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If p is a prime greater than or equal to 5, and G is a group of order 4p 2 con- 
taining a (Menon type) difference set, then either G has an irreducible complex 
representation of degree4, or G~-(x,y,z[xP=yP=z4=l, xy=yx, xz=zx, 
zyz-l=y -1) and p ~ - I  (mod4).  The proof involves representation theory, 
algebraic number theory, and a generalization of Fourier's inversion formula. The six 
remaining isomorphism classes are considered in part II. © 1995 Academic Press, Inc. 

I. INTRODUCTION 

Let G be a group of order v written multiplicatively. A (v, k, 2)-difference 
set in G is a subset D of cardinality k so that the multiset M =  
{ d l d f l [ d i , d 2 ~ D ,  d i e d 2 }  replicates each non-identity element of  G 
exactly 2 times. The integer n := k -  2 is the order of D. Counting two ways 
we have 2(v - 1 ) = k(k  - 1 ). Equivalently, k 2 = 2v + n. 

Note  that any group has four types of trivial difference sets. Namely, the 
empty set, G itself, any singleton subset of G, or its complement. In general, 
difference sets come in set complementary pairs. Indeed if D is a (v, k, 2)- 
difference set in G, then D' = G - D is a (v, v - k, v - 2k + 2)-difference 
set in G. Thus to simplify classification and eliminate the trivial types from 
consideration we take 1 < k < v/2. 

Speifically we are interested in (4N 2, 2 N 2 - N ,  N2-N)-d i f fe rence  sets. 
These are known as Menon-type difference sets or Hadamard  sets. Observe 
that Schutzenberger's theorem [4, "I, Section 1 ] and, hence, the B r u c ~  
Ryser-Chowla theorem, are automatically satisfied. Moreover, since every 
divisor of n is also a divisor of v, multiplier theorems like those of Hall do 
not apply. In contrast  group representation theoretic methods are effective 
in the study of this type of difference set. The main result of this paper  is 
the following. 
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THEOREM 1.1. I f  N = p >~ 5 is prime and G is a group of  order 4p 2 con- 
ta&ing a Menon-type difference set, then one of  the following holds: 

(i) G has an irreducible complex representation of  degree 4. In par- 
ticular, G is isomorphic to one o f  G4, G13 , G14 , GI5 , or G16 (see Section 4). 

(ii) F ~ - G l l a n d p - 1  (mod4).  

These isomorphism classes will be dealt with in part II of this paper. 
When N =  2 or 3, classification was provided by computer search in the 
paper by Kibler [3] .  Turyn [14] and, later, Mann and McFarland [9]  
showed that if an abelian group of order 4 p2 has a Menon-type difference 
set, then p = 2 or 3 or G is of type (4, p, p) and p ~ 1 (rood 4). In a sub- 
sequent paper [ 10] McFarland showed that p = 2 or p = 3. 

Apparently some results in the nonabelian case were known to Lander 
[4, IV, Prob lem3] .  Dillon has a method for dealing with some non- 
abelian cases [4, IV, Problem 17]. Lastly, there is a paper by Liebler [6]  
that deals with the case G ~ GI~. Recent results include a successful 
computer search to find a (100, 45, 20)-difference set [ 13]. 

The proofs in this paper involved using group representation theory and 
algebraic number theory to determine the possible homomorphic images of 
a putative difference set under a given complex representation. These 
images can be used to calculate the distribution of the difference set among 
cosets of the kernel of the representation. In some cases this determines 
that a difference set cannot exist. In other cases it is necessary to take all 
irreducible complex representations of G into account simultaneously. This 
is done via the inversion formula [6, Theorem 2.2]. 

The next section contains relevant background material for representa- 
tion theory. In Section III we prove vital facts from algebraic number 
theory. In Section IV we present a list of the isomorphism classes of groups 
of order 4p 2, p an odd prime. In Section V we present preliminary results. 
We study dihedral homomorphic images in Section 6. We finish the proof  
of Theorem 1.1 in the last section. 

For  background material on symmetric designs, the reader is directed to 
Lander [4] .  Results from algebraic number theory can be found in the 
monograph by Weyl [15] or the text by Ireland and Rosen [2].  For  
information on the representations of finite groups see [ 1 or 12]. 

IL REPRESENTATION THEORY 

Denote the ring of integers by ~e, the complex field by % the field of 
rational numbers by ~, and let G be a finite group written multiplicatively. 
Let R be a commutative integral domain. For our purposes R is a subring 
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of cg which contains the integers (see below). The group ring for G over 
R, RG, consists of all formal linear combinations of group elements with 
coefficients in R. For  an element A ~ RG one writes 

A= ~ agg, ag~R. 
g ~ G  

Particularly, subsets of G are represented in RG with coefficients 0 or 1. 
For  an element A of the group ring denote ~,gsaagg  t by A (°. If D is a 
(v, k, 2)-difference set in G, we get the difference set equation 

g ~ D  g l a d  g2~D 

= ( k - 2 )  16+ 2 G = n l a +  2G. (2.1) 

An R-representation of G is a group homomorphism from G into GLa(R ). 
The integer d is the degree of the representation. The R-module generated 
by the image of G in GLd(R) is the representation module. Conversely, any 
RG-module determines a representation [ 1, p. 47 ]. Any complex represen- 
tation for G can be written as a direct sum of irreducible representations. 
We may also assume that any complex representation is unitary [ 1, 1.10, 

- - t  
Exercise 5]. Consequently cp(g i)=q~(g) 1= cp(g), for g~  G, where the 
overbar is for the complex conjugate and super t is for the transpose. 

Since G is finite, the Krull-Schmidt theorem implies that ~G is an inter- 
nal direct sum of indecomposable submodules which are ~G-bimodules. 
This decomposition arises from the decomposition of 1 as the sum of cen- 
tral primitive idempotents [ 12, p. 19]. For  each central primitive idempo- 
tent ei there is an irreducible representation cpi with ~0i(g ) = g e i  for g ~ G. 
Set Z~ := tr(q~/). Z~ is the character associated with e~. 

A field K is a splitting field for G provided that KG splits into an internal 
direct sum of irreducible submodules and is the smallest such field for 
which this occurs. 

