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1. INTRODUCTION AND RESULTS

Let .#(f,r) denote the mean value of an integrable function f on the
sphere S(r) of radius r centred at the origin 0 of R", where N > 2; that is,

A(for) = fsmfda’

where o is (N — 1)-dimensional surface measure on S(r), normalized so
that o(S(r)) = 1. Let u be a (real-valued) harmonic function on the unit
ball B of RY. Define

lull, = tim (a(lul”, r))"?,
r->1-

where 1 < p < +. (The (possibly infinite) limit exists, since .Z(|u|”,-) is
increasing on (0, 1).) Similarly, define

lull = lim (suplul).
r—>1-— S(r)

The function u is said to belong to the harmonic Hardy space h?, where
1 <p <o, if |Jull, < . (For facts about h” spaces, we refer to [4, Chap.
6]. Note that in [4] harmonic functions are generally complex-valued.) We
also write 4™ for the cone of non-negative harmonic functions on B. Note
that #' = h*— h*; that is u € h' if and only if u = u, — u, for some
u,u, €h*. If ueh*, then by the mean value property of harmonic
functions |lull; = u(0).
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652 ALDRED AND ARMITAGE

A typical point of RY is denoted by x = (x,,...,xy) and we write
lx| = (x? + -+ +x3)2. The space of all homogeneous harmonic polyno-
mials of degree m, where m > 0, on R” is denoted by Z,. We define

d, = dim.7Z,
and note that

dy=1, d, =N, dmz(N+m—1)_(N+m—3)(

N-1 N-1 m = 2)

(see, e.g., [4, p. 82]). Some particular values, with m > 1, are
d,=2 (N=2), d,=2m+1 (N=3),
d,=(m+1)° (N=4),
and in general
d,/m""?->2/(N—-2)! (m—- ) (1.1)

(see, e.g., [4, p. 94]). We write N for the set of all positive integers.
The following result is essentially due to Goldstein and Kuran [6,
Theorem 2].

THEOREM A. Ifu € h' and m € N, then

"u

There exist non-zero functions in h' for which equality holds in (1.2) for each
m € N.

In fact, Theorem A is proved in [6] only for functions in &%, but the
stated result is an easy corollary (see [2, p. 168]). An alternative proof of
Theorem A is given in [2, Theorem 2]. The functions u for which equality
holds in (1.2) are known explicitly ([2, 6]; see Section 4.3 below). In the
case m = 1 Theorem A is equivalent to a classical inequality for the norm
of the gradient of u; namely, |Vu(0)| < Nllull, when u € h' (since, by a
rotation, we can align the x,-axis with Vu(0)).

Theorem A has an analogue for functions in /2. Although it appears not
to have been stated explicitly, it is an easy corollary of a result of Brelot
and Choquet [5] on harmonic polynomials. We state the result for 4> here
and give a short proof in Section 4.4.
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PROPOSITION.  If u € h?> and m € N, then

m

a"u

m
0x]

(0)| < mty/d,, llull,. (1.3)

Equality holds if and only if u is an element of 7, that is symmetric about the
X1-axXis.

Axially symmetric elements of Z, are briefly discussed in Section 2.2.

Theorems 1 and 2 below generalize Theorem A in two ways. Theorem 1
gives an inequality corresponding to (1.2) for an arbitrary partial derivative
of u evaluated at an arbitrary point of B. Theorem 2 is an extension of
Theorem A to functions of class 47, where 1 < p < . The inequality in
Theorem 2 is equivalent to (1.2) and (1.3) when p = 1,2 respectively.

If a=(ay,...,ay) is an ordered N-tuple of non-negative integers
(which we refer to as a multi-index), then we write |a| = a; + -+ +a, and

D% = ﬁ‘“‘/&xl‘” e XN,

THEOREM 1. Ifu € h', x € B, and |a| = m € N, then
IDu(x)l <m!(1 —1x)' " "N(d,, + ¢, lx)lull, (1.4)

where c,, = 0 if N = 2 and

cm=(m +nf¥—3) if N > 3.

