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1. INTRODUCTION AND RESULTS

Ž .Let MM f , r denote the mean value of an integrable function f on the
Ž . Nsphere S r of radius r centred at the origin 0 of � , where N � 2; that is,

MM f , r � f d� ,Ž . H
Ž .S r

Ž . Ž .where � is N � 1 -dimensional surface measure on S r , normalized so
Ž Ž .. Ž .that � S r � 1. Let u be a real-valued harmonic function on the unit

ball B of � N. Define

1�pp� � � �u � lim MM u , r ,Ž .Ž .p
r�1�

Ž Ž . Ž � � p .where 1 � p � ��. The possibly infinite limit exists, since MM u , � is
Ž . .increasing on 0, 1 . Similarly, define

� � � �u � lim sup u .� ž /r�1� Ž .S r

The function u is said to belong to the harmonic Hardy space h p, where
� � Ž p �1 � p � �, if u � �. For facts about h spaces, we refer to 4, Chap.p

	 � 	 .6 . Note that in 4 harmonic functions are generally complex-valued. We
also write h� for the cone of non-negative harmonic functions on B. Note
that h1 � h�� h�; that is u 
 h1 if and only if u � u � u for some1 2
u , u 
 h�. If u 
 h�, then by the mean value property of harmonic1 2

� � Ž .functions u � u 0 .1
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N Ž .A typical point of � is denoted by x � x , . . . , x and we write1 N
� � Ž 2 2 .1�2x � x � ��� �x . The space of all homogeneous harmonic polyno-1 N
mials of degree m, where m � 0, on � N is denoted by HH . We definem

d � dim HHm m

and note that

N � m � 1 N � m � 3d � 1, d � N , d � � m � 2Ž .0 1 m ž / ž /N � 1 N � 1

Ž � 	.see, e.g., 4, p. 82 . Some particular values, with m � 1, are

d � 2 N � 2 , d � 2m � 1 N � 3 ,Ž . Ž .m m

2d � m � 1 N � 4 ,Ž . Ž .m

and in general

d �mN�2 � 2� N � 2 ! m � � 1.1Ž . Ž . Ž .m

Ž � 	.see, e.g., 4, p. 94 . We write � for the set of all positive integers.
�The following result is essentially due to Goldstein and Kuran 6,

	Theorem 2 .

THEOREM A. If u 
 h1 and m 
 �, then

m� u
� �0 � m! d u . 1.2Ž . Ž .1mm� x1

1 Ž .There exist non-zero functions in h for which equality holds in 1.2 for each
m 
 �.

� 	 �In fact, Theorem A is proved in 6 only for functions in h , but the
Ž � 	.stated result is an easy corollary see 2, p. 168 . An alternative proof of

� 	Theorem A is given in 2, Theorem 2 . The functions u for which equality
Ž . Ž� 	 .holds in 1.2 are known explicitly 2, 6 ; see Section 4.3 below . In the

case m � 1 Theorem A is equivalent to a classical inequality for the norm
� Ž . � � � 1 Žof the gradient of u; namely, �u 0 � N u when u 
 h since, by a1

Ž ..rotation, we can align the x -axis with �u 0 .1
Theorem A has an analogue for functions in h2. Although it appears not

to have been stated explicitly, it is an easy corollary of a result of Brelot
� 	 2and Choquet 5 on harmonic polynomials. We state the result for h here

and give a short proof in Section 4.4.
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PROPOSITION. If u 
 h2 and m 
 �, then

m� u
� �0 � m! d u . 1.3Ž . Ž .' 2mm� x1

Equality holds if and only if u is an element of HH that is symmetric about them
x -axis.1

Axially symmetric elements of HH are briefly discussed in Section 2.2.m
Theorems 1 and 2 below generalize Theorem A in two ways. Theorem 1

Ž .gives an inequality corresponding to 1.2 for an arbitrary partial derivative
of u evaluated at an arbitrary point of B. Theorem 2 is an extension of
Theorem A to functions of class h p, where 1 � p � �. The inequality in

Ž . Ž .Theorem 2 is equivalent to 1.2 and 1.3 when p � 1, 2 respectively.
Ž .If � � � , . . . , � is an ordered N-tuple of non-negative integers1 N

Ž . � �which we refer to as a multi-index , then we write � � � � ��� �� and1 N

D� � � � � ��� x �1 ��� � x �N .1 N

1 � �THEOREM 1. If u 
 h , x 
 B, and � � m 
 �, then

1�m�N�� � � � � � � �D u x � m! 1 � x d � c x u , 1.4Ž . Ž . Ž .Ž . 1m m

where c � 0 if N � 2 andm

m � N � 3c � if N � 3.m ž /m

Ž . �In the case where x � 0, inequality 1.4 is equivalent to 2, formula
Ž .	 Ž .3.5 which itself includes 1.2 as a special case. The cases of equality in
Ž . � 	1.4 when x � 0 are given explicitly in 2, Theorem 3 . Further remarks

Ž .about the sharpness of 1.4 are given in Section 3.3, where it is shown that
� � Ž .the function of x on the right-hand side of 1.4 is best possible when

� m m Ž .D � � �� x . Corresponding to 1.4 in the case m � 0 there is the1
classical inequality

1�N� � � � � � � �u x � 1 � x 1 � x u ,Ž . Ž . Ž . 1

� Ž � 	.which for functions of class h is Harnack’s inequality see, e.g., 4, p. 47 .
Throughout the sequel, we use the notation

1
� � N � 3Ž .