Let m be the exponent of G and ~ be a primitive complex m th root of 
unity. A theorem of Brauer [ 12, Theorem 3.4.11 ] states that K := ~ [~ ]  is 
a splitting field for G. In this case there exists a formula for the central 
primitive idempotents in KG [ 12, Theorem 3.2.22]: 

Zi(1) ~, z~(g 1)g. 
el= [G[ g~G 

Since K is Galois over ~ we can find the central primitive idempotents in 
~G by summing over the orbits on the e/s  under the action of the Galois 
group of K over ~. 
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Set R = ~ [ ~ ] ,  so that the quotient field, K, of R splits G. Since K is a 
splitting field for G the number of terms in the decomposition of 1 in terms 
of central primitive idempotents is the number of conjugacy classes in G 
[12, Theorem 3.1.23]. A character table for G is a matrix whose columns 
are labeled by distinct conjugacy classes in G and whose rows are labeled 
by all the distinct inequivalent irreducible representations over a splitting 
field for G. An essential fact is that this matrix is invertible [ 1, p. 220]. 

The trivial representation of G is the map which takes each element of 
G to 1. Since qgG is a G-module it determines a representation called the 
regular representation. If q) is an irreducible representation for G, then ~o 
occurs as a direct summand of the regular representation. As a result 
~g~G ~o(g) = 0 when (p is a representation for G which does not contain the 
trivial representation [ 12, 3, Example 1.6]. 

Hence when a unitary representation cp not containing the trivial 
representation is applied to Eq. (2.1) we get 

go(DD ( 1 ) ) = c p ( D ) c p ( D ( - ' ) ) = g o ( D ) ~ t = n l d .  (2.2) 

Regard (2.2) as a matrix equation in the ring of d x d  matrices with 
entries in R (not K!) generated by q)(G). We wish to characterize all solu- 
tions to (2.2) which can arise from elements Ai of RG. Liebler calls these 
solutions ~oi-aliases for D, since ~oi(A ) = ~oi(Ai). We are thus led to the 
general inversion formula which we state without proof. 

THEOREM 2.1 [6, Theorem 2.2]. Let K be afield of  characteristic 0 and 
let {ei} be the central primitive idempotents for KG. For A ~ KG, we have 

A = ~, cpi(Ai) el, where Ai is any cpi-aliasfor A. 

In order to find a difference set in G we wish to find an element of 2gG 
with coefficients either 0 or 1 which simultaneously satisfies each of the 
irreducible representations for G. From the discussion above, we can do 
this via the inversion formula for ~G. 

A translate of a difference set D in a group G is a set Dg for some g ~ G, 
where Dg = { d g t d ~  D}. Any translate of a difference set is again a 
difference set with the same parameters, since the multiset of differences 
arising from the translate is identical to the multiset from the difference set. 

IIL ALGEBRAIC NUMBER THEORY 

In this section q denotes a primitive complex p t h  root of unity, p an odd 
prime. An algebraic integer is an element of an algebraic number field 
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which satisfies a monic polynomial with integer coefficients. The first 
theorem is commonly referenced in the literature (e.g., [10, p. 15 or 8, 
p. 83]). For the reader's convenience we provide a proof. 

THEOREM 3.1 (Kronecker). I f  o~ is an algebraic integer each o f  whose 
algebraic conjugates have modulus one, then o~ is a root o f  unity. 

Proof  If 0~ is an algebraic integer, then ~ satisfies a polynomial 

A ( X ) = X "  + c . _ i X ' - I  + ... + c l X + c  o 

with rational integral coefficients. Let ~ =  %, ~1 ..... 0%_ 1 be the algebraic 
conjugates of ~. Then 

n--1  

A(X)= l~I (X--cq). 
i = 0  

Let K be an algebraic number field which contains all the conjugates of ~. 
We have that m := [~c : ~ ]  divides n! ; i.e., tc is finite over ~. Moreover, the 
ring of integers in K form a discrete lattice [ 15, IV, 6]. So there are finitely 
many integers fl in tc having length one. Thus ~ is in a finite subgroup of 
~c*, the multiplicative group of K. Any finite subgroup of the multiplicative 
group of a field is cyclic [5, V, 4.9]. Thus ~ ;=  1, for some j. I 

LEMMA 3.2. Let ~ be a primitive p"th  root o f  unity, and let n be a 
positive integer. 

(a) [10, p. 17]. Let ao ..... ap_l ~ ~. Then ~__-o 1 ai~li=O i f  and only i f  

a0= . . .  ---:a; 1- 
pn 

(b) Let ao, ..., a; ,_ ~ ~ ~. Then ~.t=o 1 al ~l= 0 i f  and only i f  ai = a; 
when i =- j (rood pn-1). 

Proof. The minimal polynomial for ~ over ~ is 

v (X)=X v. % - 1 ) + X , ,  % - 2 ) +  ...  +Xp~-~+l  

=/z(X p'-I) [5, p. 316]. 

Set A ( X ) = a o + a ~ X +  .. .  +ay,  X P " ~ [ X ] .  Then A( ~ ) = 0  if and only if 
v(X) divides A(X). Write A(JO = v(X) h(X). By long division 

h ( X ) = a p , X p ° - ~ + a p , _ ~ X  p. ' 1+ . . .  + a p n _ p , , _ l + 2 X - } _ a p  n p,,_l+l. 

Hence the result. I 



ON HADAMARD SETS OF ORDER p2 261 

Lemma 3.2.b will prove useful when groups of order 4p 2 with cyclic 
Sylow p-subgroups are studied. Although it is elementary, the author could 
find no reference to it in the literature. 

LEMMA 3.3. Let  ~ be a primitive pnth complex root o f  unity. I f  o¢ is an 
algebraic integer in ~ [ ~ ]  all o f  whose conjugates have length p, then 

= ++_p~k, for  some k. 

Proo f  Let a generate Aut~ ~ [ ~ ]  by ~°=  ~g, where g is a primitive 
root modulo p~. The prime factorization of the ideal generated by p in 
~e[~] is ( p ) =  (1"-~) p"-~(p-1), cr fixes ( 1 - ~ ) ,  so a fixes (p). By hypothesis 
~ = p2. Moreover, 

(~)~J = (~)~J~,~J = p2, j = O , . . . , p ~ - X ( p _ l ) .  

By the uniserial factorization of (p) in ~ [ ~ ]  we have that ~ = up for some 
unit u in ~ [  ~ ]. But then every algebraic conjugate of the algebraic integer 
u has length one. Hence, by the theorem of Kronecker, u is a root of unity 
in ~ [ ~ ] .  I 

The previous lemma is particularly useful when applied to Eq. (2.2). 
When D is a (v, k, )0-difference set in a group G, D must simultaneously 
satisfy each of G's irreducible representations. In particular it must satisfy 
(2.2) for all conjugates of a given representation. 

