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Inertial and slow manifolds for delay equations
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Abstract

Yu.A. Ryabov and R.D. Driver proved that delay equations with small delays have

Lipschitz inertial manifolds. We prove that these manifolds are smooth. In addition, we show

that expansion in the small delay can be used to obtain the dynamical system on the inertial

manifold. This justifies ‘‘post-Newtonian’’ approximation for delay equations.
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1. Introduction

Ryabov [23–27] and Driver [7,8] studied retarded functional differential equations
(RFDEs) with small retardations. For a globally Lipschitz RFDE with a sufficiently
small retardation, they proved the existence of a finite-dimensional manifold of
‘‘special solutions’’ that attracts, exponentially fast, all solutions in the infinite-
dimensional phase space of the RFDE. We will show that the manifold of special
solutions is smooth. Thus, Ryabov’s special solutions form an inertial manifold in
the phase space of the RFDE. In particular, the long-term dynamics of the RFDE is
determined by a (smooth) ordinary differential equation (ODE) on the inertial
manifold. We will also show that the dynamical systems on the slow manifolds of the
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singular perturbation problems obtained by expansion of the RFDE to some finite
order in powers of the retardation agree with the dynamical system on the inertial
manifold. Thus, the long-term dynamics of the original RFDE (the dynamics on its
inertial manifold) can be obtained by reducing a ‘‘post-Newtonian’’ expansion to an
appropriate slow manifold.
Let Cð½a; b�;RnÞ denote the Banach space of continuous functions from the

interval ½a; b� to Rn with the supremum norm; and, in the special case where a ¼
�to0 and b ¼ 0; let C :¼ Cð½�t; 0�;RnÞ: Also, for each function g defined on the
interval ½t � t; t�; let gtAC denote the function given by gtðyÞ ¼ gðt þ yÞ: A
continuous function F :R� C-Rn determines the nonautonomous RFDE

’xðtÞ ¼ Fðt; xtÞ: ð1Þ

Similarly, a continuous function F :C-Rn determines the autonomous RFDE

’xðtÞ ¼ FðxtÞ: ð2Þ

A solution of Eq. (1) is a continuous function y : ½s� t; sþ cÞ-Rn defined for some
sAR and c40 such that ’yðtÞ ¼ Fðt; ytÞ for tA½s; sþ cÞ; where ’yðtÞ denotes the right-
hand derivative of y at t: In this case, for fAC we will sometimes write yðfÞðtÞ (or
yðs;fÞðtÞ) and say that yðfÞ (or yðs;fÞ) is the solution with initial condition f at s if
yðfÞs ¼ f: The basic theorem of the subject is the following result on existence,

uniqueness, and continuous dependence (see, for example, [6,10,15]).

Theorem 1.1. If F :C-Rn is locally Lipschitz, fAC; and sAR; then there is a unique

continuous solution y of RFDE (1) such that ys ¼ f: Moreover, yðfÞ depends

continuously on f: If, in addition, F is C1; then the solution t/yðfÞðtÞ is C1 with

respect to f on every compact set in its domain of definition.

Definition 1.2 (cf. Driver [7,8]). A solution y of RFDE (1) is called a special solution

if y is defined on R and

sup
tAR

e�jtj=tjyðtÞjoN:

Suppose that Z :R� Rn-Rn is a continuous function such that for each xARn the
function t/Zðt; xÞ is a special solution of RFDE (1). The function Z is called a
special flow for RFDE (1) if

Zðt; Zðs; xÞÞ ¼ Zðt þ s; xÞ; Zð0; xÞ ¼ x;

whenever t; sAR and xARn:

We will often write ZðxÞt for the function in C given by

ZðxÞtðyÞ ¼ Zðt þ y; xÞ:
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In case t40; the initial conditions for an RFDE range over the infinite-
dimensional space C: Thus, C is the natural state-space for the associated dynamical
system given by TtðfÞ ¼ yðfÞt for tX0 and fAC: The initial conditions for a special

flow range over the finite-dimensional space Rn: Thus, a special flow would seem to
determine the dynamics of the RFDE only on a negligible subset of its phase space.
On the other hand, a special flow would capture the long-term dynamics—the
important dynamics in many physical models—if all solutions of the RFDE were
attracted (in forward time) to the manifold MCC given by the image of the map
x-ZðxÞ0 from Rn to C: Even better, if M were smooth, then the special flow—the

dynamical system that agrees with Tt on M—would be generated by a smooth
vector field, the infinitesimal generator of the special flow. In other words, the
evolution of the RFDE on M would be uniquely determined by specifying an initial
value in Rn for an ODE. In fact, under the assumption that there is a special flow, the
vector field X with flow Z is given (in local coordinates on M) by

XðxÞ :¼ d

dt
Zðt; xÞ

����
t¼0

¼ FðZðxÞ0Þ: ð3Þ

Note that X is smooth whenever the function from Rn to C given by x/ZðxÞ0
is smooth. In particular, the smoothness of X depends only on Z restricted to
½�t; 0� � Rn:
Our investigation of special flows is motivated by the observation that the

fundamental forces of nature—in either Maxwell’s or Einstein’s field theories—
propagate at the speed of light, not at infinite speed as in Newtonian physics. In
particular, there is no ‘‘action at a distance.’’ As a result, the fundamental equations
of motion are functional differential equations with space-dependent delays—a more
general type of functional differential equation than the RFDEs considered here.
Because these equations of motion are generally very complicated, it is common
practice in physics to approximate them with ordinary (or partial) differential
equations. We will consider one important approximation procedure, called post-
Newtonian expansion, where differential equations are obtained by truncating at
some finite order the Taylor expansion of the functional equations of motion in
powers of some characteristic velocity divided by the speed of light. How can such an
approximation be justified? In case the true functional differential equations of
motion have an inertial manifold, the only viable finite-dimensional approximation
is the dynamical system on the inertial manifold; it captures the long-term dynamics
of the infinite-dimensional dynamical system. Therefore, the post-Newtonian
approximation (or any other finite-dimensional approximation) would be justified
if it agrees with the dynamical system on the inertial manifold.
As a first step in the direction of such a justification for post-Newtonian

approximations of real physical systems, we will consider here exactly the same
procedure for a special type of RFDE. To mimic the equations of motion, we will
consider families of delay equations, where the delay is viewed as a parameter. More

precisely, for a C1-function f :Rn � Rn-Rn; the RFDE corresponding to the family
of functionals Ft :C-Rn given by FtðfÞ ¼ f ðfð0Þ;fð�tÞÞ; where tA½0; b� for some
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bX0; is the delay equation

’xðtÞ ¼ FtðxtÞ ¼ f ðxðtÞ; xðt � tÞÞ: ð4Þ

Under the assumption that there is a special flow Zðt; x; tÞ for this delay equation
which also depends smoothly on x and t; the corresponding smooth vector field X

with flow Z is given by

X ðx; tÞ ¼ FtðZðx; tÞ0Þ ¼ f ðx; Zð�t; x; tÞÞ ð5Þ

in local coordinates on the manifold of special solutions Mt: Note that the
smoothness of the vector field X depends only on the smoothness of Z restricted to
½�b; 0� � Rn � ½0; b�:
As suggested previously, the vector field X (equivalently the ODE that it defines)

on Mt will determine the long-term behavior of the original delay equation as long
as Mt is an inertial manifold; that is, Mt is an invariant, finite dimensional, and
smooth manifold that attracts all other solutions exponentially fast.
In this paper, ‘‘post-Newtonian expansion’’ means expansion of the vector field (5)

to some finite order in powers of t: This procedure produces a high-order ODE in the
time-derivatives of the state x; where the highest-order time-derivative of x is
multiplied by a power of t: In other words, the resulting high-order ODE can be
viewed as a singular perturbation problem with small parameter t:
In the physics literature (see, for example, [18]), a famous example related to post-

Newtonian expansion is the Lorentz–Dirac equation. For an electron confined to
move on a line—the simplest example—and with radiation reaction taken into
account, this model yields the third-order ODE

ẍ ¼ t x
yþq

m
FðxÞ

for the position of the electron, where q is the charge, m is the mass, t :¼ 2q2=ð3mc3Þ;
c is the speed of light, and F is the external force. As is well known, this type of
equation does not give a satisfactory physical model. The fundamental difficulty is
apparent, for example, with F given by Hooke’s law (say FðxÞ ¼ �kx for k40). In
this case, the resulting (linear) ODE has solutions—called runaway solutions in the
physics literature—that are unbounded in forward time. Since the system is supposed
to model the motion of an electron, which is supposed to radiate energy as its
acceleration changes, the radiation reaction should cause damping, an effect that is
incompatible with runaway solutions. Hence, this post-Newtonian system cannot be
the correct (approximate) dynamical model.
A general resolution of the problem of runaway solutions and a rigorous

foundation for post-Newtonian mechanics is proposed in [4,5]. There, the
fundamental delay-type equations of motion in classical gravitation and electro-
dynamics are conjectured to have inertial manifolds in the low-velocity regime. As
mentioned previously, in this case the long-term dynamics of the true equations of
motion is given by the corresponding finite-dimensional differential equation on the
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inertial manifold. To be viable, a post-Newtonian model must produce a dynamical
system that agrees with the dynamical system on the inertial manifold. By a second
conjecture, an approximation to the dynamical system on the inertial manifold (up
to the order of the truncation of the post-Newtonian expansion) can always be
obtained by viewing the (truncation of a) post-Newtonian expansion as a singular
perturbation problem and reducing the corresponding dynamical system to an
appropriately chosen slow manifold. In this scenario, it is easy to see that the
runaway solutions for the post-Newtonian system have no physical significance; they
are merely artifacts of the expansion procedure that correspond to motions in the
unstable manifold of the slow manifold. The correct post-Newtonian approxima-
tion—the ODE on the inertial manifold (a Newtonian equation with post-
Newtonian corrections)—is thus approximated by reduction of the post-Newtonian
high-order ODE to a slow manifold (cf. [2]).
We will justify the ‘‘post-Newtonian’’ approximation procedure for the delay

equation (4). Three main results will be presented. Under the assumption that F is
Lipschitz and t is sufficiently small (an explicit bound will be given), we will show
that RFDE (2) has a smooth inertial manifold. For the delay equation (4), we will
also show that the inertial manifold depends smoothly on the parameter t: Finally,
for the delay equation, we will show that the singularly perturbed high-order ODE
obtained by ‘‘post-Newtonian’’ expansion in the small parameter t results in a vector
field (the slow vector field) on an appropriate slow manifold that agrees with the
vector field (the inertial vector field) given by the restriction of the infinite-
dimensional dynamical system to its inertial manifold. More precisely, we will show
that the slow manifold has the same dimension as the inertial manifold and the two
vector fields agree to second order in t—a result that is sufficient for most
applications. We will also show these vector fields agree to all orders for the special
case of the linear delay equation ’xðtÞ ¼ Axðt � tÞ; where A is an invertible n � n-
matrix.

Note added in proof

In fact, these vector fields agree to all orders for the delay equation ’xðtÞ ¼
f ðxðtÞ; xðt � tÞÞ:

2. The existence and smoothness of special flows

The following theorem states some of the fundamental results of Driver and
Ryabov (see [7,8]).

