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Abstract

Yu.A. Ryabov and R.D. Driver proved that delay equations with small delays have
Lipschitz inertial manifolds. We prove that these manifolds are smooth. In addition, we show
that expansion in the small delay can be used to obtain the dynamical system on the inertial
manifold. This justifies ““post-Newtonian’’ approximation for delay equations.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Ryabov [23-27] and Driver [7,8] studied retarded functional differential equations
(RFDE:s) with small retardations. For a globally Lipschitz RFDE with a sufficiently
small retardation, they proved the existence of a finite-dimensional manifold of
“special solutions’ that attracts, exponentially fast, all solutions in the infinite-
dimensional phase space of the RFDE. We will show that the manifold of special
solutions is smooth. Thus, Ryabov’s special solutions form an inertial manifold in
the phase space of the RFDE. In particular, the long-term dynamics of the RFDE is
determined by a (smooth) ordinary differential equation (ODE) on the inertial
manifold. We will also show that the dynamical systems on the slow manifolds of the
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singular perturbation problems obtained by expansion of the RFDE to some finite
order in powers of the retardation agree with the dynamical system on the inertial
manifold. Thus, the long-term dynamics of the original RFDE (the dynamics on its
inertial manifold) can be obtained by reducing a “‘post-Newtonian” expansion to an
appropriate slow manifold.

Let C([a,b],R") denote the Banach space of continuous functions from the
interval [a,b] to R" with the supremum norm; and, in the special case where a =
—1<0 and b =0, let ¥ = C([-1,0],R"). Also, for each function g defined on the
interval [t —1,1], let g,€% denote the function given by g,(0) =g¢g(z+0). A
continuous function F: R x ¥ — R" determines the nonautonomous RFDE

x(t) = F(t,x,). (1)
Similarly, a continuous function F : ¥ - R" determines the autonomous RFDE
X(1) = F(x,). (2)

A solution of Eq. (1) is a continuous function y: [¢ — 7,0 + ¢) > R" defined for some
geR and ¢>0 such that y(¢) = F(z,y,) for te[o, 0 + ¢), where y(¢) denotes the right-
hand derivative of y at ¢. In this case, for ¢ €% we will sometimes write y(¢)(¢) (or
(o, ¢)(2)) and say that y(¢) (or y(o, ¢)) is the solution with initial condition ¢ at ¢ if
»(¢), = ¢. The basic theorem of the subject is the following result on existence,
uniqueness, and continuous dependence (see, for example, [6,10,15]).

Theorem 1.1. If F: 4 —R" is locally Lipschitz, ¢ €€, and o € R, then there is a unique
continuous solution y of RFDE (1) such that y, = ¢. Moreover, y(¢) depends
continuously on ¢. If, in addition, F is C', then the solution t+—y(¢)(t) is C' with
respect to ¢ on every compact set in its domain of definition.

Definition 1.2 (cf. Driver [7,8]). A solution y of RFDE (1) is called a special solution
if y is defined on R and

sup ¢ 7 |y(1)| < 0.
teR

Suppose that n: R x R”"—R" is a continuous function such that for each £eR" the
function t+7(t, &) is a special solution of RFDE (1). The function # is called a
special flow for RFDE (1) if

n(t,n(s, &) =n(t+s.¢), n(0,8)=¢,
whenever £, seR and £eR”.

We will often write 5(¢&), for the function in 4 given by

n(¢),(0) = n(t+6,9).
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In case t>0, the initial conditions for an RFDE range over the infinite-
dimensional space . Thus, € is the natural state-space for the associated dynamical
system given by T'(¢) = y(¢), for >0 and ¢ € %. The initial conditions for a special
flow range over the finite-dimensional space R". Thus, a special flow would seem to
determine the dynamics of the RFDE only on a negligible subset of its phase space.
On the other hand, a special flow would capture the long-term dynamics—the
important dynamics in many physical models—if all solutions of the RFDE were
attracted (in forward time) to the manifold .# =% given by the image of the map
E—n(&), from R" to %. Even better, if .# were smooth, then the special flow—the
dynamical system that agrees with T’ on .#—would be generated by a smooth
vector field, the infinitesimal generator of the special flow. In other words, the
evolution of the RFDE on .# would be uniquely determined by specifying an initial
value in R" for an ODE. In fact, under the assumption that there is a special flow, the
vector field X with flow # is given (in local coordinates on .#) by

X = Dn(9)] = Fo@)). )

t=0

Note that X is smooth whenever the function from R" to % given by &—n(&),
is smooth. In particular, the smoothness of X depends only on 5 restricted to
[—7,0] x R".

Our investigation of special flows is motivated by the observation that the
fundamental forces of nature—in either Maxwell’s or Einstein’s field theories—
propagate at the speed of light, not at infinite speed as in Newtonian physics. In
particular, there is no “‘action at a distance.”” As a result, the fundamental equations
of motion are functional differential equations with space-dependent delays—a more
general type of functional differential equation than the RFDEs considered here.
Because these equations of motion are generally very complicated, it is common
practice in physics to approximate them with ordinary (or partial) differential
equations. We will consider one important approximation procedure, called post-
Newtonian expansion, where differential equations are obtained by truncating at
some finite order the Taylor expansion of the functional equations of motion in
powers of some characteristic velocity divided by the speed of light. How can such an
approximation be justified? In case the true functional differential equations of
motion have an inertial manifold, the only viable finite-dimensional approximation
is the dynamical system on the inertial manifold; it captures the long-term dynamics
of the infinite-dimensional dynamical system. Therefore, the post-Newtonian
approximation (or any other finite-dimensional approximation) would be justified
if it agrees with the dynamical system on the inertial manifold.

As a first step in the direction of such a justification for post-Newtonian
approximations of real physical systems, we will consider here exactly the same
procedure for a special type of RFDE. To mimic the equations of motion, we will
consider families of delay equations, where the delay is viewed as a parameter. More
precisely, for a C'-function f : R" x R" - R", the RFDE corresponding to the family
of functionals F, : € — R" given by F;(¢) = f(¢(0), ¢(—1)), where t€(0, 5] for some
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b=0, is the delay equation
X(1) = Fe(x,) = f(x(2), x(1 — 7). (4)

Under the assumption that there is a special flow #(¢, &, 1) for this delay equation
which also depends smoothly on & and 7, the corresponding smooth vector field X
with flow # is given by

X (& 1) = F(n(&, 1)) =/ (& n(=7,¢,7)) (5)

in local coordinates on the manifold of special solutions .#.. Note that the
smoothness of the vector field X depends only on the smoothness of # restricted to
[—b,0] x R" x [0,b].

As suggested previously, the vector field X (equivalently the ODE that it defines)
on ./, will determine the long-term behavior of the original delay equation as long
as ./, is an inertial manifold; that is, .4, is an invariant, finite dimensional, and
smooth manifold that attracts all other solutions exponentially fast.

In this paper, “post-Newtonian expansion’ means expansion of the vector field (5)
to some finite order in powers of 7. This procedure produces a high-order ODE in the
time-derivatives of the state x, where the highest-order time-derivative of x is
multiplied by a power of 7. In other words, the resulting high-order ODE can be
viewed as a singular perturbation problem with small parameter 7.

In the physics literature (see, for example, [18]), a famous example related to post-
Newtonian expansion is the Lorentz—Dirac equation. For an electron confined to
move on a line—the simplest example—and with radiation reaction taken into
account, this model yields the third-order ODE

X’:r'jc'JrgF(x)
m

for the position of the electron, where ¢ is the charge, m is the mass, t == 2¢/(3mc?),
¢ is the speed of light, and F is the external force. As is well known, this type of
equation does not give a satisfactory physical model. The fundamental difficulty is
apparent, for example, with F given by Hooke’s law (say F(x) = —kx for k>0). In
this case, the resulting (linear) ODE has solutions—called runaway solutions in the
physics literature—that are unbounded in forward time. Since the system is supposed
to model the motion of an electron, which is supposed to radiate energy as its
acceleration changes, the radiation reaction should cause damping, an effect that is
incompatible with runaway solutions. Hence, this post-Newtonian system cannot be
the correct (approximate) dynamical model.

A general resolution of the problem of runaway solutions and a rigorous
foundation for post-Newtonian mechanics is proposed in [4,5]. There, the
fundamental delay-type equations of motion in classical gravitation and electro-
dynamics are conjectured to have inertial manifolds in the low-velocity regime. As
mentioned previously, in this case the long-term dynamics of the true equations of
motion is given by the corresponding finite-dimensional differential equation on the
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inertial manifold. To be viable, a post-Newtonian model must produce a dynamical
system that agrees with the dynamical system on the inertial manifold. By a second
conjecture, an approximation to the dynamical system on the inertial manifold (up
to the order of the truncation of the post-Newtonian expansion) can always be
obtained by viewing the (truncation of a) post-Newtonian expansion as a singular
perturbation problem and reducing the corresponding dynamical system to an
appropriately chosen slow manifold. In this scenario, it is easy to see that the
runaway solutions for the post-Newtonian system have no physical significance; they
are merely artifacts of the expansion procedure that correspond to motions in the
unstable manifold of the slow manifold. The correct post-Newtonian approxima-
tion—the ODE on the inertial manifold (a Newtonian equation with post-
Newtonian corrections)—is thus approximated by reduction of the post-Newtonian
high-order ODE to a slow manifold (cf. [2]).