LEMMA 3.4 [10, Lemma5] .  I f  ~ is an algebraic integer in ~e[it/] o f  
length p, then 

(a) t fp  - 3 (rood 4) then ~ = (#l)ep, f o r  some e e ~ .  

(b) t f p =  1 (rood4) then ~ is one o f  the following: 

(i) (itl)~p, 

(ii) (itl)~(a +_ 2ib) 2, 

(iii) (itl)e(a ± 2ib) P -  ~ 11 t = _ Z l=1 El/p] ( i t l ) e (a+2ib )v /P ,  

(iv) ( i~)e(a+ Zib) Z~;5o 2 ic~g' for  c =  1 and 3, 

where e e ~ ,  g is a primitive root modulo p, [ l/p ] is the Legendre symbol, 
and a and b are the unique positive integers so that p = a 2 + 4b 2, 

Proo f  Let H denote the ideal generated by 1 - t /  in ~ := ~ [ # / ] .  The 
ring A/F/ i s  isomorphic to the finite ring ~ p [ i ] .  An element x = c + i d  of 
~' generates a non-trivial ideal c o n t a i n i n g / / i f  m o d u l o / / ,  x # 0 and x is 
not a unit. The norm map from the Gaussian integers induces a map N 
from ~ / / / t o  the integers modulo p. Hence, if x is not a unit, 

N ( x )  = c 2 + d 2 =- 0 (rood p). 
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Hence, when p - 3 (rood 4) H is prime. While when p = 1 (mod 4), H has 
prime factorization 

H = ( 1  -~/, a + 2ib) (1  - rl, a -  2ib).  

Let o- generate Aut~ Lr[q]  and extend o- to an automorphism of ~ by 
fixing i. From the preceding paragraph we see that o- fixes all prime ideal 
factors of (p) in ~ since in ~ [ t / ] ,  (p) factors as ( p ) = ( 1 - ~ / ) P  1. I f ~  is 
an algebraic integer of length p in ~ then ~ = p 2 .  Hence the ideal 
generated by ~ contains the ideal generated by p and so it is invariant 
under o-. Thus ~ =  u0~ for some unit u ~ ~.  

Now for j = 0  .... , p - l ,  

p 2  = (pZ)~J  = 0¢0~ = 0(J0~;( 

Thus each algebraic conjugate of the algebraic integer u = ~/0~ has length 
one. Thus by the theorem of Kronecker u = (i~l) e for some e ~ ~ .  

If necessary, shift 0~ by ~l e~l-g)- I  so that 

(~,)~ = (~e~l  _ g ~ - i  )~  = (~1_ g~-l)~ ~ 

= ?]e(l - -g) - lg( i I~)eO~ = l ] (eg+e  -- eg)/1 -- gieo~ 

= ie l i e (  1 g) lo~ =. ieo~t" 

Since {~f  : j = 0 ,  ..., p - 2 }  forms an integral basis for ~[ i~]  over ~ [ i ]  
we can write 0~ uniquely as 

p 2 
~ =  ~. cjr/j with the cj's in ~ [ i ] .  

j = o  

Then the equation 0~ ° = i~a implies that cj = i~cj+ ~ for j = 0 ..... p - 3 and 
e p _ = = i ~ c o  . So c j = i - e i c o  for j =  1, ..., p - -2 .  Set c:=Co; then 

p - - 2  
O ~ = C  Z i--ejl~gJ" ( 3 . 1 )  

j = 0  

If e = 0  in Eq. (3.1), then ~ = - c  is an algebraic integer in ~ [ i ]  of 
length p. Thus when p-= 3 (mod 4), ~ = p  or an associate. While when 
p = 1 (mod 4), ~ is either of type (i) or of type (ii). 

If e = 2 ,  then the sum in (3.1) is a quadratic Gauss sum which is 
v/p when p = l  ( rood4)  and iw/p when p = 3  (mod4)  [2, Chap. 6, 
Theorem 1]. Thus c is an algebraic integer in ~e[ i ]  of length v/p. When 
p = 3 (mod 4) this is impossible. When p = 1 (rood 4), c is a +_ 2ib or an 
associate. This is type (iii) for part (b). 
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Finally, if e = 1 or 3, the sum in (3.1) is a quartic Gauss sum of length 
x/P [2, Proposit ion 8.2.2]. So c is again an algebraic integer of length x/P 
in ~ [ i ] .  This is type (iv) for part  (b). | 

I V .  G R O U P S  OF ORDER 4 p  2, p AN O D D  PRIME 

In this section p is an odd prime, Ca denotes the cyclic group of order 
a and Da is the dihedral group of order a. When p - 1 (rood 4), - 1 is a 
quadratic residue modulo p and also modulo p2. Let f be an integer so 
that f 2  = _ 1 (mod p2). 

Let G be a group of order 4p 2 written multiplicatively. Let H be a Sylow 
p-subgroup and K a Sylow 2-subgroup. If  H is not normal in G, then p = 3 
and this case is thereby covered by Kibler [ 3 ]. So we may assume that H 
is normal  in G. If  z s K, then z H z  i =  H.  That  is, conjugation of H by z 
induces an automorphism of H. Since H c~ K = ~ and G = H K ,  G = H :4 K 

(semi-direct product) [5, I, Exercise40]. Thus groups of order @2 can 
be classified by considering homomorphic  images of K in Aut H up to 
equivalence by conjugation. 

When H is cyclic, Aut H ~ - C p  x Cp_ 1 is too. Thus a list of the 
isomorphism classes in this case is 

G l ~ - ~ x ,  

G2~- ~x ,  

G3~- ~x ,  

G 4 ~  ( x ,  

Gs-~  ( x ,  

When H is 
over G F ( p ) .  Then automorphisms of H can be identified with 2 ×2  
matrices over G F ( p )  in canonical form. The image of an element of K in 
Aut H has order 1, 2, or 4. Hence the list of isomorphism classes in this 
case is 

Z [ X p2 = Z 4 = 1, a b e l i a n )  ~ C4p2. 
Z, W [ X  p2= Z 2=  W 2=  1, abel ian)  ~_ C2p2 x C2. 

Z I Xp2 = Z4 = 1, ZXZ 1 = X - -  1 ) .  

z l x P 2 = z  4 =  i ,  z x z  - I  = x  f )  (p---1 (mod4)) .  

