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DNA methylation occurs at the CpG residues and serves as a powerful epigenetic mechanism that
negatively regulates gene expression. This process is catalyzed by DNA methyltransferases and occurs
within ‘‘CpG islands’’ found in the promoter regions of >70% of human genes. Given the important role of
DNA methylation in regulating gene expression, un-programmed changes in methylation patterns are
expected to either silence or activate transcription of tumor suppressor genes (via hypermethylation) or
oncogenes (via demethylation), respectively, and by doing so promote a disease state. In light of the fact
that a number of different cancers are frequently associated with hypermethylated tumor suppressor
genes together with the observation that tumor derived genomic DNAs are present in various body fluids
including serum/plasma, urine, sputum and bronchial lavage, methylated DNA has shown tremendous
promise to serve as a robust biomarker for detecting cancer. Over the last several years protocols for
capturing small amounts of DNA in circulation have been developed. Once captured, DNA methylation
may be readily monitored by restriction enzyme digestion or bisulfite conversion followed by amplifi-
cation of the desired genomic region with the polymerase chain reaction (PCR). New technologies which
employ methyl-binding protein or antibodies that bind specifically to methylated-CpG residues have
now enabled investigators to interrogate the status of entire ‘‘DNA methyome’’ of diseased tissue in an
efficient and cost-effective manner. In this review, we describe the various tumor suppressor genes that
are frequently hypermethylated in different cancers and how these and other methylated loci may be
employed as clinically useful biomarkers for diagnosing cancer noninvasively using readily available
body fluids.

� 2010 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
1. Introduction

In humans DNA methylation occurs in the dinucleotide 50-CpG-
30. It has been estimated that over 70% of genes harbor regions
called ‘‘CpG islands’’ in which the frequency of CpG is considerably
higher than expected. A vast majority of CpG islands are found in
the upstream promoter regions of genes but in others they are
located downstream of the transcription start point. Methylation at
CpG dinucletode is catalyzed by three major DNA methyla-
transferases namely DNMT1, DNMT3a and DNMT3b which cova-
lently attach a methyl group to the C5 position of cytosine residues.
DNMT1 is responsible for maintaining genomic DNA methylation
patterns and employs hemi-methylated-CpG dinucleotides,
produced after DNA replication or repair, as substrate and fully
: þ92 21 493 4294.
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methylates them. DNMT3a and 3b methylate previously unmodi-
fied CpG residues and hence are known as de novo methylases.

Since DNA methylation silences gene transcription such modifi-
cations must be carefully orchestrated during the course of devel-
opment to ascertain that expression of certain sets of genes is
spatially and temporally restricted to specific cell-types. DNA
methylation patterns are tissue-specific and ‘‘frozen’’ once devel-
opment is complete. Un-programmed changes in DNA methylation
patterns brought about by gain or loss of function in any of the DNA
methyltransferases or demethylases are likely to lead to develop-
mental defects in the growing embryo or a disease state in individ-
uals by altered expression of oncogenes and/or tumor suppressor
genes. Nutrition also impacts genomic DNA methylation patterns.
Since S-adenosylmethionine (SAM) serves as the source of methyl
group which is recycled through the folate and cobalamin depen-
dent pathways,1 deficiency of dietary folate and vitamin B12 is
expected to culminate in reduced global levels of DNA methylation.

The negative influence of DNA methylation on gene expression
is mediated by methyl-CpG binding proteins (MBDs) that by
d. All rights reserved.
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recruiting histone modifying and chromatin remodeling enzymes
facilitate the conversion of the loose 10 nm chromatin fiber into
a more condensed 30 nm solenoid structure. Eight different MBDs
have been identified to date which are MeCP2, MBDs 1, 2, 3, 4 along
with Kaiso and its two related proteins ZBTB4 and ZBTB38. With the
exception of MBD3, all MBDs bind to methylated DNA. Although the
functions of various MBDs were considered overlapping, recent
studies have shown that MeCP2 and MBD1 preferentially target
specific gene promoters in prostate cancer derived PC3 cells sug-
gesting that their functions may be mutually exclusive.2 Interest-
ingly, depletion of DNMT1 or DNMT3b has also been found to
culminate in preferential loss of DNA methylation at certain
genomic loci.3,4

