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Abstract 

We show that if a linear differential equation of spectral type with polynomial coefficients 

N 

LN[y](x) = Z ~i(x)Y(i)(x) = 2,y(x) 
i=0 

has an orthogonal polynomial system of solutions, then the differential operator LN['] must be symmetrizable. We also 
give a few applications of this result. 
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I. Introduction 

In this work, we are interested in differential equations of the form 

N N i 

Lf[yl(x) = ~ ~(x)y(O(x) = ~ ~ (~jxJy{i)(x) = 2.y(x) 
i=0  i=0  j = 0  

(1.1) 

* Corresponding author. E-mail: khkwon@jacobi.kaist.ac.kr. 

0377-0427/97/$17.00 (~) 1997 Elsevier Science B.V. All rights reserved 
PH S0377-0427(97)001  10-6 



258 KH. Kwon, G.J. Yoon/ Journal of Computational and Applied Mathematics 83 (1997) 257-268 

having orthogonal polynomials of  solutions, where ~j are real constants and the eigenvalue parameter 
2, is given by 

2 n = f O O + E l l n + ' " + f u u n ( n - - 1 ) ' " ( n - - N + l ) ,  n----0, 1,. . .  (1.2) 

We always assume ~N(X) ~ 0 and t~21 + E~: + . . -  + f2 N 5~ 0. 
In 1929, Bochner [1] showed that there are essentially five polynomial systems (namely, four 

classical orthogonal polynomials of  Jacobi, Bessel, Laguerre, and Hermite, and {xn},~0) that satisfy 
the differential equation (1.1) with N = 2. In 1938, Krall [13] found necessary and sufficient condi- 
tions in order for an orthogonal polynomial system (OPS) to satisfy the differential equation (1.1) 
and then [14] classified all fourth-order differential equations having an OPS of  solutions (see also 
[10]). For N > 4 ,  the complete classification of  such differential equations remain open but several 
examples have been found in [7, 8, 11, 19, 21]. 

Interests in such differential equations lie partly in the fact that they provide excellent examples 
to illustrate the general Titchmarsh-Weyl theory [4] of  singular boundary value problems. We refer 
the reader to Evefitt and Littlejohn [5] (and references therein) for the up to date survey on the 
known results linking spectral theory of differential operators and orthogonal polynomials. 

In order to develop the spectral theory of  such differential operators, which seeks self-adjoint 
differential operators in some Hilbert or Krein space, we first need to put differential operators 
into symmetric forms. In other words, we should first know that differential operators involved are 
symmetrizable. The differential operator LN[.] in (1.1) is always symmetrizable for N = 2 but need 
not be so in general for N > 2. Necessary and sufficient conditions for any linear differential operator 
(more general than (1.1)) to be symmetrizable were found by Littlejohn [20] and Littlejohn and 
Race [22]. 

The main result of  this work (see Theorem 3.4) is to show that if the differential equation (1.1) 
has an OPS of  solutions, then the differential operator Lw[.] must be symmetrizable. It answers a 
question in [5]. Sufficient conditions for symmetrizability of  such Lw[.] were previously given in 
[12, 17]. As a consequence, we can also refine results in [17] on the structure of distributional 
orthogonalizing weights for OPS's satisfying the differential equation (1.1). 

2. Preliminaries 

All polynomials in this work are assumed to be real polynomials in one variable and we let ~ be 
the space of all real polynomials. We denote the degree of a polynomial re(x) by deg(n) with the 
convention that deg(O)=  - 1 .  By a polynomial system (PS), we mean a sequence of polynomials 
{~)n(X)}n¢~=O with deg(~b,)=n, n >/O. Note that a PS forms a basis of  ~ .  

We call any linear functional a on ~ a moment functional and denote its action on a polynomial 
n(x) by (a, n). For a moment functional a, we call 

a,  := (a,x ') ,  n = 0 ,1 , . . .  

the moments of  o-. We say that a moment functional a is quasi-definite [2] if its moments {o-,},~0 
satisfy the Hamburger condition 

A,(a)  :-- det[ai+j]~j # 0 (2.1) 
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X oo for every n ~> 0. Any PS {~b.( )}.:0 determines a moment functional a (uniquely up to a nonzero 
X oo constant multiple), called a canonical moment functional of  {~b.( )}.=0, by the conditions 

(o.,~,bo)¢0 and (o.,qSn)=0, n>~l. (2.2) 

Definition 2.1. A PS {P,(x)}n% 0 is called an orthogonal polynomial system (OPS) if there is a 
moment functional o. such that 

(a, PmP.) =K. fm . ,  m and n~>0, (2.3) 

where Kn are nonzero real constants and 6m. is the Kronecker delta function. In this case, we say that 
{P.(x)}~0 is an OPS relative to o. and call o. an orthogonalizing moment functional of  {P.(x)}~ 0. 