Z, w I x P 2 = z 2 ~ - W  2 = 1, w x  -- x w ,  w z  = z w ,  z x z  = x - 1 )  ~ O 4p2. 

elementary abelian, view it as a two-dimensional vector space 

G 6 ~ { x ,  y ,  z ] x p = y P  = 2  .4 = 1, abel ian)  -~ C4p x @ .  

G 7 ~ ~x ,  y ,  z, w ] x p -- yP = z 2 = w 2 = 1, abel ian)  = C2p x C2p. 

G8 ~ ( x ,  y ,  z, w ] x P = yP = Z 2 ~- 1422 = 1, x y  = y x ,  x z  = zx ,  x w  = wx ,  

y z  = zy ,  w y w  = y -  1 z w  = w z  ) .  

G 9 '~ £ x ,  y ,  z ,  w [ x p = yP  = z 2 = w 2 = 1, x y ,  x z  = zx ,  w x w  = x 1 

y z  = zy ,  w y w  = y - 1, w z  = z w ) .  

582a/72/2-7 
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G10 ~ (x ,  y, z, w [ x p = yP = Z 2 = W 2 = 1, x y  = yx ,  z x z  = x 1, x w  = wx, 

y z = z y ,  w y w =  y - t ,  w z = z w ) - ~ D z p × D z p .  

GH ~- ( x ,  y,  z [ x p = z  4 = 1, x y  = yx ,  x z  = z x ,  z y z  -1 = y - l ) .  

G12 ='~ ( x  , y, z l x P = y P • z  4• 1, x y =  yx ,  z x z  -1 = x  -1, z y z - l =  y - 1 ) .  

G 1 3 ' ~ ( x  , y , z ]  xP= yP=z 4= 1, xy= yx, z x z -1=  y - l ,  zyz -1 = x ) .  

When p = 1 (mod 4) the last group is also presented by 

G113_~(x, y , z[  xP= yP= z  4= 1, z x z - l = x  y, zyz -1 = y - f ) ,  

and there are, in addition, 

G14 ~ ( x, y, z [ x p = yP = Z 4 = 1, x y  = yx ,  z x z -  1 = x, z y z -  1 = y f) .  

G15_~(x , y , z [ x P = y P = z  4= 1, x y = y z ,  z x z  - I  = x  -1, zyz l = y f ) .  

G16~- (x ,  y , z ] P = y P = z  4= 1, x y = y x ,  z x z  -1 = x  f z y z  l = y f ) .  

Now note that each isomorphism class, where K is elementary abelian 
has as homomorphic image either O4p or C2p × C 2. Also note that, save for 
G4, each isomorphism class where H is cyclic has as homomorphic image 
either Dzp2 or Cp2. In the next section we repeatedly use the elementary fact 
that the composition of onto group homomorphisms is again an onto 
group homomorphism. 

V. PRELIMINARY RESULTS 

Throughout  this section, G is a multiplicative group of order 4p 2 and D 
is a putative (4p 2, 2p 2 -  p, p 2  p)-difference set in G, where p is an odd 
prime. This section contains a sequence of lemmas with hypotheses of the 
following form. 

HYPOTHESIS. Suppose G has a normal subgroup K so that G / K  is 
isomorphic to some explicit  group with conjugacy class representatives 
K g l ,  ..., Kgm. Then G / K  has a character table o f  the f o r m  C (an m × m 
matr ix) .  Le t  v be the m-tuple o f  integers having ith entry ~ I gklK, where the 

summation runs over the G/K-eonjugacy class o f  g and [g[K := [Kg c~ DI. 

The results of Section 3 give only finitely many possibilities for b = Cv, 
and each such linear system has a unique solution by Theorem 2.1. In this 
manner we argue that v has one of finitely many explicit forms. In each 
case we can label the first row of the character table by the trivial represen- 
tation. The linear equation arising from this row is always Z Ig[K = 
k = p 2 - p .  

We find that little is gained by generalizing later results. Therefore the 
statements of results throughout are not presented in full generality. The 
first three lemmas are due to Menon [ 11 ]. 
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LEMMA 5.1. S u p p o s e C 2 ~ - G / K = ( K z ) , z e G .  ThenG/Khasascharacter  
table C =  [11 _11] and in some order, lllK and IZIK are p2 and p2 p. 

Proof  Define a linear representation Z for G by X(z) = - 1 ,  ker Z = K. 
We have that z ( D ) =  [ l l x - ] z l K .  Equation (2.2) yields 

( I I lK- - IZ IK)2  = p  2. 

Thus I I [x-- [ZlK=--+P-  We also have that [ I I K + l z [ K = [ K c ~ D [ +  
IKzc~DI = IDI = k = 2 p 2 - - P .  Thus C v = (  k +p). The indicated v are the 
unique solutions to this linear system by Theorem 2.1. 

LEMMA 5.2. Suppose C2 x C 2 ~ G/K = ( K z )  x ( K w ) ,  w, z ~ G. Then in 
some order [I[K , IZIK, IWIK, and Iwzlx are 

p ( p + l )  p ( p - - 1 )  p ( p - - 1 )  p ( p - - 1 )  

2 ' 2 ' 2 ' 2 

Proof  G/K has character table 

C =  
1 - 1  - 1  

1 1 1 - 

1 - 1  1 

with column labels 1, z, w, zw and row labels, say ~Oo, ~ol, cp2, cp3. The 
vector b must be 

/ ) _+p 
_+p • 

+p  

Since p is odd, the unique solutions are those above by integrality of 
the ]glx. | 

At this point the sieving action of our method begins to emerge. As the 
size of the kernel of a homomorphism increases, the number of possible 
subsets of cardinality k which satisfy all pertinent representations decreases. 

LEMMA 5.3. Suppose C4~G/K=(Kz), z@G. Then in some order the 
intersection numbers [ztlx, l=  O, 1, 2, 3, are 

p ( p + l )  p ( p - - 1 )  p ( p - - 1 )  p ( p - - 1 )  

2 ' 2 ' 2 ' 2 
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when p -= 3 (mod 4). When p = 1 (mod 4) we may also have 

{{[l lx,  IzZ[K}, {]zl/<, ]z31K}} 

={{½(p2_+(a2 4b2)} ,{½(p2_p__4ab)}},  

where a and b are unique positive integers so that p = a 2 + 4b 2. 

