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Abstract

For the quantum integer [n]q =14¢g+¢*+ - +¢"" there is a natural polynomial

multiplication such that [m], ®[n], = [mn],. This multiplication leads to the functional
o0

equation fy,(q)f(¢"™) = fim(q), defined on a given sequence # = { f,(¢)},-, of polynomials.
This paper contains various results concerning the construction and classification of
polynomial sequences that satisfy the functional equation, as well open problems that arise
from the functional equation.
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1. A polynomial functional equation

Let N ={1,2,3, ...} denote the set of natural numbers, and Ny = NuU {0} the set
of nonnegative integers. For neN, the polynomial

M, =1+q+¢+ - +q""
q

is called the quantum integer n. With the usual multiplication of polynomials, we
observe that [m],[n] #[mn], for all m#1 and ns#1. We would like to define a
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polynomial multiplication such that the product of the quantum integers [m] , and

[n],, is [mn],.
Consider polynomials with coefficients in a field. Let # = {f,(¢q)},~, be a
sequence of polynomials. We define a multiplication operation on the polynomials in

F by

q9) ® ofn(q (@)fn(q")-
We want to determine all sequences % that satisfy the functional equation
Son(q) = Jn(@) ® ofu(q) = Sn(@)n(q") (1)

for all m,neN. If the sequence # = {f,(¢)},-, is a solution of (1), then the
operation ®, is commutative on # since

(@) ® ofu(q) = fn (@) = fam(q) = 1u(@) ® ofin(q)-

Equivalently,

In(@Df(d") = Su(@)fn(q") (2)

for all natural numbers m and n.'

Here are three examples of solutions of the functional equation (1). First, the
constant sequence defined by f,(¢) = 1 for all neN satisfies (1).

Second, let

fulg) =q""
for all neN. Then
Son(q) = g™ =" gD = fu(@)fulq™)

and so the polynomial sequence {¢"~'},~, also satisfies (1).
Third, let f,(q) = [n], for all neN. Then

ml, ® 4, =fin(q) ®ofu(q)
=fm(@)fu(q")
=(14+g+ ¢+ +¢" N1+ +¢" + - +¢""")
=14q+ - +qn1—l +q" +qm+1_“ +qmn—]

— [,

"Note that (1) implies (2), but not conversely, since the sequence & = { f;,(¢)}.2, with f,(¢q) = 2 for all
neN satisfies (2) but not (1).
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and so the polynomial sequence {[n] q};’;l of quantum integers satisfies the functional
equation (1).
The identity

[m}q ®q["]q = [mn]q

is the g¢-series expression of the following additive number theoretic identity for
sumsets

{0,1,2,....mn—1} ={0,1,....m— 1} + {0,m,2m, ..., (n — 1)m}.

This paper investigates the following problem.

0
n=1

Problem 1. Determine all polynomial sequences F = {f,(q)} that satisfy the

Sfunctional equation (1).

2. Prime semigroups

A multiplicative subsemigroup of the natural numbers, or, simply, a semigroup, is a
set SN such that 1€S and if me S and ne S, then mneS. For example, for any
positive integer ng, the set {1} u{n>=np} is a semigroup. If P is a set of prime
numbers, then the set S(P) consisting of the positive integers all of whose prime
factors belong to P is a multiplicative subsemigroup of N. If P = 0, then S(P) = {1}.
If P= {p} contains only one prime, then S(P) = {p*: keNy}. A semigroup of the
form S(P), where P is a set of primes, will be called a prime semigroup.

Let 7 = {fu(¢q)},-, be a sequence of polynomials that satisfies the functional
equation (1). Since

Si(a) = f1(9) ®4f1(q) = fi(a)f1(4),
it follows that f1(¢) = 1 or fi(¢) = 0. If fi(g) = 0, then

In(@) =11(@) ® ofu(q) = /1(q)fa(q) = O

for all neN, and Z is the sequence of zero polynomials. If f,(¢) #0 for some n, then

filg) = 1.