Theorem 2.1. (1) Suppose that F :R� C-Rn is continuous and Lipschitz in its second

argument (that is, there is some K40 such that

jFðt;fÞ � Fðt;cÞjpK jjf� cjj;
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whenever tAR and f;cAC). If

sup
tAR

e�jtj=tjFðt; 0ÞjoN;

and Kteo1; then, for each sAR and xARn; the nonautonomous RFDE ’xðtÞ ¼ Fðt; xtÞ
has a unique special solution y such that yðsÞ ¼ x: Moreover, if the RFDE is

autonomous, then it has a special flow.

(2) Suppose, in addition, that p is the least positive root of the equation p ¼
Kept; Kte1þKtþpto1; and %yðt; t0; x0Þ; for t; t0AR and x0ARn; denotes the special

solution such that %yðt0; t0; x0Þ ¼ x0: Then, there is a number r40 with the following

property: For each solution yðs;fÞðtÞ of the RFDE such that yðs;fÞs ¼ f; there is

some xARn such that lims-N %yðs; s; yðs;fÞðsÞÞ ¼ x and

sup
tXsþt

ertjyðs;fÞðtÞ � %yðt; s; xÞjoN:

The second part of Theorem 2.1 states that every solution is attracted
exponentially fast to the manifold of special solutions (cf. [19]).
In this section we will prove two results about the smoothness of the special

flow mentioned in Theorem 2.1. For simplicity, we will consider autonomous
RFDEs.

Theorem 2.2. If F :C-Rn is a continuously differentiable Lipschitz function with

Lipschitz constant K40; and 0p2Kt
ffiffiffi
e

p
o1; then RFDE (2) has a continuously

differentiable special flow Z :R� Rn-Rn:

Theorem 2.3. If f :Rn � Rn-Rn is a continuously differentiable Lipschitz function

with Lipschitz constant K40; and 0p8Kbo1; then the delay equation (4) has a

continuously differentiable family of special flows Z :R� Rn � ½0; b�-Rn:

The proofs of these theorems are similar. We will obtain the special solutions for
RFDE (2) as fixed points of a contraction. We will then use the fiber contraction
principle (see [3,17]) to prove the smoothness of the family of special solutions with
respect to their values in Rn at t ¼ 0; and, for the case of delay equations, we will also
prove their smoothness with respect to the delay t:
Note that the smoothness of the infinitesimal generator of the special flow Z;

namely the vector field X given by Xðx; tÞ ¼ f ðx; Zð�t; x; tÞÞ; is determined by the
smoothness of Z restricted to ½�b; 0� � Rn � ½0; b�; and therefore the smoothness of
the forward extension follows from the usual results for ODEs.
The proofs given here are similar, but not the same as, the results in [14,16] where

smoothness with respect to initial functions and delays is proved for the delay
equation (4). Here, we will consider the smoothness of the special flows with respect
to the finite-dimensional space of initial conditions Rn; where we must consider
backward-time solutions. Also, it turns out that, in our special situation, there is no
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loss of smoothness with respect to the delay, whereas in [14] the function f in the

delay equation (4) is required to be C2 in order for the solution to be C1 with respect
to the delay.
For another approach to the results presented here, note that the family of delay

equations (4) is transformed, by the change of variables t ¼ st; to the family of delay
equations

y0ðtÞ ¼ tf ðyðsÞ; yðs � 1ÞÞ; ð6Þ

where yðsÞ :¼ xðtsÞ: This new family is equivalent to the original family (4) if ta0: It
is easy to see that the unperturbed delay equation, at t ¼ 0; for family (6), namely
y0ðsÞ ¼ 0; has a normally hyperbolic, finite dimensional, invariant manifold in
Cð½�1; 0�;RnÞ: We could hope to obtain a smooth inertial manifold for family (6)
(and therefore for the original family (4)) for ta0 and sufficiently small, if we could
apply an infinite-dimensional version of the usual finite-dimensional normal
hyperbolicity theory (see, for example, the recent results of [1]). While this general
approach might produce a useful result, the direct method seems to be a better choice
in our special case: at least it produces an explicit estimate for the parameter interval
containing t ¼ 0 corresponding to the existence of inertial manifolds.

2.1. Proof of Theorem 2.2

We will split the proof of Theorem 2.2 into several propositions. The first part of
the proof sets up an appropriate fiber contraction uses the fiber contraction principle
is used in the second part of the proof to establish the smoothness of the special flow.

By the hypothesis, 2Kt
ffiffiffi
e

p
o1 where K is the Lipschitz constant for the functional

F : Let l :¼ ð2tÞ�1 and note that

K

l
elto1; tKeo1; 2lt ¼ 1: ð7Þ

Let V be a compact subset of Rn and B the Banach space of continuous functions
Z : R� V-Rn with

jjZjjB :¼ sup
ðt;xÞAR�V

jZðt; xÞje�ljtjoN:

Also, for an arbitrary Banach space E; a function a :R� V-E; and ðt; xÞAR� V ;
let aðxÞt denote the function (defined on the interval ½�t; 0� with values in E) given by

aðxÞtðyÞ ¼ aðt þ y; xÞ:

Proposition 2.4. If a :R� V-E is continuous, then aðxÞtACð½�t; 0�;EÞ whenever

ðt; xÞAR� V : Moreover, the function *a :R� V-Cð½�t; 0�;EÞ given by *aðt; xÞ ¼
aðxÞt is continuous.
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Proof. The first statement is obvious. The second statement follows from the local
uniform continuity of a: &

Using this proposition, note that if Z :R� V-Rn is continuous, thenR t

0 FðZðxÞsÞ ds exists whenever ðt; xÞAR� V : Hence, for every such Z; there is a

function LðZÞ :R� V-Rn given by

LðZÞðt; xÞ ¼ xþ
Z t

0

FðZðxÞsÞ ds: ð8Þ

A fixed point of this operator in B is a special solution of RFDE (2).

Proposition 2.5. If ZAB; then LðZÞAB: Moreover, L :B-B is a contraction.

Proof. Using Proposition 2.4, it is easy to see that LðZÞ :R� V-Rn is continuous;
in fact, it is the composition of continuous functions. We will show first that
jjLðZÞjjBoN:
For ðs; xÞAR� V ; we have the key estimate

jjZðxÞsjj ¼ sup
yAð�t;0�

jZðs þ y; xÞj

¼ sup
yAð�t;0�

eljsþyje�ljsþyjjZðs þ y; xÞj

p elteljsjjjZjjB: ð9Þ

Using this estimate and the Lipschitz constant K for F ; we have that

jLðZÞðt; xÞjp jxj þ
Z t

0

jFðZðxÞsÞj ds

����
����

p jxj þ
Z t

0

jFðZðxÞsÞ � Fð0Þj ds þ
Z t

0

jFð0Þj ds

����
����

p jxj þ jtjjFð0Þj þ K

Z t

0

jjZðxÞsjj ds

����
����

p jxj þ jtjjFð0Þj þ K

l
eltjjZjjBðeljtj � 1Þ;

and therefore

sup
ðt;xÞAR�V

e�ljtjjLðZÞðt; xÞjp sup
xAV

jxj þ jFð0Þj
le

þ K

l
eltjjZjjBoN;

as required.
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To show that L is a contraction, suppose that Z; gAB; and use estimate (9) to
obtain the inequalities

jLðZÞðt; xÞ � LðgÞðt; xÞjp
Z t

0

jFðZðxÞsÞ � FðgðxÞsÞj ds

����
����

pK

Z t

0

jjZðxÞs � gðxÞsjj ds

����
����

p
K

l
eltðeljtj � 1ÞjjZ� gjjB:

Thus, we have the norm estimate

jjLðZÞ � LðgÞjjBp
K

l
eltjjZ� gjjB;

and, by the first inequality in display (7), L is a contraction. &

For a Banach space E; let LðRn;EÞ denote the linear transformations from Rn to E

with the usual operator norm j j; and let L denote the Banach space of continuous
functions F :R� V-LðRn;RnÞ such that

jjFjjL :¼ sup
ðt;xÞAR�V

jFðt; xÞje�jtj=toN:

Also, let F denote the set of all continuous functions F :R� V-LðRn;RnÞ such
that

sup
ðt;xÞAR�V

jFðt; xÞje�ljtjp1:

The Banach space L consists of the candidates for the derivatives with respect to x
of the elements of B:

Proposition 2.6. The set F is a complete metric space relative to the metric d given by

dðF; U Þ ¼ jjF� U jjL for F; UAF:

Proof. We will show that F is a closed subset of L: If FAF; then

jFðt; xÞje�jtj=tpeljtje�jtj=t:

Hence, in view of the equality 2lt ¼ 1 in display (7), jjFjjLoN: Suppose that

fFkgNk¼1 is a sequence in F that converges to F in L: Using estimate (9) and the

definition of F; we have that

jFðt; xÞjp jFðt; xÞ � Fkðt; xÞj þ jFkðt; xÞj

p ejtj=tjjF� FkjjL þ eljtj:
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By passing to the limit as k-N; we obtain the desired estimate

jFðt; xÞjpeljtj: &

Using Proposition 2.4, if ðZ;FÞAB�L; then the function *F :R� V-LðRn;CÞ
given by *Fðt; xÞ ¼ FðxÞt is continuous and

CðZ;FÞðt; xÞ :¼ I þ
Z t

0

DFðZðxÞsÞFðxÞs ds ð10Þ

is an element of LðRn;RnÞ:

Proposition 2.7. If ðZ;FÞAB�F; then CðZ;FÞAF: Moreover, the function G :B�
F-B�F given by ðZ;FÞ/ðLðZÞ;CðZ;FÞÞ is a continuous fiber contraction (that is,
G is continuous, there is a number m with 0pmo1; and, for each fixed ZAB; the

function F/CðZ;FÞ is a contraction with contraction constant m).

Proof. In view of Proposition 2.4, if ðZ;FÞAB�F; then function
ðt; xÞ/CðZ;FÞðt; xÞ is continuous. We will show that CðZ;FÞAF:
Note that jjDF jjpK : For v in the unit sphere of Rn and FAF ; we have the

following estimates:

jCðZ;FÞðt; xÞvjp jvj þ
Z t

0

jDFðZðxÞsÞFðxÞsvj ds

����
����

p 1þ K

Z t

0

jjFðxÞsvjj ds

����
����

p 1þ K

Z t

0

sup
yAð�t;0�

eljsþyj ds

�����
�����

p 1þ K

l
eltðeljtj � 1Þ:

By using the first inequality in display (7), we have that

jCðZ;FÞðt; xÞvjp 1� K

l
elt

� �
þ K

l
elteljtj

p 1þ K

l
eltðeljtj � 1Þ

p eljtj;

and therefore CðZ;FÞAF:
We will show that C is a uniform contraction. For ZAB and F; UAF; the

analogue of the key inequality (9) for L is jjFðxÞsjjpe1þjsj=tjjFjjL: It is used to
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obtain the estimate

jCðZ;FÞðt; xÞv �CðZ; U Þðt; xÞvjpK

Z t

0

jjFðxÞsv � U ðxÞsvjj ds

����
����

p tKejjF� U jjLðejtj=t � 1Þ:

Hence,

jjCðZ;FÞ �CðZ; U ÞjjLpKtejjF� U jjL;

and, by the second inequality in display (7), C is a uniform contraction.
To complete the proof, we will show that C is continuous. Because C is a uniform

contraction, it suffices to prove that the function Z/CðZ;FÞ is a continuous map
from B to F for each FAF:

Remark. Although continuity with respect to the base point is an essential ingredient
of the fiber contraction method, this nontrivial requirement is often ignored. There
does not seem to be a general result that can be used to establish the required
continuity; instead, the continuity must be checked in each case (see [9] for an
approach to this difficulty in the setting of local contractions of Banach spaces).