It is immediate from (2.3) that for any OPS {Pn(x)}~0, its orthogonalizing moment functional a 
must be a canonical moment functional of  {Pn(x)}~o. It is well known (see [2, Chapter 1]) that a 
moment functional o. is quasi-definite if and only if there is an OPS {Pn(x)}~0 relative to a and 
that each Pn(x) is unique up to a nonzero multiplicative constant. 

For a moment functional o. and a polynomial n(x), we let o.' (the derivative of  o.) and na (the 
left multiplication of o. by n(x))  be the moment functionals defined by 

(o.', qS) = - (o., ~b') (2.4) 

and 

(no-, qS) = (o-, n~b) (2.5) 

for every polynomial ~(x). Then it is easy to obtain the following. 

Lemma 2.2 (Kwon et al. [18]). For a moment  functional o. and a polynomial ~(x), we have 
(i) Leibniz'  rule: (zw)'  = n'o. + no.,; 
(ii) o.' = 0 i f  and only i f  o. = O. 

I f  o. is quasi-definite, then 
(iii) no = 0 if  and only i f  n(x) = O. 

3. Symmetrizability 

Consider a linear differential operator of  order N >i 1 of the form 

N 

L[-] ---- ~ ai(xlD g, (3.1) 
i = 0  

where D = d/dx, ai(x) are real-valued functions in ~fi(I), aN(x)• 0 in I, and I is an open interval 
on the real line N. The formal adjoint of  L[-] is the differential operator L* [.] defined by 

N 

L* [y] := ~ ( -  1 )i(ai(x)y)(i). (3.2) 
i = 0  



260 I(H. Kwon, G.J. Yoon/ Journal of Computational and Applied Mathematics 83 (1997) 257-268 

The differential operator L[.] is called symmetric (or formally self-adjoint) on I if L[.] =L*[.].  It 
is called symmetrizable on I if there is a real-valued function s (x )~  0 in ~X(j[) such that sL['] is 
symmetric on I. Then we call s(x) a symmetry factor of  L[-]. 

It is well known [3] that any symmetric differential operator must be of  even order and the most 
general symmetric differential operator of  order N = 2r must be of  the form 

L[y] = ~ ( -  1 )i(fy(i))(i). (3.3) 
i=0 

Necessary and sufficient conditions for a function s(x) to be a symmetry factor of  a linear differ- 
ential operator were found by Littlejohn [20] and Littlejohn and Race [22]. 

Proposition 3.1. Let L[.] be a differential operator as in (3.1). Then for any real-valued function 
s(x) ~ 0 in cgN (I), the following are all equivalent: 

(i) s(x) is a symmetry factor for L[.], that is, sL = (sL)*; 
N+I  (ii) s(x), x El, satisfies the r := [-5-] equations: 

Rk(s):= ~ ( - 1 )  i ( i - k k -  1 (ais)(i_2k_l) .= O, k = 0 , 1 , . . . , r -  1; (3.4) 
i=2k+l 

(iii) for any real-valued functions y(x) and z(x) in ~N(I), one of  which has compact support in 
I, we have 

(sL[yl,z) := f z(x)(sL[yl)(x)dx= f y(x)(sL[zl)(x)dx := {y, sL[z]). (3.5) 

Furthermore, if any one of  the above equivalent conditions holds, then N = 2r must be even. 

Proof. See [22, Theorem 5.3; 20, Theorem 4]. We call the r overdetermined system of  equations in 
(3.4) the symmetry equations for L[-]. Note that each Rk[.], 0 ~< k ~< r -  1, is a differential operator 
of  order 2r - 2k - 1. 