2
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and use the standard notation P Ž� , � . for Jacobi polynomials, as given inm
� 	 Ž� , � .Szego’s book 10 . When N � 3, the polynomial P is proportional to¨ m

the ultraspherical polynomial P Ž��1�2.,m

	 m � � � 1 	 2� � 1Ž . Ž .
Ž� , � . Ž��1�2.P � Pm m	 m � 2� � 1 	 � � 1Ž . Ž .

� Ž .	10, formula 4.7.1 . In particular, corresponding to N � 3, we have
P Ž0, 0. � P Ž1�2. � P , the Legendre polynomial of degree m.m m m

THEOREM 2. If u 
 h p, where 1 � p � �, and m 
 �, then

m� u
� �0 � m! d C u , 1.5Ž . Ž .pm m , N , pm� x1

where C � 1 andm , N , 1

�1�1 1m � �C � 
 � � 1,m , N , p ž / ž /ž /žm 2

Ž .p�1 �p
�

p�Ž p�1.2��1 Ž� , � .� �� sin � P cos � d� 1.6Ž . Ž .H m /0

p p � 1Ž .when 1 � p � � with the con�ention that � � 1 when p � � .p � 1 p
Ž . pIn e�ery case equality holds in 1.5 for some non-zero function u in h .

Details of the cases of equality are given in Section 4.3. As well as the
Ž .case p � 1 of Theorem 2 that is, Theorem A the cases m � 1, p � �

Ž � 	.and m � 1, p � 2 are also known see 4, pp. 108, 123 . By estimating the
constants C , we will deduce the following result.m , N, p

COROLLARY 1. If u 
 h p and m 
 �, then

1� pm � �m! d u 1 � p � 2� u Ž .pm
0 �Ž .m 1�2½ � �� x m! d u 2 � p � � .Ž .p1 m

For p � 1, 2 respectively, Theorem A and the proposition show that the
corollary is sharp. We shall also see that in the case where 2 � p � � the
exponent 1�2 cannot be improved. The proof of the corollary is given in
Section 7, together with explicit evaluations of some of the constants
C . In particular, we will verify by direct calculation that C �m , N , p m , N, 2

Ž .1� d and thus confirm that Theorem 2 includes inequality 1.3 in the' m
proposition.
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� 	Another result essentially due to Goldstein and Kuran 6, Theorem 1
� �may be stated as follows. Here � 
 denotes the norm of the mthm

gradient of a C� function 
 on � N:
1�22�D 
Ž .

� �� 
 � m! .Ým ž /� !� �� �m

THEOREM B. If u 
 h� and m 
 �, then
�1 22� �N N � 2 ��� N � 2m � 2 � u 0 � m! d u 0 . 1.7	 4Ž . Ž . Ž . Ž . Ž .Ž .m m

� Ž .There exist non-zero functions u in h for which equality holds in 1.7 for
each m 
 �.

� 	Details of the cases of equality are given in 6 . With m � 1, inequality
Ž . � Ž . � Ž . �1.7 is classical: �u 0 � Nu 0 when u 
 h .

Our next result extends Theorem B to functions in h1 and links it with
Theorem A. Differentiation in the direction of a unit vector y in � N is

Ž . Ndenoted by ��� r . We write S for S 1 , the unit sphere in � .y

THEOREM 3. If u 
 h1 and m 
 �, then
m� u�1 2� � � �N N � 2 ��� N � 2m � 2 � u 0 � sup 0 u	 4Ž . Ž . Ž . Ž .Ž 1m m� ry
S y

� � 2� m! d u . 1.8Ž .1m

There exist non-zero functions u in h1 for which equality holds throughout
Ž .1.8 for each m 
 �.

Since harmonic functions are invariant under rotations of the axes, the
Ž . Ž .second inequality in 1.8 follows immediately from inequality 1.2 in

Ž .Theorem A. The key to the first inequality in 1.8 is a special case of the
corollary to the following theorem. Some preliminary remarks are re-
quired. Recall that a harmonic function u on B has a unique expansion of
the form Ý� H , where H 
 HH ; the series converges to u on B andj�0 j j j

� � � Ž � 	.Ý H converges locally uniformly on B see, e.g., 4, p. 84 . We callj�0 j
� Ž .Ý H the polynomial expansion of u. If j is any strictly increasingj�0 j k

Ž .finite or infinite sequence of non-negative integers, then we call Ý H ak jk

part sum for u. The convergence properties of the polynomial expansion
ensure that any part sum is also harmonic on B.