Let # = { f,(q)}.~, be any sequence of functions. The support of F is the set

n=1
supp(#) = {neN: fu(q) #0}.

The sequence & is called nonzero if f,(q)#0 for some neN, or, equivalently, if
supp(Z) #0. If F satisfies the functional equation (1), then # is nonzero if and only

if fi(g) =1.
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For every positive integer n, let Q(n) denote the number of not necessarily distinct
prime factors of n. If n = pi'---pi¥, then Q(n) =ri + - +ry.

Theorem 1. Let 7 = {f,(q)},-, be a nonzero sequence of polynomials that satisfies
the functional equation (1). The support of F is a prime semigroup. If

supp(#) = S(P),

where P is a set of prime numbers, then the sequence F is completely determined by the
set of polynomials 7 p = { /,(q)} ,c p-

Proof. Since # is nonzero, we have fi(¢) = 1 and so 1esupp(Z). If mesupp(F)
and nesupp(¥), then f,,(¢) #0 and f,(q) #0, hence

Son(@) = S (@)fu(g") #0

and mnesupp(Z ). Therefore, supp(F) is a semigroup.

Let P be the set of prime numbers contained in supp(.# ). Then S(P) Ssupp(F). If
nesupp(Z ) and the prime number p divides n, then n = pm for some positive integer
m. Since Z satisfies the functional equation (1), we have

Sn(@) = Jom(q) = Fp(@)fm(q") #0,

and so f,(g) #0, hence pesupp(# ) and pe P. Since every prime divisor of n belongs
to supp(¥), it follows that ne S(P), and so supp(F) < S(P). Therefore, supp(F) =
S(P) is a prime semigroup.

We use induction on Q(n) for nesupp(#) to show that the sequence Fp =
{/»(@)},cp determines Z. If Q(n) = 1, then n = pe P and f,(¢g) € # p. Suppose that
F p determines f;,(¢q) for all mesupp(F) with Q(m)<k. If nesupp(F) and Q(n) =
k + 1, then n = pm, where pe P, mesupp(¥ ), and Q(m) = k. It follows that the
polynomial f,(q) = £,(q)fm(¢q"”) is determined by & p. O

Let P be a set of prime numbers, and let S(P) be the semigroup generated by P.
Define the sequence # = {f,(q)}.~, by

n=1
[n], if neS(P),

Iul@) = {o it n¢S(P).

Then 7 satisfies (1) and supp(# ) = S(P). Thus, every semigroup of the form S(P) is

the support of some sequence of polynomials satisfying the functional equation (1).
The following theorem provides a general method to construct solutions of the

functional equation (1) with support S(P) for any set P of prime numbers.

Theorem 2. Let P be a set of prime numbers. For each pe P, let h,(q) be a nonzero
polynomial such that

hp (@), (") = Dy, (D) p, (¢7)  Sfor all pr,pre P. (3)
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Then there exists a unique sequence F = { f,(q)},_, with supp(F) = S(P) such that
F satisfies the functional equation (1) and f,(q) = h,(q) for all pe P.

The proof uses three lemmas.

Lemma 1. Let p be a prime number and hy(q) a nonzero polynomial. There exists a
unique sequence of polynomials { f,(q)},— such that f,(q) = hy(q) and

Ty (q) = 1 (@)fyi (@) 4)

for all nonnegative integers i,j and k such that i +j = k.
Proof. We define fi(¢) = 1, f,(q9) = hy(g), and, by induction on k,

T (@) = 1p(@)f 1 (4") (5)

for k=2. The proof of (4) is by induction on k. Identity (4) holds for k = 0, 1, and 2,
and also for i = 0 and all j. Assume that (4) is true for some k=1, and let k + 1 =
i+j, where i>1. From the construction of the sequence {f,(¢)};—, and the
induction hypothesis we have

T (@) =Fp(@)fp ()
= I (@ yi(2")
=@y (@ (@)
= I @p ().