We will justify the “post-Newtonian” approximation procedure for the delay
equation (4). Three main results will be presented. Under the assumption that F is
Lipschitz and 7 is sufficiently small (an explicit bound will be given), we will show
that RFDE (2) has a smooth inertial manifold. For the delay equation (4), we will
also show that the inertial manifold depends smoothly on the parameter 7. Finally,
for the delay equation, we will show that the singularly perturbed high-order ODE
obtained by “post-Newtonian” expansion in the small parameter t results in a vector
field (the slow vector field) on an appropriate slow manifold that agrees with the
vector field (the inertial vector field) given by the restriction of the infinite-
dimensional dynamical system to its inertial manifold. More precisely, we will show
that the slow manifold has the same dimension as the inertial manifold and the two
vector fields agree to second order in t—a result that is sufficient for most
applications. We will also show these vector fields agree to all orders for the special
case of the linear delay equation X(#) = Ax(¢ — 1), where A is an invertible n X n-
matrix.

Note added in proof

In fact, these vector fields agree to all orders for the delay equation x(¢) =

S (x(2), x(1 = 7).

2. The existence and smoothness of special flows

The following theorem states some of the fundamental results of Driver and
Ryabov (see [7,8]).

Theorem 2.1. (1) Suppose that F : R x € —R" is continuous and Lipschitz in its second
argument (that is, there is some K >0 such that

[F(1,¢) — F(,¥)|<K|lp — ],
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whenever te R and ¢,y e%b). If

sup e 7| F(1,0)| < o0,
teR

and Kte <1, then, for each se R and £eR", the nonautonomous RFDE x(t) = F(t, x;)
has a unique special solution y such that y(s) =& Moreover, if the RFDE is
autonomous, then it has a special flow.

(2) Suppose, in addition, that p is the least positive root of the equation p =
Ker®, Kre!PKert <1, and (1,10, &), for t,toeR and EyeR", denotes the special
solution such that 3(ty, to, &) = . Then, there is a number r>0 with the following
property: For each solution y(o,$)(t) of the RFDE such that y(o,¢), = ¢, there is
some Ee€R" such that lim,_, , y(0,s,y(a,¢)(s)) = & and

sup ¢"[y(e,§)(1) - 31,0, )| < 0.

tzo+t

The second part of Theorem 2.1 states that every solution is attracted
exponentially fast to the manifold of special solutions (cf. [19]).

In this section we will prove two results about the smoothness of the special
flow mentioned in Theorem 2.1. For simplicity, we will consider autonomous
RFDE:s.

Theorem 2.2. If F:%—R" is a continuously differentiable Lipschitz function with
Lipschitz constant K>0, and 0<2K1t+/e<l1, then RFDE (2) has a continuously
differentiable special flow n:R x R"—>R".

Theorem 2.3. If f:R" x R">R" is a continuously differentiable Lipschitz function
with Lipschitz constant K>0, and 0<8Kb< 1, then the delay equation (4) has a
continuously differentiable family of special flows n: R x R" x [0, 5] > R".

The proofs of these theorems are similar. We will obtain the special solutions for
RFDE (2) as fixed points of a contraction. We will then use the fiber contraction
principle (see [3,17]) to prove the smoothness of the family of special solutions with
respect to their values in R” at 1 = 0; and, for the case of delay equations, we will also
prove their smoothness with respect to the delay 7.

Note that the smoothness of the infinitesimal generator of the special flow #,
namely the vector field X given by X (&,1) = f(&,n(—1,&,7)), is determined by the
smoothness of # restricted to [—b,0] x R” x [0, 5], and therefore the smoothness of
the forward extension follows from the usual results for ODE:s.

The proofs given here are similar, but not the same as, the results in [14,16] where
smoothness with respect to initial functions and delays is proved for the delay
equation (4). Here, we will consider the smoothness of the special flows with respect
to the finite-dimensional space of initial conditions R”, where we must consider
backward-time solutions. Also, it turns out that, in our special situation, there is no
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loss of smoothness with respect to the delay, whereas in [14] the function f in the
delay equation (4) is required to be C? in order for the solution to be C' with respect
to the delay.

For another approach to the results presented here, note that the family of delay
equations (4) is transformed, by the change of variables ¢ = st, to the family of delay
equations

Y(0) =t (), (s = 1)), (6)

where y(s) := x(ts). This new family is equivalent to the original family (4) if t#0. It
is easy to see that the unperturbed delay equation, at t = 0, for family (6), namely
V' (s) =0, has a normally hyperbolic, finite dimensional, invariant manifold in
C([-1,0],R"). We could hope to obtain a smooth inertial manifold for family (6)
(and therefore for the original family (4)) for 7#0 and sufficiently small, if we could
apply an infinite-dimensional version of the usual finite-dimensional normal
hyperbolicity theory (see, for example, the recent results of [1]). While this general
approach might produce a useful result, the direct method seems to be a better choice
in our special case: at least it produces an explicit estimate for the parameter interval
containing T = 0 corresponding to the existence of inertial manifolds.

2.1. Proof of Theorem 2.2

We will split the proof of Theorem 2.2 into several propositions. The first part of
the proof sets up an appropriate fiber contraction uses the fiber contraction principle
is used in the second part of the proof to establish the smoothness of the special flow.

By the hypothesis, 2Kt+/e<1 where K is the Lipschitz constant for the functional

F. Let 4= (2r)"" and note that

K
7e’~f<1, tKe<1, 2)1=1. (7)

Let V' be a compact subset of R” and % the Banach space of continuous functions
n:Rx V—->R" with

Inlly = sup In(z,¢)le < o0,
(1,8)eRxV

Also, for an arbitrary Banach space E, a function o: R x V—>FE, and (t,{)eR x V,
let o(¢), denote the function (defined on the interval [—1, 0] with values in E) given by

a(€),(0) = a(t+0,&).

Proposition 2.4. If o: R x V> E is continuous, then a(&),€ C([—1,0],E) whenever
(t,&)eR x V. Moreover, the function d:R x V—C([-1,0],E) given by da(t,¢) =
(&), is continuous.
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Proof. The first statement is obvious. The second statement follows from the local
uniform continuity of a. [

Using this proposition, note that if 5:R x V—>R" is continuous, then
fot F(n(&),) ds exists whenever (z,£)eR x V. Hence, for every such #, there is a
function A() : R x V> R" given by

1

A (6,8) = & + / F(n(e),) ds. (8)

A fixed point of this operator in Z is a special solution of RFDE (2).
Proposition 2.5. If ne &, then A(n)€B. Moreover, A:B— R is a contraction.
Proof. Using Proposition 2.4, it is easy to see that A(n): R x V' —R”" is continuous;
in fact, it is the composition of continuous functions. We will show first that
1A(m)] < 0.

For (s,£)eR x V, we have the key estimate

In(€)ll = sup [n(s+0,8)]
0e(—1,0]

= sup e/l\s+9\e—2|s+9||;,’(s+ 07(;:)|
0e(—1,0]

< Ml 4. ©)

Using this estimate and the Lipschitz constant K for F, we have that

A5, 8)]< 1€ + | / Fn(e),)] ds

<+ . / E(@),) - F(0)| ds + / F(0)] ds

< ¢+ [d|F(0))] +Ku) ISl ds

K T
<[+ [IFO)] + ¢ [Inll(e”" = 1),

and therefore

) F(0 K
sup e M| A(n) (1, &)< sup [¢] +M+—em’||n||_@< w0,
(tE)eRxV ceV re A

as required.
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To show that A is a contraction, suppose that 5,74, and use estimate (9) to
obtain the inequalities

|Mmm@—Amm@<L[ww@m—Fwam¢

<441mm—w@mm

K )
< S = 1)l =l
Thus, we have the norm estimate

K
1401) = AWy <7 €Ml =Vl
and, by the first inequality in display (7), 4 is a contraction. [

For a Banach space E, let L(R", E)) denote the linear transformations from R" to E
with the usual operator norm | |, and let ¥ denote the Banach space of continuous
functions @ : R x V' — L(R", R") such that

[|®]|4 = sup |¢(Z,§)\e""/’<oo.
(t,E)eRxV

Also, let # denote the set of all continuous functions @: R x V' — L(R",R") such
that

sup |®(r, &)< 1.
(t,E)eRxV

The Banach space ¢ consists of the candidates for the derivatives with respect to &
of the elements of 4.

Proposition 2.6. The set F is a complete metric space relative to the metric d given by
d(@,Y)=||® - Y||y for &, YeF.

Proof. We will show that % is a closed subset of . If &%, then
(2, &)|e 11/ < ile 17,

Hence, in view of the equality 24t =1 in display (7), ||®||, < oo. Suppose that
{®},~, is a sequence in Z that converges to @ in . Using estimate (9) and the
definition of &, we have that

|¢(la §)|< |¢(la é) - dsk(ta £)| + |d§k(ta £)|

< T — |, + .
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By passing to the limit as k— oo, we obtain the desired estimate
o1, 9)<M. O

Using Proposition 2.4, if (1, ®)e % x &, then the function ®: R x V - L(R",%)
given by (1, &) = @(¢), is continuous and

RCE | DF(n(2))8(2), ds (10)

is an element of L(R", R").