In the case where x = 0, inequality (1.4) is equivalent to [2, formula
(3.5)] which itself includes (1.2) as a special case. The cases of equality in
(1.4) when x = 0 are given explicitly in [2, Theorem 3]. Further remarks
about the sharpness of (1.4) are given in Section 3.3, where it is shown that
the function of |x| on the right-hand side of (1.4) is best possible when
D= 9" /dx}". Corresponding to (1.4) in the case m = 0 there is the
classical inequality

u(x)l < (1= Ix)' ™Y1+ Lxl)llulh,

which for functions of class 4" is Harnack’s inequality (see, e.g., [4, p. 47)).
Throughout the sequel, we use the notation

1
y=7(N=3)
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and use the standard notation P**?) for Jacobi polynomials, as given in
Szeg®’s book [10]. When N > 3, the polynomial P is proportional to
the ultraspherical polynomial P{Y*!/2),

F'(m+y+ 1HI'2y+ 1) (412
'(m+2y+DHI'(y+1) "

pn(17n/) =

[10, formula (4.7.1)]. In particular, corresponding to N = 3, we have
P09 = p/2) = P the Legendre polynomial of degree m.

THEOREM 2. Ifu € h?, where 1 <p <, and m € N, then

&x; (0)| <m!d, G,y lull,, (1.5)
where C,, =1 and
m+y) 1!
S ((B(y“’z))
T (p=1/p
X [sin®* 1 9[RSV (cos 0)|7/" P do (1.6)

0

when 1 < p < % (with the convention that '~ = %1 = 1 when p = »).
In every case equality holds in (1.5) for some non-zero function u in h”.

Details of the cases of equality are given in Section 4.3. As well as the
case p = 1 of Theorem 2 (that is, Theorem A) the cases m =1, p = «©
and m = 1, p = 2 are also known (see [4, pp. 108, 123]). By estimating the

constants C,, y ,, we will deduce the following result.

COROLLARY 1. Ifu € h? and m € N, then

"u m!d}y/?lull, (1<p<2)
axy m!d)/?|lull, (2<p<»).

For p = 1,2 respectively, Theorem A and the proposition show that the
corollary is sharp. We shall also see that in the case where 2 < p < o the
exponent 1/2 cannot be improved. The proof of the corollary is given in
Section 7, together with explicit evaluations of some of the constants
C,,, n,p- In particular, we will verify by direct calculation that C,, v, =

1/4/d,, and thus confirm that Theorem 2 includes inequality (1.3) in the

m

proposition.
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Another result essentially due to Goldstein and Kuran [6, Theorem 1]
may be stated as follows. Here |V, ¢| denotes the norm of the mth
gradient of a C* function ¢ on R":

)»

lal=m

|V, bl =

a!

(D)’ )1/2

THEOREM B. Ifu € h* and m € N, then
{N(N +2) (N +2m —2)} "' IV,u(0))* < m!d,(u(0)). (1.7)

There exist non-zero functions u in h™ for which equality holds in (1.7) for
each m € N.

Details of the cases of equality are given in [6]. With m = 1, inequality
(1.7) is classical: |Vu(0)| < Nu(0) when u € h™.

Our next result extends Theorem B to functions in 4' and links it with
Theorem A. Differentiation in the direction of a unit vector y in R" is
denoted by d/dr,. We write S for S(1), the unit sphere in R".

THEOREM 3. Ifu € h' and m € N, then

{(N(N +2) (N +2m —2)} "'V, u(0)]* < sup u
yeSs

llully

- (0)

a m

<m!d,|ulli. (1.8)

There exist non-zero functions u in h' for which equality holds throughout
(1.8) for each m € N.