In particular, for k = r -  1, we have 

Rr_l(s) = r(a2rS) I - a2r-lS = 0, (3.6) 

which has only one linearly independent classical solution given by 

s ( x ) -  1 

Hence, we may restate Proposition 3.1 as: the differential operator L[.] in (3.1) is symmetrizable if 
and only if s(x) in (3.7) satisfies the remaining r - 1  symmetry equations Rk(s)= 0, 0 <~ k <~ r -2 .  As 
a consequence, we have that a symmetry factor s(x) of  L[.] is unique up to a nonzero multiplicative 
constant and s(x)~= 0 in I if it exists. 

The fact that s(x) in (3.7) is the only one candidate for a symmetry factor of  L[.] motivates 
a question: Are the r symmetry equations in (3.4) really independent of  each other? We show 
that all Rk[.], 0 ~< k ~< r - 2, are, in fact, derivable from Rr-l[-] if the differential operator L[.] is 
symmetrizable. 
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Theorem 3.2. The differential operator L[.] in (3.1) with N = 2r is symmetrizable on I if and only 

if  
2 r - 2 k - - 2  

a2r--2k--2D z 2r l~.kl_, j r  1 ~ bik(x)DiRr_l[.], k = 0 ,  1, . . , r -  1, (3.8) 
i=0 

where bik(X) are real-valued continuous functions on I. 

Proof. Assume that differential operator L[.] is symmetrizable and let s(x) be a symmetry factor of  
L[.]. For k = r  - 1, (3.8) holds with b0,r-l(x)-- 1. For any fixed k with O<<.k<<.r - 2, we have 

( 2 r - k - l ) a 2 r ( x ) D 2 r - 2 k - l + D O ( 2 r - 2 k - 2 )  
Rk[.]  = k 

- l ( 2r - k - 1 )  D2r-2k-2Rr-l['] + DO(2r - 2k - (3.9) 

where DO(k) denotes a differential operator of  order ~<k with continuous functions as coefficients. 
Multiplying (3.9) by azr(X) gives 

1 (2r-k-1)a2r(x)D2r-2k-2Rr_l[ .  ] 
a2~(x)Rk['] ~ r k 

-~ c(x)D2r-2k-3Rr_ l [.] -~- DO(2r - 2k - 3), 

where c(x) is a continuous function. Continuing the same process, we obtain 

2 r - 2 k - 2  

a~-2k-2Rk[']= ~_~ bik(X)DiRr_l['], (3.10) 
i----1 

where bik(x) are continuous functions and O-lRr_l[ "] --1 (identity operator). If we apply (3.10) 
to s(x), then we obtain b_l,k(x)s(x)=O and so b_l,k(x)----0 in I since Rk(s)=0,  O<~k<~r- I. 
Conversely, we have (3.6) with s(x) in (3.7). Then, (3.8) implies that Rk(s )=0  on I, O<~k<~r- 1. 
Hence, s(x) is a symmetry factor of  L[-] on I. [] 

Returning now to the differential equation (1.1), we have: 

Proposition 3.3. Let {Pn(x)}~0 be an OPS and a a canonical moment functional of  {Pn(x)}~o. 
Then the following are all equivalent. 

(i) for each n>~O, Pn(x) satisfies the differential equation (1.1). 
N + I  (ii) The moments (trn},=0 of tr satisfy r := [-5-] recurrence relations: 

Sk(m) := Z k 
i = 2 k + l  j = 0  

(3.11) 

for k--O, 1 , . . . , r - 1  a n d m = 2 k  + l,2k +2 . . . .  , where P ( n , k ) = n ( n - 1 ) ( n - 2 ) . . . ( n - k  + l). 
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N+I (iii) ~r satisfies r := [--5-] functional equations: 

Rk(a) :=0 ,  k = 0 , 1 , . . . , r - 1 ,  (3.12) 

where Rk[-] are differential operators in (3.4) with (i(x) instead of  ai(x). 
(iv) aLN['] is symmetric on polynomials in the sense that 

= (3.13) 

for all polynomials ~(x) and O(x). 
Furthermore, if  any one of  the above equivalent conditions holds, then N = 2r must be even. 

Proof. See [18, Theorem 2.4]. 
The equivalence of  the statements (i) and (ii) was first proved by Krall [13]. We call the r 

functional equations in (3.12) the moment equations for the differential equation (1.1). 
Now we are ready to give our main result. In the following, we always assume N = 2r for some 

integer r ~> 1. 

