the PISEMA spectra

of ampullosporin A in di-C10:0-PC using different structural

models

Model Tilt angle, degree RMSD

XRD structure 36.4* 1.62

a-helix 32 1.61

310-helix 31.3 1.49

Mixed a/310-helix 32 1.56

XRD: x-ray diffraction. See text for discussion of errors.

*Approximate alignment of the helix encompassing residues 1–10.
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FIGURE 5 Experimental and simulated PISEMA spectra for 15N uniformly labeled ampullosporin A reconstituted into oriented di-C12:0-PC at a peptide/

lipid ratio of 1/75. (A) Experimental spectrum. (B) Simulated spectrum of the x-ray diffraction structure of ampullosporin A (pdb: AMPA) superimposed on the

experimental spectrum (light gray); (C) Simulation of an ideal a-helix (4¼�65�, j¼�45�). (D) The simulation shown in panel F is represented with reduced

line-broadening to resolve the peaks and to monitor the origin of the simulated signal intensities. (E) Simulated spectrum of an ideal 310-helix (4 ¼ �50�,
j¼�31�). (F) simulation of a mixed a-/310-helical peptide (the first eight residues folded in a-helical and the last seven residues in 310-helical conformation).

The simulation details are summarized in Table 2.
conformations at a tilt angle of 31.8� (Fig. 5 F). Again the

RMSD values from these simulations are compared to each

other (Table 2). The slices from the experimental PISEMA

spectra shown in this article are represented in Fig. 6.

Since our data suggest that the secondary structure of the

15-residue transmembrane AmpA peptide encompasses a

high degree of 310-helical structures in thin PC membranes,

it is of interest to compare this result with the conformation

of another peptide from the same family when inserted in

membrane environments. Alamethicin is the peptaibol

most extensively studied and the membrane alignment of

this peptide has been characterized as a function of lipid

composition and hydration using oriented CD (22). Further-

more, its membrane interactions have been intensely studied

by a variety of techniques including oriented solid-state NMR

spectroscopy. Using this latter approach, transmembrane

alignments have been observed in POPC using one-dimen-

sional cross-polarization 15N solid-state NMR spectroscopy

of uniformly labeled alamethicin at P/L ratios of 1:15 and

1:237 (26). Furthermore, four alamethicin peptides, each

labeled at a specific 15N position have been reconstituted

into oriented DMPC at P/L ratio of 1:8 and studied using

one- and two-dimensional solid-state NMR techniques

(24,25). However, in both cases it was assumed that alame-

thicin adopts an a-helical conformation and the data were

analyzed accordingly.

To better compare this with previous data (25), a proton-

decoupled 15N spectrum of alamethicin in liquid crystalline

DMPC bilayers at a P/L ratio of 1:8 was recorded under

similar conditions as the alamethicin sample in POPC mem-

branes (Fig. 7). Although both spectra are indicative of

TABLE 2 Summary on the simulation of the PISEMA spectra

of ampullosporin A in di-C12:0-PC using different structural

models

Model Tilt angle, degree RMSD

XRD structure, 31.4* 2.63

a-helix 28 2.58

310-helix 34 2.40

Mixed a/310-helix 31.8 2.26

XRD, x-ray diffraction. See.text for discussion of errors.

*Approximate alignment of the helix encompassing residues 1–10.
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FIGURE 6 Selected slices of the 15N

chemical shift and 1H-15N dipolar cou-

pling dimensions are shown of the two

dimensional experimental spectra of

AmpA in di-C10:0-PC (A), AmpA in

di-C12:0-PC (B), and alamethicin in

POPC (C). The frequencies where the

slices have been taken are indicated by

the arrows on the corresponding two di-

mensional spectra in Figs. 4 A, 5 A, and

8 A.
transmembrane alignments, the chemical shift range observed

for alamethicin in DMPC (Fig. 7 A) suggests a more tilted

helix when compared to that in POPC (Fig. 7 B).

To get insight into the secondary structure of alamethicin

inserted into lipid bilayers, two-dimensional 15N-1H dipolar

coupling, 15N chemical shift correlation spectra were

recorded. The PISEMA spectrum of [U-15N]-alamethicin, re-

constituted into POPC bilayers oriented with the normal par-

allel to the external magnetic field, is shown in Fig. 8 A. The

spectrum is characterized by high signal intensities in the 15N

chemical shift range of 200–235 ppm, which correlate with
15N-1H dipolar couplings of 4.5–10 kHz. A remarkable fea-

ture of this spectrum comes with the resonances at 5 kHz/210

ppm which represents ~10–20% of the total spectral intensi-

ties observed in the amide region (4–11 kHz/195–235 ppm).