For Z; gAB and FAF; we have the estimates

jCðZ;FÞðt; xÞv �Cðg;FÞðt; xÞvjp
Z t

0

jDFðZðxÞsÞ � DFðgðxÞsÞjjjFðxÞsvjj ds

����
����

p elt
Z t

0

jDFðZðxÞsÞ � DFðgðxÞsÞjeljsj ds

����
����: ð11Þ

Claim 2.8. Fix gAB: For each e40; there is a d40 such that

jDFðZðxÞsÞ � DFðgðxÞsÞje�ljsjoe;

whenever ðs; xÞAR� V and jjZ� gjjBod:

Remark. Define the space N of continuous functions G :R� V-LðC;RnÞ such

that sup
ðt;xÞAR�V

jGðt; xÞje�ljtjoN: Claim 2.8 states that the map P :B-N given by

PðZÞðt; xÞ ¼ DFðZðxÞtÞ is continuous.
To begin the proof of the claim, recall that jjDF jjpK and choose a number s40

such that 2K expð�lsÞoe: For all Z; gAB; xAV ; and jsj4s;

jDFðZðxÞsÞ � DFðgðxÞsÞje�ljsjp2Ke�ljsjoe: ð12Þ
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On the other hand, using the uniform continuity of the function DF on the compact
subset S :¼ fgðxÞsAC : sA½�s; s�g of C (and a compactness argument), there is some

d140 such that jjDFðfÞ � DFðcÞjjoe whenever fAC; cAS and jjf� cjjod1:
Also, using the definition of the B-norm, there is a d40 such that jjZðxÞs �
gðxÞsjjod1 for all ðs; xÞA½�s; s� � V whenever jjZ� gjjBod: Hence, for such an Z
and for all ðs; xÞA½�s; s� � V ; we have that

jDFðZðxÞsÞ � DFðgðxÞsÞje�ljsjpjDFðZðxÞsÞ � DFðgðxÞsÞjoe:

This result, combined with inequality (12), proves the claim.
Fix e40: By Claim 2.8, there is a d40 such that

jDFðZðxÞsÞ � DFðgðxÞsÞje�ljsjo2lee�lt;

whenever jjZ� gjjBod: Using this result and estimate (11), we have that

jCðZ;FÞðt; xÞv �Cðg;FÞðt; xÞvjo 2le
Z t

0

e2ljsj ds

����
����

p eðe2ljtj � 1Þ;

whenever jjZ� gjjBod: Finally, by using the equation 1=t� 2l ¼ 0 and the last

equality in display (7), it follows that

jCðZ;FÞðt; xÞv �Cðg;FÞðt; xÞvje�jtj=toe;

whenever jjZ� ljjod; that is, the function Z/CðZ;FÞ is continuous.

Proof of Theorem 2.2. Choose a point ðs; zÞAR� Rn; an open subset U of Rn with
compact closure V such that zAU ; and let the Banach spaces B and L be defined
relative to the compact set V :
Because L is a contraction, it has a unique fixed point ZAB: Because F is a

complete metric space and (by Proposition 2.7) the map F/CðZ;FÞ is a
contraction, it has a unique fixed point FAF: By the fiber contraction theorem
[17], the point ðZ;FÞAB�F is a globally attracting fixed point for the fiber
contraction G: Let Z1ðt; xÞ � 0 and F1ðt; xÞ � 0; and note that ðZ1;F1ÞAB�F:
Also, for each integer k41; let ðZk;FkÞ ¼ GðZk�1;Fk�1Þ: Proceeding by induction,

C. Chicone / J. Differential Equations 190 (2003) 364–406 375



we have that DxZ1ðt; xÞ ¼ F1ðt; xÞ; and if DxZkðt; xÞ ¼ Fkðt; xÞ; then

DxZkþ1ðt; xÞ ¼Dx xþ
Z t

0

FðZkðxÞsÞ ds

� �

¼ I þ
Z t

0

DFðZkðxÞsÞDxZkðxÞs ds

¼ I þ
Z t

0

DFðZkðxÞsÞFkðxÞs ds

¼Fkþ1ðt; xÞ;

where the differentiation under the integral sign is justified because the interval of
integration is finite and the integrand is continuously differentiable with respect to x:
Thus, we have that fZkg

N

k¼1 converges to Z in B and fDxZkg
N

k¼1 converges to F in F:
Finally, because continuity and differentiability are local properties, to prove that
DxZ exists and is continuous at ðs; zÞ; it suffices to restrict the functions in these

sequences to the domain ½s� 1; sþ 1� � U where

sup
½s�1;sþ1��U

jZkðt; xÞ � Zðt; xÞjpelð1þjsjÞjjZk � ZjjB;

sup
½s�1;sþ1��U

jFkðt; xÞ � Fðt; xÞjpelð1þjsjÞjjFk � FjjL:

Hence, on this domain, the sequences fZkg
N

k¼1 and fDxZkg
N

k¼1 are uniformly

convergent, and therefore DxZ ¼ F is a continuous function. &

2.2. Proof of Theorem 2.3

While the proof of Theorem 2.3 is similar in structure to the proof of Theorem 2.2,
it is more difficult. To see why, recall the delay equation (4), and note that its
variational equation with respect to t along the solution t/xðtÞ is given by

’wðtÞ ¼ D1 f ðxðtÞ; xðt � tÞÞwðtÞ þ D2 f ðxðtÞ; xðt � tÞÞðwðt � tÞ � ’xðt � tÞÞ;

where D1 f (respectively, D2 f ) denotes the partial derivative with respect to the first
(respectively, the second) argument of f : A problem arises because the factor ’xðt � tÞ
appears in the integrand of the basic integral equation that will be used to define the
principal part of a required fiber map. In order for this fiber map to be defined, the
function ’xðt � tÞ must, at least, be integrable. This requirement must be taken into
account in the definition of the function space where we will seek a special solution of
the original delay equation as the fixed point of a contraction. The natural candidate
for this space is a certain weighted Sobolev-type space that we will define (cf. [14,16])
after the statement and proof of a technical lemma.
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Lemma 2.9. The function p : ½0;NÞ-R given by

pðxÞ ¼ ð2ð2þ xÞÞ�1 lnð1þ xÞ

achieves its maximum value pmax at a unique point sA½0;NÞ: The value of pmax gives

1=pmaxE7:18: If b is such that Kb=pmaxo1 and l :¼ 2Kð2þ sÞ; then there is a

number n4l such that, for m :¼ lþ n;

2K

l
ð1þ eblÞo1;

K

n
ð1þ ebnÞo1;

K

m
ð1þ ebmÞo1:

Proof. The first statement of the proposition is an exercise in calculus. It is also easy
to show that

pmaxoð4ð2þ sÞÞ�1 lnð7þ 4sÞ: ð13Þ

By the hypothesis,

bl ¼ 2Kbð2þ sÞo2ð2þ sÞ pmax ¼ lnð1þ sÞ:

Hence, eblo1þ s; and therefore

2K

l
ð1þ eblÞo1:

By continuity, there is some number n04l such that

K

n
ð1þ ebnÞo1;

whenever n04n4l: Let m ¼ mðnÞ ¼ lþ n and note that

K

m
ð1þ ebmÞo K

2l
ð1þ ebðlþnÞÞ

¼ 1

4ð2þ sÞ ð1þ ebðlþnÞÞ:

Also, note that

lim
n-lþ

1

4ð2þ sÞ ð1þ ebðlþnÞÞ ¼ 1

4ð2þ sÞ ð1þ e2blÞ:

Using inequality (13), we have that

2blolnð7þ 4sÞ:
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A rearrangement of this estimate gives

1þ e2blo4ð2þ sÞ;

and therefore

1

4ð2þ sÞ ð1þ e2blÞo1:

By continuity, there is some n4l such that

K

m
ð1þ ebmÞo1;

as required. &

By the hypothesis of Theorem 2.3, we have 0p8Kbo1: Hence, there are numbers
l; n; and m satisfying the relations stated in Lemma 2.9. Let us fix these numbers for
the remainder of this section. Also, let VCRn be a compact set.
If Z :R� V � ½0; b�-Rn is continuous and JCR is compact, thenR

J
jZðt; x; tÞj dtoN whenever ðx; tÞAV � ½0; b�: Thus, there is an associated function

Z
*
: V � ½0; b�-L1

locðR;RnÞ given by Z
*
ðx; tÞðtÞ ¼ Zðt; x; tÞ: By the usual theory of

Schwartz distributions (see, for example, [21]), the L1
loc-function Z

*
ðx; tÞ has a

distributional derivative DtðZ
*
ðx; tÞÞ for each ðx; tÞAV � ½0; b�: If, in addition,

DtðZ
*
ðx; tÞÞAL1

locðR;RnÞ for every ðx; tÞAV � ½0; b�; then we have a function ’Z : V �
½0; b�-L1

locðR;RnÞ given by ’Zðx; tÞ ¼ DtðZ
*
ðx; tÞÞ: By the definition of convergence

in L1
loc; the function ’Z is continuous, if for each compact set JCR; the function

’Z : V � ½0; b�-L1ðJ;RnÞ is continuous. Note that if ’Z is continuous, then for each

such J; the map from V � ½0; b� to Rn given by ðx; tÞ/
R

J ’Zðx; tÞ ds is continuous. In

fact, we have thatZ
J

’Zðx; tÞ ds �
Z

J

’Zðz; sÞ ds

����
����pjjZðx; tÞ � Zðz; sÞjj1;

where the norm is the L1-norm for L1ðJ;RnÞ: Let S denote the set of all continuous
functions Z :R� V � ½0; b�-Rn such that, for each ðx; tÞAV � ½0; b�; the function

Z
*
ðx; tÞ has a distributional derivative ’Zðx; tÞ in L1

locðR;RnÞ; the function ’Z : V �
½0; b�-L1

locðR;RnÞ is continuous, and

jjZjjS :¼ sup
ðt;x;tÞAR�V�½0;b�

e�ljtj jZðt; x; tÞj þ
Z t

0

j’Zðx; tÞj ds

����
����

� �
oN:

The following proposition is proved in the appendix.

Proposition 2.10. The set S endowed with the S-norm is a Banach space.
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For Z :R� V � ½0; b�-Rn; we have the operator

LðZÞðt; x; tÞ ¼ xþ
Z t

0

f ðZðs; x; tÞ; Zðs � t; x; tÞÞ ds: ð14Þ

Note that a fixed point of L in S is a solution of the delay equation (4).
Let r40 be a number such that

rX sup
xAV

jxj þ 2j f ð0; 0Þj
le

 !
1� 2K

e
ð1þ elbÞ

� ��1
; ð15Þ

and let B denote the closed ball with radius r at the origin in S:

Proposition 2.11. If ZAB; then LðZÞAB: Also, L :B-B is a contraction.