Since harmonic functions are invariant under rotations of the axes, the
second inequality in (1.8) follows immediately from inequality (1.2) in
Theorem A. The key to the first inequality in (1.8) is a special case of the
corollary to the following theorem. Some preliminary remarks are re-
quired. Recall that a harmonic function u# on B has a unique expansion of
the form ZO'C:OI_Ij’ where H, eX%; the series converges to u on B and

Y7_o|H;| converges locally uniformly on B (see, e.g., [4, p. 84]). We call
Yi_oH; the polynomial expansion of u. If (j,) is any strictly increasing
(finite or infinite) sequence of non-negative integers, then we call ©, H; a
part sum for u. The convergence properties of the polynomial expansion
ensure that any part sum is also harmonic on B.

THEOREM 4. Let u be harmonic on B and let v be a part sum for u. If
r, R € (0,1), then

4 (V2 VR < suplol.z(lul, R). (1.9)
S(r)
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Equality holds in (1.9) if and only if either (1)) v = 0 or (ii) v = u(0) # 0 and
u is of constant sign (in the wide sense) on S(R).

If u e h* and v = u, then letting R — 1 — in (1.9) we obtain

M (u?, \/;) < sup |ulu(0),
S(r)

an inequality due to Goldstein and Kuran [6, Theorem 3]. In the general
case, we can let r,R > 1— in (1.9) to obtain the inequality in the
following corollary.

COROLLARY 2. If u is harmonic on B and v is a part sum for u, then

10113 < loll.llull;. (1.10)

There exists a positive non-polynomial harmonic function u on B for which
(finite) equality holds in (1.10) whenever v is a polynomial part sum for u.

Our proof of Theorem 3 requires only the special case of Corollary 2 in
which v consists of a single term H,, from the polynomial expansion of u.
Some inequalities related to (1.9) and (1.10) are discussed in Section 5.

2. PREREQUISITES FOR THE PROOFS OF
THEOREMS 1 AND 2

2.1. We first recall some facts about representations of functions
belonging to 47 spaces as Poisson integrals. The Poisson kernel K of B is
defined on B X S by

K(x,y)=(1- |x|2)|x —y| ™.

Note that K(-,y) € h* for each y € S. If u is a finite signed measure on
S, then the Poisson integral J, is defined by

J(x) = fSK(x,Y)dM(Y) (x €B).

In the case where u = fo for some integrable function f on S, we write J;
for Jsy- For each finite signed measure w on S, we have J, € h!, and if
f € L7S), where 1 <p <o, then J; € h”. Conversely, if u € h', then
u =J, for some signed measure w such that | ul(S) = [lull,, and if u € h?,
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where 1 < p < =, then u = J; of some f € L?(S) with

1/p
leell, = (fslfl”dcr) (1<p<=); ul = suplfl (p=2). (2.1)
S

See, e.g., [4, Chap. 6].
Since every partial derivative of K(x, y) (with respect to the coordinates
of x) is bounded on E X S for every compact subset E of B, we have

D(x) = [DK(x,y) dp(y) (¥ <B) (2:2)

for every finite signed measure p on § and every operator D .

2.2. Here we list some facts about harmonic polynomials and polyno-
mial expansions of functions harmonic on B. Recall first that the spaces 7
are mutually orthogonal in the sense that

GHdo =0 (G E%]?,HE%,j#k,r>0). (2.3)
S(r)

(see, e.g., [4, p. 75D. If u is harmonic on B with polynomial expansion
i—oH,, then it follows from the convergence properties of the polynomial
expansion and (2.3) that

(WP, r) = Y#(Hr)  (0<r<1). (2.4)

Hence if u € h?, then for each non-negative integer m
1,112 < llull, (2.5)

with equality if and only if u €.7,.