Proposition 2.7. If (, ®)e B x F, then ¥ (n, ®)e F. Moreover, the function I : B X
F > B x F given by (i, @) (A(n), ¥(n, P)) is a continuous fiber contraction (that is,
I is continuous, there is a number p with 0<u<1, and, for each fixed ne A, the
Sfunction ®+— ¥ (n, ®) is a contraction with contraction constant p).

Proof. In view of Proposition 2.4, if (y,)e# x %, then function
(1,E)> ¥ (n, ®)(1,&) is continuous. We will show that ¥(y, P)e Z.

Note that ||DF||<K. For v in the unit sphere of R" and ®eF, we have the
following estimates:

B, @) (1,2l < Je] + \ / I DF((&),)(2) 0] ds

t
<1 +K‘/ 1B (E), o] ds
0

t
/ sup Pt ds
0 Oe(~70]

K .
<1 +76“(e;'|" —1).

<I1+K

By using the first inequality in display (7), we have that

K K ,
|lp(r]7 @)([7 é)Ul < <1 — 7e)”) + 7eifea\r|

K .
<1 +T€;“r(€dl| _ ])
A
< e)“"‘7
and therefore ¥(y, P)e 7.

We will show that ¥ is a uniform contraction. For ne# and &, YeZ, the
analogue of the key inequality (9) for & is ||®(&),||<e'*F/7||@||,. It is used to
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obtain the estimate

(1, @) (1, E)o — Wln, V)1, E)ol < K\ / 10,0 — Y(2),0]] ds

< tKe||® — Y|4 (eVT —1).
Hence,
|¥(n, @) — ¥(n, Y)|| o <Kze||® — T[4,

and, by the second inequality in display (7), ¥ is a uniform contraction.

To complete the proof, we will show that ¥ is continuous. Because ¥ is a uniform
contraction, it suffices to prove that the function n— ¥(n, ®) is a continuous map
from % to & for each e Z.

Remark. Although continuity with respect to the base point is an essential ingredient
of the fiber contraction method, this nontrivial requirement is often ignored. There
does not seem to be a general result that can be used to establish the required
continuity; instead, the continuity must be checked in each case (see [9] for an
approach to this difficulty in the setting of local contractions of Banach spaces).

For n,ye# and ®€.%, we have the estimates

¥ (n, ®)(1, v — P (7, @) (1, E)v| < ’/Ot IDF(n(&),) = DE(y($) )| @(E) vl ds

AT
<e

. (1)

/Ot IDF(n(¢),) — DF(y(&),)|e™"! ds

Claim 2.8. Fix ye%. For each ¢>0, there is a 6 >0 such that
IDF(n(&),) — DF(y(¢),)]e " <,

whenever (s,&)€R x V and || — v|| 4 <0.

Remark. Define the space ./ of continuous functions G:R x V' — L(%,R") such

that sup |G(t,¢)|e ? < co. Claim 2.8 states that the map P: % — ./ given by
(t,E)eRxV

P(n)(t, &) = DF(n(&),) is continuous.
To begin the proof of the claim, recall that || DF||< K and choose a number ¢ >0
such that 2K exp(—/Ag) <e¢. For all n,ye %, eV, and |s|>o,

IDF(n(&),) — DF(y(é),)le™*" <2Ke ™ <. (12)
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On the other hand, using the uniform continuity of the function DF on the compact
subset S = {y(&),€% :s€[—0,0]} of ¥ (and a compactness argument), there is some
01>0 such that ||DF(¢) — DF(y)||<e whenever ¢pe%, yeS and ||¢ — || <0;.
Also, using the definition of the %-norm, there is a 6>0 such that ||n(&), —

2(8),ll<0o1 for all (s,&)e[—a,0] x V whenever ||y —y||,<0. Hence, for such an 5
and for all (s,¢)e[—0,0] x V, we have that

IDF(5(&),) — DF((é),)le” " <IDF(n(¢),) — DF(3(8),)] <e.

This result, combined with inequality (12), proves the claim.
Fix ¢>0. By Claim 2.8, there is a 4 >0 such that

|DF(n(&),) — DF(V(f)S)\efi“"‘ <2ee ™7,

whenever ||y — y||, <0. Using this result and estimate (11), we have that

t
/ bl ds
0

< 8(62/1\4 _ ])7

|T(7’7 ¢)(t7 é)U - 'P(Vv ¢)(l, é)U| < 2e

whenever ||n —y||,<J. Finally, by using the equation 1/t —24 =0 and the last
equality in display (7), it follows that

| (n, @) (1, E)o — P (3, @)(1, E)vle 1V <,

whenever ||y — || <d; that is, the function n— ¥ (n, @) is continuous.

Proof of Theorem 2.2. Choose a point (¢,{)eR x R", an open subset U of R" with
compact closure V' such that (e U, and let the Banach spaces % and % be defined
relative to the compact set V.

Because A is a contraction, it has a unique fixed point ne 4. Because F is a
complete metric space and (by Proposition 2.7) the map @—¥(y,®P) is a
contraction, it has a unique fixed point ®e.%#. By the fiber contraction theorem
[17], the point (n,P)eZ x F is a globally attracting fixed point for the fiber
contraction I'. Let n,(¢,&) =0 and &,(¢,£) =0, and note that (n,,P1)e&B x F.
Also, for each integer k> 1, let (1, ®r) = I'(n;_;, Px—1). Proceeding by induction,
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we have that Den (2, E) = @1(t, &), and if Deny (1, &) = @i (1, £), then
Dengny (1,8) = D (é + [ P, ds)
0
—r+ / DF (1 (8),) Dt (£), ds
0

=1+ | DF(1(),)04(0), ds
0
=P (1, 8),

where the differentiation under the integral sign is justified because the interval of
integration is finite and the integrand is continuously differentiable with respect to &.
Thus, we have that {5, },~, converges to n in % and {D:n, },—, converges to @ in Z.
Finally, because continuity and differentiability are local properties, to prove that
D:n exists and is continuous at (o, (), it suffices to restrict the functions in these
sequences to the domain [¢ — 1,0 + 1] x U where

sup (. €) — (2, &) < e =l
[o—l,0+1]xU

sup [Pk (1, &) — B(1, &)<’V — D] .
[o—1,0+1]xU

Hence, on this domain, the sequences {n.},—, and {Den,};2, are uniformly
convergent, and therefore D:n = @ is a continuous function. [J

2.2. Proof of Theorem 2.3

While the proof of Theorem 2.3 is similar in structure to the proof of Theorem 2.2,
it is more difficult. To see why, recall the delay equation (4), and note that its
variational equation with respect to t along the solution 7+ x(7) is given by

() = Dy (x(t), x(t = 2))w(t) + Do f (x(t), x(t — 7)) (w(t — 1) = x(t = 7)),

where D) f (respectively, D, f) denotes the partial derivative with respect to the first
(respectively, the second) argument of /. A problem arises because the factor x(¢ — 1)
appears in the integrand of the basic integral equation that will be used to define the
principal part of a required fiber map. In order for this fiber map to be defined, the
function X(z — ) must, at least, be integrable. This requirement must be taken into
account in the definition of the function space where we will seek a special solution of
the original delay equation as the fixed point of a contraction. The natural candidate
for this space is a certain weighted Sobolev-type space that we will define (cf. [14,16])
after the statement and proof of a technical lemma.
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Lemma 2.9. The function p: [0, c0)— R given by
p(x) = (22 +x))" In(1 + x)

achieves its maximum value pmax at a unique point 6 €0, 00). The value of pmax gives
1/pmax~7.18. If b is such that Kb/pmax<1 and A :=2K(2+ o), then there is a
number v>J such that, for u = A+ v,

2K ; K K
T(1+e’“)<1, 7(1+ebV)<1, Z(1+ebﬂ)<1.

Proof. The first statement of the proposition is an exercise in calculus. It is also easy
to show that
pmax < (4(2+ 7)) " In(7 + 40). (13)
By the hypothesis,
bl =2Kb(2+0)<2(2+ o) pmax = In(1 + ).

Hence, e?* <1 + ¢, and therefore
2K .
T (1 + eb/L) < 1
By continuity, there is some number vy > A such that
K
—(1+eM<l,
v
whenever vo>v> 1. Let u = pu(v) = A + v and note that

K K Ity
LU < T (14

]
_ | 4+ PO
42+0) (I+e7)

Also, note that

1

1
li 1 b(2+v) _
im — (1 +e ) 12+0)

1 + &%),
voit 424 0) ( )

Using inequality (13), we have that

2bj.<In(7 + 40).
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A rearrangement of this estimate gives
1+ e <42 + o),

and therefore

1 ,
e 2b 1.
4(2+a)( +e)<

By continuity, there is some v> 4 such that

K
—(1+eM<l,
u

as required. [

By the hypothesis of Theorem 2.3, we have 0 <8Kb < 1. Hence, there are numbers
A, v, and p satisfying the relations stated in Lemma 2.9. Let us fix these numbers for
the remainder of this section. Also, let V< R" be a compact set.