THEOREM 4. Let u be harmonic on B and let � be a part sum for u. If
Ž .r, R 
 0, 1 , then

2 ' � � � �MM � , rR � sup � MM u , R . 1.9Ž . Ž .Ž .
Ž .S r
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Ž . Ž . Ž . Ž .Equality holds in 1.9 if and only if either i � � 0 or ii � � u 0 � 0 and
Ž . Ž .u is of constant sign in the wide sense on S R .

� Ž .If u 
 h and � � u, then letting R � 1� in 1.9 we obtain

2 ' � �MM u , r � sup u u 0 ,Ž .Ž .
Ž .S r

� 	an inequality due to Goldstein and Kuran 6, Theorem 3 . In the general
Ž .case, we can let r, R � 1� in 1.9 to obtain the inequality in the

following corollary.

COROLLARY 2. If u is harmonic on B and � is a part sum for u, then

� � 2 � � � �� � � u . 1.10Ž .2 � 1

There exists a positi�e non-polynomial harmonic function u on B for which
Ž . Ž .finite equality holds in 1.10 whene�er � is a polynomial part sum for u.

Our proof of Theorem 3 requires only the special case of Corollary 2 in
which � consists of a single term H from the polynomial expansion of u.m

Ž . Ž .Some inequalities related to 1.9 and 1.10 are discussed in Section 5.

2. PREREQUISITES FOR THE PROOFS OF
THEOREMS 1 AND 2

2.1. We first recall some facts about representations of functions
belonging to h p spaces as Poisson integrals. The Poisson kernel K of B is
defined on B � S by

� � 2 � ��NK x , y � 1 � x x � y .Ž . Ž .

Ž . �Note that K �, y 
 h for each y 
 S. If � is a finite signed measure on
S, then the Poisson integral J is defined by�

J x � K x , y d� y x 
 B .Ž . Ž . Ž . Ž .H�
S

In the case where � � f� for some integrable function f on S, we write Jf
for J . For each finite signed measure � on S, we have J 
 h1, and iff� �

pŽ . p 1f 
 L S , where 1 � p � �, then J 
 h . Conversely, if u 
 h , thenf
� �Ž . � � pu � J for some signed measure � such that � S � u , and if u 
 h ,1�
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pŽ .where 1 � p � �, then u � J of some f 
 L S withf

1�p
p� � � � � � � �u � f d� 1 � p � � ; u � sup f p � � . 2.1Ž . Ž . Ž .p H �ž /S S

� 	See, e.g., 4, Chap. 6 .
Ž . ŽSince every partial derivative of K x, y with respect to the coordinates

.of x is bounded on E � S for every compact subset E of B, we have

D�J x � D�K x , y d� y x 
 B 2.2Ž . Ž . Ž . Ž . Ž .H�
S

for every finite signed measure � on S and every operator D�.

2.2. Here we list some facts about harmonic polynomials and polyno-
mial expansions of functions harmonic on B. Recall first that the spaces HHj
are mutually orthogonal in the sense that

GH d� � 0 G 
 HH , H 
 HH , j � k , r � 0 . 2.3Ž .Ž .H j k
Ž .S r

Ž � 	.see, e.g., 4, p. 75 . If u is harmonic on B with polynomial expansion
Ý� H , then it follows from the convergence properties of the polynomialj�0 j

Ž .expansion and 2.3 that

�
2 2MM u , r � MM H , r 0 � r � 1 . 2.4Ž . Ž . Ž .Ž .Ý j

j�0

Hence if u 
 h2, then for each non-negative integer m

� � � �H � u 2.5Ž .2 2m

with equality if and only if u 
 HH .m
We are especially interested in the polynomial expansion of the Poisson

Ž .kernel K �, y and therefore need briefly to discuss axially symmetric
homogeneous harmonic polynomials. For each y 
 S and each non-nega-

Ž .tive integer j there exists a unique element I of HH such that I y � 1y, j j y, j
Ž Ž .and I is axially symmetric with axis Oy that is, I x depends only ony, j y, j

� � .x and the inner product x � y � x y � ��� �x y , and we have1 1 N N

� �I � 1 � I y 2.6Ž . Ž .�y , j y , j

and

� �I � 1� d 2.7Ž .'2y , j j



ALDRED AND ARMITAGE658

Ž � 	see 5 or 4, Chap. 5 ; the latter uses a different notation and normaliza-
.tion . Note that I is given in terms of a Jacobi polynomial by they, j

equation

�1 x � yj � � j Ž� , � .� �I x � x P x � 0, y 
 S 2.8Ž . Ž . Ž .y , j j ž /ž /j � �x

Ž � 	. Ž .see, e.g., 3, p. 477 . The polynomial expansion of K �, y is

�

K x , y � d I x x 
 B , y 
 S . 2.9Ž . Ž . Ž . Ž .Ý j y , j
j�0

� 	See 9, p. 30; 6, Sect. 2 .