We are especially interested in the polynomial expansion of the Poisson
kernel K(-,y) and therefore need briefly to discuss axially symmetric
homogeneous harmonic polynomials. For each y € § and each non-nega-
tive integer j there exists a unique element 7, ; of 7 such that I, (y) =1
and [, ; is axially symmetric with axis Oy (that is, I ,, (0 depends only on
| x| and the inner product x -y = x,y, + --- +xyyy), and we have

I, M. =1=1, (y) (2.6)

and

11, 2 = 1//d; (2.7)
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(see [5 or 4, Chap. 5]; the latter uses a different notation and normaliza-
tion). Note that I, ; is given in terms of a Jacobi polynomial by the
equation

, -1
I, (x) = ( j ) leij“/’”(W) (x#0,yeS) (28

(see, e.g., [3, p. 477D. The polynomial expansion of K(-, y) is
K(x,y) = Y dI, (x) (xeB,yes). (2.9)
j=0

See [9, p. 30; 6, Sect. 2].

3. PROOF OF THEOREM 1

3.1. The key to the proof of Theorem 1 is an estimate for D“K(x, y)
((3.8) below) which ultimately depends upon the following lemma.

LEMMA 1. Let P be a homogeneous polynomial of degree m on RY. If
la| =k < m, then

|

DeP < ——|x|™°k P e RY).
I (x)l < (m _k)!IXI SI;pI | (x )

Lemma 1 follows easily by induction on k from a classical result of
Kellogg [7, Theorem IV] which states that if P is a homogeneous polyno-
mial of degree m on RY and |P| < 1 on S, then |[VP| < m on S.

3.2. Here we prove inequality (1.4) in Theorem 1. Since for each y € S
the polynomial /, ; is homogeneous of degree j and satisfies (2.6) and
since d; = O(jV™?) as j — = (see (1.1)), it follows from Lemma 1 that for
each multi-index « the series X7_,d;|D*I, ;| converges locally uniformly
on B. Hence, writing m = |a|, we may differentiate term by term in (2.9)
and use Lemma 1 to obtain

ID*K(x,y)l=| Y d;D°I, ;(x) (xeB,ye?)
j=m
- j! |
<Y d [x|/ ™™, (3.1)

b _
jom (= m)!
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We wish to evaluate the sum in (3.1). Note that

y k jmm = "y J= d_m _ \1-N
j;nd;(j_—m)!t = m—mgodjt = (A+n@a -0
(leh<1) (32)

(see, e.g., [9, p. 30]). We prove by induction that

d" . .
A+ =)y =m!(1—1)"""""(d, +c,t). (33)

drm
= N — 2. Supposing that

The case m = 1 is easy; note that d, = N and ¢,
(3.3) is true for some value of m, we find that

m+1

W((l +0)(1—1)'")
=m!(1—16)" ", + (m+N-1)d, + (m+N—2)c,t).

It is easy to check that (m + N — 2)c,, = (m + Dc,,, ;, s0 to complete
the induction it remains only to show that

¢y t(m+N-1d,=(m+1)d,,,. (3.4)
With N = 2, (3.4) is trivial. For the case where N > 3 note that
:2m+N—2(m+N_2) (3.5)
m > ’

d,
m+N-—2

whence
2m + N)(m + N —2)!
¢y t(m+N-1d, = (N —2)! =(m+1d,, .

This completes the proof of (3.3).

From (3.1)—(3.3) it follows that
DK (x, )l <m!(1—|x[)' " "M(d,, +c,lx)) (x€B,yeSs).
(3.6)
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If u €h', then u =J, for some signed measure u with | wl(S) = lull;.
From (2.2) and (3.6) we obtain

|Du(x)| < fSID“K(x,y)ldWKY)

<m!(1=|x)' """ (d,, + c,|x])llull.

3.3. We show that equality is possible in (1.4) in the case where
a = (m,0,...,0) and x is on the x,-axis. Here and in the sequel we write

v, = (1,0,...,0).