Proof Define a linear representation X for G by X(z)= i, k e r z = K .  
We have that x ( D ) =  [ I [K+i  Iz lK-]z21~-i  [Z3IK • Equation (2.2) yields 
]x(D)[2 = p2 So x(D) is a Gaussian integer ~ of length p. From the proof  
of Lemma 3.4 e is an associate of p when p -  3 (rood 4). When p -  1 
(mod 4), e may also be an associate of (a _+ 2//)) 2. A character table C for 
G/K has columns labeled by z m, m = 0, 1, 2, 3, and rows labeled by Z,  
where S ( g )  = z ( g )  t, 1=0,  1, 2, 3, and Cl, m=Z(zl) m, I, m = 0 ,  1, 2, 3. The 
possible vectors b are of the form (k, cq +_p, ~)t. The solutions to the 
resulting linear systems are listed above. | 

LEMMA 5.4. Suppose C p ~  G/K= ( K x ) .  Then there is a unique 
j ~ { O, ..., p - 1 } so that 

I x J l K = 2 p -  1 + e ( p -  1), Ix l lx=  2p - 1 - e  

for l C j, where e = + 1. 

Proof Define a representation Z for G by X(X)= t/, ker Z = K, where I/ 
is a primitive complex p th  root of unity. We have that z ( D ) =  
Z f - o  ~ IxtlK~ie~r[r/] .  By Eq.(2.2), x(D) has length p. By Lemma3.3 
x(D) = epr/j for some integer Z Next, define Z 1 as a representation for G by 
Z(x)  = rf, ker X l = K, l = 0 ..... p - 1. Then G/K has character table C with 
l, m-entry Zr(xm), l, m =0,  ..., p -  1, where rows of C are labeled by the 
representations Z l and columns of C are labeled by powers of x. Meanwhile 
the i th entry of b is 

b i = { ;  if i = 0  
r /u ,  otherwise' 

The result follows by Theorem 2.1. | 

LEMMA 5.5. Suppose Cp x C2 ~- G/K= ( K x )  x ( Kz) .  Let e and j be as 
in the preceeding lemma. Then for some ~ = +_ 1 and a suitable translate of  
D we have 

--1 
I x + I K = p + ( e + ~ ) P ~  e s (  for Iv~j. [xZlK= P 2 

Also ]xJzIK = ((p -- 1)/2)(2 + e -- 4) and IxlzlK= p - 1 + (~ - e ) / 2 f o r  Issj. 
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Proof Define a linear representation X1 for G with kernel K by 
Zl(X)~-/~, Z I ( Z ) = - - I .  Set H : = K u K z  and I g t H = [ H g ~ D I .  Equation 
(2.2) implies that Izl(D)] =p .  By Lemma 3.3 x ( D ) =  (pqJ for some integer 
j and some C = -+ 1. Hence, 

p- - I  

0=zI(D)--~pvlJ=( lxJ lK - IxJzlK-~p)qJ + Y, (ISI~-Ix'zl~)v/. 
/=0 /¢ j  

By Lemma 3.2, Wig-Ix'zl~ and, hence, IXqK+ IxllH have the same parity 
for l # j. Thus j is as in Lemma 5.4. 

Now, G/K has a character table of the form C = C~ ® C=, where C1 is 
from the previous the lemma and C2 is from Lemma 5.1. The rows of C are 
labeled by the representations X~®Ol ; l=0 ,1 ;  i = 0 , . . . , p - 1 ,  where 
xi ® CZ(x ) = qi, and Xz® tpl(z) = ( - 1 )l. (Z1 =/~1 ® i//1). The columns of C are 
labeled by x~zl; 1 = 0, 1; i = 0, ..., p - 1. Replace D by Dz if necessary so that, 
by Lemma 5.1, p ~ =p2. 3Zi=o Ix1[ Then the entries of the vector b are given by 

I k, if i = l = 0  

bi, l = epq 'j, if l = 0 ; i = l , . . . , p - 1  
l p, if l = l ; i = 0  

~pr/0, if l = l ; i = l , . . . , p - 1 .  

The result follows by Theorem 2.1. I 

LEMMA 5.6. Suppose Cp x C 2 × C 2 ~ G/K= ( K x )  x ( K z )  × ( K w ) ,  x, z, 
w ~ G. Let j and e be as in Lemma 5.4. Then for a suitable translate of  D, 

Ix/wjK I p-1 

where C2 is the character table in Lemma 5.2 and ei= +_ 1. Also for l C j 

Ix'lK = ¼12p + 2  - e  - e l  - e 2  - e3 ] .  

Proof Set L = ( K x )  and H = ( K z ,  Kw)  so that G / K = L / K x H / K .  
Then G/K has character table C = C 1 ® C2, where C1 is as in Lemma 5.4 
and C2 is as in Lemma 5.2. With the notation of those lemmas we take 

)(l ® ~ i( Kxazbw c) = ~]al(,o i( Hzbwc). 
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As in Lemma 5.5 

That is 

X ® ~o, = e~p~/k(°, some k(i), e; = _+ 1, i = 1, 2, 3. 

p--1 

(IxlIK - IxlwlK - IX/Z[*:+ Ixlzw]K)rll=elPrl k(1) 
l=0  

p - 1  

Y~ (Ix ' l , : - [x%lK+ [x'zl*:- ]x'zwl*:)v'=e2p~ k(=) 
/=0  

p - 1  

Y~ (Ix'l*:+ Ix'wlK-Ix'z[*:-[x'zwl*:)~'=e~p~ k(~). 
, = 0  

By Lemma 3.2 for l # k(1 ), 

Ix'l*:-Ix'wl*:-Ix'zlK+ Ix'z<*: 

= Ixk(1)lg--Ix'~(')WI*:--Ixk(1)ZlK+ Ix~(i)zwlK-~,p 

and for l # k(2), 

Ix'F*:-Ix~wl*:+ Ix'zl K -  Ix ' z<  *: 

= [ x k ( 2 ) [ K - - [ x k ( Z ) W [ K - O  [- [ x k ( 2 ) Z [ K  - [xk (2 )ZW]K - e z p  

and for l # k(3), 

Ix'lK+ ]x'wlK- Ix'zlK-- Ix'zwlK 

= Ixk(3q,: + Ixk(3)wl*:- Ixk(~)zl K -  [x~(3)zwl K -  ~ p. 