3. PROOF OF THEOREM 1

� Ž .3.1. The key to the proof of Theorem 1 is an estimate for D K x, y
ŽŽ . .3.8 below which ultimately depends upon the following lemma.

LEMMA 1. Let P be a homogeneous polynomial of degree m on � N. If
� �� � k � m, then

m! m� k� N� � � � � �D P x � x sup P x 
 � .Ž . Ž .
m � k !Ž . S

Lemma 1 follows easily by induction on k from a classical result of
� 	Kellogg 7, Theorem IV which states that if P is a homogeneous polyno-

N � � � �mial of degree m on � and P � 1 on S, then �P � m on S.

Ž .3.2. Here we prove inequality 1.4 in Theorem 1. Since for each y 
 S
Ž .the polynomial I is homogeneous of degree j and satisfies 2.6 andy, j

Ž N�2 . Ž Ž ..since d � O j as j � � see 1.1 , it follows from Lemma 1 that forj
� � � �each multi-index � the series Ý d D I converges locally uniformlyj�0 j y, j

� � Ž .on B. Hence, writing m � � , we may differentiate term by term in 2.9
and use Lemma 1 to obtain

�
� �� �D K x , y � d D I x x 
 B , y 
 SŽ . Ž . Ž .Ý j y , j

j�m

� j! j�m� �� d x . 3.1Ž .Ý j j � m !Ž .j�m
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Ž .We wish to evaluate the sum in 3.1 . Note that

� m � mj! d d 1�Nj�m jd t � d t � 1 � t 1 � tŽ . Ž .Ž .Ý Ýj jm mj � m ! dt dtŽ .j�m j�0

� �t � 1 3.2Ž . Ž .

Ž � 	.see, e.g., 9, p. 30 . We prove by induction that

d m
1�N 1�m�N1 � t 1 � t � m! 1 � t d � c t . 3.3Ž . Ž . Ž . Ž . Ž .Ž . m mmdt

The case m � 1 is easy; note that d � N and c � N � 2. Supposing that1 1
Ž .3.3 is true for some value of m, we find that

d m� 1
1�N1 � t 1 � tŽ . Ž .Ž .m� 1dt

�m �N� m! 1 � t c � m � N � 1 d � m � N � 2 c t .Ž . Ž . Ž .Ž .m m m

Ž . Ž .It is easy to check that m � N � 2 c � m � 1 c , so to completem m�1
the induction it remains only to show that

c � m � N � 1 d � m � 1 d . 3.4Ž . Ž . Ž .m m m�1

Ž .With N � 2, 3.4 is trivial. For the case where N � 3 note that

2m � N � 2 m � N � 2d � , 3.5Ž .m ž /mm � N � 2

whence

2m � N m � N � 2 !Ž . Ž .
c � m � N � 1 d � � m � 1 d .Ž . Ž .m m m�1m! N � 2 !Ž .

Ž .This completes the proof of 3.3 .
Ž . Ž .From 3.1 � 3.3 it follows that

1�m�N�� � � � � �D K x , y � m! 1 � x d � c x x 
 B , y 
 S .Ž . Ž . Ž .Ž .m m

3.6Ž .
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1 � �Ž . � �If u 
 h , then u � J for some signed measure � with � S � u .1�

Ž . Ž .From 2.2 and 3.6 we obtain

� � � � � � � �D u x � D K x , y d � yŽ . Ž . Ž .H
S

1�m�N� � � � � �� m! 1 � x d � c x u .Ž . Ž . 1m m

Ž .3.3. We show that equality is possible in 1.4 in the case where
Ž .� � m, 0, . . . , 0 and x is on the x -axis. Here and in the sequel we write1

y � 1, 0, . . . , 0 .Ž .o

Ž . Ž . �Let x � x , 0, . . . , 0 , where 0 � x � 1. Let u � K �, y . Then u 
 h1 1 o
� � Ž .and u � u 0 � 1. We have1