Let x = (x,0,...,0), where 0 <x, < 1. Let u = K(-,y,). Then u € h™*
and |lull; = u(0) = 1. We have

u(x) = (1+x)(1—x)" ",

and from (3.3) it follows that

m

(x)| =m!(1 = 1x)' """ (d,, + c,lxl). (3.7)

m
dxy

4. PROOF OF THEOREM 2 AND THE PROPOSITION

4.1. In the proof of Theorem 2 we use the following elementary
lemma.

LEMMA 2. Let P: R = R be a polynomial of degree m such that P is
either even or odd. If F is defined by

Xy

Fx) = |x|’”p( |x]

) (x e RV (0))

for some y in RY, then

m

=m!P .
&xin m (yl)

In proving Lemma 2, we suppose first that P is even and write P(¢) =
L7/gay;t*. Then
m/2

F(x) = ¥ ay(x-y) "%
j=0



HARMONIC HARDY SPACES 661

By Leibniz’ theorem,

m ak &m—k

((x.y)2;|x|’"f2f) i( )a - (x y) Py ;n_k|x|'"*21'_ (4.1)

m
ax]

Since the functions x — (x-y)* and x — |x|" % are polynomials of
degrees 2j and m — 2j respectively, all the summands in (4.1) with k # 2j
vanish. With & = 2j the summand is

(2])(21)'y (m = 2j)t=mlyp
Hence

Z “2;’”')’1] =m!P(y,).

axy

Now suppose that P is odd. Then P(¢) = tQ(¢) for some even polyno-
mial Q of degree m — 1, and

m— ry
F(x) = 1" e T ) = (6.
say. By the result of the previous paragraph,
I™F "G

ax =my, c?x{"_l =my,(m — 1)!0(y,) = m!P(y,).

4.2. Here we prove inequality (1.5) in Theorem 2. With p =1 the
result is known [2, Theorem 2]. If 1 < p < o, then u =J; for some
f e LP(S) satisfying (2.1). Since we may pass differential operators under
the integral sign as in (2.2), we obtain from (2.9) that

m

( Y dl, ,(X))f(Y)dU(y) (4.2)

As explained in Section 3.2, we may differentiate the series in (4.2) term by
term. Thus

=d f i’ wf () do ().

axt

In view of (2.8) and the fact that the Jacobi polynomial P{>*) is even or
odd according as m is even or odd, it follows from Lemma 2 that

"L,

-1
_|m ')’) 1 pys7)
= m!P, .
&xin ( m m (yl)
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Hence

o"u

m
axy

<0>‘ < () mid, [P0 S0 |do (). (43)

By Holder’s inequality and (2.1), the integral in (4.3) does not exceed

(p—1/p
) llull, (4.4)

(fs e () [ do ()

(with the convention stated in Theorem 2 for the case p = «). The integral
in (4.4) equals

fwsinz“/*1 6| P (cos ) |p/(p_1) dG//Wsin27+1 6do
0 0

and the integral in the denominator here is B(y + 1, 3). Inequality (1.5)
now follows.

4.3. For p = 1 the cases of equality in (1.5) are given in [2, Theorem 2],
and for the sake of completeness we quote them here. It is convenient to
identify R* with the complex plane in the usual way. With N = 2 and
p = 1 equality holds in (1.5) if and only if

m—1
u= + Z (ajK(,’erﬂ'i/m) _ BjK(‘,e(2j+l)ﬂi/m)),
j=0

where «;, B; are non-negative numbers. With N > 3 and p = 1 equality
holds in (1.5) if and only if

u=+(ak(-y,) + (=1)"BK(, -3,)),

where «, B are non-negative numbers. (In [2] u was normalized to have
llull; = 1, so the statements there differ slightly from those here.)