Proof. Because Z and f are continuous, the function LðZÞ is continuous with its
range in Rn: Similarly, since

DtLðZÞðt; x; tÞ ¼ f ðZðt; x; tÞ; Zðt � t; x; tÞÞ;

the function DtLðZÞ is continuous. Moreover, the function DtLðZÞðx; tÞ :R-Rn is in

L1
locðR;RnÞ:
For ZAB; we have that

e�ljtjjLðZÞðt; x; tÞjp e�ljtjjxj þ e�ljtj
Z t

0

j f ðZðs; x; tÞ; Zðs � t; x; tÞÞj ds

����
����

p jxj þ e�ljtj
Z t

0

ðKðjZðs; x; tÞj þ jZðs � t; x; tÞÞjÞ
����

þ j f ð0; 0ÞjÞ ds

����
p jxj þ e�ljtj

Z t

0

ðKðeljsjjjZjjS þ elteljsjjjZjjSÞ
����

þ j f ð0; 0ÞjÞ ds

����
p sup

xAV

jxj þ K

l
ð1þ elbÞjjZjjS þ j f ð0; 0Þj

le

and

e�ljtj
Z t

0

jDtLðZÞðt; x; tÞj ds

����
���� ¼ e�ljtj

Z t

0

j f ðZðs; x; tÞ; Zðs � t; x; tÞÞj ds

����
����

p
K

l
ð1þ elbÞjjZjjS þ j f ð0; 0Þj

le
;
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that is,

jjLðZÞjjSp sup
xAV

jxj þ 2j f ð0; 0Þj
le

þ 2K

l
ð1þ elbÞr:

Note that this inequality has the form jjLðZÞjjSpA þ Br: By the choice of r as in

display (15), we have that rXA=ð1� BÞ: Hence, A þ Brpr; that is, L :B-B:
By similar estimates, for Z; gAS we have that

e�ljtjjLðZÞðt; x; tÞ � LðgÞðt; x; tÞjpK

l
ð1þ elbÞjjZ� gjjS

and

e�ljtj
Z t

0

jDtLðZÞðt; x; tÞ � DtLðgÞðt; x; tÞj ds

����
����pK

l
ð1þ elbÞjjZ� gjjS:

Hence,

jjLðZÞ � LðgÞjjSp
2K

l
ð1þ elbÞjjZ� gjjS;

and, by the choice of l as in Lemma 2.9, the function L is a contraction. &

For l; m; n; and b as in Lemma 2.9, let L denote the Banach space of all
continuous functions F :R� V � ½0; b�-LðR;RnÞ that are bounded with respect the
norm given by

jjFjjL :¼ sup
ðt;x;tÞAR�V�½0;b�

e�mjtjjFðt; x; tÞj:

We will use the natural identification of LðR;RnÞ with Rn to identify Fðt; x; tÞ with an
element of Rn: The Banach space L consists of the candidates for the derivatives
with respect to t of the elements ofS: For ðZ;FÞAS�L; let C denote the operator
given by

CðZ;FÞðt; x; tÞ

¼
Z t

0

ðD1 f ðZðs; x; tÞ; Zðs � t; x; tÞÞFðs; x; tÞ

þ D2 f ðZðs; x; tÞ; Zðs � t; x; tÞÞðFðs; x; tÞ � ’Zðx; tÞðs � tÞÞ ds:

Choose r40 such that

r

2Kelb
1� K

n
ð1þ enbÞ

� �
Xr; ð16Þ
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where r is as in display (15), and let F denote the set of all continuous functions
F :R� V � ½0; b�-LðR;RnÞ such that

sup
ðt;x;tÞAR�V�½0;b�

e�njtjjFðt; x; tÞjpr:

Proposition 2.12. The set F is a closed subset of L: If ðZ;FÞAB�F; then

CðZ;FÞAF: Moreover, the function G :B�F-B�F given by GðZ;FÞ ¼
ðLðZÞ;CðZ;FÞÞ is a continuous fiber contraction.

Proof. To show that FCL; let FAF and use the inequality m4n to obtain the
estimate

sup
ðt;x;tÞAR�V�½0;b�

e�mjtjjFðt; x; tÞjp sup
tAR

renjtje�mjtjoN

required for F to be in L: The proof that F is closed in L is similar to the proof of
Proposition 2.6.
To show that CðZ;FÞAF whenever ðZ;FÞAB�F; let us first recall that if

gAL1
locðRÞ; then t/

R t

0 g ds is continuous. In fact, this map is absolutely continuous

(see [22, p. 50]). Thus, because the image of ’Z is in L1
locðR;RnÞ and f is continuously

differentiable, it follows that CðZ;FÞ is continuous. Also, because f is globally
Lipschitz, we have that jjD1 f jj þ jjD2 f jjpK ; where the norm on the cross product
Rn � Rn is the sum of the Rn-norms.
Using the estimates

jCðZ;FÞðt; x; tÞjpK

Z t

0

ðjFðs; x; tÞj þ jFðs � t; x; tÞj þ j’Zðx; tÞðs � tÞjÞ ds

����
����

p
rK

n
ð1þ entÞðenjtj � 1Þ þ K

Z t�t

�t
j’Zðx; tÞj ds

����
����

p
rK

n
ð1þ enbÞðenjtj � 1Þ þ 2Kelbreljtj

(where, in case t4t; the last integral is split into integrals over ½�t; 0� and ½0; t � t�
before the norm estimate is made), we have that

jCðZ;FÞðt; x; tÞje�njtjp
rK

n
ð1þ enbÞ þ 2rKelb

p
rK

n
ð1þ enbÞ þ r 1� K

n
ð1þ enbÞ

� �
p r;

that is, CðZ;FÞAF:

C. Chicone / J. Differential Equations 190 (2003) 364–406 381



We will show that C :B�F-F is a uniform contraction. In fact, for ZAS and
F; UAL; we have the inequalities

jCðZ;FÞðt; x; tÞ �CðZ; U Þðt; x; tÞjpK

Z t

0

ðjFðs; x; tÞ � U ðs; x; tÞj
����

þ jFðs � t; x; tÞ � U ðs � t; x; tÞjÞ ds

����
p

K

m
ð1þ emtÞjjF� U jjLðemjtj � 1Þ;

and therefore

jjCðZ;FÞ � FðZ; U ÞjjLp
K

m
ð1þ emtÞjjF� U jjL;

as required.
We will show that G is a continuous fiber contraction. As in the proof of

Proposition 2.7, it suffices to show that, for each FAF; the function from B to F
given by Z/CðZ;FÞ is continuous.

Claim 2.13. Fix gAS and let iAf1; 2g: For each e40; there is a d40 such that

e�ljsjjDi f ðZðs; x; tÞ; Zðs � t; x; tÞÞ � Di f ðgðs; x; tÞ; gðs � t; x; tÞÞjoe;

whenever ðs; x; tÞAR� V � ½0; b� and jjZ� gjjSod:

The proof of Claim 2.13 is similar to the proof of Claim 2.8.
Fix gAB; FAF; and e40: Let

M :¼ r

lþ n
ð1þ enbÞ þ 2Kelb þ 2re2lb;

and apply Claim 2.13 to obtain a d40 such that doe=M and, for iAf1; 2g;

e�ljsjjDi f ðZðs; x; tÞ; Zðs � t; x; tÞÞ � Di f ðgðs; x; tÞ; gðs � t; x; tÞÞjo e
M

; ð17Þ

whenever ðs; x; tÞAR� V � ½0; b� and jjZ� gjjSod: Also, note that

jCðZ;FÞðt; x; tÞ �Cðg;FÞðt; x; tÞjpI1 þ I2 þ I3;

where

I1 :¼
Z t

0

jD1 f ðZðs; x; tÞ; Zðs � t; x; tÞÞ
����

� D1 f ðgðs; x; tÞ; gðs � t; x; tÞÞjjFðs; x; tÞj dsj;
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I2 :¼
Z t

0

jD2 f ðZðs; x; tÞ; Zðs � t; x; tÞÞ
����
� D2 f ðgðs; x; tÞ; gðs � t; x; tÞÞjjFðs � t; x; tÞj dsj;

I3 :¼
Z t

0

jD2 f ðZðs; x; tÞ; Zðs � t; x; tÞÞ’Zðx; tÞðs � tÞ
����
� D2 f ðgðs; x; tÞ; gðs � t; x; tÞÞ’gðx; tÞðs � tÞj dsj:

Using inequality (17) and the definition of F; we have that

I1 þ I2oe
r

Mðlþ nÞ ð1þ enbÞðeðlþnÞjtj � 1Þ: ð18Þ

To bound I3; add and subtract the quantity

D2 f ðZðs; x; tÞ; Zðs � t; x; tÞÞ’gðx; tÞðs � tÞ;

apply the triangle inequality, and make a change of variables to obtain the estimates

I3oK

Z t�t

�t
j’Zðx; tÞ � ’gðx; tÞj ds

����
����þ e

M

Z t�t

�t
eljsjj’gðx; tÞj ds

����
����

pK

Z t�t

�t
j’Zðx; tÞ � ’gðx; tÞj ds

����
����þ e

M
eljtjelt

Z t�t

�t
j’gðx; tÞj ds

����
����:

The integrals are bounded above (using norm estimates in S and B) by considering
separately the cases t � tp0 and t � t40; and in the latter case by splitting the
integral into integrals over ½�t; 0� and ½0; t � t�: Using the resulting estimates, the
choice of d; and the definition of B; we find that

I3o2Kelbeljtjdþ 2e
M

e2ljtje2lbr:

By combining this inequality with inequality (18), using the hypotheses n4l and
m ¼ lþ n; the definition of d (recall that doe=M), and the definition of M; we have
that

e�mjtjjCðZ;FÞðt; x; tÞ �Cðg;FÞðt; x; tÞjoe;

whenever ðt; x; tÞAR� V � ½0; b� and jjZ� gjjSod: Hence, Z/CðZ;FÞ is contin-

uous. &

Proof Theorem 2.3. The proof is similar to the proof of Theorem 2.2 except for a
modification of the induction argument that is used to show the equality DtZk ¼ Fk

for the elements of the sequences fZkg
N

k¼1 in B and fFkgNk¼1 in F which are defined

recursively by the iterates of the point ð0; 0ÞAB�F with respect to the fiber map G:
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In the present case, it is convenient to use an induction hypothesis with two parts: (1)
DtZk (the classical partial derivative) is continuous. (2) DtZk ¼ Fk: Note that because
Zk is continuous and

DtZkþ1ðt; x; tÞ ¼ f ðZkðt; x; tÞ; Zkðt � t; x; tÞÞ;

the partial derivative DtZkþ1 is automatically continuous. Two main ingredients are

used to prove that DtZkþ1 ¼ Fkþ1: The first induction hypothesis is used to justify the
interchange of the partial derivative operator Dt and the integral in the expression
for the operator L: The second ingredient is an easy result from the theory of
distributions. It states that the function t/DtZkðt; x; tÞ corresponding to the
classical partial derivative DtZk; which is assumed to exist and be continuous by the
induction hypothesis, is in the equivalence class of the corresponding distributional
derivative ’Zðx; tÞ for each ðx; tÞAV � ½0; b�: &

3. Expansion in the small parameter

By Theorems 2.1–2.3, we know that under appropriate restrictions on the size
of the delay, the delay equation (4), given by ’xðtÞ ¼ f ðxðtÞ; xðt � tÞÞ; has an

n-dimensional C1 inertial manifold consisting of special solutions. Theorem 2.1
implies that the inertial manifold is exponentially attracting; Theorems 2.2 and 2.3
imply that the inertial manifold is smooth. In this case, the inertial vector
field (5), given by X ðx; tÞ ¼ f ðx; Zð�t; x; tÞÞ; is the generator of the corres-

ponding special flow. Moreover, X is a C1 function. In this section, we will
assume that the function f ; the solutions of the delay equation, and the
inertial vector field are sufficiently smooth so that their Taylor expansions are
defined. As mentioned in the Introduction, we will show that the inertial vector
field agrees with the slow vector field on an appropriately chosen slow manifold
for the singular perturbation problem obtained by expanding the delay equation
to second order in powers of the delay t: We will also show agreement to all
orders for the linear delay equation ’xðtÞ ¼ Axðt � tÞ; where A is an invertible
n � n-matrix.