1�Nu x � 1 � x 1 � x ,Ž . Ž . Ž .1 1

Ž .and from 3.3 it follows that

m� u 1�m�N� � � �x � m! 1 � x d � c x . 3.7Ž . Ž . Ž .Ž .m mm� x1

4. PROOF OF THEOREM 2 AND THE PROPOSITION

4.1. In the proof of Theorem 2 we use the following elementary
lemma.

LEMMA 2. Let P: � � � be a polynomial of degree m such that P is
either e�en or odd. If F is defined by

x � ym N� � 	 4F x � x P x 
 � � 0Ž . Ž .ž /� �x

for some y in � N, then

� mF
� m!P y .Ž .1m� x1

Ž .In proving Lemma 2, we suppose first that P is even and write P t �
Ým �2a t 2 j. Thenj�0 2 j

m�2
2 j m�2 j� �F x � a x � y x .Ž . Ž .Ý 2 j

j�0



HARMONIC HARDY SPACES 661

By Leibniz’ theorem,
m m k m�k� � �2 j 2 jmm� 2 j m�2 j� � � �x � y x � x � y x . 4.1Ž . Ž . Ž .Ž . Ým k m�kž /k� x � x � x1 1 1k�0

Ž .2 j � � m� 2 jSince the functions x � x � y and x � x are polynomials of
Ž .degrees 2 j and m � 2 j respectively, all the summands in 4.1 with k � 2 j

vanish. With k � 2 j the summand is

m 2 j 2 j2 j ! y m � 2 j !� m! y .Ž . Ž .1 1ž /2 j

Hence
m m�2� F

2 j� a m! y � m!P y .Ž .Ý 2 j 1 1m� x1 j�0

Ž . Ž .Now suppose that P is odd. Then P t � tQ t for some even polyno-
mial Q of degree m � 1, and

x � ym� 1� �F x � x x � y Q � x � y G x ,Ž . Ž . Ž . Ž .ž /� �x

say. By the result of the previous paragraph,

� mF � m� 1G
� my � my m � 1 !Q y � m!P y .Ž . Ž . Ž .1 1 1 1m m�1� x � x1 1

Ž .4.2. Here we prove inequality 1.5 in Theorem 2. With p � 1 the
� 	result is known 2, Theorem 2 . If 1 � p � �, then u � J for somef

pŽ . Ž .f 
 L S satisfying 2.1 . Since we may pass differential operators under
Ž . Ž .the integral sign as in 2.2 , we obtain from 2.9 that

m m �� u �
x � d I x f y d� y . 4.2Ž . Ž . Ž . Ž . Ž .ÝH j y , jm m ž /� x � xS1 1 j�0

Ž .As explained in Section 3.2, we may differentiate the series in 4.2 term by
term. Thus

� mu � mIy , m
0 � d f y d� y .Ž . Ž . Ž .Hmm m� x � xS1 1

Ž . Ž� , � .In view of 2.8 and the fact that the Jacobi polynomial P is even orm
odd according as m is even or odd, it follows from Lemma 2 that

m �1� Iy , m m � � Ž� , � .� m!P y .Ž .m 1m ž /m� x1
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Hence

m �1� u m � � Ž� , � .0 � m!d P y f y d� y . 4.3Ž . Ž . Ž . Ž . Ž .Hm m 1m ž /m� x S1

Ž . Ž .By Holder’s inequality and 2.1 , the integral in 4.3 does not exceed¨

Ž .p�1 �p
Ž .p� p�1Ž� , � . � �P y d� y u 4.4Ž . Ž . Ž .H pm 1ž /S

Ž .with the convention stated in Theorem 2 for the case p � � . The integral
Ž .in 4.4 equals

� �Ž .p� p�12��1 Ž� , � . 2��1sin � P cos � d� sin � d�Ž .H Hm
0 0

1Ž . Ž .and the integral in the denominator here is B � � 1, . Inequality 1.52

now follows.

Ž . � 	4.3. For p � 1 the cases of equality in 1.5 are given in 2, Theorem 2 ,
and for the sake of completeness we quote them here. It is convenient to
identify �2 with the complex plane in the usual way. With N � 2 and

Ž .p � 1 equality holds in 1.5 if and only if

m�1
2 j� i � m Ž2 j�1.� i � mu � � � K �, e � � K �, e ,Ž . Ž .Ž .Ý j j

j�0

where � , � are non-negative numbers. With N � 3 and p � 1 equalityj j
Ž .holds in 1.5 if and only if

m
u � � �K �, y � �1 �K �, �y ,Ž . Ž . Ž .Ž .o o

Ž � 	where � , � are non-negative numbers. In 2 u was normalized to have
� � .u � 1, so the statements there differ slightly from those here.1

Ž .Next we consider cases of equality in 1.5 when 1 � p � �. Fix m 
 �,
define a function f on S by

� Ž� , � . �1�Ž p�1. Ž� , � .P y sign P y 1 � p � �Ž . Ž . Ž .Ž .m 1 m 1f y �Ž .
Ž� , � .½ sign P y p � � ,Ž . Ž .Ž .m 1

� p Ž . Ž� , � .Ž .and let u � J . Clearly u 
 h � h . Since f y P y � 0 for allf m 1
Ž .y 
 S, equality holds in 4.3 and it follows from the case of equality in
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Ž . Ž .Holder’s inequality that the integral in 4.3 is equal to that in 4.4 . Hence¨
Ž .equality holds in 1.5 . For fixed p with 1 � p � � and m 
 �, the

Ž .function u for which equality holds in 1.5 is unique up to a multiplicative
constant.