The results of the simulations of the PISEMA spectrum

using the SIMMOL and SIMPSON (46) software are shown

in Fig. 8, B–H. In a first step we compared how the known

crystal structure at various alignments relative to the mem-

brane normal fits the experimental spectrum. The unit cell

of the alamethicin crystal structure contains three different

conformations (5). In all of them the N-terminus is a-helical

followed by a less well-ordered secondary structure at the

C-terminus. The structures of units A and B exhibit a 25�–
35� bent around Pro-14 (27), therefore, residues 1–11 (units

A and B) and 1–8 (unit C), respectively, were taken into

consideration to describe the alignment of the peptide rela-

tive to the membrane normal.

The best simulation is obtained with unit B aligned at 8�

relative to the normal bilayer where the simulated intensity

of residue 17 occurs in the 5 kHz/220 ppm region (Fig. 8

C) Although the overall fit of unit A seems less suitable to

explain the experimental spectrum (Table 3) the simulated

resonance of the Phe-20 residues comes very close to the ex-

perimental intensity at 1 kHz/107 ppm (Fig. 8 B). Clearly the

a-helical model does not explain many of the features of the

experimental spectrum such as the pronounced extension at 5

FIGURE 7 Proton-decoupled 15N cross-polarization NMR spectra of A.

alamethicin in DMPC (peptide/lipid molar ratio 1:8 to directly compare to

previous work (25)) recorded at 37�C, and (B) in POPC (1/100) recorded

at 21�C.
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kHz/210 ppm (Fig. 8 G) which is, however, easily explained

by 310 helical contributions (Fig. 8, E, F, and H). Therefore,

the a-helical structure consistently gives the highest RMSD

when the simulated and experimental spectra are compared

to each other (Table 3). The 310-helical model simulation

(Fig. 8 F) is of similar quality to the one obtained from the

unit B of the crystal structure. The peak assignment for the

310-helical model simulation is shown in Fig. 8 E.

DISCUSSION

Here we have investigated the interactions, topologies and

structural details of ampullosporin A and alamethicin

F50/7 (4), two 15- and 20-residue peptaibols. This class of

peptides exhibits a high propensity to adopt helical conforma-

tions in the crystal, in solution or in membrane environments

(http://www.cryst.bbk.ac.uk/peptaibol/structure.htm). Both

peptides are hydrophobic, devoid of charged amino acid

side chains, and carry an acetyl group at the N-terminus and

a 1,2-amino alcohol at the C-terminus. A small number of po-

lar side chains (Gln) and the slight perturbation of the regular

polypeptide backbone due to the presence of prolines and gly-

cine add some hydrophilic character to the peptide creating an

amphipathic structure. However, the hydrophobic moments

of these peptides are much lower than those of cationic pep-

tide antibiotics such as the magainins or cecropins. Predicting

the membrane alignment of peptaibols is less obvious, al-

though these latter sequences have been experimentally ob-

served to be located at the bilayer interface with stable helix

orientations parallel to the membrane surface.

Therefore, in the past topological phase diagrams were es-

tablished experimentally for alamethicin in bilayers of 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC; di-C18:1-PC);

1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC; di-

(CH3)4C16:0-PC); or mixtures with 1,2-diphytanoyl-sn-

glycero-3-phosphoethanolamine (DPhPE) bilayers as a

function of lipid composition, hydration and peptide/lipid

ratio using oriented CD spectroscopy (22,23). These studies

show that both the reduction of membrane hydration and the

increase of peptide concentration augment the tendency of

alamethicin to adopt a membrane-inserted state. At concen-

trations below a lipid-dependent threshold the peptides have

FIGURE 8 Experimental and simulated PISEMA spectra of 15N uniformly labeled alamethicin reconstituted into oriented POPC at a peptide/lipid ratio of

1/100. (A) Experimental spectrum. (B) Simulated spectrum of the x-ray diffraction (XRD) structure of alamethicin (pdb: 1AMT), unit A; (C) simulation of the

XRD structure of alamethicin (pdb: 1AMT), unit B. (D) Simulation of the XRD structure of alamethicin (pdb: 1AMT), unit C. (E) The simulation F at reduced

line broadening is shown to resolve the peaks and to monitor the origin of the simulated signal intensities. (F) Simulation of an ideal 310-helix (4 ¼ �50�,
j ¼ �31�); (G) simulation of an ideal a-helix (4 ¼ �65�, j ¼ �45�), and (H) simulation of a mixed a-/310-helical model peptide (the first ten residues in

a-helical and the last ten residues in 310-helical conformation). The simulation details are summarized in Table 3.