Conversely, if the sequence { f«(¢)} o satisfies (4), then, setting i = 1, we obtain (5),
and so the sequence { f,x(¢)}Z, is unique. [

Lemma 2. Let P = {py,p,}, where p\ and p, are distinct prime numbers, and let S(P)
be the semigroup generated by P. Let hy (q) and h,,(q) be nonzero polynomials such
that

by (Dhpy (¢") = Tp (@) By, (47).- (6)

There exists a unique sequence of polynomials { f,(q)},,c sp) such that fp,(q) = hp, (q),
Jp:(q) = hy,(q), and

Jon(@) = Sn(@)fu(q™)  for all m,neS(P). (7)

Proof. Every integer ne S(P) can be written uniquely in the form n = p} p{ for some
nonnegative integers i and j. We apply Lemma 1 to construct the sets of polynomials
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{fpi (@)} and {1, ,(q)} 2o U m = p'ip] for positive integers i and j, then we define
Jo(a) = 1y (), ("), (8)
This determines the set { /u(9)},cs(p) -
We shall show that

J

Iy @ (d) = £ (@) (@) 9)

for all nonnegative integers i and j. This is true if i = 0 or j = 0, so we can assume
that i>1 and j>1.

The proof is by induction on k =i+j. If k=2, then i =j =1 and the result
follows from (6). Let k=2, and assume that Eq. (9) is true for all positive integers i
and j such that i+j<k. Let i+j+1=k+ 1. By Lemma 1 and the induction
assumption,

Similarly,

This proves (9).
Let m,ne S(P). There exist nonnegative integers i,j, k, and ¢/ such that

m=pip; and n=pip).
Then

itk J

Il @) =y (@), ) (@ o (@7 (@77

= L (@D (@) (@ Vg (@72

itk

= 1 @ (Vg (@ Vg (F7)

J
2

=Ly (@ (@) (@7,

=fn(@)fm(d")-

itk o/

(¢ ")

J
2
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Setting m = p% and n = pzj in (7) gives (8), and so the sequence of polynomials
{j;’l(q)}neS(P) is unique. [

Lemma 3. Let P = {p, ...,p,} be a set consisting of r prime numbers, and let S(P) be
the semigroup generated by P. Let h, (q), ..., h, (q) be nonzero polynomials such that

hp (@), (67) = hy, (@) B, (4™) (10)
fori.j=1,....r. There exists a unique sequence of polynomials { f,(q)},cs(p) such that
Joi(q) = hy(q) fori=1,...,r, and

Jon(@) = fu(@)fu(q™)  for all m,neS(P). (11)

Proof. The proof is by induction on r. The result holds for r = 1 by Lemma 1 and
for r =2 by Lemma 2. Let r>3, and assume that the Lemma holds for every set of
r—1 primes. Let P = P\{p,} = {p1,...,pr—1}. By the induction hypothesis, there
exists a unique sequence of polynomials {,(g)},c g such that f,(q) = hy,(q) for
i=1,...,r—1,and

Jorn (@) = for (@) (q")  for all m',n' e S(P).

Every ne S(P)\S(P’) can be written uniquely in the form n = n'p%, where n’' € S(P')
and a, is a positive integer. We define f,« (¢) by Lemma 1 and

Funr (@) = Fur( @y (). (12)
We begin by proving that
S @y (d7) = e (@ (@) (13)

for all w' e S(P') and a,eN.
By Lemma 2, Eq. (13) is true if n' = p% for some prime p;e P'. Let n' = n"p%,
where n” € S(P\{ps,p,}). By the induction assumption,

Fr @ (67) = fopr (@fow ()

and so

11 ds

S @ (@) = oo (@ (@ Ve (477

= @ Uy )
=L (Do (@ Vo (4777)
=/ (@) (@),

This proves (13).
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Let m,ne S(P). We write n = n'p® and m = m/p?, where m/,n’ € S(P') and a,,b,

are nonnegative integers. Applying (13) and the induction assumption, we obtain

1 by 71 by

I @Vfaq™) = For (@) (4" W ("7 Wper (g 7)