4.4. Here we give a short proof of the proposition independently of
Theorem 2. Our proof depends on the following lemma.

LEMMA 3. If H 
 HH , where m 
 �, thenm

� � � �H y � d HŽ . ' 2o m

with equality if and only if H is proportional to I .y , mo

Ž .With N � 3 a slightly stronger version of this result is given by Brelot
� 	and Choquet 5, Proposition 4 . To prove Lemma 3 with N � 2, write

Ž . m Ž .H r, � � ar cos m� � � and note that

'� � � � � � � �H 1, 0 � a cos � � a � 2 HŽ . 2

Ž . m Ž .with equality if and only if H r, � � �ar cos m� .
Suppose now that u 
 h2 and let the polynomial expansion of u be

� Ž .Ý H . Then using Lemma 3 and 2.5 we find thatj�0 j

m m� u � Hm
� � � � � �0 � � m! H y � m! d H � m! d u ,Ž . Ž . ' '2 2m o m m mm m� x � x1 1

4.5Ž .

Ž .and there is equality throughout 4.5 if and only if u � H and H ism m
proportional to I .y , mo

5. PROOF OF THEOREM 4 AND SOME COMMENTS

Ž .5.1. Inequality 1.9 is an immediate consequence of the equation

2 'MM � , rR � � rx u Rx d� x . 5.1Ž . Ž . Ž . Ž .Ž . H
S

Let the polynomial expansion of u be Ý� H and let the part sum � bej�0 j
Ž .Ý H . The following proof of 5.1 uses the homogeneity of the polynomi-k jk

als H , the convergence properties of the polynomial expansion, and thej
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Ž . Ž .relations 2.4 and 2.3 :

2 2' 'MM � , rR � MM H , rRŽ . Ý ž /jk
k

j 2k� rR H d�Ž .Ý H jk
Sk

�
j jk� r R H H d�Ý Ý H j jk

Sk j�0

�

� H rx H Rx d� xŽ . Ž . Ž .Ý Ý H j jk
Sk j�0

�

� H rx H Rx d� xŽ . Ž . Ž .Ý ÝH j jž /k ž /S k j�0

� � rx u Rx d� x .Ž . Ž . Ž .H
S

Ž . Ž .5.2. By 5.1 equality holds in 1.9 if and only if

� � � �� rx u Rx � sup � u Rx x 
 S .Ž . Ž . Ž . Ž .ž /
Ž .S r

Hence the conditions stated in Theorem 4 are sufficient for equality in
Ž . Ž .1.9 . Suppose now that equality holds in 1.9 . Then either u � 0 on a

Ž .relatively open subset of S R and hence, by real-analyticity, everywhere
Ž . Ž .on S R or, by continuity, � is constant on S r . In the former case

Ž .u � � � 0 on B. In the latter case either � � 0 or � � H � u 0 . Ifo
Ž . Ž . Ž .� � u 0 � 0, then u 0 u � 0 on S R .

Ž . Ž . Ž .5.3. Inequality 1.10 follows from 1.9 . Now let u � K �, y and let �o
Ž .be a part sum for u. Then, by 2.9 , � has the form

d IÝ k y , ko
k
�

Ž . Ž .for some non-empty set � of non-negative integers. By 2.4 , 2.6 , and
Ž .2.7

� � 2 � �� � d � � ,Ý2 �k
k
�

� � Ž . Ž . � �and since u � u 0 � 1, we have equality in 1.10 . Obviously � and1 2
� �� are finite if and only if � is a polynomial.�
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5.4. If p, q are numbers such that p � 1, q � 1, and p�1 � q�1 � 1,
Ž .then Holder’s inequality applied to 5.1 gives a companion inequality to¨

Ž .1.9 :

1�p 1�qp q2 ' � � � �MM � , rR � MM � , r MM u , R . 5.2Ž . Ž . Ž .Ž . Ž .Ž .