If n:RxV x[0,b)]>R" is continuous and J<R 1is compact, then
J; In(2,&,7)| dt < oo whenever (&, 7)€V x [0,b]. Thus, there is an associated function
n,:V x[0,b]> L (R,R") given by n,(&,1)(1) =n(t,&,1). By the usual theory of
Schwartz distributions (see, for example, [21]), the L! -function 7, (&, 1) has a
distributional derivative D.(n, (&, 7)) for each (&,7)eV x [0,b]. If, in addition,
D.(n,(&71))eL] (R, R") for every (&,7)e V x [0,b], then we have a function j: V' x
[0,6] > Ll .(R,R") given by #(&,t) = D.(n, (¢,7)). By the definition of convergence
in Llloc, the function # is continuous, if for each compact set J<R, the function
iV x [0,b] > L'(J,R") is continuous. Note that if 7 is continuous, then for each
such J, the map from V' x [0,b] to R” given by (&, 1) [;1(&, 1) ds is continuous. In

fact, we have that
/r](é,r) ds—/n’((,a) ds
J J

where the norm is the L'-norm for L'(J,R"). Let & denote the set of all continuous
functions 7: R x V x [0,b] > R" such that, for each (&,7)eV x [0,b], the function
n, (& ) has a distributional derivative 7j(¢,7) in Ll (R,R"), the function #j: V x

[0,5] > L]
)< 0.

loc
Proposition 2.10. The set & endowed with the &-norm is a Banach space.

<H’7(§ar) - n(CaU)Hla

(R, R") is continuous, and

llly =  sup e“'<|n<r,é,r>+] [iteore

(1,£,1)eRx V' x[0,b]

The following proposition is proved in the appendix.
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For n:R x V x [0,b] > R", we have the operator

An)(t, &) =+ /Otf(n(s, &1),n(s—t,&,1))ds

Note that a fixed point of A in & is a solution of the delay equation (4).
Let p>0 be a number such that

o
p= (sup €] +7|f(0 0)|> (1 —27K(1 +e)'b)) ;

eV
and let # denote the closed ball with radius p at the origin in .&.

Proposition 2.11. If ne %@, then A(n)eB. Also, A: B— R is a contraction.

379

Proof. Because 1 and f are continuous, the function A(y) is continuous with its

range in R". Similarly, since

DlA(n)<t7 577) :f(n([v ¢, ‘E),?](l‘ -8, T))?

the function D,A(n) is continuous. Moreover, the function D,A(n)(&, 1) : R—>R" is in

Lo (R, R").
For ne %4, we have that

e A (2, €, D) < e e 4

/O /15,0 n(s — 7,€, )] ds

< || 4 e

/0 (K(n(s.&.0)] + (s — 7.&,0))

+ 1/(0,0)]) ds

< || 4 e

/0( ([l + eIl )

+1/(0,0)[) ds

K b £(0,0
< sup e+ 5 (14, + L0
teV e

and

ol _ ol

/ DA (1, E,7) ds

1£(0,0)
<2+ ), + L0

/t |f(n(s,&,7),n(s — 1,&,7))| ds
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that is,

207(0,0)] 2K,
)< sup [¢l + 2B 2K 1y oy,
cev e A

Note that this inequality has the form ||4(n)||, <A + Bp. By the choice of p as in
display (15), we have that p>=A/(1 — B). Hence, A + Bp<p; that is, A: Z— 4.
By similar estimates, for #,7€.% we have that

o

N A (1, E,7) — A (1, € 1) <5 (1+ )|l =9l

and

i, K
e Z A+ )=l

/ DA (1 E,7) — DuAG) (1, & ) ds| <

Hence,

2K
140 = AWl <=1+ M)in =7y,
and, by the choice of A as in Lemma 2.9, the function 4 is a contraction. [

For 4, u, v, and b as in Lemma 2.9, let ¥ denote the Banach space of all
continuous functions @: R x V' x [0,b] - L(R, R") that are bounded with respect the
norm given by

@]l ¢ = sup e d(1,¢,7).
(1,¢,1) eRx V' x[0,]

We will use the natural identification of L(R, R") with R" to identify &(¢, &, t) with an
element of R". The Banach space .# consists of the candidates for the derivatives
with respect to 7 of the elements of .%. For (5, ®)e.¥ x £, let ¥ denote the operator
given by

¥(n, @)(1,¢,7)

= [ Diuts. & 0nts = v, 00,600
+ D2f(n(sv 57 I)7 ”I(S - T, 57 T))(¢(S7 57 T) - 17(57 ‘E)(S - T)) ds.
Choose r>0 such that

r K ;
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where p is as in display (15), and let & denote the set of all continuous functions
®:R x V x[0,b] > L(R,R") such that

sup e (e, &) <r
(1,£,1) eRx V' x[0,]

Proposition 2.12. The set & is a closed subset of &. If (n,®)eB x F, then
Y(n,®)eF. Moreover, the function I':B X F >BxF given by I'(n,®)=
(A(n), Y(n, @)) is a continuous fiber contraction.

Proof. To show that # %, let ®e.# and use the inequality pu>v to obtain the
estimate

sup e M (2, &, 7)| < sup re'lle i < o0
(1.6,1)eRx V' x[0,b] teR

required for @ to be in .#. The proof that % is closed in .# is similar to the proof of
Proposition 2.6.

To show that ¥(n,®)eF whenever (n,®)e#B x F, let us first recall that if
geLl (R), then r— fot g ds is continuous. In fact, this map is absolutely continuous
(see [22, p. 50]). Thus, because the image of 7j is in L] (R, R") and f is continuously
differentiable, it follows that ¥(xn,®) is continuous. Also, because f is globally
Lipschitz, we have that ||D; f|| 4 ||D2.f|| <K, where the norm on the cross product
R" x R" is the sum of the R"-norms.

Using the estimates

|vf<n,¢><z,e:,r>|<K\/Ofu@(s, £+ 105 — . 6,9)] + iE ) (s — ) ds

Bt emy e - *K’/ o)l ds

v

K )
< rT (1+e?)(e' — 1) + 2Ke™ pe'l!

(where, in case t> 1, the last integral is split into integrals over [—7,0] and [0, — 7]
before the norm estimate is made), we have that

P (n, ®)(1,,7)]e M < = (1 + ") +2pKe™

N

K K
’7(1 +e?) +r<l —t +evb))

N
=

that is, Y(n,P)e 7.
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We will show that ¥: 4 x & — % is a uniform contraction. In fact, for ye.% and
®, Ye ¥, we have the inequalities

P60~ P 0G0l < K| [ (106,600 - 1580
4105 —7,8,0) = Y5 — 1,6, 0) ds
<)o =L~ 1),
and therefore

1¥(n, @) = 2(n, V)| & <

==X

(I4+e9))|@ - Y|

L

as required.

We will show that I' is a continuous fiber contraction. As in the proof of
Proposition 2.7, it suffices to show that, for each €%, the function from % to &
given by n— ¥ (5, ®) is continuous.

Claim 2.13. Fix ye% and let ie{1,2}. For each ¢>0, there is a 6 >0 such that

e_)~|S||Dif(’1(S7 f,T),i’](S -1 évf)) - Djf(V(S, 67‘[)7))(‘9 -1 f,‘[))| <e,

whenever (s,&,1)eR x V x [0,b] and || — v||, <0.

The proof of Claim 2.13 is similar to the proof of Claim 2.8.
Fix ye4, &%, and ¢>0. Let

7

M =
A+

(1 +evb) +2Kelb +2p€2)~b,

and apply Claim 2.13 to obtain a 6 >0 such that <¢/M and, for ie{1,2},

67)~|S||Dif(’7(sv év T)’ 77(S -7 év T)) - D,’f()/(S, 5’ I'),)/(S -1 év T))| <%a

(17)
whenever (s,&,7)eR x ¥ x [0,b] and || — y||& <J. Also, note that
|'1U(’77 ¢)(tv éaf) - lP(Va (p)(ta éaf)|<ll +5h +I37

where

I = ’/0 |D1f(7’(sa 671)7’7(5_77571'))
—le('))(&é,f),'))(s—’[, gat))”@(svévfﬂdﬂa
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]2 = o |D2f(77(5, 6,'[)”’](5‘ -1, 6af))

- D2f(V(S, é,T),"/(S -7 f,‘c))”@(s -7 é,T)| dS|’

L= ' / Do f (n(s, &), (s — 1, & D)(E D) (s — )
0
- DZf(y(S7 é? T)? '))(S - T, 57 T))V(é? T)(S - T)| dSl

Using inequality (17) and the definition of %, we have that

L +hL<e (14 ™) (el — 1), (18)

r
M(A+v)
To bound 73, add and subtract the quantity

DZf(n(Sa éa T), "(S -1 éa T))V(é, T)(S - T)v

apply the triangle inequality, and make a change of variables to obtain the estimates

1—1
13<1<\/ (&) — (&, 7)] ds| + \/ Mi(,7)] ds

<k|[ e - ola| + [ el

The integrals are bounded above (using norm estimates in % and %) by considering
separately the cases 1 —7<0 and 7 —t>0, and in the latter case by splitting the
integral into integrals over [—71,0] and [0, 7 — 7]. Using the resulting estimates, the
choice of §, and the definition of %, we find that

/1|t\em

; 2
I <2Ke™ e s + MS A2 .