3.1. Inertial manifold reduction

The expansion of the family of inertial vector fields X ðx; tÞ ¼ f ðx; Zð�t; x; tÞÞ with
respect to t at t ¼ 0 is

Xðx; tÞ ¼ f ðx; xÞ � tD2 f ðx; xÞf ðx; xÞ þ t2

2!
fD2

2 f ðx; xÞð f ðx; xÞ; f ðx; xÞÞ

þ D2 f ðx; xÞðD1 f ðx; xÞ þ 3D2 f ðx; xÞÞf ðx; xÞg þ Oðt3Þ: ð19Þ
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This result is obtained by using the invariance of the special flow Z; in fact, we have
that

’Zðt; x; tÞ ¼ f ðZðt; x; tÞ; Zðt � t; x; tÞÞ; Zð0; x; tÞ ¼ x:

Clearly, Xðx; 0Þ ¼ f ðx; xÞ and

Xtðx; tÞ ¼ D2 f ðx; Zð�t; x; tÞÞðZtð�t; x; tÞ � f ðZð�t; x; tÞ; Zð�2t; x; tÞÞÞ:

Since Zð0; x; tÞ ¼ x; all derivatives of the function t/Zð0; x; tÞ vanish. Hence, it
follows that

Xtðx; 0Þ ¼ �D2 f ðx; xÞf ðx; xÞ

and

Xttðx; 0Þ ¼D2
2 f ðx; xÞð f ðx; xÞ; f ðx; xÞÞ þ D2 f ðx; xÞð�’Ztð0; x; 0Þ

þ D1 f ðx; xÞf ðx; xÞ þ 2D2 f ðx; xÞf ðx; xÞÞ:

Finally, note that

’Ztð0; x; 0Þ ¼
@

@t
@

@t
Zðt; x; tÞ

����
t¼0;t¼0

¼ @

@t
f ðx; Zð�t; x; tÞÞ

����
t¼0

¼ � D2 f ðx; xÞf ðx; xÞ:

In view of the representation of X in display (19), it is clear that sufficiently small
delays do not matter if the vector field given by x/f ðx; xÞ is structurally stable (cf.
[20]). On the other hand, using the theorems in Section 2, the range of delays for
which the inertial manifold exists can be estimated. Once this is done, the parameter
t is rescued from the ‘‘realm of the sufficiently small,’’ and the effect of the
perturbation caused by the delay remains to be determined. In case the vector field
x/f ðx; xÞ is not structurally stable (for instance, if the vector field is Hamiltonian),
then even sufficiently small delays do matter. As a simple illustration, consider the
delay (Duffing) equation

ẍ þ o2x ¼ �axðt � tÞ þ bx3ðt � tÞ: ð20Þ

An equivalent first-order system of delay equations has the form of Eq. (4), but it is

not Lipschitz on R2: This difficulty is easily remedied by using a cut-off function,

defined on R2; to create a new system that agrees with the original system on
some open ball at the origin and is constant in the complement of a larger open ball.
The modified system has an inertial manifold for small t and the first-
order approximation (computed using Eq. (19)) of the reduced system on the
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corresponding inertial manifold is given by

ẍ þ tð3bx2 � aÞ ’x þ ða þ o2Þx � bx3 ¼ 0 ð21Þ

on the open ball at the origin where the modified system agrees with the original
system. While the delay equation (20) with t ¼ 0 is conservative, the second-order
differential equation (21) is a form of van der Pol’s oscillator; it has a stable limit
cycle for appropriate choices of its parameters. Thus, small delays certainly do
matter in this case.

3.2. Post-Newtonian expansion

As discussed in Section 1 (see also [4,5]), we will mimic post-Newtonian expansion
in classical field theory using the delay equation (4),

’xðtÞ ¼ f ðxðtÞ; xðt � tÞÞ:

Here, post-Newtonian expansion means Taylor expansion of the function
t/f ðxðtÞ; xðt � tÞÞ to some finite order in powers of t: We will show how to
obtain the inertial vector field—the vector field which gives the correct long-term
dynamics of the delay equation—from the post-Newtonian expansion. It turns out
that the slow vector field on a slow manifold of an appropriately chosen singularly
perturbed system, naturally derived from the post-Newtonian expansion, agrees with
the inertial vector field.
The post-Newtonian expansion of the function t/f ðxðtÞ; xðt � tÞÞ at t ¼ 0 is

given by

f ðxðtÞ; xðt � tÞÞ ¼ f ðxðtÞ; xðtÞÞ � tD2 f ðxðtÞ; xðtÞÞ ’xðtÞ

þ t2

2!
ðD2 f ðxðtÞ; xðtÞÞẍðtÞ þ D2

2 f ðxðtÞ; xðtÞÞð ’xðtÞ; ’xðtÞÞÞ

þ Oðt3Þ: ð22Þ

Note that the truncation of this expansion at order N in t; when set equal to ’xðtÞ;
produces an Nth-order ODE of the form

ð�1ÞN tN

N!
D2 f ðx; xÞxðNÞ ¼ Fðx; ’x;y; xðN�1Þ; tÞ; ð23Þ

where

Fðx; ’x;y; xðN�1Þ; tÞ :¼ ’x � f ðx; xÞ þ tD2 f ðx; xÞ

� t2

2!
D2

2 f ðx; xÞð ’x; ’xÞÞ þ Oðt3Þ:

Because Eq. (23) is singular in the limit as t-0; many examples of such systems will
contain ‘‘runaway’’ solutions (that is, solutions that are unbounded in forward time).
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For this reason, the post-Newtonian approximation is not satisfactory as a physical
model as mentioned in Section 1.
Since, for small delays, the long-term dynamics of the delay equation (4) is

obtained by reduction to its inertial manifold, it is clear that the utility of post-
Newtonian expansion can be justified only if there is a natural way to extract the
dynamical system on the inertial manifold from the post-Newtonian expansion.
Fortunately, there is a well-established method for approaching this problem:
reduction to a slow manifold.
We will illustrate the method for the singularly perturbed Nth-order ODE (23).

Suppose that N41 and let m :¼ t1=ðN�1Þ: The differential equation (23) is equivalent
to the singularly perturbed first-order system

’x ¼ y1;

mN ’y1 ¼ y2;

^

mN ’yN�2 ¼ yN�1;

mNð�1ÞN 1

N!
D2 f ðx; xÞ ’yN�1 ¼Fðx; y1;y; yN�1; mN�1Þ: ð24Þ

Under the assumption that D2 f ðx; xÞ has no eigenvalue with zero real part and t is
sufficiently small, this system has an n-dimensional slow manifold, an invariant
manifold with the same dimension as the inertial manifold for the underlying delay
equation (4) (see Proposition 3.1). Moreover, the reduction of the dynamical system
(19) to this slow manifold agrees with the dynamical system (19) on the inertial
manifold.
While the inertial manifold attracts nearby solutions, the slow manifold

generally has both stable and unstable manifolds, that is, some solutions are
attracted to the slow manifold and some solutions are repelled. The unstable
directions correspond to the runaway modes. Also, it should be clear that
only the solutions on the slow manifold of system (24) have physical significance;
all other solutions are merely artifacts of the truncation of the post-Newtonian
expansion.
As a convenient terminology, let us call the dynamical system on the slow

manifold of system (24) the post-Newtonian approximation. We will show that this
approximation is useful by proving that it agrees with the dynamical system on the
corresponding inertial manifold.
The geometric theory for singular perturbation problems—initiated by the

pioneering work of Fenichel [11,12]—is by now well developed. We will explain
the basic idea and then apply the result to the truncation of system (24).
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The basic singular perturbation problem is given by a system of the form

’x ¼ f ðx; yÞ; e ’y ¼ gðx; yÞ;

where e is a small parameter and f and g are smooth functions. Note that the reduced
system obtained by setting e ¼ 0 is not a differential equation. To overcome this
difficulty, let us introduce the ‘‘fast time’’ s :¼ t=e; and thereby recast the system into
the regular perturbation form

x0 ¼ ef ðx; yÞ; y0 ¼ gðx; yÞ;

where ‘‘0’’ denotes differentiation with respect to s: This fast-time system is
equivalent to the original system for ea0; the important values of this parameter.
The unperturbed fast-time system

x0 ¼ 0; y0 ¼ gðx; yÞ

has the invariant set G0 :¼ fðx; yÞ : gðx; yÞ ¼ 0g consisting entirely of rest points.
Under the generic assumption that the partial derivative gyðx; yÞ is an invertible

linear map whenever ðx; yÞAG0; an application of the implicit function theorem can
be used to show that G0 is a smooth manifold given by the graph of a function
y ¼ aðxÞ; that is, G0 :¼ fðx; yÞ : y ¼ aðxÞg: Under the stronger assumption that
gyðx; yÞ has no eigenvalue with real part zero, the solutions of the unperturbed

system starting near G0 are all either attracted to, or repelled from G0: This fact is
easily seen by linearization of the system at a rest point on G0: At each such point
ðx; yÞ; the system matrix of the linearization is given by

0 0

gxðx; yÞ gyðx; yÞ

 !
:

The block of zero eigenvalues corresponds to the motion along the invariant set.
Eigenvalues of gyðx; yÞ with positive real parts correspond to exponentially fast

expansion from G0 (runaway modes); eigenvalues with negative real parts
correspond to exponentially fast contraction to G0: In other words, the rate of
contraction in the normal direction dominates the fastest rate of contraction—in this
case zero—on the invariant manifold and, likewise, the normal rate of expansion
dominates the fastest expansion on the invariant manifold. An invariant manifold
consisting entirely of rest points with these properties is called normally hyperbolic

(see [11] for the general definition).
By a fundamental result of Fenichel, a normally hyperbolic invariant manifold

persists (for sufficiently small values of the small parameter) as a normally
hyperbolic invariant manifold—again given as a graph—in the full nonlinear fast-
time system. Because the flow on the normally hyperbolic invariant manifold for the
unperturbed system is stationary, it is (infinitely) slow relative to the ambient flow.
Under a small perturbation, the flow on the new invariant manifold likewise is slow
relative to the perturbed ambient flow. For this reason, these invariant manifolds are
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called slow manifolds, and the corresponding flows on these manifolds are also called
slow. It is important to realize that the slow manifolds for ea0 remain invariant sets
for the original singularly perturbed system. In fact, the qualitative features of the
dynamical behavior of the fast- and slow-time systems for ea0 are identical; only the
speed at which points move along trajectories is different.
The existence of a family of invariant manifolds for the family of fast-time systems,

given as a family of graphs

Ge :¼ fðx; yÞ : y ¼ aðx; eÞg;

ensures that

y0 ¼ axðx; eÞx0;

whenever y ¼ aðx; eÞ: It follows that a is defined implicitly by the relation

gðx; aðx; eÞÞ ¼ eaxðx; eÞf ðx; aðx; eÞÞ;

and therefore a can be approximated in the usual manner by equating coefficients
after power series expansion in the small parameter. The reduction of the dynamical
system to the slow manifold is given by the ODE

x0 ¼ ef ðx; aðx; eÞÞ;

the corresponding slow-time ODE is

’x ¼ f ðx; aðx; eÞÞ:

For many problems, this last equation determines the essential dynamical behavior
of the original nonlinear singular perturbation problem.
Let us now return to a truncation of the post-Newtonian expansion of the delay

equation (4). The next proposition states a sufficient condition for the singular
system (24) to have a normally hyperbolic invariant manifold. More importantly,
even if this condition is not satisfied, the formal slow vector field (that is, the
hypothetical restriction of the vector field corresponding to system (24) to a
hypothetical slow manifold) agrees with the inertial vector field of the delay equation
(4). Indeed, if we wish to determine the long-term dynamics of the delay equation,
our objective is to obtain the dynamical system on its inertial manifold. From this
point of view, the existence of the slow-manifold is not important; it is simply a
construct that gives an alternative way to obtain the inertial vector field. On the
other hand, it might be possible to prove the existence of the desired inertial
manifold under the assumption that an infinite sequence of post-Newtonian
truncations have slow-manifolds. Also, there are cases where post-Newtonian
approximations are obtained without reference to a specific delay-type equation.
Thus, the conditions for the existence of slow manifolds for the post-Newtonian
truncations has some independent interest.
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Proposition 3.1. Suppose that N is a positive even integer and, for all xARn; the matrix

D2 f ðx; xÞ has no eigenvalue with zero real part. If t40 is sufficiently small, then

system (24) has a normally hyperbolic n-dimensional slow manifold. Moreover, if NX2
is a positive integer, then the formal slow vector field agrees to order two in t with the

corresponding inertial vector field on the (n-dimensional) inertial manifold of the delay

equation (4).