Ž .Also by 5.1 ,

2 ' � � � �MM � , rR � MM � , r sup u . 5.3Ž . Ž .Ž .
Ž .S R

ŽIf p, q are Holder conjugates that is, p, q are as above or p � 1, q � � or¨
. Ž . Ž . Ž .p � �, q � 1 , then letting r, R � 1� in 1.9 , 5.2 , and 5.3 , we obtain

� � 2 � � � �� � � u . 5.4Ž .2 p q

Ž .5.5. The question arises as to whether 5.4 is really more general than
� � 2 � � � �a more obvious consequence of Holder’s inequality, viz. � � � � .¨ 2 p q

� � � �Thus we ask: is u � � possible when � is a part sum for u?q q

With q � 2 the answer is clearly ‘‘no.’’ With q � � the answer is ‘‘yes.’’
In the case where q � � and � consists of a single term H from them

� 	polynomial expansion of u some quite precise information is given in 1 :
� � ŽN�2.�2 � �H � cm u is possible, where c is positive and depends only� �m

Ž Ž . .on N and the exponent N � 2 �2 cannot be improved . It seems likely
� � � �that u � � is possible for every q with 1 � q � � and q � 2, andq q

� 	calculations, which we omit, confirm this when N � 2 and q 
 1, 1.76 

� .2.5, � .

6. PROOF OF THEOREM 3

6.1. We need the following lemma.

LEMMA 4. Let Ý� H be the polynomial expansion of a harmonicj�0 j
function u on B. Then

� � 2 � � 2
� u 0 � m!N N � 2 ��� N � 2m � 2 H 6.1Ž . Ž . Ž . Ž .2m m

for each m 
 �.

To prove Lemma 4, note first that, since the polynomial expansion can
be differentiated term by term,

� � � �� u 0 � � H . 6.2Ž . Ž .m m m
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If � is a multi-index, we write x � � x �1 ��� x �N , and if P is a homoge-1 N
N Ž . �neous polynomial of degree m on � given by P x � Ý a x , then� � ��m �

we denote the operator Ý a D� by D . We then have� � ��m � P

2�D PŽ .2 2� �� P � m! � m! a � !� m!D P . 6.3Ž .Ý Ým � P� !� � � �� �m � �m

If G, H 
 HH , thenm

D H � N N � 2 ��� N � 2m � 2 GH d� 6.4Ž . Ž . Ž .HG
S

Ž � 	. Ž . Ž .Kuran 8, Lemma 1 . Taking P � H in 6.3 and G � H � H in 6.4 ,m m
we obtain

� � 2 � � 2
� H � m!N N � 2 ��� N � 2m � 2 H ,Ž . Ž . 2m m m

Ž . Ž .which together with 6.2 yields 6.1 .

Ž .6.2. We can now complete the proof of 1.8 in Theorem 3. It remains
Ž .to prove only the first inequality in 1.8 . Again let the polynomial

expansion of u be Ý� H . Taking � � H in Corollary 2, we obtainj�0 j m

� � 2 � � � �H � H u .2 � 1m m

If y 
 S, then

m m �� u d
j0 � t H y � m!H y .Ž . Ž . Ž .Ý j mm mž /� r dty j�0 t�0

Hence

m� u2� � � �m! H � sup 0 u . 6.5Ž . Ž .2 1m m� ry
S y

Ž . Ž .The first inequality in 1.8 follows from 6.5 and Lemma 4.

Ž . �6.3. Let u � K �, y . Then u 
 h . We verify that for this functiono
Ž .equality holds throughout 1.8 for each m 
 �. From the polynomial

Ž .expansion 2.9 it follows that

m � mI� u y , mo0 � d � m!d I yŽ . Ž .m m y , mm m o� r � ry y
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Ž .for each y 
 S. Hence by 2.6
m� u

sup 0 � m!d .Ž . mm� ry
S y

Ž .Also by Lemma 4 and 2.7 ,

� � 2 2 � � 2
� u 0 � m!N N � 2 ��� N � 2m � 2 d IŽ . Ž . Ž .m m y , mo

� m!N N � 2 ��� N � 2m � 2 d .Ž . Ž . m

� � Ž . Ž .Since u � u 0 � 1, it now follows that equality holds throughout 1.8 .1

7. VALUES AND ESTIMATES FOR THE
CONSTANTS Cm , N, p

Ž .7.1 the case N � 2 . When N � 2, we have � � �1�2 and the Jacobi
polynomial P Ž�1�2, �1�2. is proportional to the Chebyshev polynomial ofm
the first kind T ,m

1 1m � m �Ž�1�2, �1�2. 2 2P cos � � T cos � � cos m�Ž . Ž . Ž .m mž / ž /m m

Ž � 	.see 10, Sect. 4.1 . Hence, when 1 � p � �,

Ž .p�1 �p
�1 p�Ž p�1.� �C � cos m� d�Ž .Hm , 2 , p ž /� 0

Ž .p�1 �p2 ��2 p�Ž p�1.� cos 
 d
Hž /� 0

Ž .p�1 �p1 2 p � 1 1
� 
 , .ž /ž /� 2 p � 2 2

A similar calculation gives C � 2�� .m , 2, �

Ž . Ž� , � .Ž . Ž . Ž �7.2 the case m � 1 . We have P t � � � 1 t see 10, formula1
Ž .	.4.5.1 . Hence, if 1 � p � �, then