So, for example, [x']*:- [x%[K-[x'z]*:+ [x'zw[K has the same parity for all 
l #k ( 1 ) .  Thus, [X']K+ [X%[*:+ ]XtZ]*:+ [X'ZW]*::= [Hx'r~D[ has the same 
parity for a l l / ~ k ( 1 ) .  Hence, k ( 1 ) = k ( 2 ) = k ( 3 ) : = j  as in Lemma 5.4. 

Replace D by Dz, Dw, or Dwz, if necessary, so that, by Lemma 5.2, 
ZT--o 1 [xt[*: = p(p + 1 )/2. Set eo := e. Then the vector b has entries indexed 

' ~ )  'S by the Z q~i which are given by 

if l = i = 0  

if i v~O, I -O(modp)  

otherwise. 

Theorem 2.1 now yields the result. | 

LEMMA 5.7. Suppose C p 2 ~ G / K = ( K x ) , x e G ,  and [K[=4.  Then there 
is no Menon-type difference set in G. 
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Proof Note that 0 ~< I g[K~< 4, since [K[ = 4. Define Z by Z(x) = 4, where 
4 is a primitive pZth root of unity. We have z(D) = ~2f2=o 1 Lx l ] 4 l. Equation 
(2.2) implies that [z(D)[=p. By Lemma 3.3, z(D)=~p~ m, ~= _+1 for 
some m. Apply Lemma 3.2(b) with n - - 2  to z(D)--~p4m; then when j=-m 
(mod p), but jvam, 

IxJlK= Ix'lK- ~p. 

Since 0~< IglK~4,  we must have that p~<3. Kibler [3]  reports that no 
group of order 36 with cyclic Sylow 3-subgroup has a non-trivial difference 
set. | 

VI. GRouPs OF ORDER 4p 2 WITH DIHEDRAL 

HOMOMORPHIC IMAGES 

In this section we study groups of order 4p 2 with dihedral images 
for p an odd prime. Throughout  this section D is a putative 
(4p2, 2p2 _p ,  p2 -p)-difference set in G and K is a normal subgroup of G 
so that D2t~G/K= (Kh) ~ (Kz), h, z~G. In this case, (Kh) generates a 
cyclic subgroup of order t dividing 2p 2. Let (Kx) generate the p-part of 
this subgroup and let (Kw) generate the 2-part (if any). Set H/K= (Kh) 
and L/K = (Kx). Regard H and L as subgroups of G and for an element 
g of G and a subgroup S of G write Igls for [Sgc~D[. 

With the notation above, let 0 be a non-trivial linear representation of 
H with kernel containing K. Then G affords an induced representation 
cp = 0 G of degree 2 by 

/ 101 
In addition, ker cp = ker 0 [ 1, II, Section 12D]. Two such representations 
are equivalent if and only if they have the same character. Hence there are 
( t -  1 )/2 distinct inequivalent representations of G/K of this form. These are 
irreducible as long as x is not in the kernel of 0- 

When x is in the kernel, (p reduces to a linear representation of 
(Kz) x (Kw). If (Kw) is non-trivial we label the representation ~o~, 
i =  1, 2, 3, as in Lemma 5.2. If (Kw) is trivial, define ~o 1 by ~o(h)= 1, 
cp(z) = - 1 .  In both cases denote the trivial representation by ~o o. 

Finally, set c - ~ -  1 ~- 1 - x-.l=o thlK 0(h) and d = Z l = o  lhzlxO(h), where x is not in 
the kernel of 0- Then we have that 
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By Eq. (2.2) 

I cg + dot 2cd =Io 1 
Thus 2cd = O. So one of c or d is 0 and the other has length p. 

(6.1) 

LEMMA 6.1. Let K <  G with G/K ~- D2p. Then for a suitable translate of 
D there i sauniquejE{O .... , p - l }  so that 

(i) [ X q x = p + e ( p - 1 ) ,  J x l ] x = p - e ,  l # j ;  [x lz]~:=p-1,  l~ 
{0, . . . , p -  1} or 

(ii) [ x t ] x = p ,  l ~ { 0  .... , p - - l } ;  [ x J z [ x = ( l + e ) ( p - - 1 ) ,  [xlz[K= 
p--  l--e,  l # j .  

Proof Let r/be a primitive complex p th root of unity and set ~(x) = ~/. 
The degree 2 irreducible representations of G/K are induced from ~t(x) = r//, 
l =  1, ..., ( p - 1 ) / 2 ,  and are all conjugate. In this case (Kw)  is trivial, so 
H = L .  Replace D by Dz if necessary so that ] l ] u = p  2 by Lemma 5.1. 

Case d = 0 .  If d = ~ ' - 0 1  [x~z[Kr/z=0, by Lemma 3.2 and the fact that 
- -  p 1 p2 P = Z 1 = o  ]xlzlx ]z]~/ we get [xlz[K=p-1,  l = 0 , . . . , p - 1 .  Next, 

apply Lemma 3.3 to c. Then apply Lemma 3.2 to c -  ep~l k and use the fact 
that p 2  p -  1 = ~ l = 0  ]xt]x = [Hc~D]. This is case (i) of the lemma. 

Case e = 0. This is similar and we omit the proof. | 

LEMMA 6.2. Let K be a normal subgroup of  G with G/K~-D4p and 
[KI = p. I f  G has a Menon-type difference set then p <~ 3. 

Proof Apply Lemma 5.2 to L and replace D by one of Dz, Dw, or Dzw, 
if necessary, so that 

p 1 p ( p +  1) 
[xJlK = IZc~DI 2 (6.2) 

j = 0  

Let ~ = Z ®  cP3 be a representation of H with kernel K, where 2' is as in 
Lemma5.4 and ~03 is from Lemma5.2. Denote by (p(2) the degree-2 
representation of G/K, induced from 2" with kernel N : =  Kw Kw. 

Case d = 0 .  I f d = E ~ - o  1 ( I x ~ z l x - I x Z z w l K ) ~ z = O ,  then I x J z l K  - I x J z w l K  

: = f  is constant for all j by Lemma 3.2. Hence IxJzlK+ IxJzwl,~ = IXJZIN has 
the same parity for all j. Thus case (i) of Lemma 6.1 holds. Therefore, 

Ixlzllc- [xlzw]l~= f 
) l = 0  ..... p - -1 .  