By combining this inequality with inequality (18), using the hypotheses v> A and
u = 4+ v, the definition of § (recall that 6 <e/ M), and the definition of M, we have
that

P (g, @)(1,6,7) — (7. 9)(1.8. 7)) <.

whenever (¢,&,7)eR x V x [0,b] and ||n — y|| <. Hence, n+— ¥ (n, ®) is contin-
uous. [

Proof Theorem 2.3. The proof is similar to the proof of Theorem 2.2 except for a
modification of the induction argument that is used to show the equality D.n, = @
for the elements of the sequences {; },—, in % and {(Dk}w in Z which are defined
recursively by the iterates of the point (0,0) €% x Z with respect to the fiber map I'.
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In the present case, it is convenient to use an induction hypothesis with two parts: (1)
Dyn, (the classical partial derivative) is continuous. (2) D.n; = ®,. Note that because
N 1s continuous and

Dl‘nkJrl(Za é,f) :f(nk(taéaf)ank(t -1, 677:))7

the partial derivative D,y is automatically continuous. Two main ingredients are
used to prove that D;#;_; = Py 1. The first induction hypothesis is used to justify the
interchange of the partial derivative operator D, and the integral in the expression
for the operator A. The second ingredient is an easy result from the theory of
distributions. It states that the function ¢+ D (t,¢&,1) corresponding to the
classical partial derivative D,n,, which is assumed to exist and be continuous by the
induction hypothesis, is in the equivalence class of the corresponding distributional
derivative 7(¢, 7) for each (¢,7)e V' x [0,h]. O

3. Expansion in the small parameter

By Theorems 2.1-2.3, we know that under appropriate restrictions on the size
of the delay, the delay equation (4), given by x(¢) =f(x(¢),x(t — 7)), has an
n-dimensional C! inertial manifold consisting of special solutions. Theorem 2.1
implies that the inertial manifold is exponentially attracting; Theorems 2.2 and 2.3
imply that the inertial manifold is smooth. In this case, the inertial vector
field (5), given by X (&, 1) =f(&n(—r,¢&,7)), is the generator of the corres-
ponding special flow. Moreover, X is a C' function. In this section, we will
assume that the function f, the solutions of the delay equation, and the
inertial vector field are sufficiently smooth so that their Taylor expansions are
defined. As mentioned in the Introduction, we will show that the inertial vector
field agrees with the slow vector field on an appropriately chosen slow manifold
for the singular perturbation problem obtained by expanding the delay equation
to second order in powers of the delay t. We will also show agreement to all
orders for the linear delay equation x(¢) = Ax(¢— 1), where 4 is an invertible
n X n-matrix.

3.1. Inertial manifold reduction

The expansion of the family of inertial vector fields X (&, 1) = f (&, n(—r, &, 1)) with
respect totat t=01s

‘E2
X(&1) =f(£8) = Dof (£, O (6,0 + 5 {D3 (& DS (9.1 (£, 9))
+ Daf (£, E)(D1f(£,6) +3D2f (L OV (L. O} + O(7). (19)
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This result is obtained by using the invariance of the special flow #; in fact, we have
that

i(t,8,71) =/ (n(t,&0),n(t—7,&7), n(0,¢,7) =<
Clearly, X (&,0) = f(&,¢) and
XT(£7 T) = D2f(é7 77(_77 év T))(nr(_T’ 57 I) _f(n(_ra 57 I)a ’7(_2‘57 év T)))

Since 7(0,&,7) = ¢, all derivatives of the function t+#(0,¢,7) vanish. Hence, it
follows that

X:(£,0) = =Dy f(&,8)f (£, €)

and
Xee(£,0) =D3f (&, E)(f(£,8)./ (&) + Daf (£,E)(—11:(0,£,0)
+ Dy f(EE)f(&EE) +2D2 f(E,8)f(&,€)).

Finally, note that

0 0
77‘[(03 670) :Ean(l7é7f)

t=0,7=0

9
=5 f(En(=1,&7)) T:o
= —Dyf (& E)f(E0).

In view of the representation of X in display (19), it is clear that sufficiently small
delays do not matter if the vector field given by &+ f(€, &) is structurally stable (cf.
[20]). On the other hand, using the theorems in Section 2, the range of delays for
which the inertial manifold exists can be estimated. Once this is done, the parameter
T is rescued from the “realm of the sufficiently small,” and the effect of the
perturbation caused by the delay remains to be determined. In case the vector field
Ef(E, &) is not structurally stable (for instance, if the vector field is Hamiltonian),
then even sufficiently small delays do matter. As a simple illustration, consider the
delay (Duffing) equation

¥4+ w’x = —ax(t — 1) + bx>(t — 7). (20)

An equivalent first-order system of delay equations has the form of Eq. (4), but it is
not Lipschitz on R?. This difficulty is easily remedied by using a cut-off function,
defined on R?, to create a new system that agrees with the original system on
some open ball at the origin and is constant in the complement of a larger open ball.
The modified system has an inertial manifold for small t and the first-
order approximation (computed using Eq. (19)) of the reduced system on the
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corresponding inertial manifold is given by
¥+ 1(3bx* — a)x + (a + w*)x —bx* =0 (21)

on the open ball at the origin where the modified system agrees with the original
system. While the delay equation (20) with T = 0 is conservative, the second-order
differential equation (21) is a form of van der Pol’s oscillator; it has a stable limit
cycle for appropriate choices of its parameters. Thus, small delays certainly do
matter in this case.

3.2. Post-Newtonian expansion

As discussed in Section 1 (see also [4,5]), we will mimic post-Newtonian expansion
in classical field theory using the delay equation (4),

(1) = f(x(1), x(1 = 7).

Here, post-Newtonian expansion means Taylor expansion of the function
T f(x(),x(t — 7)) to some finite order in powers of 7. We will show how to
obtain the inertial vector field—the vector field which gives the correct long-term
dynamics of the delay equation—from the post-Newtonian expansion. It turns out
that the slow vector field on a slow manifold of an appropriately chosen singularly
perturbed system, naturally derived from the post-Newtonian expansion, agrees with
the inertial vector field.

The post-Newtonian expansion of the function t+f(x(z),x(t — 1)) at 1 =0 is
given by

S (x(0), x(t = 7)) =/ (x(2), x(1)) = D2 (x(2), (1)) X(2)

2

+ 5y (Do (x(0), x(1))X(1) + D3 £ (x(1), x(2)) (1), %(1)))
+ 0. (22)

Note that the truncation of this expansion at order N in 7, when set equal to x(¢),
produces an Nth-order ODE of the form

N
(_I)N%DZJ((X)X)X(N) = F(X,X, '--7X<N71)7T)7 (23)

where
F(x, %, 0, XV ) = % — f(x,x) + 2D f (%, x)
2
— D3/ 0)(E,9) + O(F).

Because Eq. (23) is singular in the limit as t — 0, many examples of such systems will
contain “runaway’’ solutions (that is, solutions that are unbounded in forward time).
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For this reason, the post-Newtonian approximation is not satisfactory as a physical
model as mentioned in Section 1.

Since, for small delays, the long-term dynamics of the delay equation (4) is
obtained by reduction to its inertial manifold, it is clear that the utility of post-
Newtonian expansion can be justified only if there is a natural way to extract the
dynamical system on the inertial manifold from the post-Newtonian expansion.
Fortunately, there is a well-established method for approaching this problem:
reduction to a slow manifold.

We will illustrate the method for the singularly perturbed Nth-order ODE (23).
Suppose that N> 1 and let u == t"/™=1_ The differential equation (23) is equivalent
to the singularly perturbed first-order system

X =y,
ﬂNyl =)o,
1N py_2 =yn-1,
1 . .
(DY S Daf (6 x) 9w = F(x,pt, oy, 1), (24)

Under the assumption that D, f(x, x) has no eigenvalue with zero real part and 7 is
sufficiently small, this system has an n-dimensional slow manifold, an invariant
manifold with the same dimension as the inertial manifold for the underlying delay
equation (4) (see Proposition 3.1). Moreover, the reduction of the dynamical system
(19) to this slow manifold agrees with the dynamical system (19) on the inertial
manifold.

While the inertial manifold attracts nearby solutions, the slow manifold
generally has both stable and unstable manifolds, that is, some solutions are
attracted to the slow manifold and some solutions are repelled. The unstable
directions correspond to the runaway modes. Also, it should be clear that
only the solutions on the slow manifold of system (24) have physical significance;
all other solutions are merely artifacts of the truncation of the post-Newtonian
expansion.

As a convenient terminology, let us call the dynamical system on the slow
manifold of system (24) the post-Newtonian approximation. We will show that this
approximation is useful by proving that it agrees with the dynamical system on the
corresponding inertial manifold.

The geometric theory for singular perturbation problems—initiated by the
pioneering work of Fenichel [11,12]—is by now well developed. We will explain
the basic idea and then apply the result to the truncation of system (24).



388 C. Chicone | J. Differential Equations 190 (2003) 364—406

The basic singular perturbation problem is given by a system of the form
X =f(x,y), ey =g(x,»),

where ¢ is a small parameter and f and g are smooth functions. Note that the reduced
system obtained by setting ¢ = 0 is not a differential equation. To overcome this
difficulty, let us introduce the “fast time” s := /¢, and thereby recast the system into
the regular perturbation form

X =ef(x,y), V' =g(x,y),

where ‘/” denotes differentiation with respect to s. This fast-time system is
equivalent to the original system for ¢#0, the important values of this parameter.
The unperturbed fast-time system

=0, Y=gy

has the invariant set I'o == {(x, ) : g(x,y) = 0} consisting entirely of rest points.
Under the generic assumption that the partial derivative g,(x,y) is an invertible
linear map whenever (x,y) eIy, an application of the implicit function theorem can
be used to show that Iy is a smooth manifold given by the graph of a function
y=uoa(x); that is, I'o = {(x,y) : y = a(x)}. Under the stronger assumption that
gy(x,») has no eigenvalue with real part zero, the solutions of the unperturbed
system starting near Iy are all either attracted to, or repelled from I'y. This fact is
easily seen by linearization of the system at a rest point on I'y. At each such point
(x,y), the system matrix of the linearization is given by

0 0
gx(xvy) gy(x’y) .