Theorem 3.4. / f  the differential equation (1.1) has an OPS {P,(x)}~_ 0 of  solutions, then the dif- 
ferential operator LN['] is symmetrizable on any open interval not containin9 any root o f  EN(X) 
with 

, exp[ ! / s(x) -- (3.14) 
 N(x) 

as a symmetry factor. 

Proofl Let a be a canonical moment functional of  {P,(x)}~0. Then a is quasi-definite and satisfies 
(3.12) by Proposition 3.3. As in the proof of  Theorem 3.2, we have (3.10) with ~(x) instead of  
ai(x), where bik(x) are polynomials. If we apply (3.10) to a, then we obtain b_l,k(x)a=O so that 
b_l,~(x) = 0 by Lemma 2.2. Hence, we also have (3.8). Then with s(x) in (3.14), we have Rk(s) = O, 
O<<.k<<.r - 1, on any open interval not containing any root of  fN(X). That is, s(x) is a symmetry 
factor of  LN['] on any such interval. [] 

Remark 3.5. In Theorem 3.4, the differential operator LN['] -- 2n is also symmetrizable with s(x) 
in (3.14) as a symmetry factor since the sum of  any two symmetric differential operators is also 
symmetric. 

Next example shows that the converse of  Theorem 3.4 does not hold in general even though the 
differential equation (1.1) has a PS of solutions. 

Example 3.6. Consider the following fourth-order differential equation: 

L4[y](x) = y(4)(x) -t- y(3)(x) -+- (2x  - ! ~ ) y " ( x )  + xy'(x)= ny(x) .  (3 .15)  
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It is easy to see that the differential equation has a unique monic PS {P,(x)},~ 0 of solutions. The 
corresponding symmetry equations 

R1 (s) • 2s'(x) -- s(x) = O, 

Ro(S) = s(3)(x) - s"(x) + ((2x - ~ )s (x) ) '  - x s ( x ) =  0 

have a common solution s(x)= exp(x/2) so that the differential operator L4[. ] in (3.15) is symmetriz- 
able. However, the corresponding moment equations have only the trivial solution. Hence, {Pn(X)},~ o 
cannot be an OPS. 

4. Applications and examples 

In the following, we let {P,(x)}~0 be an OPS that satisfies the differential equation (1.1). In [17], 
we have proved the following. 

Theorem 4.1. I f  {Pn(x))~0 is orthoyonal relative to a distribution w(x), then 

Rk(w)=gk, k = 0 , 1 , . . . , r - 1 ,  

where 9k(x), k = 0 ,  1 . . . .  , r -  1, are distributions with zero moments, that is, 

(9k ,xn)=0,  k=O, 1 , . . . , r - 1  and n = 0 , 1  . . . . .  

Conversely, if  a distribution w(x) is such that 
(i) w(x) decays very rapidly as Ixl tends to e~ so that w(x) can act on polynomials; 
(ii) (w,x n) 7~ 0 for some n >~0 (i.e., w(x) is nontrivial as a moment functional); 

(iii) w(x) satisfies (4.1), 
then {Pn(X)}~O is orthogonal relative to w(x). 

(4.1) 

We call the r equation in (4.1) the nonhomogeneous weight equations for the differential equation 
(1.1). In general, we cannot take 9k(x)=O, k = 0 , 1  . . . .  , r -  l, unless the distribution w(x) has a 
compact support (see Example 4.6 below). However, the proof of Theorem 3.4 implies that the 
distributions 9k(x), k = 0 ,  1 , . . . , r -  1, satisfy the following relations (see (3.8)): 

2 r - 2 k - 2  

#2;-2k-2(X)gk(X)= ~ bik(x)Digr_,(x), k = 0 , 1 , . . . , r - 1 ,  (4.2) 
i=0 

where bik(x) are polynomials. Hence, we obtain: 

Theorem 4.2. Assume that {P,(x)}~0 is orthoyonal relative to a distribution w(x). I f  Rr_l(w)= O, 
then 

(i) w(x) satisfies r homooeneous weioht equations 

Rk(w)=0 ,  k = 0 , 1 , . . . , r - 1  (4.3) 
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and 
(ii) the restriction of  w(x) onto U :=Int(supp(w))\{x E R[(N(X)----O} is a symmetry factor of  

LN[.], where Int(A) denotes the interior of  a set A in g~. 
Conversely, i f  supp(w) has finitely many connected components and the statements (ii) holds, 

then w(x) satisfies (4.3). 