I x t z l K +  I x Z z w l K =  p - 1 ' 

So I x ~ z l K  = l ( p  _ 1 + f ) ,  l = 0, ..., p - -  1. 
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By the normalization in Eq. (6.2) 

p(p-  1) p-1 - Y" I S z I K = P ( P - 2 1  + f )  

l =0  

Hence, f = 0 and 

[ S z w [ K = - -  1= 0,..., p - - 1 .  [XlZiK = p - -  1 
2 ' 

Next by Eq. (6.1) we can apply Lemma 3.3 to c = 
Y , f _ o l ( l x q t ~ - l x % l ~ ) r l ;  and then apply Lemma3.2 to c-~pr/j ,  where 

= _+ 1. Then 

IxqK-Ix'wl~ = IxJ l~- IxJwl~-@ for l # j .  

So for lvLj, [XIIKAf - [XIWIK = [XllN has the same parity. Hence j is as in 
Lemma 6.1. Therefore for l -¢ j 

Ixll~ - fx'wl~ = Ixq~-- Ix :wl~-@~ 
Ix'Ix+ I x%l~= p -  e f 

e as in Lemma 6.1. 

Thus I x'l ~ = 1( I xq/~- I x J w l K -  @ + p - a) for I ¢ j. By Eq. (6.2) 

p (p  + 1 p-1  - 1 
2 ~ [ S I K = P 2  ( ]XJ IK- - l xJwlK- -~P+P- -e )+ lxJ lK"  

/= 0  

So p ( p  + 1) = (p + 1 ) I x q K - ( p  - 1 ) IxJwl~-  @(p - 1) + p ( p  - 1) - 
e ( p - 1 ) .  By Lemma6.1, ( p - 1 ) ( p + e ( p - 1 ) ) = ( p - 1 ) l x J I K + ( p - 1 )  
IxJwlx= (p - 1) Ix~lr. Hence, p ( p  + 1) + p ( p  -- 1) + e(p - 1) 2 =2p {xJli; - 
~p(p--  1) + p ( p -  1 ) - e ( p -  1). So we find that 

IxJ lK=l[p  

]xJwl~= ½[p 

Ix ' lK=l [p  

>Zwl~= 1rp 

+ 1 + ( p - 1 ) ( e + ; ) ]  

- 1 + ( p -  1 ) ( e - ; ) ]  

+ l - e - l ]  

- 1 - e + ~ ]  for 1~I. 

Now note that we have 0~<lgl/~<p for all g ~ G .  When e = ~ = l ,  
I X J I n = ( 3 p - - 1 ) / 2  which implies p~<l. When e = l = - ~ ,  I x j w l x =  
( 3 p -  3)/2 which implies p ~< 3. Wheb e =  - 1  and ~=  1, [Sw[K= (1 - -p ) /2  
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which implies p ~< 1. Finally, ~ = ( = - 1 implies [x j [x = (3 - p)/2 which 
implies p ~< 3. 

Case c = 0. When  c = 0, dd= p2. Calculat ions like those above  yield 

D + I  
]x t lK=~-~  - - ,  l = O  .... , p - l ,  

Z 

.iX%ix= p - 1 l = 0 ,  ..., p - I, 
2 ' 

[xJz[K=P---~l( l+e+() ,  j as in L e m m a  6.1, 
2 

[xJzw]K_ p - 1 2 (1 + e - C ) ,  j a s a b o v e ,  

[ x l z [ x = ½ ( p - l - e - ( )  for l ¢ j ,  

]Szw] 1( /~=~ p - l - e + ~ )  for l ~ j .  

When e = ( =  1, I x J z ] K = ( 3 p - 3 ) / 2 ,  which implies p ~ < 3 .  When  
e = - ~  = 1, one finds tha t  ]xJzw[K= ( 3 p - 3 ) / 2  which leads to p~< 3. When  
e = - I  and ( = 1 ,  [xJzwlK=(1-p) /2 ,  leading to p~<l .  Lastly, when 
e = ~ = - 1, [xjkz]K= (1 --p)/2, yielding p ~< 1. 

In  each case, p~<3. ] 

LEMMA 6.3. I f  G has a normal subgroup K so that G/K~D2p2 and 
[K[ = 2, then G possesses no Menon-type difference set. 

Proof Let 0 be a linear representa t ion  for H. Set 0 ( x ) =  ~, where ~ is 
a primit ive complex  p2 th roo t  of  unity. Let  q~ be the representa t ion 
induced f rom ~ with kernel  K. All o ther  faithful irreducible representat ions  
of  G/K of  degree two are conjugate  to q~. 

- Z  p2 1 [ x l l K ~ l = 0 ,  then d d = l d l 2 = p  2 by Eq.(6.1) .  Case c = 0 .  I f  c -  l=o 
Hence, [d[ = p .  Hence,  by  L e m m a  3.3, d=ep~ m for some m, e =  _+ 1. Apply  
L e m m a 3 . 2 ( b )  to d - e p ~  m. T h e n  [xP2--1--iZ[K=[XP2--I--i--jPZ[K~ when 
p2 _ 1 -- i and m are not  congruent  m o d u l o  p, and  i, j e { 0, ..., p - 1 }. Also, 
when k =  m (rood p)  but  k C m, [XkZ[K= [xmz]K--ep. This is impossible,  
since 0~< [gFx~<2 for all g~G. 

Case d = 0. A similar contradic t ion  is reached if d =  0. | 
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VII. END OF THE PROOF 

We can now state the major  results of this paper. 

THEOREM 7.1. Let p > 3 be prime. Let G be a multiplicative group of 
order 4p 2 having a (4p 2, 2 p 2 - p ,  p2-p)-difference set D. Then a Sylow 
2-subgroup of G is cyclic. 

Proof If a Sylow 2-subgroup of G is elementary abelian, then G has an 
homomorphic  image either D 4p or Cp x C2 x C 2. 

Lemma 6.2 shows that there is no difference set if p > 3 and G has as 
homomorphic  image D4p. 