/ol pbr

= Far (@i (4" Vo (4" Vo (4777

ol A1

= (@) (4" Wy (4" Wy (")

7 dr ol dr

= Foe @ (@ Vo (@7 ) e (g7
=/n(@)fm(q")-

This proves (11).
Applying (11) with m =#" and n = p®, we obtain (12). This shows that the
sequence { f4(¢)},cs(p) is unique, and completes the proof of the lemma. [

We can now prove Theorem 2.

Proof of Theorem 2. If P is a finite set of prime numbers, then we construct the set of
polynomials {f,(¢)},csp by Lemma 3, and we define f,(¢) = 0 for n¢ S(P). This
determines the sequence & = { f,(q )};0 | uniquely.

If P is infinite, we write P = {p;}”,. For every positive integer r, let P, = {p;}"_,
and apply Lemma 3 to construct the set of polynomials { f,(¢)},cs(p,)- Since

Pc---cP.cP1S---SP

and
S(P)S - =8(P,)SS(Pys1)< - S S(P),
we have
{1 @ nesey S - S{@Dbnese) S@bnese,) S
Define

{fn neS U {fn neS (Py)"

Setting f,(¢) = 0 for all n¢S(P) uniquely determines a sequence F = { f,(¢)},~,
that satisfies the functional equation (1) and f,(¢q) = h,(q) for all peP. This
completes the proof. [
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For example, for the set P = {2,5,7}, the reciprocal polynomials
h(g)=1-q+¢,
hs(q) =1-q+¢ —q¢'+¢’ —q' + ¢,
h(@)=1-q+¢ —¢"+d¢" ¢ +¢" —¢" + 4"

satisfy the commutativity condition (3). There is a unique sequence of poly-
nomials # = {f,(q)},~, constructed from {/(q),hs(q),h7(¢)} by Theorem 2.
Since

1(@) = hy(q) =[p—3 for pe P = {2,5,7},

it follows that

fulq) = % for all ne S(P).

We have deg(f,) =2(n— 1) for all ne S(P).
We can refine Problem 1 as follows.

Problem 2. Let P be a set of prime numbers. Determine all polynomial sequences
F ={1u(q)},=, with support S(P) that satisfy the functional equation (1).

Problem 3. Let P and P' be sets of prime numbers with P< P', and let # = { f,,(¢)}1-,
be a sequence of polynomials with support S(P) that satisfies the functional equation
(1). Under what conditions does there exist a sequence F' = {f!(q)},—, with support
S(P') such that F' satisfies (1) and f,(q) = f,(q) for all primes pe P?

Problem 4. Let S be a multiplicative subsemigroup of the positive integers. Determine
all sequences { f,(q)},cs of polynomials such that

Son(@) = f(@)fn (") for all m,neS.

This formulation of the problem of classifying solutions of the functional equation
does not assume that S is a semigroup of the form S = S(P) for some set P of prime
numbers.
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3. An arithmetic functional equation

An arithmetic function is a function whose domain is the set N of natural numbers.
The support of the arithmetic function 0 is

supp(0) = {neN: o(n) #0}.

Lemma 4. Let S be a semigroup of the natural numbers, and 5(n) a complex-valued
arithmetic function that satisfies the functional equation

o(mn) = 6(m) +mo(n) for all m,nes. (14)
Then there exists a complex number t such that

o(n)y=t(n—1) for all neS.

Proof. Let d(n) be a solution of the functional equation (14) on S. Settingm =n =1
in (14), we obtain 6(1) = 0. For all m,neS\{1} we have

o(m) + mo(n) = é(mn) = 6(nm) = 6(n) + né(m)

and so

m—1 n—1

It follows that there exists a number ¢ such that d(n) = ¢(n — 1) for all neS. This
completes the proof. [

Note that if 6(n) = 0 for some ne S\{1}, then 6(n) = 0 for all neS.
Let deg(f') denote the degree of the polynomial f(g).