DNA methylation patterns are dynamic during embryogenesis.
Around the eight cell embryonic stage, genomic methylation
patterns are erased but are then re-established during the implan-
tation stage of the embryo5; subsequent embryonic development is
associated with additional waves of DNA methylation and deme-
thylation.5,6 The biochemical signals responsible for promoting such
dramatic fluctuations in DNA methylation patterns, be they local or
global, remain unknown. In adults, distribution of genomic meth-
ylation marks is cell type specific and any un-programmed changes
in these patterns have been linked to aging and disease.7

2. Role of DNA methylation in disease

Given the important role DNA methylation plays in regulating
and restricting the expression of genes to certain cell-types, it is
expected that aberrant changes in DNA methylome are likely to
promote a disease state. Although infections as well as environ-
mental factors are known to influence DNA methylation patterns,
the mechanisms by which they impact the activity or targeting of
DNA methyltransferases, MBDs and/or demethylases to different
genomic regions remains unclear. There is now strong evidence
suggesting that cardiovascular disease, hypertension, stroke,
depression and type-2 diabetes originate early in development
because of repeated environmental insults that influence the epi-
genome.8 Similarly, neurological disorders such as schizophrenia,
bipolar disorder and autism are associated with un-programmed
changes in the epigenome.9–11

Aberrant DNA methylation has also been found to play an
important role in cancer development and progression. Genome-
wide hypomethylation that is restricted largely to gene-poor
regions as well as gene-specific hypermethylation of CpG islands
are the two commonest forms of epigenomic modifications that are
frequently observed in cancer cells.12,13 Hypomethylation of
centromeric DNA promotes genomic instability and appears to
increase as cancers progress from non-metastatic to metastatic
state.14–17 Cancer cell genomes invariably harbor one or more
tumor suppressor genes that are hypermethylated. For instance,
silencing of Rb by DNA hypermethylation in retinoblastomas was
among the first reports which described how a gene may be inac-
tivated epigenetically.18 Subsequently, a number of other tumor
suppressor genes such as VHL, p16, BRCA and hMLh1 have also
been found to be hypermethylated in cancers.19,20 Table 1 provides
a list of all genes whose promoters have been found to be hyper-
methylated in various cancers.

3. Using methylated DNA in circulation as cancer biomarker

Clinical utility of even a reliable disease-specific biomarker is
undermined if the tissue to be screened requires surgical removal.
The ideal biomarker therefore is one which is found in readily
available biological samples that can be obtained noninvasively.
Due to the high cellular turnover, cancer patients carry elevated
levels of free DNA (w200 ng/ml) in their blood.25 Other body fluids
such as urine,26 bronchoalveolar lavage (BAL),27 mammary aspira-
tion fluids,28 saliva,29 sputum27 and stools30 that contact tumors
are also potential sources of cancer cell DNA. These circulatory
DNAs from blood or other body fluids can be captured easily and
the status of DNA methylation at various gene promoters interro-
gated by various methods. According to one study 77% of prostate
cancer patients showed GSTP1 hypermethylation in the DNA which
was derived from urine as compared to a detection rate of 72% in
plasma/serum samples.31 Similarly, analysis of genomic DNA puri-
fied from the sputum of lung cancer patients found p16 to be most
frequently methylated.27,33 Studies using bronchoalveolaer lavage
from early stage lung cancer patients have revealed frequent DNA
methylation at p16, RARb, DAPK and MGMT gene promoters.34

Ductal lavage fluid and needle aspirates are also useful sources of
tumor DNA which could be employed for detecting breast
cancers.28,35 Krassenstein et al. have found a number of genes
which were abnormally methylated in genomic DNAs obtained
from nipple aspirates of breast cancer patients.35 Abnormally
methylated DNAs are also found in the saliva from head and neck,
and in stool samples from colon and rectal cancer patients.29,30