TABLE 3 Summary on the simulations of the PISEMA spectra

of alamethicin in POPC using different structural models

Model Tilt angle, degree RMSD

XRD structure, unit A 6/20* 1.34

XRD structure, unit B 8/20* 1.29

XRD structure, unit C 8.4y 1.30

a-helix 6.3 1.32

310-helix 14 1.29

Mixed a/310-helix 8.7 1.32

XRD: x-ray diffraction. See text for discussion of errors.

*Approximate alignment of the helix encompassing residues 1–11/residues

12–19.
yApproximate alignment of the helix encompassing the eight most N-termi-

nal residues.
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been found to be oriented parallel to the membrane surface

whereas transmembrane alignments are observed at higher

concentrations. This equilibrium has been explained with

a membrane thinning effect when peptides penetrate the mem-

brane interface at orientations parallel to the surface (52,53).

The membrane alignments of AmpA have so far not been

investigated experimentally. In this study we therefore tested

the alignment of AmpA as a function of membrane compo-

sition by reconstituting the 15N-labeled peptides into ori-

ented PC bilayers of variable thickness and by measuring

the resulting 15N chemical shift solid-state NMR spectra.

Fig. 2, A–D illustrate that the peptide adopts in-plane align-

ments in liquid crystalline bilayers characterized by a hydro-

phobic thickness of >20 Å, but transmembrane alignments

in bilayers of di-C10:0-PC or di-C12:0-PC. In the absence

of peptides, the hydrophobic layer of these latter membranes

amounts to 15.5 Å and 19.5 Å in width, respectively (54).

In the crystal structure the distance between Trp1 Ca and

Aib10 Ca, i.e., the helical length of the peptide, is only

13.5 Å and therefore the peptide is too short to completely

span even the thin membranes. The experimental spectra

shown in Fig. 2, C and D indicates a transmembrane align-

ment. However, Figs. 4 and 5 strongly suggest that the

AmpA helix in di-C10:0- and di-C12:0-PC encompass

a high degree of 310-helical conformation, possibly mixed

with a-helical contributions, which augments the length by

a few Å, an effect that is partially compensated by the tilted

alignment (ca. 30-35� in di-C12:0- and di-C10:0-PC mem-

branes, Tables 1 and 2). It is estimated that at the given tilt

angles a 310-helix of ~8–12 residues is required to cross these

di-C10:0 or di-C12:0-PC membranes.

A helical structure encompassing all AmpA residues

should be long enough to even cross the di-C14:1-PC bilayer

(20 Å (54)). The in-plane alignment obvious from Fig. 2 B
suggests that the helix does not encompass the full length of

the sequence and/or carries a bend somewhere in the central

portion of the polypeptide chain. Such structural features

would also explain some of the deviations between the simu-

lated and the experimental spectra recorded in the thin

membranes (Figs. 4 and 5). Furthermore, although the hydro-

phobic mismatch seems a major determinant, other energy

contributions such as the preferential interactions with the

aqueous environment of polar side chains (three glutamines)

and exposure of the polypeptide backbone hold the AmpA he-

lix in a surface alignment. Similar observations were made

with the 16-residue zervamicin IIA peptide that exhibited

a transition between transmembrane and in-plane alignments

when the bilayer thickness was increased beyond di-C12:0-

PC (26). In this case, structural studies later indicated that

the peptide helix is bent by ~20� at residue 10 and that this he-

lix exhibits a considerably amphipathic character (55).

The mismatch is even more pronounced when AmpA is

inserted into the POPC membranes. Notably, the fatty acyl

chain composition of this lipid is considered to represent

the average thickness of biological membranes and is charac-

terized by a hydrophobic thickness of 26–27 Å (54). This

exceeds even the overall length of AmpA in the crystal, as

well as that of an idealized 15-residue a-helical conforma-

tion (22 Å in both cases).