Next we consider cases of equality in (1.5) when 1 < p < . Fix m € N,
define a function f on S by

[Py )PV sign( P () (1<p <=

) = sign( P (1)) (p==),

and let u =J,. Clearly u € h* c h?. Since f(y)P"(y,) =0 for all
y € 8, equality holds in (4.3) and it follows from the case of equality in
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Holder’s inequality that the integral in (4.3) is equal to that in (4.4). Hence
equality holds in (1.5). For fixed p with 1 <p <o and m € N, the
function u for which equality holds in (1.5) is unique up to a multiplicative
constant.

4.4. Here we give a short proof of the proposition independently of
Theorem 2. Our proof depends on the following lemma.

Lemma 3. If H €%, where m € N, then

IH(y,)| < y/d,, I Hll»

with equality if and only if H is proportional to I,

With N > 3 (a slightly stronger version of) this result is given by Brelot
and Choquet [5, Proposition 4]. To prove Lemma 3 with N = 2, write
H(r,0) = ar™ cos(m6 + 8) and note that

|H(1,0)| = |acos 8| <lal = V2l HIl»

with equality if and only if H(r, 0) = +ar™ cos(m®).
Suppose now that u € h* and let the polynomial expansion of u be
L7_oH;. Then using Lemma 3 and (2.5) we find that

o"u

m
dx]

m
m

=m!|H,(y,)l <mlyd,|H,Il, <m!d,llull,
(4.5)

(0)‘ =

m
ax]

and there is equality throughout (4.5) if and only if u = H,, and H,, is
proportional to 1, .

5. PROOF OF THEOREM 4 AND SOME COMMENTS
5.1. Inequality (1.9) is an immediate consequence of the equation
A (V2 VIR = fu(rx)u(Rx) do(x). (5.1)
s

Let the polynomial expansion of u be ¥;_,H; and let the part sum v be
L H; . The following proof of (5.1) uses the homogeneity of the polynomi-
als H;, the convergence properties of the polynomial expansion, and the
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relations (2.4) and (2.3):

A (V2R ) = L (HE VR )
k
= Z(rR)fkaH_,fda

-y Zr”R’fHHdo

k j=0

2/ () Hi(Rx) dor(x)

8

fs(§H,»k(rx))( X (k)| dar ()

j=0
= fu(rx)u(Rx) do(x).
s
5.2. By (5.1) equality holds in (1.9) if and only if

o(r)u(Rx) = (suplvl)lu(Rx)I (xeS$).
S(r)

Hence the conditions stated in Theorem 4 are sufficient for equality in
(1.9). Suppose now that equality holds in (1.9). Then either u = 0 on a
relatively open subset of S(R) and hence, by real-analyticity, everywhere
on S(R) or, by continuity, v is constant on S(r). In the former case
u=v=0 on B. In the latter case either v =0 or v = H, = u(0). If
v = u(0) # 0, then u(0)u > 0 on S(R).

5.3. Inequality (1.10) follows from (1.9). Now let u = K(-, y,) and let v
be a part sum for u. Then, by (2.9), v has the form

2: tikl;u,k

ke A

for some non-empty set A of non-negative integers. By (2.4), (2.6), and
2.7

2
lollz = X dy = llvll,

ke A

and since |lull; = u(0) = 1, we have equality in (1.10). Obviously ||v|l, and
lvll are finite if and only if v is a polynomial.
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5.4. If p,q are numbers such that p > 1, ¢ > 1,and p ! + g ! =1,
then Holder’s inequality applied to (5.1) gives a companion inequality to
(1.9):

A (V2R ) < (#(Iol”, )" ((ul’, R))". (5.2)
Also by (5.1),
%(Uz,ﬁ) <A (|vl, r) suplul. (5.3)
S(R)

If p, g are Holder conjugates (that is, p, g are as above or p = 1, g = © or
p =, g = 1), then letting r, R — 1 — in (1.9), (5.2), and (5.3), we obtain

oll3 < ol llull,. (5.4)

5.5. The question arises as to whether (5.4) is really more general than
a more obvious consequence of Holder’s inequality, viz. lloll3 < vl Hloll,.
Thus we ask: is |lull, < |lvll, possible when v is a part sum for u?