Remark. The simple condition for normal hyperbolicity given in Proposition 3.1 for
truncations at even orders is due (in part) to the formulation used here of a
corresponding first-order singular perturbation problem (see system (26)) where the

small parameter is taken to be m :¼ t1=ðN�1Þ: This relation is invertible in a
neighborhood of the origin only if N is even.

Proof. We will consider two cases: N ¼ 2 and N42: Note that because zero is not
an eigenvalue of D2 f ðx; xÞ; this linear transformation is invertible. For N ¼ 2; we
have m ¼ t and system (24) has the form

’x ¼ y1;

t2 ’y1 ¼ 2ðD2 f ðx; xÞÞ�1ðy1 � f ðx; xÞ þ tD2 f ðx; xÞy1

� t2

2
D2
2 f ðx; xÞðy1; y1ÞÞ: ð25Þ

In case N42 system (24) can be recast as

’x ¼ y1;

mN ’y1 ¼ y2;

^

mN ’yN�2 ¼ yN�1;

mN ’yN�1 ¼ð�1ÞN
N!ðD2 f ðx; xÞÞ�1 y1 � f ðx; xÞ þ mN�1D2 f ðx; xÞy1

	

� m2ðN�1Þ

2!

1

mN
D2 f ðx; xÞy2 þ D2

2 f ðx; xÞðy1; y1Þ
� �

þF

�
; ð26Þ

where F is a sum of terms obtained from the terms of order three through N in the
Taylor expansion (22). The essential observation is that in these terms—and in every
other term—the jth time-derivative of x appearing in expansion (22) is replaced by

ð1=m jNÞyj:
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By changing to the fast-time s :¼ t=mN ; we obtain the system

x0 ¼ mNy1;

y0
1 ¼ y2;

y0
2 ¼ y3;

^

y0
N�2 ¼ yN�1;

y0
N�1 ¼ð�1ÞN

N!ðD2 f ðx; xÞÞ�1 y1 � f ðx; xÞ þ mN�1D2 f ðx; xÞy1
	

� m2ðN�1Þ

2!

1

mN
D2 f ðx; xÞy2 þ D2

2 f ðx; xÞðy1; y1Þ
� �

þF

�
; ð27Þ

which is equivalent to system (26) for m40: Note that

G :¼ fðx; y1;y; yN�1Þ : y1 ¼ f ðx; xÞ; y2 ¼ y3 ¼ ? ¼ yN�1 ¼ 0g

is an invariant manifold, consisting entirely of rest points, for system (27) with m ¼ 0:

Because G is defined by nðN � 1Þ equations in RnN ; G is an n-dimensional manifold.

Equivalently, G is the graph of the function G :Rn-RnðN�1Þ given by

x/ð f ðx; xÞ; 0; 0;y; 0Þ:

We will show that G is normally hyperbolic whenever N is even.
The linearized system at a point ðx; y1; y2;y; yN�1Þ on G is given by the system

matrix

0 0 0 0 0 0 ? 0 0

0 0 I 0 0 0 ? 0 0

0 0 0 I 0 0 ? 0 0

^

0 0 0 0 0 0 ? 0 I

Aðx;NÞ Bðx;NÞ 0 0 0 0 ? 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
;

where

Aðx;NÞ :¼ ð�1ÞNþ1
N!ðD2 f ðx; xÞÞ�1ðD1 f ðx; xÞ þ D2 f ðx; xÞÞ;

Bðx;NÞ :¼ ð�1ÞN
N!ðD2 f ðx; xÞÞ�1:
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The vector v :¼ ðx; Z1; Z2;y; ZN�1Þ is in the kernel of the system matrix if and only
if Z2 ¼ Z3 ¼ ?ZN�1 ¼ 0 and Z1 � ðD1 f ðx; xÞ þ D2 f ðx; xÞÞx ¼ 0; exactly the set of
conditions required for v to be tangent to the manifold G: Hence, we have proved
that the system has exactly n zero eigenvalues and these correspond to the
‘‘eigendirections’’ tangent to G: To prove that G is normally hyperbolic, it suffices to
show that the system matrix has no nonzero pure imaginary eigenvalue.
If ib; with ba0; is an eigenvalue with (complex) eigenvector

v :¼ ðx; Z1; Z2;y; ZN�1Þ;

then 0 ¼ ðibÞx; Zj ¼ ibZj�1 for jAf2; 3;y;N � 1g; and

Aðx;NÞxþ Bðx;NÞZ1 ¼ ibZN�1:

It follows that x ¼ 0 and

Bðx;NÞZ1 ¼ ðibÞN�1Z1:

Because N � 1 is an odd integer, ðibÞN�1 is pure imaginary. Hence, D2 f ðx; xÞ would
have an eigenvalue with zero real part, contrary to the hypothesis. By an application
of Fenichel’s theory, the normally hyperbolic manifold G persists for sufficiently

small ma0: Moreover, because N � 1 is odd, the relation m ¼ t1=ðN�1Þ is invertible
and system (24) also has a normally hyperbolic slow manifold for sufficiently small
ta0:
It remains to show that the slow vector field (that is, the restriction of the vector

field corresponding to system (24) to the slow manifold) agrees to order two in t with
the inertial vector field (19) for system (24). The differential equation on the slow
manifold is given by

x0 ¼ mNy1ðx; mÞ;

which, in the original time-scale, is

’x ¼ y1ðx; mÞ:

Thus, the slow vector field is given by x/y1ðx; mÞ:
Note that the last equation in system (27) has the form

y0
N�1 ¼ Bðx;NÞ y1 �

XN�1

j¼0
ajðx; mN�1y1; mN�2y2;y; mN�jyjÞ

 !
; ð28Þ

where the functions aj; jAf1; 2;y;N � 1g; are polynomials in their last j variables

and a0ðxÞ ¼ f ðx; xÞ:
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Claim 3.2. The expansion of the slow vector field y1 in powers of m has the form

y1ðx; mÞ ¼
XN�1

i¼0
miðN�1Þy1;iðN�1ÞðxÞ þ OðmðN�1ÞðN�1Þþ1Þ: ð29Þ

The formal series expansion of y1 has the form

y1ðx; mÞ ¼
XN
i¼0

miy1;iðxÞ: ð30Þ

Using the invariance of the slow manifold, each yj is obtained from this expression,

in turn, by differentiating with respect to x and multiplication by mNy1ðx; mÞ: To see
this, consider a solution of system (27) where the first component is t/xðt; mÞ: For
example, we have that

y2ðxðt; mÞ; mÞ ¼ mN d

dt
y1ðxðt; mÞ; mÞ ¼ mNDy1ðxðt; mÞ; mÞy1ðxðt; mÞ; mÞ;

and therefore

y2ðx; mÞ ¼ mNDy1ðx; mÞy1ðx; mÞ:

By this procedure, it is clear that the leading term of the series expansion for yj has

order mð j�1ÞN :
To determine the form of the series expansion (30), substitute it into system (27)

and note that the left-hand side of the last equation of the resulting system has

leading-order mðN�1ÞN : Hence, all terms of lower order in the series expansion for y1
are determined by the equation

y1 ¼
XN�1

j¼0
ajðx; mN�1y1; mN�2y2;y; mN�jyjÞ: ð31Þ

Recall that the leading term of the expansion of yj has order mð j�1ÞN and substitute

these series into the right-hand side of Eq. (31). After these substitutions, the leading
term of the series expansion of the resulting right-hand side of Eq. (31) has order
zero, and its next term has order N � 1:
Thus, the leading term of the series expansion of y1; the left-hand side of Eq. (31),

has order zero, and its next term has order N � 1: Using this fact, recompute the
series for the yj as indicated above and note that

yj ¼ mð j�1ÞNðyj;0 þ mN�1yj;N�1 þ OðmNÞÞ:
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To recompute the series expansion for the right-hand side of Eq. (31), we now
substitute

mN�jyj ¼ m jðN�1Þyj;0 þ mð jþ1ÞðN�1Þyj;N�1 þ Oðmð jþ1ÞðN�1Þþ1Þ:

Note that the first three terms of the series expansion of the right-hand side of
Eq. (31) must now have orders 0; N � 1; and 2ðN � 1Þ: Hence, the first three terms
on the left-hand side of Eq. (31) have the same orders, and it follows that

y1 ¼ y1;0 þ mN�1y1;N�1 þ m2ðN�1Þy1;2ðN�1Þ þ Oðm2ðN�1Þþ1Þ:

Proceeding by induction, let us suppose that

y1 ¼ y1;0 þ mN�1y1;N�1 þ m2ðN�1Þy1;2ðN�1Þ

þ?þ miðN�1Þy1;iðN�1Þ þ OðmiðN�1Þþ1Þ: ð32aÞ

In this case,

yj ¼ mð j�1ÞNðyj;0 þ mN�1yj;N�1 þ?þ miðN�1Þyj;iðN�1Þ þ OðmiðN�1Þþ1ÞÞ

and

mN�jyj ¼ m jðN�1Þyj;0 þ mð jþ1ÞðN�1Þyj;N�1

þ?þ mð jþiÞðN�1Þyj;iðN�1Þ þ Oðmð jþiÞðN�1Þþ1Þ:

The essential feature of these series is that the order of every term, whose order is less
than or equal to ði þ 1ÞðN þ 1Þ; has the form kðN � 1Þ for some integer
kAf0; 1; 2;y; i þ 1g: After substitution of these series, the series expansion of the
resulting right-hand side of Eq. (31) has the same property. Hence, so does the left-
hand side of Eq. (31), as required.
Consider system (25). Using Claim 3.2 and retaining only terms with order less

than three in t; the slow vector field is given by

y1ðxÞ ¼ f ðx;xÞ þ ty1;1ðxÞ þ t2y1;2ðxÞ:

By substitution of this expression into the last equation in system (25) and by
retaining only the appropriate low-order terms, the functions y1;1 and y1;2 are

determined by equating terms of the same order from the left- and right-hand sides
of the equation

t2ðD1 f ðx; xÞy1ðxÞ þ D2 f ðx;xÞy1ðxÞÞ ¼ 2ðD2 f ðx; xÞÞ�1 ty1;1ðxÞ þ t2y1;2ðxÞ
�

þ tD2 f ðx; xÞð f ðx; xÞ þ ty1;1ðxÞÞ

� t2

2
D2

2 f ðx; xÞð f ðx; xÞ; f ðx; xÞÞ
�
:
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In fact, y1;1 and y1;2 agree with the first- and second-order terms in expansion (19) of

the inertial vector field.
In case N42; we again use Claim 3.2 and the ansatz

y1ðxÞ ¼ f ðx; xÞ þ mN�1y1;N�1ðxÞ þ m2ðN�1Þy1;2ðN�1ÞðxÞ: ð32bÞ

Also, we note that after substitution into equations two through N � 2 in system (26)

it follows that the leading term in the expansion of yi has order mði�1ÞN : Thus, after
substitution in the last equation of this system, the leading term on its left-hand side

has order mðN�1ÞN ; therefore, unlike in the case N ¼ 2; these terms do not enter into

the determination of the coefficients of the slow vector field to order m2ðN�1Þ: In fact,
the coefficients of Eq. (32) are determined by equating to zero the terms of order

miðN�1Þ; for i ¼ 0; 1; 2; in the expression

y1ðxÞ � f ðx; xÞ þ mN�1D2 f ðx;xÞy1ðxÞ

� m2ðN�1Þ

2!