Similarly, bladder cancer patients excrete urine that contains
hypermethylated DAPK, RARb, E-cadherin and p16 CpG islands; on
their own these biomarkers were found to be unreliable but when
combined together yielded an impressive detection rate of 91%.32

Using serum samples from non-small cell lung cancer (NSLC)
patients, Esteller et al found 15 out of 22 cancer patients to be
positive for DNA methylation at p16, DAPK, GSTP1 or MGMT gene
promoters,21 however, detection rates of NSLCs varied from 6% to
76% when only p16 was used as a DNA methylation marker.22–24

DNA methylation markers that are specific for different cancers
are obviously much sought after because if identified they will
enable investigators to accurately predict different types of cancers.
Until such cancer-specific DNA methylation markers are found,
studies have shown that employing a panel of different DNA
methylation biomarkers (i.e., several gene-specific CpG islands) is
considerably more reliable for predicting cancer phenotypes as
compared to using just one.

4. Methods for determining DNA methylation status of genes

Clinically ideal diagnostic tests are those which can be carried
out on readily accessible body fluids (e.g., serum, urine, saliva, etc.).
Such tests should be sensitive, specific, reproducible, cost-effective,
and be of turn-key nature requiring minimal number of steps so
that it could be carried out in a high-throughput manner. Body
fluids of cancer patients serve an excellent source of tumor derived
genomic DNA which can be used for interrogating the DNA meth-
ylation status of either a select panel of genes or the entire genome
using a number of different methods. However since these samples
invariably contain large amounts of background DNA from normal
cells it is essential that the employed diagnostic test be sensitive
enough to detect the few available copies of methylated DNA
present in the sample.

Initially, DNA methylation sensitive and insensitive restriction
endonucleases (e.g., HpaII and Msp1, respectively) were employed
for detecting CpG methylation at specific genomic loci but since
this approach requires large amounts of genomic DNA it is not
deemed practical for clinical use. Over the past decade, a number
of very sensitive as well as reliable methods have been developed
which now allow investigators to detect locus-specific DNA
methylation from very small amounts of genomic DNA. Among
these, methylation-specific PCR (MSP) has been used most
commonly.36 In this assay, genomic DNA is treated with sodium
bisulfite which deaminates unmodified cytosines (C) to uracil but



Table 1
Hypermethylated gene promoters implicated in different cancers.

Cancer Hypermethylated
genes

References

Colon p14ARF (cell cycle), hMLH1 (DNA repair),
p16, SFRP1, WRN

44–46

Breast TMS1 (angiogenesis), E-cadherin (metastasis),
ER (signal transduction), BRCA1 (transcription)

47,48

Lung DAPK (apoptosis), RASSF1A
(signal transduction), p16INK4a

49,50

Glioma THBS1 (angiogenesis), MGMT(DNA repair),
EMP3

51,52

Leukemia p15INK4b, EXT1, ID4 53–55

Lymphomas p73 (cell cycle), MGMT( DNA repair), p16INK4a 56,57

Bladder p16INK4a, TPEF/HPP1, RASSF1A,
RARb (differentiation), DAPK

58

Kidney VHL (transcription) 59

Prostate GSTP1 (detoxification) 60

Esophageal p14ARF (cell cycle), p16INK4b 61

Stomach p14ARF (cell cycle), hMLH1 (DNA repair) 62

Liver GSTP1 (detoxification), p16 INK4a 63,64

Ovarian BRCA1 (transcription) 65

Others Apoptosis (CASP8), Cell cycle (RB),
Differentiation (MYOD, PAX6),
Metastasis (MASPIN, TIMP3),
Signal transduction (APC, PTEN, AR)

66–74

Table 2
Methods for detecting DNA methylation and their features.