Lemma 5. Let 7 = { f,(q)},-, be a nonzero sequence of polynomials that satisfies the
functional equation (1). There exists a nonnegative rational number t such that

deg(f,) =t(n—1) for all nesupp(F). (15)

Proof. Let S = supp(Z). The functional equation (1) implies that
deg(fom) = deg( fin) + mdeg(f,) for all m,nesS,

and so deg(f,) is an arithmetic function on the semigroup S that satisfies the
arithmetic functional equation (14). Statement (15) follows immediately from
Lemma 4. O
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We note that, in Lemma 5, the number ¢ is rational but not necessarily integral.
For example, if supp(#) = {7*: keNy} and

247k k_
f7/<((]) :q2(1+7+7 4751 :q(7 l)/3’

then 7, = 1.

An arithmetic function A(n) is completely multiplicative if A(mn) = A(m)A(n) for all
m,neN. A function A(n) is completely multiplicative on a semigroup S if A(n) is a
function defined on S and A(mn) = A(m)A(n) for all m,neS.

Theorem 3. Let 7 = {f,(q)},-, be a nonzero sequence of polynomials that satisfies
the functional equation

(@) = S (@fu(q™).-

Then there exist a completely multiplicative arithmetic function i.(n), a nonnegative

rational number t, and a nonzero sequence 9 = {g,(q)},-, of polynomials such that

falg) = 2(m)g""Vgu(q) for all neN,

where

(1) the sequence 9 satisfies the functional equation (1),
(i)
supp(#) = supp(%) = supp(4),

(1i1) '
gn(0) =1 for all nesupp(9).

The number t, the arithmetic function J(n), and the sequence 9 are unique.

Proof. For every nesupp(%) there exist a unique nonnegative integer d(n) and
polynomial ¢/,(¢) such that ¢/,(0)#0 and

fola) = 4""g,(q).
Let A(n) = ¢,,(0) be the constant term of ¢/,(¢). Dividing ¢/, (¢) by A(n), we can write
9(q) = Hn)gu(q),

where g,(g) is a polynomial with constant term g,(0) = 1. Define ¢,(¢) =0 and
A(n) =0 for every positive integer n¢supp(Z), and let ¥ = {g,(¢q)},-,. Then
supp(Z) = supp(¥) = supp(4). Since the sequence

()™ gu(@)}2
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satisfies the functional equation, we have, for all m,nesupp(¥),

mn) (m)

md(n)

Gnn(q) = 2(m)q" " g (@) A(n) g™ g (g™)

= A(m) ()" ") g, (q)gn(g").-

The polynomials g,,(q),g.(q), and g¢..(q) have constant term 1, hence for all
m,nesupp(F) we have

A(mn) g

qé(mn) _ qé(m)+m6(n)

)

Almn) = A(m)A(n)
and
Imn(q) = gm(q)9n(q")-

It follows that A(n) is a completely multiplicative arithmetic function with supp(%),

and the sequence {g,(¢)},-, also satisfies the functional equation (1). Moreover,

0(mn) = 6(m) + mo(n) for all m,nesupp(F).

By Lemma 4, there exists a nonnegative rational number ¢ such that d(n) = t(n — 1).
This completes the proof. [

4. Classification problems

Theorem 3 reduces the classification of solutions of the functional equation (1) to

o0

the classification of sequences of polynomials & = {f,(¢)},-, with constant term
Jfx(0) =1 for all nesupp(F).

Theorem 4. Let 7 = {f,(q)},—, be a nonzero sequence of polynomials that satisfies
the functional equation (1).

(i) Let y(q) be a polynomial such that y(q)™ = y(¢™) for every integer mesupp(F).