Related observations were made when alamethicins were

investigated by oriented solid-state NMR spectroscopy,

where the peptides adopted transmembrane alignments in

liquid crystalline POPC (26), DMPC (Fig. 7 A, (24,25)), or

1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes,

but in-plane orientations in gel phase 1,2-dipalmitoyl-sn-

glycero-3-phosphocholine (56). In the crystal the length of

the alamethicin helix, as estimated from the distance between

Ca
1 and Ca

15, is ~20 Å and falls short when compared to the

hydrophobic thickness of POPC (~26–27 Å). The helix can

extend and include some of the more C-terminal Alm resi-

dues. It is also possible that the bilayer locally adapts its

thickness (57), and/or the peptides elongate by changing

conformation (58). Indeed, our data suggest that Alm in

POPC adopts a mixed a-/310 helical conformation which is

tilted by ~10� (Fig. 8, Table 3). For 20 residues this translates

into a hydrophobic length of ~28–29 Å, and therefore it

should match well with the hydrophobic thickness of the

POPC or DMPC bilayers permitting the stable transmem-

brane insertion observed for this sequence (24–26). In a

related manner, a-helical model peptides exhibit stable trans-

membrane alignments when the hydrophobic lengths of the

helices are within %3 Å too short or %14 Å too long

(54). Furthermore, when the membrane insertion of helical

signal sequences was investigated, their tilt angles were

a function of the bilayer hydrophobic thickness (39). The

solid-state NMR data shown here do not provide direct infor-

mation on the membrane penetration depth. However, such

information has been obtained for alamethicin using electron

paramagnetic resonance and fluorescence quenching tech-

niques (59,60). In egg PC the C-terminus of Alm derivatives

seems to reside in the aqueous phase ~3–4 Å from the inter-

face. The distance of the N-terminus was estimated to be ~16

Å from the opposing interface using the first approach.

The one-dimensional 15N solid-state NMR spectra shown

in Figs. 2 and 7 provide information on the membrane align-

ments of the helices but they do not offer sufficient details to

analyze the structural features of the membrane-associated

peptides. We therefore also recorded two-dimensional spec-

tra revealing the correlations between the 15N amide chemi-

cal shift and 15N-1H the dipolar coupling. When uniformly

labeled peptides are investigated by this technique, the tilt

angles of a-helices can be determined with higher accuracy

than from the chemical shift measurements alone by fitting

the resulting ‘‘helical wheels’’ (Fig. S2). However, the ex-

perimental spectra of the peptaibols investigated here do

not show the typical wheel-like features expected for an a-

helix. We have therefore tested the structural constraints ob-

tained from the separated local field spectra shown in Figs. 4,

5, and 8 by comparing them to several models of peptaibols

when inserted in a transmembrane fashion in PC bilayers. The
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models include the crystal structures, ideal a- and 310-helices,

as well as mixtures thereof. In a first step the helical tilt and

pitch angles of each of the models was adjusted to obtain

the best fit possible, then the spectral pattern was compared

to the simulated spectra (Tables 1–3). None of the idealized

models represents the experimental features completely and

it becomes clear from this quantitative analysis that neither

the crystal nor the pure a-helical structures can fit the experi-

mental data well (Tables 1–3; RMSD > 1). However, for the

AmpA experimental spectra the addition of 310-helical contri-

butions improves the fit, and in the case of Alm this conforma-

tion together with one of the x-ray structures provide the best

explanations for the data. The 310-helical conformations ex-

plain certain features of the spectra such as the lack of inten-

sity at 170–185 ppm chemical shifts and in the region 6–9

kHz/150–180 ppm when AmpA is reconstituted into C10:0-

PC (Fig. 4) or the unique intensity at 5kHz/210 ppm for ala-

methicin in POPC (Fig. 8). Based on the structural data, which

indicate a rather stable a-helical N-terminus and a more flex-

ible C-terminus (5–7,9,10), we have calculated the spectra of

ideal mixed a-/310-helical structures where the secondary

structures occur in separated domains (Fig. 8 H). Clearly

many other combinations could explain the Alm spectrum

as long as 2-4 residues in a 310 helical conformation are posi-

tioned in such a pitch angle to create the 5 kHz/210 ppm inten-

sity and the remaining residues adopt a mixture of a- and

310-helical conformations to represent the intensity in the

6–10 kHz/200–230 ppm region.

In structural databases the 310-helical motif occurs at a fre-

quency of only 10% within all helical regions and its average

lengths encompasses in most cases only 3–4 residues (61).

However, in a few protein structures 310-helices of up to

ten residues in length have also been found (61). Further-

more, it is known that the a,a-tetrasubstituted Aib residues,

of which alamethicin F50/7 carries nine and AmpA seven,

promote this structural feature as the 310-helix provides addi-

tional space to accommodate the bulky side chains (reviewed

in Crisma et al. (62)).