Proof. Assume Rr_ l (w)=0 .  Then, by Theorem 4.1 and (4.2), we have for any fixed k - -0 ,  1, . . . ,  
r - 2, 

2r-2k--2 ~2~ (x)gk(x) = O. 

Hence, 9k(x)= 0 on ~ \{x  E ~l#x(X)= 0} so that supp(gk) must be finite. Then gk(x ) -  0 on ~ since 
9k(x) has zero moments. From Rr-l(w)= r((NW)' -- (u--lW = 0, we have w(x)= cf(x)  on any open 
interval (~ ,d)  in which ~N(X)¢ O, where c is a constant and 

1 exp[~ f (N_ , ( x )dx  1 f ( x ) -  {u(X ) ~N(X ) . 

Moreover, f ( x ) ( ¢  0) is (real-) analytic in (a ,~) .  If (~ ,d)  is contained in U, then c ¢ 0 and so 
R k ( f ) = 0 ,  O<.k<.r-1,  on (z~,d). Hence, f ( x )  is a symmetry factor of  Lu[.] on (~,~). Conversely, 
assume that supp(w) has finitely many connected components and the statement (ii) holds. Then 
supp(R~-l(w))=supp(gr-~) must be finite so that gr_i(x)=O on ~. Hence, by the first part of  
theorem, we have (4.3). [] 

Remark 4.3. In fact, we can show: if {Pn(x)}~o is orthogonal relative to a distribution w(x) satisfy- 
ing Rr_~(w)--0, then supp(w) can have at most three connected components, among which at most 
one is compact (see [17, Section 4] for details). The conclusion (ii) in the first part of  Theorem 4.2 
is also proved in [17]. 

Now, we give examples illustrating above theorems. In 1984, Koornwinder [9] found a new class 
of OPS ~ fl M,N (x~ {Pn" ' (X)},= 0, called the generalized Jacobi polynomials, which is orthogonal relative to 
the weight distribution 

r ( ~ + / ~ + 2 )  x2)( 1 x)~( 1 +x)fi Wet'fl'M'N(x):~---- 2~+#+lF(a + 1)F(fl + 1) H(1 - 

+ Mb(x + 1 ) + N6(x - 1 ), (4.4) 

where a, f l > - i  and M,N>~O and H(x) is the Heaviside step function. As a limit case, he also 
found another OPS ~,M o~ {L, (x)},= 0, called the generalized Laguerre polynomials, which is orthogonal 
relative to the weight distribution 

1 
W~'M(X) "-- F(o~ + 1 ) H(x)x~e-x + Mb(x), (4.5) 

where a > - 1 and M ~> 0. 
For M = N = 0 ,  {P,~'~'°'°(x)}~o and {Ln~'°(x)}~o are classical Jacobi and Laguerre polynomials, 

which satisfy second-order differential equations. For M > 0, differential equation of  order four, six, 
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and eight satisfied by IL~'Mtx ~ l~  for e = 0, 1, and 2 were found by Krall [14], Littlejohn [19], and 
k n \ / J n = 0  

Littlejohn [21], respectively. Recently, Koekoek and Koekoek [7] proved 

Theorem 4.4. For M > O, the generalized Laguerre polynomials" L ~ M { m (X)},=0 satisfy the differential 
equation: 

M ~ ,  ~i(x)y(i)(x) + xy"(x) + (o~ + 1 - x)y'(x) + ny(x) = O, 
i=0 

(4.6) 

where 

n+~+l) 
~0(x) = n -  1 

and 

Z'i(x)= ~ '~-"~(--1) i+j+l (0~ + 3)i-;xY, i =  1,2 . . . .  
j=l --1 \ i - - j  

(here, (a)k = a ( a  + 1)- . .  (a + k - 1)). Moreover,  i f  ~ is a nonnegative integer, then (i(x) = 0 fo r  
i > 2 ~  + 4 so that Eq. (4.6) reduces to 

2~+4 

L~+4[Y](X ) = M Z #i(x)y(i)(x) + xy" (x )  + (~ + 1 - x )y ' (x )  + ny(x)  = O. 
i~O 

(4.7) 

Now, Theorem 3.4 (see also Remark 3.5) implies that the differential operator M L2~+4[. ] in (4.7) is 
symmetrizable and its symmetry factor s(x) satisfies 

(c~ + 2)(x~+Zs(x)) ' - ((~ + 1)(2~ + 4)x "+l - (~ + 2)x~+2)s(x) = O. 