With g = 2 the answer is clearly “no.” With g = « the answer is “yes.”
In the case where ¢ = © and v consists of a single term H,, from the
polynomial expansion of u some quite precise information is given in [1]:
IH |l = cm™~272||ull.. is possible, where c is positive and depends only
on N (and the exponent (N — 2)/2 cannot be improved). It seems likely
that [lull, <lvll, is possible for every ¢ with 1 < g < % and g # 2, and
calculations, which we omit, confirm this when N = 2 and ¢ € [1,1.76] U
[2.5,0).

6. PROOF OF THEOREM 3

6.1. We need the following lemma.

LEmMA 4. Let Y7 _(H; be the polynomial expansion of a harmonic
function u on B. Then

IV, u(0)]> = m!N(N + 2) - (N + 2m — 2)|H, 3 (6.1)

for each m € N.

To prove Lemma 4, note first that, since the polynomial expansion can
be differentiated term by term,

IV, u(0)| =1V, H,l (6.2)
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If o is a multi-index, we write x* = x{ .- x§¥, and if P is a homoge-
neous polynomial of degree m on R" given by P(x) = ¥, _,,a,x* then
we denote the operator X,,_,,a, D by Dp. We then have

D°P)’
IV, P> =m! Y ( ') =m! Y, a2a!=m!D,P. (6.3)
lal=m & lal=m
If G,H €%, then
DGH=N(N+2)---(N+2m—2)[SGHda (6.4)

(Kuran [8, Lemma 1]). Taking P = H,, in (6.3) and G = H = H,, in (6.4),
we obtain

IV, H,|I*>=m!N(N +2) (N +2m — 2)IIH,|3,

which together with (6.2) yields (6.1).

6.2. We can now complete the proof of (1.8) in Theorem 3. It remains
to prove only the first inequality in (1.8). Again let the polynomial
expansion of u be Y7_, H,. Taking v = H,, in Corollary 2, we obtain

m
2
1H,, 112 < 1 H,, [lelully

If y €S8, then

o 0 "5 H, 'H,
oy 0) =\ 2= ;01 (V)| =mH(y).
J =0

Hence

0"u

o (0)

Ty

m!||H, |3 < sup lluall; . (6.5)

yeSs

The first inequality in (1.8) follows from (6.5) and Lemma 4.

6.3. Let u=K(,y,). Then u € h*. We verify that for this function
equality holds throughout (1.8) for each m € N. From the polynomial
expansion (2.9) it follows that

70 0y =, e \d,, I
c??';n( )_ m 077‘;" =m:d, yo,m(y)
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for each y € S. Hence by (2.6)

0"u

m
&ry

sup
yeS$

Also by Lemma 4 and (2.7),

(0)

=mld,,.

V,u(0)> = mIN(N +2) - (N + 2m — 2)d2 |1, ,I°

— mIN(N +2) (N +2m — 2)d,,.
Since |lull; = u(0) = 1, it now follows that equality holds throughout (1.8).

7. VALUES AND ESTIMATES FOR THE
CONSTANTS C

m, N, p

7.1 (the case N = 2). When N = 2, we have y = —1/2 and the Jacobi
polynomial P !'/%~1/2 is proportional to the Chebyshev polynomial of
the first kind 7,

_ 1 _ 1
Py eos 0) = (™2 T (cos0) = ™ FJeos(me)
m m

(see [10, Sect. 4.1]). Hence, when 1 < p < oo,
Lo /(p=1) o
Cpry=|— 6)17/ "~V dg
.2, p (77/0 lcos(m8)| )

(p=1/p

= (Efw/zcosp/(pl) b d<l'>)
0

w

1 (2p—1 1)\
— [=B[£— - :