Ž .p�1 �p�1
�1 p�Ž p�1.2��1 � �C � B � � 1, sin � cos � d�H1, N , p ž /ž /ž /2 0

Ž .p�1 �p
2 p � 1 1

� B � � 1, B � � 1, .ž /ž /ž /2 p � 2 2
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Similarly,

1 1 N 1
C � B � � 1, 1 �B � � 1, � B , .Ž .1, N , � ž / ž /2 � 2 2

Ž .7.3 the case p � 2 . Here we verify that C � 1� d and thus'm , N, 2 m
Ž .confirm that Theorem 2 implies 1.3 in the proposition. With p � 2 the

Ž .integral in 1.6 is

� �12 22��1 Ž� , � . 2 Ž� , � .sin � P cos � d� � 1 � t P t dtŽ . Ž . Ž .Ž . Ž .H Hm m
0 �1

22��12 	 m � � � 1Ž .Ž .
�

2m � 2� � 1 m! 	 m � 2� � 1Ž . Ž .
7.1Ž .

Ž � Ž .	.see 10, formula 4.3.3 . Hence, after some simplification we find that

1�232��1m! 2 	 � � 1 	 � �Ž . Ž .2
C �m , N , 2 ž /'2m � 2� � 1 	 m � 2� � 1 �Ž . Ž .

1�2m! 	 2� � 2Ž .
� ž /2m � 2� � 1 	 m � 2� � 1Ž . Ž .

by the duplication formula for the 	-function. Substituting N � 3 for 2�
gives

�1�22m � N � 2 m � N � 2C � � 1� d ,'m , N , 2 mž /ž /mm � N � 2

Ž .by 3.5 .

7.4 Proof of Corollary 1. The cases p � 1, 2 are covered by Theorem A
and the proposition. Suppose now that 1 � p � 2. Since

m � �Ž� , � .� �P t � �1 � t � 1Ž . Ž .m ž /m

Ž � Ž .	.see 10, formula 7.32.2 , we have

�
p�Ž p�1.2��1 Ž� , � .� �sin � P cos � d�Ž .H m

0

Ž . Ž .2�p � p�1 � 2m � � 2��1 Ž� , � .� sin � P cos � d� .Ž .Ž .H mž /m 0
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Ž .Using the value of the latter integral given in 7.1 , we obtain

�1 �21 m � �C � B � � 1,m , N , p ž /ž /ž / mž 2

Ž .p�1 �p22��12 	 m � � � 1Ž .Ž .
� . 7.2Ž ./2m � 2� � 1 m!	 m � 2� � 1Ž . Ž .

1Ž . Ž .When N � 2 and � � � we readily simplify 7.2 to obtain C �m , 2, p2
�Ž p�1.� p Ž .2 . When N � 3 we simplify 7.2 by writing the B-function and the

binomial coefficient in terms of the 	-function and then using the duplica-
tion formula for the 	-function: the result is

Ž .p�1 �pm!	 2� � 2Ž .
C �m , N , p ž /2m � 2� � 1 	 m � 2� � 1Ž . Ž .

Ž .p�1 �pm! N � 2 !Ž .
� ž /2m � N � 2 m � N � 3 !Ž . Ž .

� d�Ž p�1.� p ,m

Ž . 1� pby 3.5 . It now follows, for all N, that d C � d . This completesm m , N, p m
the proof for 1 � p � 2.

Since

m� u
p � �m!d C � sup 0 : u 
 h , u � 1 ,Ž . pm m , N , p m½ 5� x1

it is easy to see that C is a decreasing function of p when m and Nm , N, p
are fixed. Hence the case of the corollary where 2 � p � � follows from
the case p � 2. It remains to justify our claim that the exponent 1�2
cannot be improved when 2 � p � �. In view of the monotonicity of
C , it is enough to work with p � �. Thus we wish to show thatm , N , p
C � cd�1�2, where c is a positive constant depending only on N.m , N , � m
When N � 2 we have d � 2 and C � 2�� for all m 
 �. Nowm m , 2, �

Ž .suppose that N � 3 so � � 0 . Writing c for a positive constant depend-
ing only on N but possibly varying from line to line and using Stirling’s
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m � �Ž .formula to estimate , we havem

�
�� 2��1 Ž� , � .� �C � cm sin � P cos � d�Ž .Hm , N , � m

0

�1�� 2 Ž� , � .� �� cm 1 � t P t dtŽ . Ž .H m
0

1 ��� Ž� , � .� �� cm 1 � t P t dtŽ . Ž .H m
0

� cm���1�2

1Ž � Ž .	. Ž .see 10; formula 7.34.1 . Since � � � N � 2 �2, it now follows from2
Ž . �1�21.1 that C � cd , as required.m , N , � m
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