The block of zero eigenvalues corresponds to the motion along the invariant set.
Eigenvalues of g,(x,y) with positive real parts correspond to exponentially fast
expansion from Iy (runaway modes); eigenvalues with negative real parts
correspond to exponentially fast contraction to I'g. In other words, the rate of
contraction in the normal direction dominates the fastest rate of contraction—in this
case zero—on the invariant manifold and, likewise, the normal rate of expansion
dominates the fastest expansion on the invariant manifold. An invariant manifold
consisting entirely of rest points with these properties is called normally hyperbolic
(see [11] for the general definition).

By a fundamental result of Fenichel, a normally hyperbolic invariant manifold
persists (for sufficiently small values of the small parameter) as a normally
hyperbolic invariant manifold—again given as a graph—in the full nonlinear fast-
time system. Because the flow on the normally hyperbolic invariant manifold for the
unperturbed system is stationary, it is (infinitely) slow relative to the ambient flow.
Under a small perturbation, the flow on the new invariant manifold likewise is slow
relative to the perturbed ambient flow. For this reason, these invariant manifolds are
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called slow manifolds, and the corresponding flows on these manifolds are also called
slow. It is important to realize that the slow manifolds for ¢ 0 remain invariant sets
for the original singularly perturbed system. In fact, the qualitative features of the
dynamical behavior of the fast- and slow-time systems for £#0 are identical; only the
speed at which points move along trajectories is different.

The existence of a family of invariant manifolds for the family of fast-time systems,
given as a family of graphs

I'o={(xy):y=0a(xe},
ensures that

V= o(x,e)x,

whenever y = a(x,¢). It follows that o is defined implicitly by the relation
g(x7 OC(X, 8)) = EOCX(X, e)f(x, OC(X7 8))a

and therefore o can be approximated in the usual manner by equating coefficients
after power series expansion in the small parameter. The reduction of the dynamical
system to the slow manifold is given by the ODE

X' = ef (x, (x, €));
the corresponding slow-time ODE is
% = f(x,a(x,2)).

For many problems, this last equation determines the essential dynamical behavior
of the original nonlinear singular perturbation problem.

Let us now return to a truncation of the post-Newtonian expansion of the delay
equation (4). The next proposition states a sufficient condition for the singular
system (24) to have a normally hyperbolic invariant manifold. More importantly,
even if this condition is not satisfied, the formal slow vector field (that is, the
hypothetical restriction of the vector field corresponding to system (24) to a
hypothetical slow manifold) agrees with the inertial vector field of the delay equation
(4). Indeed, if we wish to determine the long-term dynamics of the delay equation,
our objective is to obtain the dynamical system on its inertial manifold. From this
point of view, the existence of the slow-manifold is not important; it is simply a
construct that gives an alternative way to obtain the inertial vector field. On the
other hand, it might be possible to prove the existence of the desired inertial
manifold under the assumption that an infinite sequence of post-Newtonian
truncations have slow-manifolds. Also, there are cases where post-Newtonian
approximations are obtained without reference to a specific delay-type equation.
Thus, the conditions for the existence of slow manifolds for the post-Newtonian
truncations has some independent interest.
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Proposition 3.1. Suppose that N is a positive even integer and, for all xe R", the matrix
D, f(x,x) has no eigenvalue with zero real part. If 1>0 is sufficiently small, then
system (24) has a normally hyperbolic n-dimensional slow manifold. Moreover, if N =2
is a positive integer, then the formal slow vector field agrees to order two in © with the
corresponding inertial vector field on the (n-dimensional) inertial manifold of the delay
equation (4).

Remark. The simple condition for normal hyperbolicity given in Proposition 3.1 for
truncations at even orders is due (in part) to the formulation used here of a
corresponding first-order singular perturbation problem (see system (26)) where the
small parameter is taken to be u:=t!/(¥=D_ This relation is invertible in a
neighborhood of the origin only if N is even.

Proof. We will consider two cases: N = 2 and N >2. Note that because zero is not

an eigenvalue of D, f(x, x), this linear transformation is invertible. For N =2, we
have = 7 and system (24) has the form

X =y,
1 =2(Daf (x,x)) " (11 —f(x,X) + D2 f (x, X)p1

2
- EDgf(xax)(yle/I))~ (25)

In case N >2 system (24) can be recast as

x:yla
1N =y,
N yno2 =yn-i,

W in1 = (=D NU(Daf (¢, %)~ (31 = £ (%, ) + 1" Do f (x, x)p1

‘u2(N—1) 1 ) _
_T<ﬂ—ND2f(X»X)y2+sz(x7X)(y1,y1))+/>7 (26)

where 7 is a sum of terms obtained from the terms of order three through N in the
Taylor expansion (22). The essential observation is that in these terms—and in every
other term—the jth time-derivative of x appearing in expansion (22) is replaced by

(l/ﬂjN)yj~
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By changing to the fast-time s := ¢/u", we obtain the system

X, :.UN)’la
/
Y1 =J)2
/
y2 :}%
yﬁv,z =JVN-1)

Yo = (=DYNUDf ()™ (1 = £ (6, %) + 1V Da £ (3, X1

MZ(N*I) 1 ) >, -
-5 (N—Nsz(x,X)yz+D2f(x,x)(y1,y1)> +«/*)7 (27)

which is equivalent to system (26) for u>0. Note that
I'={(xp1, ... ynv-1) i =f(x,x), 02 =p3 = -+ = yy-1 =0}

is an invariant manifold, consisting entirely of rest points, for system (27) with ¢ = 0.
Because I is defined by n(N — 1) equations in R™, T is an n-dimensional manifold.
Equivalently, I' is the graph of the function G:R"— R"™~1 given by

x—(f(x,x),0,0,...,0).

We will show that I' is normally hyperbolic whenever N is even.

The linearized system at a point (x, y1,¥2, ...,yy—1) on I' is given by the system

matrix

0 0 00 00 0 0

0 0 1 0 0 0 0

0 0 071 0 0 0 0

0 0 0 0 00 0 I

o (x,N) #(x,N) 0 0 0 0 --- 0 O
where

‘Q{(Xa N) = (_1)N+1N!(D2f(x>x))il(le(xax) +D2f(x7 X)),

B(x,N) = (=1)"NU(D,f(x,x))"".
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The vector v == (&,1,,%,, ..., Hx_;) is in the kernel of the system matrix if and only
if ny=n3="--ny_;=0and n, — (D1 f(x,x)+ D2 f(x,x))¢ =0, exactly the set of
conditions required for v to be tangent to the manifold I'. Hence, we have proved
that the system has exactly n zero eigenvalues and these correspond to the
“eigendirections” tangent to I'. To prove that I' is normally hyperbolic, it suffices to
show that the system matrix has no nonzero pure imaginary eigenvalue.

If i, with f#0, is an eigenvalue with (complex) eigenvector

vi= (MM, s v-t),
then 0 = (if)¢, n; = iPn;_, for je{2,3,...,N — 1}, and
A (x,N)E+ B(x,N)ny = iPny_;.
It follows that £ = 0 and
B(x,N)n, = (iﬁ)N_l’ll-

Because N — 1 is an odd integer, (i)Y ' is pure imaginary. Hence, D, f (x, x) would
have an eigenvalue with zero real part, contrary to the hypothesis. By an application
of Fenichel’s theory, the normally hyperbolic manifold I' persists for sufficiently
small u#0. Moreover, because N — 1 is odd, the relation u = t'/(N=1 is invertible
and system (24) also has a normally hyperbolic slow manifold for sufficiently small
T#0.

It remains to show that the slow vector field (that is, the restriction of the vector
field corresponding to system (24) to the slow manifold) agrees to order two in t with
the inertial vector field (19) for system (24). The differential equation on the slow
manifold is given by

¥ =Ny (x, ),
which, in the original time-scale, is
X = yi(x, ).

Thus, the slow vector field is given by x> y;(x, u).
Note that the last equation in system (27) has the form

N-1
Yy = B(x,N) <y1 = (e, 1Ny, 1N Py, ---,uN‘-’yj)) (28)

j=

where the functions a;, je{l,2,..., N — 1}, are polynomials in their last j variables
and ag(x) = f(x, x).



C. Chicone | J. Differential Equations 190 (2003) 364—406 393

Claim 3.2. The expansion of the slow vector field y, in powers of u has the form

=

yi(x, u) = :“i<N71>y17i(N71)(x) + O(uN W=D (29)

i

Il
=

The formal series expansion of y; has the form
X .
yi(x,p) = Z Hyi(x). (30)
i=0

Using the invariance of the slow manifold, each y; is obtained from this expression,
in turn, by differentiating with respect to x and multiplication by u"y;(x, ). To see
this, consider a solution of system (27) where the first component is 7+ x(z, u). For
example, we have that

ya(x(t, ), 1) = %yl(X(Z, 1), 1) = N Dy (x(1, 1), )y (x(1, ), ),

and therefore

y2(x, 1) = 1N Dy (x, w1 (x, ).