Then the sequence { f,((q))},-, satisfies (1).
(ii) For every positive integer t, the sequence { f,(q")},, satisfies (1).
(iii) The sequence of reciprocal polynomials {q%e /" f, (g~ ")} 2, satisfies (1).

n=1

Proof. Suppose that (q)" = y(¢") for every integer mesupp(Z). Replacing ¢ by
¥(g) in the polynomial identity (1), we obtain

S W(q)) =S (b (@))fa(W()") = S (@))fa(W(q™))

for all m,nesupp(Z). This proves (i).
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Since (¢")" = (¢™)' for all integers ¢, we obtain (ii) from (i) by choosing ¥(q) = ¢'.
The reciprocal polynomial of f(g) is

Aa) =g 1 (q7™).
Then

fmn( ) deg( fmu )f mn (q_l )
— e tmdes ) 1 (a1 e (g
— gt p (g Mg S g (¢

=fm(@)fu(d").
This proves (iii). [

For example, setting
[n]q, =1 +qt +q2t + .. +q(n—l)z7

we see that {[n] .}, is a solution of (1) with support N.

The quantum integer [n], is a self-reciprocal polynomial of ¢, and [n],, is self-

q
reciprocal for all positive integers ¢. The reciprocal polynomial of the polynomial
¢ is 1.

The polynomials /(g) = ¢’ are not the only polynomials that generate solutions of
the functional equation (1). For example, let p be a prime number, and consider
polynomials with coefficients in the finite field Z/pZ and solutions # = {f,(q)},
of the functional equation with supp(#) = S({p}) = {p*: keNy}. Applying the
Frobenius automorphism z+z?, we see that y(q)" = y(¢"™) for every polynomial
V(q) and every mesupp(F).

Here is another example of solutions of (1) generated by polynomials satisfying

¥(q)" = ¥ (q") for mesupp(7).
Theorem 5. Let P be a nonempty set of prime numbers, and S(P) the multiplicative

semigroup generated by P. Let d be the greatest common divisor of the set
{p — 1: peP}. For {#0, let

fila) =Y €4’ =l for nes(P)

and let f,(q) =0 for n¢S(P). If { is a dth root of unity, then the sequence of
polynomials

F ={fm@)}
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satisfies the functional equation (1). Conversely, if F satisfies (1), then { is a dth root of
unity.

Proof. Let { be a dth root of unity, and y(g) = {g. Since p = 1 (mod d) for all pe P,
it follows that m = 1 (mod d) for all me S(P). Therefore, if meS(P), then

Y(g)" = (Lg)" ="q" = {q" = ¥(q").

It follows from Theorem 4 that the sequence of polynomials # = { f,(¢)},-,, where

n—1

Z {'q" for ne S(P)

i=0

PN
P
S
S~—

I
=
kS

Il

and f,(¢) = 0 for n¢ S(P), satisfies the functional equation (1).
Conversely, suppose that & satisfies (1). Let m,ne S(P)\{1}. Since

m—1 n—1 m—1 n—1
fm(q)fn(qm) = (Z éiqi> ( équI]> — Z Cl’+jqi+mj7
i=0 0

j=0 = Jj=

mn—1 m—1 n—1 o
fnm (q) _ Z quk — Z Cl+n1]ql+}71j
k=0 i—0 j=0

and
Son(q) = fu(@fu(q™),
it follows that
éi+j — Ci+mj
for 0<i<m — 1 and 0<j<n — 1. Then

Cj(mfl) -1
and

Cm—l =1 for all mES(P)

Thus, { is a primitive /th root of unity for some positive integer 7, and /
divides m — 1 for all meS(P). Therefore, / divides d, the greatest common
divisor of the integers m — 1, and so { is a dth root of unity. This completes the
proof. [
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Let 7 = {fu(¢)},~, and % = {g.(q)},-, be sequences of polynomials. Define the

n=1
product sequence

TG ={fogn(@)}re
by £29n(q) = fu(q)9n(q)-

Theorem 6. Let & and 9 be nonzero sequences of polynomials that satisfy the
Sfunctional equation (1). The product sequence % also satisfies (1). Conversely, if
supp(Z) = supp(¥) and if F and F G satisfy (1), then G also satisfies (1). The set of
all solutions of the functional equation (1) is an abelian semigroup, and, for every prime
semigroup S(P), the set I'(P) of all solutions F = { f,(q)},-, of (1) with supp(F) =
S(P) is an abelian cancellation semigroup.