Hence we have 

s ( x )  = x %  -x. (4.8) 

Since supp(w ~'~4) = [0,co) is connected, Theorem 4.2 implies that w~'M(x) satisfies e + 2 homo- 
geneous weight equations corresponding to (4.7). Symmetrizability of M L2~+4[- ] was first shown in 
Wellman [23] (see also [6]). In order to show this, he applied Green's formula to the operator 
s(x)L~+4[']. 

Krall [14] found a fourth-order differential equation satisfied by {pO'O'M'M(x)}~= o (M >0) ,  which 
is called the Legendre-type polynomials in [10]. Recently, Koekoek [8] proved 

Theorem 4.5. For M > 0 ,  the generalized ultraspherical polynomials  ~P .... M, Mt,,~loo satisfy the t n ~,~)~n=O 
differential equation: 

oo 

M ~ fi(x)y(i)(x) + ( 1 - x 2)y' '(x) - 2(~ + 1 )xy ' (x)  ÷ n(n + 2c~ + 1 )y(x)  ----- O, 
i=0 

(4.9) 



266 K,H. Kwon, G.J. Yoon/ Journal of Computational and Applied Mathematics 83 (1997) 257-268 

where 

~,(x) = ( 2 a + 3 ) ( 1  -x2)4*(x) ,  i = 1,2 . . . .  , 

where 

= o 

2i ~ ( a + l )  ( i - 2 a - 5 )  ( .~__x)  k 
4 * ( x ) = ~  k=0 i - k - 2  k , i = 2 , 3  . . . . .  

Moreover, i f  a is a nonnegative integer, then ~ ( x ) =  0 for i > 2 ~  + 4 so that Eq. (4.9) reduces to 

2ct+4 
M,M L2~+4[Y](X ) = M ~ Ei(x)y(i)(x) 

i=0 

+ (1 - x2)y"(x) - 2(a + 1)xy'(x) + n(n + 2a + 1)y(x) = 0. (4.10) 

M,M Now, Theorem 3.4 implies that the differential operator L2=+4[- ] in (4.10) is symmetrizable and 
its symmetry factor s(x) satisfies 

((1 - xZ)~+2s(x))' + 4(a + 1)(1 - xZ)~+lxs(x) = O. 

Hence we have 

s(x) = ( 1 - x 2)~. (4.11 ) 

Since supp(w ",~,M,M) = [ -1 ,  1] is connected, Theorem 4.2 implies that W='~'U'M(x) satisfies a + 2 
homogeneous weight equations corresponding to (4.10). 

Finally, we give an example showing that we may not take gk(x) = O, O<<,k<<.r - 1, in (4.1) and 
that w(x) may not, in general, be a symmetry factor of LN['] o n  any interval. 

Example 4.6. Consider the following second-order differential equation: 

L2[y](x) = x2y"(x) + (2x + 2)y'(x) = n(n + 1)y(x). (4.12) 

It is well known that the differential equation (4.12) has on OPS{B,(x)},~ 0, called the Bessel 
polynomials [15], of solutions. The corresponding homogeneous weight equation is 

x2w'(x) - 2w(x) = 0. (4.13) 

Hence, the differential operator L2[.] in (4.12) is symmetrizable with symmetry factor s(x) = 
exp(-2/x).  On the other hand, (4.13) has only one linearly independent distributional solution with 
support in [0,oo): 

0, x~<O, 

w+(x )=  exp(-2/x),  x>O, 
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which cannot even define a moment functional since lim~__,~ w+(x) = 1. However, if we consider 
the nonhomogeneous weight equation 

x2w'(x) - 2w(x) = g(x), (4,14) 

where 

0, x~<O, 

g(X)= exp(_xl/4)sinxl/4, X>0, 

then Eq. (4.14) has 

w(x)  = { 
O, x~O,  
- e x p ( - 2 / x ) f ~  t -2 exp(-t  1/4 + ~ ) sin t '/4 dt, x > O, 

as a distributional orthogonalizing weight for {B,(x)}~0 (see [16] for details). Even though w(x)  is 
analytic for x ¢ O, w(x)  cannot be a symmetry factor of L2['] on any interval. 
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