By this procedure, it is clear that the leading term of the series expansion for y; has
order p(/=VN,

To determine the form of the series expansion (30), substitute it into system (27)
and note that the left-hand side of the last equation of the resulting system has
leading-order u™ =DV Hence, all terms of lower order in the series expansion for y;

are determined by the equation

=

—1

1= a/(x7#N71y17#N72y2a"'a:uNijyj)' (31)

~.
Il
<)

Recall that the leading term of the expansion of y; has order =DV and substitute
these series into the right-hand side of Eq. (31). After these substitutions, the leading
term of the series expansion of the resulting right-hand side of Eq. (31) has order
zero, and its next term has order N — 1.

Thus, the leading term of the series expansion of yj, the left-hand side of Eq. (31),
has order zero, and its next term has order N — 1. Using this fact, recompute the
series for the y; as indicated above and note that

v = 1N o + 1Ny ve + O(Y)).
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To recompute the series expansion for the right-hand side of Eq. (31), we now
substitute

Wy = @Dy DDy oD,

Note that the first three terms of the series expansion of the right-hand side of
Eq. (31) must now have orders 0, N — 1, and 2(N — 1). Hence, the first three terms
on the left-hand side of Eq. (31) have the same orders, and it follows that

yi=yio+ 1N v + MZ(N71>J/1,2(N—1) + 0PN,

Proceeding by induction, let us suppose that

yi=yio+u" v+ ,uz(Nil)yl.2(N—1)
+ ol Dy v + O I, (32a)

In this case,

= 1N o+ 1 v 4+ 1Ny + 0@ UH)

and

(N=1)

#N*jyj =u’ (J+H(N-1)

Yio+u YiN-1

T ﬂ(j+i)(N71>J{/,i(N—l) + O(uHIWN=I+1y,

The essential feature of these series is that the order of every term, whose order is less
than or equal to (i+1)(N+1), has the form k(N —1) for some integer
ke{0,1,2,....i+ 1}. After substitution of these series, the series expansion of the
resulting right-hand side of Eq. (31) has the same property. Hence, so does the left-
hand side of Eq. (31), as required.

Consider system (25). Using Claim 3.2 and retaining only terms with order less
than three in 7, the slow vector field is given by

yi(x) =f(x,%) + i (x) + Tyia(x).

By substitution of this expression into the last equation in system (25) and by
retaining only the appropriate low-order terms, the functions y;; and y;, are
determined by equating terms of the same order from the left- and right-hand sides
of the equation

(D1 f (x, X)y1(x) 4+ Da f(x, )31 (x)) =2(Dyf (x,x)) " <Ty1‘1(x) +7y12(x)
+1Da f(x, x)(f (x,x) + 11 (X))

_CZ

- S DI (0.0 ).
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In fact, y;; and y) » agree with the first- and second-order terms in expansion (19) of
the inertial vector field.
In case N >2, we again use Claim 3.2 and the ansatz

yi(x) = £, %) + 1Yy vo (x) + 28y (). (32b)

Also, we note that after substitution into equations two through N — 2 in system (26)
it follows that the leading term in the expansion of y; has order u~Y¥. Thus, after
substitution in the last equation of this system, the leading term on its left-hand side
has order uY="¥: therefore, unlike in the case N = 2, these terms do not enter into

the determination of the coefficients of the slow vector field to order x>™=1. In fact,
the coefficients of Eq. (32) are determined by equating to zero the terms of order
W=D for i =0,1,2, in the expression

yl(x) _f(xv X) + .uNilDZf(xvx)yl(x)

2N-1)
-5 <MINDZf(xvx)h+D2f(x7X)(y1,y1)>

after substitution using Eq. (32). Since the expansion of y, has leading-order u, it
“cancels” the factor 1/u". The coefficients y; y_; and V12v—1) determined in this
manner agree with the first- and second-order terms in expansion (19) of the inertial
vector field. [

Conjecture 3.3. The formal expansion of the slow vector field corresponding to system
(26) agrees to order N in T with expansion (19) of the inertial vector field.

We will prove a special case of Conjecture 3.3.

Theorem 3.4. Suppose that A is an n x n matrix. If |t|||A|le<]1, then the delay
equation x(t) = Ax(t — 1) has an inertial manifold, and its inertial vector field is given

by

v Ly D
X(x,r)—jz:(;( 1) T A x.

Moreover, if N>=1 and A is invertible, then the expansion in powers of T of the slow
vector field corresponding to system (26) agrees to order N with the inertial vector field
X.

Proof. By the ratio test, if |z|||4||e <1, then the series in the statement of the theorem
converges.

By Theorem 2.1, the linear delay equation has a special flow y = y(¢, x, 7). We will
show that its generator is given by X = X(x,1).
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Define ¢(¢,x,1) == y(tt,x,7) so that

d(t,x,7) =tp(tt, X, 7)
=1Ay(tt — 1,X,7)
=tAy(t(t — 1), x,7)
=1A¢p(t —1,x,7)
and
¢(t,x,0) = x.
Also, in this case, the inertial vector field is given by
Ay(—t,x,7) = Ap(—1,x,1).
We will show that
X(t,x) = Ap(—1,x,7)
has the series expansion in the statement of the theorem.
Note that X(0,x) = A¢(—1,x,0) = Ay(0,x,0) = Ax. The Taylor series at T = 0 is

determined from the partial derivatives of ¢ with respect to 7. We will compute these
partial derivatives from appropriate variational equations. We have that

P(1,x,7) =td¢(t — 1,x,7),

409
dt Ot

(t,x,7) = Ap(t — 1,x,7) +1A2—f(t— 1, x,1),

and, by induction for j>1,

After evaluation at t = 0,

d /¢ 071
Ew(tvxuo) :]AW(I_ 1,X,0),
and, by integration,
a7 ) o2
8T(f.)(t,x,O) =jA A af—jjs(s— 1, x,0)ds.
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For j>1, the jth Taylor coefficient X;(x) of X (z,x) is given by

A8¢

X(x) =5 452 (-1,%,0).

It is now clear that the Taylor coefficients of X are determined by the following
algorithm:

Input j;
Po(t,x) = x;
Xo(x) = Ax;

If j = 0 Go To Output;

For k From 1 To j Do
®i(t,x) = kA [y P_1(s — 1,x) ds,
Xk(X) = %ka(—hx),

End For Loop;

Output Xj(x).

By induction, it is easy to see that
(1, x) =1(t —j)" "' Ax,

3 = (-1 ) gy, (33)

as required.

Let us now consider the slow vector field. By replacing the right-hand side of the
delay equation x(7) = Ax(¢ — ) with its Taylor polynomial of degree N at © = 0 and
rearranging the terms in the resulting equation, we obtain the Nth-order ODE

N-] ey A
N = (—1)V N1 (x(]) _ Z (—1)15_—!Ax(/>>, (34)

where x(/) denotes the jth derivative with respect to the slow-time ¢.
For convenience of notation, let us consider the series expansion of the slow vector
field, given by y; (as in Claim 3.2), in the form

=D WV (), (35)

k=0

where ,u = 1/7¥~!. The corresponding expansions of the elements of the sequence
{y,} 5 are determined in turn using the invariance of the slow manifold for system
(27) and the recursive definition y; = y]’;l where the differentiation is with respect to

the fast-time 5. More precisely,

yi(x,7) = Dyj_1 (x,0)x" = Dy, (x, 7)™ y1 (x, 1),
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where D denotes the derivative with respect to the space variable x. It follows
that

ya(x,7) =p

—
M=
tﬁ
S
S
=
=
~
—
M=
=
=
P:
=
~

where

Pa(x ZDPH X)P1a—i(%),

and, by induction for j =2,3, ..., N — 1,

N—-1

yi(x,7) = p N N NN () 4 Ol DN YY), (36)
k=0

where

Pj (X ZDPIU X)P1g—i(%)-

Let us determine the coefficients {pl_k},iv:0 by substitution into the fast-time system
(27). Since the leading-order term of the expansion for y, , has order u™ =DV the
coefficients {p; }ﬁ;ol are determined by equating to zero the right-hand side of the
last equation in system (27). An easy computation shows that yy,_; = t¥x¥). Hence,
we can instead determine these coefficients by equating to zero the right-hand side

Eq. (34). After substituting into this equation for the time-derivatives x(/) according
to the definitions of the y; in system (26), it follows immediately that the determining

equation for the coefficients {pl’k}fy:_ol is given by

i uN=
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Using the expansions of the y; from Eq. (36), we have that

= =D v D S kv
Ax+z Tu *]ij:Ax+AZ —— ﬁz,u( 7),0_,»‘k(x)
= =1

=
L
=
L

D7 G-
i pj,k(x)'

By summing along ‘“‘negative slope” diagonals in the (J,k)-index space, the last
double sum can be rearranged so that

N-] ‘uN*]
J .
j=

N-1 k l
—1)
= Ax+4 Yy g Z P (X) + O(uN VIV, (38)
k=1 /=1

Using Eq. (37) and comparing coefficients in expansions (35) and (38), it follows
that the p; ;(x), for j =0,1,..., N — 1, are given by the following algorithm:
Input j;
pro(x) = Ax;
If j = 0 Go To Output;
P11 (x) = —Ax;
If j =1 Go To Output;
For k From 2 To j Do
For / From 2 To k Do

k—t
p/,k—/(x) = Zi:()/ Dp/'flﬁi(x)plﬁkfffi(x)v
End For Loop;

pl.k( ) A Zz 1 Fil pzk 1( )
End For Loop;

Output p; ;(x).