Proof. If # and ¢ both satisfy (1), then

SonGmn (@) = Fon (@) Gmn (q)
:fm( )n( ) ( )gn(q )
= fingm(@)fugn(q")

and so # 9 satisfies (1). Conversely, if m,nesupp(F) = supp(¥%),

S (@) G (@) = S (@) g (Dfn(q" ) gn (")

and

fmn((]) :fm(([) n(qm)7

then

(@) = gm(9)gn(q")-

Multiplication of sequences that satisfy (1) is associative and commutative. For every
prime semigroup S(P), we define the sequence .#p = {I,(¢)},—, by I, ( )=1 for
neS(P) and I,(q) =0 for n¢S(P). Then Spel(P) and SpF = F for every
Fel(P). f #,9, #cl'(P) and F9 =F#, then ¥ = . Thus, I'(P) is a
cancellation semigroup. This completes the proof. [

Let S(P) be a prime semigroup, and let # = {f,(q)},-, and % = {g.(¢q)},—, be
sequences of polynomials with support S(P). We define the sequence of rational
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functions 7 /¥ by

where
In Jalg) .
In (q) gn(q) ir HES(P)
and
ng(q):O if n¢ S(P).

Then % /% has support S(P). If # and ¥ satisfy the functional equation (1), then the
sequence Z /% of rational functions also satisfies (1).

We recall the definition of the Grothendieck group of a semigroup. If I' is an
abelian cancellation semigroup, then there exists an abelian group K(I') and an
injective semigroup homomorphism j : I' > K(I') such that if G is any abelian group
and o a semigroup homomorphism from I" into G, then there exists a unique group
homomorphism & from K(I') into G such that &/ = «. The group K(I') is called the
Grothendieck group of the semigroup I.

Theorem 7. Let S(P) be a prime semigroup, and let I' (P) be the cancellation semigroup
of polynomial solutions of the functional equation (1) with support S(P). The
Grothendieck group of T'(P) is the group of all sequences of rational functions F |9,
where F and 9 are in I'(P).

Proof. The set K(I'(P)) of all sequences of rational functions of the form /%,
where # and ¥ are in I'(P), is an abelian group, and & +— % /.4 p is an imbedding of
I'(P)into K(I'(P)). Let o : I'(P) —» G be a homomorphism from I'(P) into a group G.
We define & : K(I'(P))— G by

(%) =5

If #/9=%,/%, then %, = 7,%. Since « is a semigroup homomorphism, we
have a(F)a(%,) = a(F1)a(¥), and so

wWF)  uF)

This proves that &: K(I'(P))—> G is a well-defined group homomorphism, and
@ =oa 0O
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Problem 5. Does every sequence of rational functions that satisfies the functional
equation (1) and has support S(P) belong to the group K(I'(P))?

We recall that if % is a sequence of nonconstant polynomials that satisfies (1),
then there exists a positive rational number ¢ such that deg(f,) =t(n—1) is a
positive integer for all nesupp(#). In particular, if supp(%) = N, or if 2esupp(F),
or, more generally, if {n — 1: nesupp(F)} is a set of relatively prime integers, then ¢
is a positive integer.

The result below shows that the quantum integers are the unique solution of the
functional equation (1) in the following important case.

Theorem 8. Let F = {f,(q)},~, be a sequence of polynomials that satisfies the
functional equation

Son(q) = fn(@)fu(q™)

for all positive integers m and n. If deg(f,) =n—1 and f,(0) =1 for all positive
integers n, then f,(q) = [n], for all n.