™ \2p—272
m.w = 2/

7.2 (the case m = 1). We have P{"""(¢) = (y + Dt (see [10, formula
(4.5.1D). Hence, if 1 < p < o, then

A similar calculation gives C

1\\ ! o (p—1/p
Cingp = ((B()’ + 1, E)) fo sin?”*! flcos HIP/(Pl)dg)

2p—1 1"
y+1, B(*y—l— 1,—) .
2p -2 2

B
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Similarly,

C B 1,1)/B 11 1BN1
= + +1,=|=—B|=—,=]|.
1, N, (y 7)/ Y 72 - 2,2)

7.3 (the case p = 2). Here we verify that C, v, =1/+/d,, and thus

m

confirm that Theorem 2 implies (1.3) in the proposition. With p = 2 the
integral in (1.6) is

[Tsin?r*to(PY(cos 0)) do = [1 (1= 12) (P (n)) di
0 -1
22U (D (m + y + 1))’
C @2m+2y+ )m!IT(m+2y+1)

(7.1)

(see [10, formula (4.3.3)]). Hence, after some simplification we find that

c mi27 T (y+ Dl(y+3) )77
w2 2m + 2y + D)E(m + 2y + )Vr

1/2

m!T(2y + 2)
Sl @m+2y+ DI(m + 2y + 1)

by the duplication formula for the I'-function. Substituting N — 3 for 2y
gives

2m + N -2 —1/2
C — (m+N—2) =1 d ,

mN.2 (m+N—2 m /N
by (3.5).

7.4 Proof of Corollary 1. The cases p = 1,2 are covered by Theorem A
and the proposition. Suppose now that 1 < p < 2. Since

I[P V(1)] < (mn_: 7) (-1<t<1)

(see [10, formula (7.32.2)]), we have

7o )
f sin®*1 9 [P (cos 0)17/ PV de
0

S(m+y

Q-p)/(p—-1
m )

qusin27+l 0( P (cos 0))2 de.
0
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Using the value of the latter integral given in (7.1), we obtain

(o 3)) ()

Cunp =<
(p—-D
2 ayyt \
2Cm+2y+ 1)ymI'(m + 2y + 1) (7.2)
When N =2 (and y = — 3) we readily simplify (7.2) to obtain C,, , , <

27(P=1/P When N > 3 we simplify (7.2) by writing the B-function and the
binomial coefficient in terms of the I'-function and then using the duplica-
tion formula for the I'-function: the result is

c mT(2y + 2) (p=0/p
mN.p = (2m + 2y + )I'(m + 2y + 1)
ml(N - 2)! (v
- ((2m+N—2)(m+N—3)!)

= d;l(pfl)/p’

by (3.5). It now follows, for all N, that d,,C,, y , <d,/?. This completes
the proof for 1 <p < 2.
Since

0"u
m!d,C, . » sup{‘&x—m(O) cu € h?, lull, = 1},
1

it is easy to see that C,, y , is a decreasing function of p when m and N
are fixed. Hence the case of the corollary where 2 < p < o follows from
the case p = 2. It remains to justify our claim that the exponent 1/2
cannot be improved when 2 < p < . In view of the monotonicity of
C it is enough to work with p = ». Thus we wish to show that
Cono™> cd;'/?, where ¢ is a positive constant depending only on N.
When N =2 we have d,, =2 and C, , . =2/m for all m € N. Now
suppose that N > 3 (so y > 0). Writing ¢ for a positive constant depend-
ing only on N but possibly varying from line to line and using Stirling’s

m, N, p>
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formula to estimate ("} 7), we have

o
Cpnow > cnf’f0 sin®*1 9 [P (cos 0)| do

—em ™ [{(1=22) 1Py (1) di
0

> cm"/l(l —t)7|PS V()| dt
0

>cem~ Y 1/2

(see [10; formula (7.34.1)]). Since y + 3= (N — 2)/2, it now follows from

a

1) that C,, .. > cd,,'/?, as required.
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