Detection Method Amount of
DNA
Required

Throughput Cost

Enzymatic (MspI/HpaII) Large Low Moderate
Methylation sensitive PCR Low Low-Medium Low
Combined bisulfite restriction

analysis (COBRA)
Low Low-Medium Low

Methylight Low Moderate Low
DNA methylation

microarrays
Moderate Low High
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spares methylated cytosines. This step converts all epigenetic
information into DNA sequence information. The chemically con-
verted DNA is subsequently subjected to polymerase chain reac-
tion (PCR) using primer sets that are strategically designed to
anneal to a specific region within a CpG island of interest and
capable of differentiating methylated from unmethylated gene
promoters. Although MSP is user-friendly and can detect DNA
methylation with impressive sensitivity, it is neither quantitative
nor can be performed in a high-throughput manner. Another
disadvantage of MSP is that it allows screening of only a very small
stretch (i.e. <40 bp) of DNA within a CpG island for methylated
residues. These shortcomings render MSP ineffective in a clinical
setting where the amount of methylated DNA sometimes needs to
be correlated with disease severity for prognosis and where
a number of genes need to be analyzed simultaneously. DNA
sequencing of PCR products generated from primers flanking
a CpG island of interest using bisulfite converted DNA as template
offers the highest resolution in terms of providing detailed infor-
mation about the methylated state of an entire CpG island, but its
labor intensive protocol and expense precludes its use as a diag-
nostic tool. Alternatively, a specific CpG island may be PCR
amplified using bisulfite converted DNA and the methylated-CpGs
within it detected and scored via restriction enzyme analysis. This
strategy forms the basis of another useful DNA methylation
detection technique known as combined bisulpite restriction
analysis (COBRA).37–39 In COBRA, sequence changes in DNA that
result as a consequence of bisulphite-conversion are analyzed
through restriction enzyme digestion of the resulting PCR
product.39 The main limitation of this approach is that it is only
useful for probing DNA methylation status of those CpGs that are
harbored within a restriction enzyme site.

Methylight is another method capable of detecting methyated
and unmmethylated DNA with exquisite sensitivity. This assay
makes use of Taqman probes which anneal in between the two PCR
primers and hence report DNA amplification in real-time. Since the
probe contains a fluorophore at the 50end and a quencher on either
the 30 end or in the middle, no fluorescence is emitted in the intact
probe upon excitation. During the extension phase of PCR the probe
is cleaved by the 50/30 exonuclease activity of Taq DNA polymerase
which distances the fluorophore from the quencher and results in
a fluorescent signal that is proportional to the amount of the
generated PCR product. In this procedure, two different primer
pairs are used to amplify bifulfite converted DNA: one which is
specific for methylated DNA and the other specific for unmethy-
lated DNA. Depending on the requirement, methylight assays may
be performed either in a quantitative or semi-quantitative format,
and report nucleic acid amplification in real-time without requiring
gel electrophoresis.40 Additionally these assays are user-friendly
and amenable to automation.41

DNA methylation-specific microarrays are useful for interro-
gating the entire epigenome in an open-minded way.42, 43 In this
procedure, genomic DNA obtained from diseased tissue or body
fluid is sheared and an antibody (or an MBD) with high affinity for
5-methylcytosine employed to selectively capture those genomic
fragments that are methylated. After labeling, this population of
DNAs is hybridized to a gene array in which all genomic CpG islands
are represented. This powerful approach, albeit costly at present, is
capable of identifying hundreds of specific genomic loci simulta-
neously that may be aberrantly methylated in different types of
cancer. Additionally, this approach may also prove to be useful for
monitoring cancers during or after treatment. Table 2 lists the DNA
methylation detection methods discussed herein and their
respective features.
5. Conclusion

Work over the past decade has shown that DNA methylation
biomarkers can not only detect cancer at an early stage but may also
be useful for monitoring disease progression during or after treat-
ment. Since tumor derived DNAs are found in various body fluids of
cancer patients, they can be obtained noninvasively and screened
using various methods to probe presence or absence of DNA
methylation at specific loci. Although a number of DNA methylation
biomarkers have been identified to date none are reliable enough to
be clinically useful. However, development of sophisticated new
technology platforms and reagents should eventually lead to the
identification of discrete sets of DNA methylation markers (i.e.,
‘‘signatures’’) that are unique to different types of cancers. The
clinical utility of DNA methylation markers for diagnosing cancers
at an early stage therefore looks promising.
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