If  G has Cp x C2 x C2 as homomorphic  image, then by Lemma 5.6 there 
are 16 types of possibilities for the distribution of D among cosets of the 
factor group. However, when ~ = el = a 2  = '~3 = 1 ,  IXk lK  ~-- (3p - 1)/2 which 
means that p~< 1. When exactly one of ¢ and the e~ is - 1 ,  ]xlLK=p/2 
which implies that p is even, i.e., p = 2. This occurs four times. For  the 
opposite cases when exactly one of ~ and the ei is 1, we find Ix l l x=  
(p + 2)/2 which again only works when p is even. This also occurs four 
times. When ~ = 1  and 2 of the e~'s are - 1 ,  one of IxkwlK, [XkZ[K, or 
[xkzw[x, or [XkZW]K is (3p--3)/2.  This happens three times and we must 
have p ~< 3. In the opposite cases in which ( = - 1 and exactly two of the 
ei's are 1, one finds that one of IXkW[K, [XkZlK, or [xkzw[x is (1 --p)/2. In 
these cases, p ~ 1. The final case has ( = e l  =e2 = e3 = - 1 .  One finds that 
[Xk[x= ( 3 - p ) / 2  in this case, implying p ~< 3. 

We have accounted for 1 + 4  + 4  + 3 + 3 + 1 = 16 cases. All cases show 
p~<3. | 

Kibler's paper  shows that this bound is sharp. 

THEOREM 7.2. Let p be an odd prime. Let G be a multiplicative group 
of order 4p 2 having a (4p 2, 2p 2 - p ,  p2-p)-dif ference set D. I f  a Sylow 
p-subgroup of G is cyclic, then p---1 (mod 4) and G~-G 4. 

Proof If  G is not isomorphic to G4, then G has as homomorphic  image 
either O2p; or Cp2. Lemmas 5.7 and 6.3 show this cannot happen for an odd 
prime. | 

McFar land [10] shows that a group G~_G 6 has a Menon-type dif- 
ference set only when p = 2  or 3. Liebler [6]  proves that for G ~  G12, G 
has a Menon-type difference set if and only if p = 3. Hence, we need only 
prove part  (ii) of Theorem 1.1. 

For  the remainder p is an odd prime and G is a multiplicative group of 
order 4p 2 with elementary abelian, normal  Sylow p-subgroup H generated 
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by x and y. In addition, z generates a cyclic Sylow 2-subgroup of G. 
D remains as a putative (4p 2, 2p z - p ,  p 2  p)-difference set in G. 

Let K be the kernel of a linear representation ~0 for G so that 
Cp x C4 ~ G / K =  ( Kx  ) x ( Kz  ) .  For  g ~ G set [g]K:= ]Kg c~ D]. Let r /be  a 
primitive p t h  root  of unity. Define Z as in Lemma 5.4 and define O(x) = 1, 
O(z )= i .  The irreducible representations of G/K have the form y ® O m ,  
when l = 0  .... , p - 1  and m = 0 , 1 , 2 , 3 .  Thus G / K h a s  as character table 
C = C1 ® C2, where C1 is as in Lemma 5.4 and C2 is as in Lemma 5.3. The 
rows of C are labeled by the Z l ® Om's. The columns are labeled by Kxlz m's. 
The representation cp may be taken as Z ®  0- All other faithful linear 
representations of G/K are conjugate to cp. 

Set c = ~2f__-o 1 (IxlIx  - [xlz~-[K)q I and d =  Y~f=-o 1 (]SzlK--Ix 'z~l~)q ~. We 
have that ~o(D) = c + id. By Eq. (2.2), ~0(D) is an algebraic integer in ~e[i~/] 
of length p. Hence cp(D) is one of the algebraic integers listed in 
Lemma 3.4. 

LEMMA 7.3. I f  q~(D) = ietlJp, then p <<, 3. 

Proof  Replace D by Dx l, some l, if necessary so that j = 0. Comparing 
real and imaginary parts, one of c or d is 0. The other is then + p .  Set 
H : = K tj Kz  2, and L = ( Kx  ). 

Case d = 0. If  d = 0, by Lemma 3.2, [xtz] K -  ] xlz3 ] x is constant for all l. 
Hence ]xlzlK+ ]xtz3lx= [xlz[~ has the same parity for all I and is, there- 
fore, constant. Thus Y z ] x  is constant for all l. Hence IzlL = Zf_--o 1 [xlzlK =- 0 
(rood p). Hence 0(D)  = iep and the first case of Lemma 5.3 holds. 

Thus for the vector b whosse entries are indexed by the y ®  0m's we 
have 

b _ j 'k = 2p 2 - p ,  if 1 = m = 0 

t ,m-  ~ imqJlp, otherwise. 

By Theorem 2.1 we find that 

i x l z l x  = i x l z 3 l  K = p - 1 
5 '  

IXJ[K = ~ [ p  + 1 + (e + ( ) (p  - 1)], 

[xjz2[x_ p - 1 2 (1 - e + ( ) ,  

Ix ' lK= l ( p  + 1 - ~ -  ~), 

la-lz21K = ½ ( p -  1 + e - 5 ) ,  

l =  0, ..., p - -  1, 

j as in Lemma 5.4, 

j as above, 

for 1¢•  

for l ¢  Z 
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where e, ( =  + 1. However,  when e =  ~ = 1, IxJlx= (3p- 1)/2 which implies 
that  p ~< 1. When  ( = 1 = - e ,  ]xJz21i¢= (3p - 3)/2 which implies p ~< 3. In  
case ( = - 1  = - e ,  [ x J z 2 l K = ( 1 - p ) / 2  which is impossible. Lastly, when 

= e = - 1, IxJlK = (3 - p)/2  which implies that  p ~< 3. 

Case c = 0. Similar computa t ions  in this case yield 

ixZlK= p + 1 
2 ' 
- 1  

IxZz21K=P~ ' 

Ix ;Z lx= ½[(p -- 1)(1 -- ~ + eps)], 

ixJZ3lx = l [ ( p  _ 1)(1 - ~ - ~)], 

Ixlz[K= ½ ( p -  l - e + ~) 

IxZz3lx= ½(p-- 1 + e + ( )  

where e , ~ = _ l .  When  e = ( = l ,  
e = - 1  = - ( ,  I x J z l K  = (1 - p ) / 2 .  

l = 0  ..... p - - l ,  

1 =  0, ..., p - -  1, 

j as in L e m m a  5.4, 

j as above, 

for l vL j ,  

for l va j ,  

I x J z 3 l x = ( 1 - p ) / 2 ,  a contradiction. If  
This is again impossible. In  case 

e = 1 = - ~ ,  ] xJ z l x=  ( 3 p -  3)/2 which implies p ~< 3. Finally, when 
e = ~ = - 1 ,  lxJZ31x = (3p - 3)/2 which, again, implies p ~< 3. In  any case 
we h a v e p ~ < 3 .  | 

Theorem 1.1 now follows by Lemma 3.4, part  a. 
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