Forie{l,2,...,N — 1} and je{0,1,...,N — 1}, we will show that

O Tl
pi ) = (-1 i (39)

In particular, if this representation is valid, then X;(x) = p, ;(x) for je{0,1,...,
N — 1} (see Eq. (33)). We will also use formula (39) to prove that Xy (x) = p; y(x).

By inspection, p;, and p,,, as defined by the algorithm, are given by the
representation in display (39).



400 C. Chicone | J. Differential Equations 190 (2003) 364—406

Suppose that p, 4, as defined by the algorithm for 1<a + <k, are given by the
representation in display (39). We will show that the p,_,, defined by the algorithm
for /€{2,3, ..., k}, are also given by the representation in display (39).

Using the induction hypothesis, we have

Pri—r(X ZDPKU X)P1 je—r—i(X)

k—( i—1 k—(—i—1
/—1)(¢ -1 1
—l)ki/ Z / +'l) ( +k { — ) Akx.
P ik —¢—10)!
Thus, it suffices to show that
B A L A A
pary ik — ¢ —i)! _(k—/)!’

or equivalently,

k=t

( > _1+l)11(1+k /[ — )k/’ll /flkk_/_]'

i=0
With m =k — /, the required identity is
m
l _
Z("?)(/—Hi) (m+1-— )””1_/ im0 g (40)
i—0 \ ! -

This nontrivial combinatorial identity is a special case of Abel’s generalization of the
binomial theorem; namely,

ocﬁZ( >O€+l "B+m=0"""=(a+p)a+p+m""

(see for example [13, p. 19]). In fact, identity (40) is obtained from Abel’s identity
with the replacements « =/ — 1 and = 1.

To complete this part of the proof, we will show that p,,, as defined in the
algorithm, is given by formula (39); or, in other words,

k—1 k i i k—i—1
(_l)k (1 +k]T) Ak+1x -4 Z < k i ik : Akx>

i=1

ki k—1 d k! k+1
=(-1)"k Z — A"y,
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Clearly, it suffices to show that

1+k\! & k!
(T> "2 EE— (41)

But, since
1 + 1 k*l_ k—1 k _ 1 1
k - i=0 i Kt
B kz—f k \i+1
- — l+1 ki+1
B z": k\ i
- T\ ! ki

the required identity is a corollary of the binomial theorem.
To prove that Xy = p; y, let us equate the terms of order pNV=D i the last
equation of system (27). In the present case, this equation is obtained from Eq. (34).

After substitution of the series expansions for the y;, the left-hand side of the
N(N—I)An

equation has one term of the required order, namely u x. After multi-
plication of both sides of the equation by the inverse of the factor (—1)N14~! and

some algebraic manipulation, it follows that

N(N=1)+j—N>

_\N N—
pin(x) = &ANH Z

N!

N(N—1)+j—N

denotes the coefficient of order u in the series

where [yilyv_1)-n
expansion ofyj Using formula (36), this coefficient is p; y

in display (39). After some simplification, it follows that

i which is given explicitly

N N—j—1
NN~
N Z AN+

P1N —J 1 7!

J=1

By inspection, this coefficient is equal to the coefficient of " in the expansion of

X(x,7) if
<%)N | EJ_V: =1

therefore, the desired result follows from identity (41). O
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Appendix
Proof of Proposition 2.10. We will prove that .% is complete.

Suppose that {n,},-, is a Cauchy sequence in .%; that is, for every ¢>0, there is
some N >1 such that
) <,

whenever (¢,&,7)eR x V x [0,b] and k,/ > N. The space .« of continuous functions
n:Rx V x[0,b] > R" that are bounded with respect to the norm

. <|nk<r, & 1) = (1,80 + \ /0 (€, ) = 1 (€, 7)lds

Illy = sup e Mn(z, &)
(1,¢,1) eRx V' x[0,0]

is a Banach space. Thus, the sequence {n; },-, has a limit in .«7.

Claim A.l. For each integer p=1, there is a continuous function g,:V x
[0, ] = L' ([—p, p], R") such that for each ¢>0, there is an integer N >1 and
e—im

<é

/ p(E1) — e (&, 7) ds

whenever (t,&,7)e[—p,p] X V x [0,b] and k=N. Moreover, there is a number r>0
such that

e <r.

t
/0 10(&,7)] ds

To prove the claim, note first that the Cauchy sequence {1, },—; =% is bounded.
Thus, there is some >0 such that

ol

/ (&, 7)) ds
0

<r, (A1)

whenever (¢,&,7)e[—p,p] X V x [0,b] and k>1; and therefore, for each k>1, the
continuous function #j: V x [0,6] > L'((—p,p), R") is bounded. Moreover, the
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sequence {jx},—, is a Cauchy sequence in the Banach space & of bounded
continuous functions from ¥V x [0,5] to L'((—p,p), R"). This fact is an immediate
consequence of the inequality

4
sup [1(£,7) = (&) = sup / (&, 7) — 1o (&, 7)) ds

ET
sup ePle )11"/ [k (&, 7) — 1 (€, 7)| ds
< 2€A|p‘||77k —1llg-

Because & is complete, the sequence {rjx},—, converges to some g,e&. Hence, for
every ¢>0, there is an N >1 such that

e—/lm

<e, (A.2)

/O g (6,7) — 1 (&, 7)| ds

whenever (¢,&,7)e[—p,p] X V' x [0,b] and k= N. Using inequalities (A.1) and (A.2)
and a triangle law estimate, it follows that

/0 g (67| ds| <r

This completes the proof of the claim.

For each (&,7)eV x [0,b] and p>1, choose a function g,(&, 7) in the equivalence
class of g,(&,t)eL'((—p,p),R"). (We are using the same name for two different
objects.) For each e R, define g(&,7)(7) = ¢,(&, t)(¢), where p is the smallest integer
such that te (—p, p). The function ¢g(¢&, 1) : R— R” is measurable. In fact, for an open

e—)vm

set U in R", the set U, == g(¢,7)"' (U) N (—p,p) is measurable because
90 (U)n (=p,p) = gp(&, D) (U) (=.p),

and therefore g(¢,7) ' (U) is the countable union of measurable sets. We will show
that g(¢&,7)e Ll (R, R"). For this, choose a compact set J =R. There is some p>1

loc

such that J =[—p, p|. Hence, we have that

[ 1ot |ds</|g o)l ds

S / ol ol ds

/=1

=

< Y llg/(E )l <.

/=1
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To show that g: V' x [0,b] > L] (R, R") is continuous, we fix ({,¢)eV x [0,b] and
use essentially the same estimate to obtain the inequality

[ e ot olds< 3 lorte.r = ol

Since each g, is continuous, so is ¢.
We will show that

lim sup e =0.

k— 0 (1,6,1) eRx V'x[0,h]

/|g ) — (&, 7)] ds

Choose ¢>0. By using a triangle-law estimate, we have the inequality

/ lg(&,7) — k(& 7)| ds

Because {1 },-, is a Cauchy sequence in ., there is some N >1 such that

o <e + 1, —mellg-

/|g ) (&, 7)) ds

o <o

/ 19(6,7) — 1 (&, 7)) ds / 19(E,7) — 1o (E,0) | ds| + ¢
0 0

whenever (£,&,7)eR x V x [0,b], /=N,and k=N. Also, for te (—p, p), we have the
inequality

o

/0 lg(&,7) — (&, 1)| ds

P

<e My g€ o) = e o)l
=1

Hence, for each (¢, ¢&, 1),

hrn e =0,

/ 19(&,7) — (&, 7)) ds

and therefore

Pl

/ 19(E,7) — 1 (&, 7)) ds| <

whenever (f,&,7)eR x V x [0,b] and k>N, as required.

To complete the proof, we will show that 1§ = g. The function n, (&, 7)e L] (R, R")
defines the distribution (a linear functional on the space of test functions Z(R, R"))
given by ¢— fi@ n, (&, 7)¢ ds, where the product in the integrand is the inner
product in R”. By definition, the distributional derivative of this distribution is the
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distribution ¢+ — [* 1, (& t)D¢ ds. We must show that

,/fc n,(E,7)D ds = /Oc 9(¢& 1) ds

0 — 0

for each test function ¢.
Choose ¢ 2(R,R"). Since the support of ¢ is compact, it is contained in some
interval [—p, p]. Thus, it suffices to show that the quantities

p P
- / 0. (&, 0)D ds, / g(&,7)p ds

w4 -P

are equal. We will show that each of these quantities is the limit of the same
sequence. In fact, since the distributional derivative of (i), (&, 1) is 7ix (£, 1), we have

that

4 4
- / (1), (€. 7) D ds = / (&) ds, (A3)

-P -P

and the required sequence is one of the sequences corresponding to this equality.
Because

4 4
] / 0 (&,0) ds — / (&, 0)b ds
—D -D

P

< / 10 (E, ) — ik (&, 7)1 6] ds
—P

< 116llllgy — el

it follows that
. y4 4
lim / (&, 1) ds = / g(&,0) ds.
koo Jp -p

Similarly,

‘/_Zn*(é’r)D(’bds/_Z(”k)*(@T)Dqus

P
<|IDg| / 0(5,&,7) — (5, &, 7)] ds
-P
<2[plle”[In — il g
and therefore

P

P
lim — (nk)*(«:,f)pws:—/ 0. (Ex)Dpds. O

k— o —p —p
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