1

mN
D2 f ðx; xÞy2 þ D2 f ðx; xÞðy1; y1Þ

� �

after substitution using Eq. (32). Since the expansion of y2 has leading-order mN ; it

‘‘cancels’’ the factor 1=mN : The coefficients y1;N�1 and y1;2ðN�1Þ determined in this

manner agree with the first- and second-order terms in expansion (19) of the inertial
vector field. &

Conjecture 3.3. The formal expansion of the slow vector field corresponding to system

(26) agrees to order N in t with expansion (19) of the inertial vector field.

We will prove a special case of Conjecture 3.3.

Theorem 3.4. Suppose that A is an n � n matrix. If jtjjjAjjeo1; then the delay

equation ’xðtÞ ¼ Axðt � tÞ has an inertial manifold, and its inertial vector field is given

by

X ðx; tÞ ¼
XN
j¼0

ð�1Þ j ð1þ jÞ j

ð1þ jÞ! t
jA1þjx:

Moreover, if NX1 and A is invertible, then the expansion in powers of t of the slow

vector field corresponding to system (26) agrees to order N with the inertial vector field

X.

Proof. By the ratio test, if jtjjjAjjeo1; then the series in the statement of the theorem
converges.
By Theorem 2.1, the linear delay equation has a special flow y ¼ yðt; x; tÞ: We will

show that its generator is given by X ¼ Xðx; tÞ:
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Define fðt; x; tÞ :¼ yðtt; x; tÞ so that

’fðt; x; tÞ ¼ t ’yðtt; x; tÞ

¼ tAyðtt � t; x; tÞ

¼ tAyðtðt � 1Þ; x; tÞ

¼ tAfðt � 1; x; tÞ

and

fðt; x; 0Þ � x:

Also, in this case, the inertial vector field is given by

Ayð�t; x; tÞ ¼ Afð�1; x; tÞ:

We will show that

Xðt; xÞ :¼ Afð�1; x; tÞ

has the series expansion in the statement of the theorem.
Note that Xð0; xÞ ¼ Afð�1; x; 0Þ ¼ Ayð0; x; 0Þ ¼ Ax: The Taylor series at t ¼ 0 is

determined from the partial derivatives of f with respect to t:We will compute these
partial derivatives from appropriate variational equations. We have that

’fðt; x; tÞ ¼ tAfðt � 1; x; tÞ;

d

dt

@f
@t

ðt; x; tÞ ¼ Afðt � 1; x; tÞ þ tA
@f
@t

ðt � 1; x; tÞ;

and, by induction for jX1;

d

dt

@ jf
@t j

ðt; x; tÞ ¼ jA
@ j�1f
@t j�1 ðt � 1; x; tÞ þ tA

@ jf
@t j

ðt � 1; x; tÞ:

After evaluation at t ¼ 0;

d

dt

@ jf
@t j

ðt; x; 0Þ ¼ jA
@ j�1f
@t j�1 ðt � 1; x; 0Þ;

and, by integration,

@ jf
@t j

ðt; x; 0Þ ¼ jA

Z t

0

@ j�1f
@t j�1 ðs � 1; x; 0Þ ds:
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For jX1; the jth Taylor coefficient XjðxÞ of X ðt; xÞ is given by

XjðxÞ ¼
1

j!
A
@ jf
@t j

ð�1; x; 0Þ:

It is now clear that the Taylor coefficients of X are determined by the following
algorithm:

By induction, it is easy to see that

Fjðt; xÞ ¼ tðt � jÞ j�1
Ajx;

XjðxÞ ¼ ð�1Þ j ð1þ jÞ j

ð1þ jÞ! A 1þjx; ð33Þ

as required.
Let us now consider the slow vector field. By replacing the right-hand side of the

delay equation ’xðtÞ ¼ Axðt � tÞ with its Taylor polynomial of degree N at t ¼ 0 and
rearranging the terms in the resulting equation, we obtain the Nth-order ODE

tNxðNÞ ¼ ð�1ÞN
N!A�1 xð1Þ �

XN�1

j¼0
ð�1Þ j t j

j!
Axð jÞ

 !
; ð34Þ

where xð jÞ denotes the jth derivative with respect to the slow-time t:
For convenience of notation, let us consider the series expansion of the slow vector

field, given by y1 (as in Claim 3.2), in the form

y1ðx; tÞ ¼
XN

k¼0
mkðN�1Þr1;kðxÞ; ð35Þ

where m ¼ 1=tN�1: The corresponding expansions of the elements of the sequence

fyjgN�1
j¼2 are determined in turn using the invariance of the slow manifold for system

(27) and the recursive definition yj ¼ y0
j�1 where the differentiation is with respect to

the fast-time s: More precisely,

yjðx; tÞ ¼ Dyj�1ðx; tÞx0 ¼ Dyj�1ðx; tÞmNy1ðx; tÞ;

Input j;
F0ðt; xÞ :¼ x;
X0ðxÞ :¼ Ax;

If j ¼ 0 Go To Output;
For k From 1 To j Do

Fkðt; xÞ :¼ kA
R t

0 Fk�1ðs � 1; xÞ ds;

XkðxÞ :¼ 1
k!Fkð�1; xÞ;

End For Loop;
Output XjðxÞ:
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where D denotes the derivative with respect to the space variable x: It follows
that

y2ðx; tÞ ¼ mN
XN

k¼0
mkðN�1ÞDr1;kðxÞ

 ! XN

i¼0
miðN�1Þr1;iðxÞ

 !

¼ mN
XN

k¼0
mkðN�1Þ

Xk

i¼0
Dr1;iðxÞr1;k�iðxÞ

 !
þ OðmNmN2�1Þ

¼ mN
XN

k¼0
mkðN�1Þr2;kðxÞ þ OðmNmN2�1Þ;

where

r2;kðxÞ :¼
Xk

i¼0
Dr1;iðxÞr1;k�iðxÞ;

and, by induction for j ¼ 2; 3;y;N � 1;

yjðx; tÞ ¼ mð j�1ÞN
XN�1

k¼0
mkðN�1Þrj;kðxÞ þ Oðmð j�1ÞNmN2�1Þ; ð36Þ

where

rj;kðxÞ :¼
Xk

i¼0
Drj�1;iðxÞr1;k�iðxÞ:

Let us determine the coefficients fr1;kg
N
k¼0 by substitution into the fast-time system

(27). Since the leading-order term of the expansion for y0
N�1 has order m

ðN�1ÞN ; the

coefficients fr1;kg
N�1
k¼0 are determined by equating to zero the right-hand side of the

last equation in system (27). An easy computation shows that y0
N�1 ¼ tNxðNÞ: Hence,

we can instead determine these coefficients by equating to zero the right-hand side

Eq. (34). After substituting into this equation for the time-derivatives xð jÞ according
to the definitions of the yi in system (26), it follows immediately that the determining

equation for the coefficients fr1;kg
N�1
k¼0 is given by

y1 ¼ Ax þ
XN�1

j¼1
ð�1Þ j mN�j

j!
Ayj: ð37Þ
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Using the expansions of the yi from Eq. (36), we have that

Ax þ
XN�1

j¼1

ð�1Þ j

j!
mN�jAyj ¼Ax þ A

XN�1

j¼1

ð�1Þ j

j!
mN�j

XN�1

k¼0
mkðN�1Þrj;kðxÞ

¼Ax þ A
XN�1

j¼1

XN�1

k¼0

ð�1Þ j

j!
mð jþkÞðN�1Þrj;kðxÞ:

By summing along ‘‘negative slope’’ diagonals in the ð j; kÞ-index space, the last
double sum can be rearranged so that

Ax þ
XN�1

j¼1
ð�1Þ j mN�j

j!
Ayj

¼ Ax þ A
XN�1

k¼1
mkðN�1Þ

Xk

c¼1

ð�1Þc

c!
rc;k�cðxÞ þ OðmðN�1ÞðN�1Þþ1Þ: ð38Þ

Using Eq. (37) and comparing coefficients in expansions (35) and (38), it follows
that the r1; jðxÞ; for j ¼ 0; 1;y;N � 1; are given by the following algorithm:

For iAf1; 2;y;N � 1g and jAf0; 1;y;N � 1g; we will show that

ri; jðxÞ ¼ ð�1Þ j iði þ jÞ j�1

j!
Aiþjx: ð39Þ

In particular, if this representation is valid, then XjðxÞ ¼ r1; jðxÞ for jAf0; 1;y;

N � 1g (see Eq. (33)). We will also use formula (39) to prove that XNðxÞ ¼ r1;NðxÞ:
By inspection, r1;0 and r1;1; as defined by the algorithm, are given by the

representation in display (39).