Although in micellar environments the N-terminal half of

alamethicin is predominantly characterized by a-helical

conformations (7), NMR structural studies and molecular

modeling calculations suggest that in methanol or DOPC

membranes several residues of alamethicin are involved in

the formation of 310-helical conformations (11,63,64). In an-

other NMR study in the same solvent alamethicin exhibits

310-helical conformations involving the very N-terminal res-

idues (6), a structural feature that has also been identified for

the nonadeca peptaibol trichorzianin TAVII (65).

The structure of the C-terminus of alamethicin is even

more difficult to confirm from NMR experiments in sodium

dodecyl sulfate micelles. For this region of the peptide

a more unordered or flexible conformation was observed

(7). But careful inspection of the nuclear Overhauser effect

spectra leaves the possibility that a 310-helical conformation

exists. It is interesting to note that x-ray grazing incidence

scattering experiments indicate that alamethicins in

di-C12:0-PC membranes exhibits a high degree of conforma-

tional and topological heterogeneity (66), where the diffrac-

tion patterns could be explained by a wide range of tilt angles

of the x-ray crystal structure or by a mixture of helical con-

formations, or both (T. Salditt, Univeristy of Göttingen,

personal communication, 2008). A mixed a-/310-helical

structure of the N- and C-terminal domains have been ob-

served when zervamicin IIB was investigated in the presence

of DPC micelles (67). In addition to the mixed a-/310-struc-

ture, 7–8% of the more extended 27-structure was found in

membrane mimicking solvents by pulsed electron-electron

double resonance and double spin labeled zervamicin (68).

For the 16-mer antiamoebin I peptaibol in methanol the first

six residues and Aib8 have been found to be in fast exchange

between right- and left-handed 310-helical conformations

(69). The propensity of Aib to promote 310-helices has also

been observed when the dodecameric Aib20 peptide has

been studied by molecular modeling simulations (70).

The structural data for peptaibols in solvent or micellar sys-

tems indicate that the peptides exhibit highly dynamic regions

where conformational exchange occurs. These conforma-

tional equilibriums could be shifted by additional interactions

that favor the 310-helical structures such as hydrophobic mis-

match in which the peptide is too short to span the hydropho-

bic bilayer thickness. In such cases an a- to 310-helix transition

increases the length of the peptide by ~0.5 Å per residue. Such

a mechanism has been postulated (58) and, to our knowledge,

the data presented in this study present the first experimental

indication for such a structural transition in lipid bilayers.

Notably, the 15N NMR line widths are rather broad (Figs.

4, 5, and 8) in particular as the 31P solid-state NMR spectra

indicate that the samples are well oriented (Fig. 3, A and B).

This observation is suggestive that the peptaibols investi-

gated here exhibit a high degree of conformational exchange.

It is well possible that under the conditions tested several

peptide conformations and aggregation states co-exist in

the membrane. In fact several conformers have been revealed

for alamethicin also by x-ray analysis and in NMR structural

investigations in a variety of environments, including vari-

able kink angles around Pro-14 or a highly flexible C-termi-

nus (5–7,9,10). This might explain why a single model

cannot explain all the spectral features consistently and

why in all our simulations considerable deviations remain.

During the analysis of PISEMA spectra, potential errors

may arise from the use of averaged 15N chemical shift ten-

sors for all the residues although this is a common approach

used in oriented solid-state NMR spectroscopy. Indeed it has

been shown that the tensor elements of the 15N amide bond

vary within a narrow range (<510 ppm) when the standard

amino acids are investigated (71–76) and a more systematic

recent investigation illustrates how the 15N chemical shift

tensor of the peptide bond varies with side chain structure,

hydrogen bonding and secondary structure (77). Glycine is

an exception as this amino acid exhibits an isotropic
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chemical shift position ~10 ppm upfield due to its lack of an

extended side chain (71,78). A similar effect is observed

when the 15N tensor of a-aminobutyric acid (Aib), an unusual

amino-acid produced by fungi, is analyzed. This amino acid

carries an additional methyl group at the Ca carbon and its

amide tensor is shifted downfield with regard to alanine, leu-

cine or other ‘‘conventional’’ amino acids. The investigations

of [U-15N]-alamethicin by fast magic angle spinning solid-

state NMR spectroscopy indicate that the isotropic chemical

shift of the 15N amide is different by ~10–15 ppm (data not

shown). Furthermore, the static powder pattern line shape

of [U-15N]-alamethicin exhibits discontinuities at 51.3,

78.8, and 230 ppm (i.e., diso ¼ 110 ppm, daniso ¼ 105 ppm

and h¼ 0.25; data not shown) which represents contributions

from all residues. Therefore, during the simulations shown in

this work different tensor values have been taken into account

for Aib compared to those for the ‘‘standard’’ residues. This

has allowed us to refine the analysis of the two-dimensional

correlation spectra (Tables 1–3, Figs. 4, 5, and 8).