Theorem 8 is a consequence of the following more general result.

Theorem 9. Let F = {f,(q)}~

w1 be a sequence of polynomials that satisfies the
Sfunctional equation

Son(@) = fu(@)fu(q™)

for all positive integers m and n. If deg(f,) = n— 1 and £,(0) = 1 for all nesupp(F),
and if supp(F ) contains 2 and some odd integer greater than 1, then f,(q) = [n], for all
nesupp(F).

Proof. Since 2esupp(# ), we have deg(f,) = 1 and f2(0) = 1, hence

fa(q) =1+aq
for some a#0. If n =2r + 1>3 is an odd integer in supp(% ), then

n—1

Sn(q) =1 —|—Z biq’, with b, #0.

J=1
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We have
Fn(@)f2(q") = (1 + Z bigq ) (1 +aq")
n—1 ) n—1 ]
=1+ Z biq’ +aq" + Z abiq""
= =1
=1+big+bog* + - +abig""" + abrg"* +
and

n—1
L) = (1 + ag) <1+qu2’>

J

2r 2r
=l+ag+Y bg?+> abig?"

j=1 j=1
=1+ag+big* + -+ br1g"™! + abpg 4

The functional equation with m = 2 gives

T(@)(d") = L@)f(@). (16)
Equating coefficients in these polynomials, we obtain
a=by = by,

byi1 =aby = a*

and

ab,.| = aby = a*.

Since a#0, it follows that

and
Lg) =1+q=[2],
By the functional equation, if fyu 1(g) = [2"*1](1 for some integer k=2, then
Jo(@) =Ly (@)o(d™ )

k—1_ k—1
=(l+g+q+-+q¢ Hl+qg )
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=14+ g+ + - +q !

=21,

It follows by induction that f>(g) = [Zk]q for all keN.

Let n =2r + 1 be an odd integer in supp(Z ), n>=3. Eq. (16) implies that
n—1 r

L+big+ Y big/ +¢"=1+q+ > bi(g" + ¢
J=2 i=1

andso 1 =b; =b, =b,_; and
bi:bgi:szl fOI‘iZl,...,V*l.

Ifn:3,thenb1:b2:1andf_g(q):B]q.Ifn:S,thenr:2andb1:b2:b3:

by = 1, hence f5(¢) = [5],.
For n>=7 we have r=3. If 1<k<r—2 and b;=1 for i=1,...,2k — 1, then
k<2k — 1 and so

1 = b = by = by

It follows by induction on k that b; = 1 fori =1, ...,n — 1, and f,(¢) = [n], for every
odd integer nesupp(F).
If 2knesupp(F), where n is odd, then

Sra@) = (@i @) = 28], ] e = 2591,
This completes the proof. [

Problem 6. Let t>2, and let 7 = { 1,(q)},-, be a sequence of polynomials satisfying
the functional equation (1) such that f,(q) has degree t(n — 1) and f,(0) =1 for all
neN. Is F constructed from the quantum integers? More precisely, do there exist
positive integers ty, ..., t; and integers uy, ..., u; such that

I=nthuy + - + g
and, for all neN,

k
Sula) =TT (00"

i-1
5. Addition of quantum integers

It is natural to consider the analogous problem of addition of quantum integers.

With the usual rule for addition of polynomials, [m], + [n],# [m + n],, for all positive
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integers m and n. However, we observe that
[m], +¢"[n], = [m+n], forall mneN.

This suggests the following definition. Let # = {f,(¢)},-, be a sequence of
polynomials. We define

(@) @ ofu(q) = fin(q) + ¢"1u(q)- (17)

If h(g) is any polynomial, then the sequence # = {f,(q)},—, defined by f,(q) =
h(q)[n], is a solution of the additive functional equation (17), and, conversely, every
solution of (17) is of this form. This is discussed in [1].
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