Input j;
r1;0ðxÞ :¼ Ax;

If j ¼ 0 Go To Output;

r1;1ðxÞ :¼ �A2x;

If j ¼ 1 Go To Output;
For k From 2 To j Do
For c From 2 To k Do

rc;k�cðxÞ :¼
Pk�c

i¼0 Drc�1;iðxÞr1;k�c�iðxÞ;
End For Loop;

r1;kðxÞ :¼ A
Pk

i¼1
ð�1Þi

i! ri;k�iðxÞ;
End For Loop;
Output r1; jðxÞ:
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Suppose that ra;b; as defined by the algorithm for 1paþ bok; are given by the

representation in display (39). We will show that the rc;k�c; defined by the algorithm

for cAf2; 3;y; kg; are also given by the representation in display (39).
Using the induction hypothesis, we have

rc;k�cðxÞ :¼
Xk�c

i¼0
Drc�1;iðxÞr1;k�c�iðxÞ

¼ ð�1Þk�c
Xk�c

i¼0

ðc� 1Þðc� 1þ iÞi�1ð1þ k � c� iÞk�c�i�1

i!ðk � c� iÞ! Akx:

Thus, it suffices to show that

ðc� 1Þ
Xk�c

i¼0

ðc� 1þ iÞi�1ð1þ k � c� iÞk�c�i�1

i!ðk � c� iÞ! ¼ ckk�c�1

ðk � cÞ!;

or equivalently,

Xk�c

i¼0

k � c

i

 !
ðc� 1þ iÞi�1ð1þ k � c� iÞk�c�i�1 ¼ c

c� 1
kk�c�1:

With m :¼ k � c; the required identity is

Xm

i¼0

m

i

 !
ðc� 1þ iÞi�1ðm þ 1� iÞm�i�1 ¼ c

c� 1
ðm þ cÞm�1: ð40Þ

This nontrivial combinatorial identity is a special case of Abel’s generalization of the
binomial theorem; namely,

ab
Xm

i¼0

m

i

 !
ðaþ iÞi�1ðbþ m � iÞm�i�1 ¼ ðaþ bÞðaþ bþ mÞm�1

(see for example [13, p. 19]). In fact, identity (40) is obtained from Abel’s identity
with the replacements a ¼ c� 1 and b ¼ 1:
To complete this part of the proof, we will show that r1;k; as defined in the

algorithm, is given by formula (39); or, in other words,

ð�1Þk ð1þ kÞk�1

k!
Akþ1x ¼A

Xk

i¼1

ð�1Þi

i!
ð�1Þk�i ikk�i�1

ðk � iÞ! Akx

� �

¼ð�1Þk
kk�1

Xk

i¼1

k�i

ðk � iÞ!ði � 1Þ! Akþ1x:
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Clearly, it suffices to show that

1þ k

k

� �k�1
¼
Xk

i¼1

k!

kiðk � iÞ!ði � 1Þ!: ð41Þ

But, since

1þ 1

k

� �k�1
¼
Xk�1
i¼0

k � 1

i

 !
1

ki

¼
Xk�1
i¼0

k

i þ 1

 !
i þ 1

kiþ1

¼
Xk

i¼1

k

i

 !
i

ki

¼
Xk

i¼1

k!

kiðk � iÞ!ði � 1Þ!;

the required identity is a corollary of the binomial theorem.

To prove that XN ¼ r1;N ; let us equate the terms of order mNðN�1Þ in the last

equation of system (27). In the present case, this equation is obtained from Eq. (34).
After substitution of the series expansions for the yi; the left-hand side of the

equation has one term of the required order, namely mNðN�1ÞAnx: After multi-

plication of both sides of the equation by the inverse of the factor ð�1ÞN
N!A�1 and

some algebraic manipulation, it follows that

r1;NðxÞ ¼
ð�1ÞN

N!
ANþ1x þ A

XN�1

j¼1

ð�1Þ j

j!
½yj �NðN�1Þþj�N ;

where ½yj�NðN�1Þþj�N denotes the coefficient of order mNðN�1Þþj�N in the series

expansion of yj : Using formula (36), this coefficient is rj;N�j ; which is given explicitly

in display (39). After some simplification, it follows that

r1;NðxÞ ¼ ð�1ÞN
XN

j¼1

NN�j�1

ð j � 1Þ!ðN � jÞ! ANþ1x:

By inspection, this coefficient is equal to the coefficient of tN in the expansion of
Xðx; tÞ if

1þ N

N

� �N�1
¼
XN

j¼1

N!

NjðN � jÞ!ð j � 1Þ!;

therefore, the desired result follows from identity (41). &
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Appendix

Proof of Proposition 2.10. We will prove that S is complete.

Suppose that fZkg
N

k¼1 is a Cauchy sequence in S; that is, for every e40; there is
some NX1 such that

e�ljtj jZkðt; x; tÞ � Zcðt; x; tÞj þ
Z t

0

j’Zkðx; tÞ � ’Zcðx; tÞjds

����
����

� �
oe;

whenever ðt; x; tÞAR� V � ½0; b� and k; cXN: The space A of continuous functions
Z :R� V � ½0; b�-Rn that are bounded with respect to the norm

jjZjjS :¼ sup
ðt;x;tÞAR�V�½0;b�

e�ljtjjZðt; x; tÞj

is a Banach space. Thus, the sequence fZkg
N

k¼1 has a limit in A:

Claim A.1. For each integer pX1; there is a continuous function gp : V �
½0; b�-L1ð½�p; p�;RnÞ such that for each e40; there is an integer NX1 and

e�ljtj
Z t

0

gpðx; tÞ � ’Zkðx; tÞ ds

����
����oe

whenever ðt; x; tÞA½�p; p� � V � ½0; b� and kXN: Moreover, there is a number r40
such that

e�ljtj
Z t

0

jgpðx; tÞj ds

����
����pr:

To prove the claim, note first that the Cauchy sequence fZkg
N

k¼1CS is bounded.

Thus, there is some r40 such that

e�ljtj
Z t

0

j’Zkðx; tÞj ds

����
����pr; ðA:1Þ

whenever ðt; x; tÞA½�p; p� � V � ½0; b� and kX1; and therefore, for each kX1; the

continuous function ’Zk : V � ½0; b�-L1ðð�p; pÞ;RnÞ is bounded. Moreover, the
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sequence f’ZkgNk¼1 is a Cauchy sequence in the Banach space E of bounded

continuous functions from V � ½0; b� to L1ðð�p; pÞ;RnÞ: This fact is an immediate
consequence of the inequality

sup
x;t

jj’Zkðx; tÞ � ’Zcðx; tÞjj ¼ sup
x;t

Z p

�p

j’Zkðx; tÞ � ’Zcðx; tÞj ds

¼ sup
x;t

eljpje�ljpj
Z p

�p

j’Zkðx; tÞ � ’Zcðx; tÞj ds

p 2eljpjjjZk � ZcjjS:

Because E is complete, the sequence f’ZkgNk¼1 converges to some gpAE: Hence, for

every e40; there is an NX1 such that

e�ljtj
Z t

0

jgpðx; tÞ � ’Zkðx; tÞj ds

����
����oe; ðA:2Þ

whenever ðt; x; tÞA½�p; p� � V � ½0; b� and kXN: Using inequalities (A.1) and (A.2)
and a triangle law estimate, it follows that

e�ljtj
Z t

0

jgpðx; tÞj ds

����
����pr:

This completes the proof of the claim.
For each ðx; tÞAV � ½0; b� and pX1; choose a function gpðx; tÞ in the equivalence

class of gpðx; tÞAL1ðð�p; pÞ;RnÞ: (We are using the same name for two different

objects.) For each tAR; define gðx; tÞðtÞ ¼ gpðx; tÞðtÞ; where p is the smallest integer

such that tAð�p; pÞ: The function gðx; tÞ :R-Rn is measurable. In fact, for an open

set U in Rn; the set Up :¼ gðx; tÞ�1ðUÞ-ð�p; pÞ is measurable because

gðx; tÞ�1ðUÞ-ð�p; pÞ ¼ gpðx; tÞ�1ðUÞ-ð�p; pÞ;

and therefore gðx; tÞ�1ðUÞ is the countable union of measurable sets. We will show

that gðx; tÞAL1
locðR;RnÞ: For this, choose a compact set JCR: There is some pX1

such that JC½�p; p�: Hence, we have that
Z

J

jgðx; tÞj dsp
Z p

�p

jgðx; tÞj ds

¼
Xp

c¼1

Z c

�c
jgcðx; tÞj ds

p
Xp

c¼1
jjgcðx; tÞjj1oN:
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To show that g : V � ½0; b�-L1
locðR;RnÞ is continuous, we fix ðz; sÞAV � ½0; b� and

use essentially the same estimate to obtain the inequality

Z
J

jgðx; tÞ � gðz; sÞj dsp
Xp

c¼1
jjgcðx; tÞ � gcðz; sÞjj1:

Since each gc is continuous, so is g:
We will show that

lim
k-N

sup
ðt;x;tÞAR�V�½0;b�

e�ljtj
Z t

0

jgðx; tÞ � ’Zkðx; tÞj ds

����
���� ¼ 0:

Choose e40: By using a triangle-law estimate, we have the inequality

e�ljtj
Z t

0

jgðx; tÞ � ’Zkðx; tÞj ds

����
����pe�ljtj

Z t

0

jgðx; tÞ � ’Zcðx; tÞj ds

����
����þ jjZc � ZkjjS:

Because fZkg
N

k¼1 is a Cauchy sequence in S; there is some NX1 such that

e�ljtj
Z t

0

jgðx; tÞ � ’Zkðx; tÞj ds

����
����oe�ljtj

Z t

0

jgðx; tÞ � ’Zcðx; tÞj ds

����
����þ e;

whenever ðt; x; tÞAR� V � ½0; b�; cXN; and kXN: Also, for tAð�p; pÞ; we have the
inequality

e�ljtj
Z t

0

jgðx; tÞ � ’Zcðx; tÞj ds

����
����pe�ljtj

Xp

j¼1
jjgjðx; tÞ � ’Zcðx; tÞjj1:

Hence, for each ðt; x; tÞ;

lim
c-N

e�ljtj
Z t

0

jgðx; tÞ � ’Zcðx; tÞj ds

����
���� ¼ 0;

and therefore

e�ljtj
Z t

0

jgðx; tÞ � ’Zkðx; tÞj ds

����
����oe;

whenever ðt; x; tÞAR� V � ½0; b� and kXN; as required.

To complete the proof, we will show that ’Z ¼ g: The function Z
*
ðx; tÞAL1

locðR;RnÞ
defines the distribution (a linear functional on the space of test functions DðR;RnÞ)
given by f/

R
N

�N
Z
*
ðx; tÞf ds; where the product in the integrand is the inner

product in Rn: By definition, the distributional derivative of this distribution is the
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distribution f/�
R
N

�N
Z
*
ðx; tÞDf ds: We must show that

�
Z

N

�N

Z
*
ðx; tÞDf ds ¼

Z
N

�N

gðx; tÞf ds

for each test function f:
Choose fADðR;RnÞ: Since the support of f is compact, it is contained in some

interval ½�p; p�: Thus, it suffices to show that the quantities

�
Z p

�p

Z
*
ðx; tÞDf ds;

Z p

�p

gðx; tÞf ds

are equal. We will show that each of these quantities is the limit of the same
sequence. In fact, since the distributional derivative of ðZkÞ* ðx; ZÞ is ’Zkðx; ZÞ; we have
that

�
Z p

�p

ðZkÞ* ðx; tÞDf ds ¼
Z p

�p

’Zkðx; tÞf ds; ðA:3Þ

and the required sequence is one of the sequences corresponding to this equality.
BecauseZ p

�p

gpðx; tÞf ds �
Z p

�p

’Zkðx; tÞf ds

����
����p

Z p

�p

jgpðx; tÞ � ’Zkðx; tÞjjfj ds

p jjfjjjjgp � ’Zkjj1;

it follows that

lim
k-N

Z p

�p

’Zkðx; tÞf ds ¼
Z p

�p

gðx; tÞf ds:

Similarly, Z p

�p

Z
*
ðx; tÞDf ds �

Z p

�p

ðZkÞ* ðx; tÞDf ds

����
����

pjjDfjj
Z p

�p

jZðs; x; tÞ � Zkðs; x; tÞj ds

p2jjfjjelpjjZ� ZkjjS;

and therefore

lim
k-N

�
Z p

�p

ðZkÞ* ðx; tÞDf ds ¼ �
Z p

�p

Z
*
ðx; tÞDf ds: &
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