In the case of transmembrane peptides the most pro-

nounced errors would occur from changes in the s33 static

tensor element, whereas variations of s11 and s22 have rela-

tively little influence on the 15N chemical shift spectrum (see

Fig. 3 in Bechinger and Sizun (36)). We therefore investi-

gated the effects on our simulation results of changing s33

within a 10 ppm range. Systematic changes in the size of

the tensor elements have a predominant effect on the calcu-

lated tilt angles and to a lesser extent on the secondary

structure analysis. For example, when the s33 component

is increased by 10 ppm the best fit for alamethicin, assuming

an ideal a-helix, is obtained when the helix tilt angle is

increased by 6.5�. On the other hand the s33 value cannot

be smaller than the highest experimental intensity observed

limiting the tilt angle deviations in the other direction. For

AmpA in di-C10:0-PC a decrease of s33 by 10 ppm gives

a 28� tilt for the 310-helix, while an increase of s33 by

10 ppm leads to a 31�–35� tilt angle, a result quite similar

to what we have observed when using the ‘‘standard values’’

for s33. The situation would be slightly more complex if the

s33 tensor elements varied significantly among the Aibs or

among the ‘‘conventional’’ amino acids of the peptide se-

quences, which could be an indication of strong conforma-

tional variations within the primary structure.

It should also be mentioned that in the crystal structures

the peptide bonds show deviations from the planar conforma-

tion, therefore, considerable uncertainty exists about how to

align the 15N amide tensor within the molecular frame. As

a 10� shift of the angle between the least shielded axis of

the chemical shift anisotropy tensor and the N-H bond results

in a change of helix tilt angles by ~7� this uncertainty can

have an effect on the outcome of the simulation.

From these considerations it becomes clear that the choice

of the tensor details can have a pronounced effect on the sim-

ulation details and the small differences in the RMSD values

observed for the three Alm x-ray structures can become in-

verted when other parameters are used in the simulation. We

have therefore based our conclusions on a number of unique

spectral features rather than a solely automated selection pro-

cedure. As for the membrane-associated peptides, none of the

models tested fits perfectly in the spectrum. Conformational

exchange should be considered and conformation details re-

main to be adjusted. Specific and/or selective labeling of

amino acids, which would permit the unambiguous assign-

ment of peak intensities as well as for an in depth tensor

analysis for each site, would allow for a detailed structure cal-

culation. Such an extensive study requires new labeling strat-

egies using the peptaibol producing fungi or laborious peptide

synthesis and is beyond the scope of this initial structural

analysis.

The data presented in this study support the concepts of

channel formation and antimicrobial action of alamethicin

through the oligomerization of transmembrane helical bun-

dles, the helices being likely of mixed a-/310-helical confor-

mation. In contrast, our data suggest that the AmpA peptides

will reside at the membrane surface in PC bilayers represent-

ing the thickness of natural membranes (Fig. 2, A and B).

However, the 15N solid-state NMR data also show that this

latter peptide exhibits a sensitive topological equilibrium

with transmembrane alignments which become obvious

when the membrane thickness is varied (Fig. 2, C and D). It

is therefore possible that environmental changes, such as

the application of a transmembrane electric potential, induce

realignment of AmpA at least for some of the helices, and

thereby cause channel and antimicrobial activities through

the formation of transmembrane helical bundles. Notably,

one might speculate that the lower biological activities of

the shorter peptaibols when compared to the dodecameric ala-

methicin are a result of the lower concentration in active trans-

membrane peptide configurations (30). Alternatively, the

shorter peptaibols may disrupt the bilayer packing in a more

detergent-like fashion similar to the propositions made for

linear cationic peptide antibiotics or other mechanisms of

antimicrobial action (79). However, at low peptide concentra-

tions membrane openings through such mechanisms might be

less likely to occur when compared to peptides that are

characterized by stable transmembrane insertion.
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